CN117089005A - Ultralow dielectric copolymer and preparation method and application thereof - Google Patents
Ultralow dielectric copolymer and preparation method and application thereof Download PDFInfo
- Publication number
- CN117089005A CN117089005A CN202311050838.7A CN202311050838A CN117089005A CN 117089005 A CN117089005 A CN 117089005A CN 202311050838 A CN202311050838 A CN 202311050838A CN 117089005 A CN117089005 A CN 117089005A
- Authority
- CN
- China
- Prior art keywords
- copolymer
- silicon
- ultra
- low dielectric
- hexadiene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001577 copolymer Polymers 0.000 title claims abstract description 207
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 claims abstract description 111
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 97
- 239000003054 catalyst Substances 0.000 claims abstract description 66
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 61
- 239000010703 silicon Substances 0.000 claims abstract description 60
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 58
- 150000001993 dienes Chemical class 0.000 claims abstract description 56
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 27
- 150000003624 transition metals Chemical class 0.000 claims abstract description 27
- 239000002904 solvent Substances 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 3
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 66
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 64
- 239000012295 chemical reaction liquid Substances 0.000 claims description 29
- -1 silicon-1,5-hexadiene Chemical compound 0.000 claims description 29
- 239000000178 monomer Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 claims description 17
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 4
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical group C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- YVSMQHYREUQGRX-UHFFFAOYSA-N 2-ethyloxaluminane Chemical compound CC[Al]1CCCCO1 YVSMQHYREUQGRX-UHFFFAOYSA-N 0.000 claims description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 2
- 150000001924 cycloalkanes Chemical class 0.000 claims description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 claims description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 claims 2
- RTAQCQOZRWKSTQ-UHFFFAOYSA-N CC(C)C[Mg]CC(C)C Chemical compound CC(C)C[Mg]CC(C)C RTAQCQOZRWKSTQ-UHFFFAOYSA-N 0.000 claims 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 claims 1
- CQYBWJYIKCZXCN-UHFFFAOYSA-N diethylaluminum Chemical compound CC[Al]CC CQYBWJYIKCZXCN-UHFFFAOYSA-N 0.000 claims 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 claims 1
- UAIZDWNSWGTKFZ-UHFFFAOYSA-L ethylaluminum(2+);dichloride Chemical compound CC[Al](Cl)Cl UAIZDWNSWGTKFZ-UHFFFAOYSA-L 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- YHNWUQFTJNJVNU-UHFFFAOYSA-N magnesium;butane;ethane Chemical compound [Mg+2].[CH2-]C.CCC[CH2-] YHNWUQFTJNJVNU-UHFFFAOYSA-N 0.000 claims 1
- 239000003989 dielectric material Substances 0.000 abstract description 6
- 229920003257 polycarbosilane Polymers 0.000 abstract description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 56
- 238000012360 testing method Methods 0.000 description 54
- 239000000243 solution Substances 0.000 description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 32
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 28
- 238000005227 gel permeation chromatography Methods 0.000 description 23
- 238000005481 NMR spectroscopy Methods 0.000 description 21
- 238000012512 characterization method Methods 0.000 description 20
- 238000007334 copolymerization reaction Methods 0.000 description 20
- 238000002834 transmittance Methods 0.000 description 19
- 238000000113 differential scanning calorimetry Methods 0.000 description 18
- 229920001519 homopolymer Polymers 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 150000001642 boronic acid derivatives Chemical class 0.000 description 15
- 150000001336 alkenes Chemical class 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 14
- 239000012986 chain transfer agent Substances 0.000 description 14
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 14
- 230000006641 stabilisation Effects 0.000 description 14
- 238000011105 stabilization Methods 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 238000001914 filtration Methods 0.000 description 12
- 238000005303 weighing Methods 0.000 description 12
- 238000001291 vacuum drying Methods 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 10
- 230000007704 transition Effects 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910007926 ZrCl Inorganic materials 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- QPFMBZIOSGYJDE-ZDOIIHCHSA-N 1,1,2,2-tetrachloroethane Chemical class Cl[13CH](Cl)[13CH](Cl)Cl QPFMBZIOSGYJDE-ZDOIIHCHSA-N 0.000 description 1
- WACNXHCZHTVBJM-UHFFFAOYSA-N 1,2,3,4,5-pentafluorobenzene Chemical compound FC1=CC(F)=C(F)C(F)=C1F WACNXHCZHTVBJM-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000004639 Schlenk technique Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RYPKRALMXUUNKS-UHFFFAOYSA-N hex-2-ene Chemical compound CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229960005222 phenazone Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000090 poly(aryl ether) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011110 re-filtration Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/14—Monomers containing five or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
- C08F230/08—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
- C08F230/085—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Organic Insulating Materials (AREA)
Abstract
本发明涉及超低介电材料制备技术领域,特别是涉及一种超低介电共聚物及其制备方法和应用。本发明通过将烃类化合物溶剂、含硅二烯烃或其衍生物、4‑甲基‑1‑戊烯混合得到混合液,之后依次向所述混合液中加入助催化剂以及单活性中心过渡金属催化剂,进行聚合反应,得到超低介电共聚物。本发明所制备的超低介电共聚物的介电常数为1.9~2.4,介电损耗为0.00001~0.001;共聚物的拉伸强度为30~70MPa,拉伸模量>2000MPa,断裂伸长率为10~90%;共聚物透明度>88%。本发明扩宽了聚碳硅烷的应用范围。
The present invention relates to the technical field of ultra-low dielectric material preparation, and in particular to an ultra-low dielectric copolymer and its preparation method and application. In the present invention, a mixed liquid is obtained by mixing hydrocarbon solvents, silicon-containing dienes or derivatives thereof, and 4-methyl-1-pentene, and then sequentially adding cocatalysts and single-active center transition metal catalysts to the mixed liquid. , perform polymerization reaction to obtain ultra-low dielectric copolymer. The dielectric constant of the ultra-low dielectric copolymer prepared by the invention is 1.9~2.4, and the dielectric loss is 0.00001~0.001; the tensile strength of the copolymer is 30~70MPa, the tensile modulus is >2000MPa, and the elongation at break It is 10~90%; the transparency of the copolymer is >88%. The present invention broadens the application range of polycarbosilane.
Description
技术领域Technical field
本发明涉及超低介电材料制备技术领域,特别是涉及一种超低介电共聚物及其制备方法和应用。The present invention relates to the technical field of ultra-low dielectric material preparation, and in particular to an ultra-low dielectric copolymer and its preparation method and application.
背景技术Background technique
随着智能高频通信时代(5G/6G)的到来,电阻、电容(RC)延迟产生的寄生效应越来越明显,直接影响器件的性能。器件中所用的层间介电材料的介电常数越低,信号延迟越低,信号保真度越高。因此,开发具有超低介电常数的层间材料至关重要。一般来说,低介电常数的层间绝缘材料可以通过降低偶极子数量和降低偶极子强度两种策略实现。通过在薄膜中引入孔隙或在分子结构中加入空间体积基团来降低密度,可以有效地减少偶极子的数量,最终得到低介电材料。在薄膜中引入空隙可以利用空气的低介电常数,但是这种方法很难精确控制孔隙的大小和分布,使得材料的介电性能稳定性很差。另外,可以在材料中通过引入具有较低极化率的化学键(如C-Si和C-F基团)来降低偶极子强度,该方法能够在保持固有性能的同时,精准的调控材料,降低介电常数。因此,后者策略通常是技术人员通用的,所获得的低介电材料具有广泛的应用场景。With the advent of the intelligent high-frequency communication era (5G/6G), the parasitic effects caused by resistor and capacitor (RC) delays are becoming more and more obvious, directly affecting the performance of the device. The lower the dielectric constant of the interlayer dielectric material used in the device, the lower the signal delay and the higher the signal fidelity. Therefore, it is crucial to develop interlayer materials with ultralow dielectric constant. Generally speaking, interlayer insulating materials with low dielectric constant can be achieved by reducing the number of dipoles and reducing the dipole strength. By reducing the density by introducing pores into the film or adding space volume groups into the molecular structure, the number of dipoles can be effectively reduced, ultimately resulting in low dielectric materials. Introducing voids in the film can take advantage of the low dielectric constant of air, but this method is difficult to precisely control the size and distribution of the pores, resulting in poor dielectric stability of the material. In addition, the dipole strength can be reduced by introducing chemical bonds with lower polarizability (such as C-Si and C-F groups) into the material. This method can accurately control the material and reduce the mediation while maintaining the inherent properties. electrical constant. Therefore, the latter strategy is usually common to technicians, and the obtained low-dielectric materials have a wide range of application scenarios.
聚合物材料由于其固有的低介电常数(ε<3.0)、疏水性能、溶液可加工性和机械柔性等优点,备受学术界和工业界的关注。大量具有低介电常数的聚合物材料应运而生,包括聚(亚胺)、聚(芳醚)、聚(醚酮)、聚(对二甲苯)、含氟聚合物、聚硅氧烷、聚4-甲基-1-戊烯等,这些材料成为了主流的绝缘材料。其中聚4-甲基-1-戊烯已实现了商业化,其介电常数(ε<2.3)和密度(833kg/m3)是合成树脂中最小的,另外具有优异的力学性能、高透明性、高耐热性等优点,在诸多高端领域具有广泛的应用。然而,聚4-甲基-1-戊烯的熔点较高和Tg较低(Tg=25~30℃),这不仅限制了材料的加工成型性,也限制了材料在高温高频通信移动器件中的应用。Polymer materials have attracted much attention from academia and industry due to their inherent low dielectric constant (ε<3.0), hydrophobic properties, solution processability, and mechanical flexibility. A large number of polymer materials with low dielectric constants have emerged, including poly(imine), poly(aryl ether), poly(ether ketone), poly(p-xylene), fluoropolymers, polysiloxane, Poly-4-methyl-1-pentene, etc., these materials have become mainstream insulation materials. Among them, poly4-methyl-1-pentene has been commercialized. Its dielectric constant (ε<2.3) and density (833kg/m 3 ) are the smallest among synthetic resins. In addition, it has excellent mechanical properties and high transparency. Due to its advantages such as sex and high heat resistance, it is widely used in many high-end fields. However, poly4-methyl-1-pentene has a higher melting point and lower T g (T g =25~30°C), which not only limits the processing and formability of the material, but also limits the material’s ability to communicate at high temperatures and high frequencies. Applications in mobile devices.
发明内容Contents of the invention
基于上述内容,本发明提供一种超低介电共聚物及其制备方法和应用。本发明利用对含硅二烯烃(DMSHD)或其衍生物单体和4-甲基-1-戊烯具有共聚能力特征的催化剂,优化聚合条件,实现高综合性能(耐高温、高频超低介电、高透明度、高模量和优异韧性等)的共聚物材料的合成,并进一步拓宽超低介电共聚物在5G/6G领域(如高频连接器用绝缘体、通讯基站用绝缘子、通讯覆铜板、电子包装托盘等半导体封装材料)中的广泛应用。Based on the above content, the present invention provides an ultra-low dielectric copolymer and its preparation method and application. The present invention utilizes a catalyst with copolymerization characteristics of silicon-containing diene (DMSHD) or its derivative monomer and 4-methyl-1-pentene to optimize polymerization conditions and achieve high comprehensive performance (high temperature resistance, high frequency and ultra-low dielectric , high transparency, high modulus and excellent toughness, etc.), and further broaden the application of ultra-low dielectric copolymers in the 5G/6G field (such as insulators for high-frequency connectors, insulators for communication base stations, communication copper-clad laminates, Widely used in semiconductor packaging materials such as electronic packaging trays).
为实现上述目的,本发明提供了如下方案:In order to achieve the above objects, the present invention provides the following solutions:
本发明技术方案之一,一种超低介电共聚物,结构式如式Ⅰ或式Ⅱ所示:One of the technical solutions of the present invention is an ultra-low dielectric copolymer with a structural formula as shown in Formula I or Formula II:
其中,R1、R2独立的为CH3或Ph;x、a、b、c和d为各单体在超低介电共聚物中的mol%,独立的为0~100mol%;a+b+c+d=1(100mol%);Among them, R 1 and R 2 are independently CH 3 or Ph; x, a, b, c and d are the mol% of each monomer in the ultra-low dielectric copolymer, and are independently 0 to 100 mol%; a+ b+c+d=1(100mol%);
所述超低介电共聚物的重均分子量为18~80×104g/mol。The weight average molecular weight of the ultra-low dielectric copolymer is 18-80×10 4 g/mol.
优选的,所述超低介电共聚物为共聚物1-6;其中,共聚物1-3结构通式如式Ⅰ所示,具体的,共聚物1:R1=R2=CH3,共聚物2:R1=CH3,R2=Ph,共聚物3:R1=R2=Ph;共聚物4-6结构通式如式Ⅱ所示,具体的,共聚物4:R1=R2=CH3,共聚物5:R1=CH3,R2=Ph,共聚物6:R1=R2=Ph。Preferably, the ultra-low dielectric copolymer is copolymer 1-6; wherein, the general structural formula of copolymer 1-3 is as shown in Formula I. Specifically, copolymer 1: R 1 =R 2 =CH 3 , Copolymer 2: R 1 =CH 3 , R 2 =Ph, copolymer 3: R 1 =R 2 =Ph; the general structural formula of copolymers 4-6 is shown in Formula II. Specifically, copolymer 4: R 1 =R 2 =CH 3 , copolymer 5: R 1 =CH 3 , R 2 =Ph, copolymer 6: R 1 =R 2 =Ph.
本发明技术方案之二,一种上述超低介电共聚物的制备方法,包括以下步骤:The second technical solution of the present invention is a preparation method of the above-mentioned ultra-low dielectric copolymer, which includes the following steps:
将烃类化合物溶剂、含硅二烯烃或其衍生物、4-甲基-1-戊烯混合得到混合液,之后依次向所述混合液中加入助催化剂以及单活性中心过渡金属催化剂,进行聚合反应,得到所述超低介电共聚物。Mix hydrocarbon solvents, silicon-containing dienes or derivatives thereof, and 4-methyl-1-pentene to obtain a mixed liquid, and then add cocatalysts and single-active center transition metal catalysts to the mixed liquid in sequence to perform polymerization. reaction to obtain the ultra-low dielectric copolymer.
进一步地,所述烃类化合物溶剂为苯或其同系物、萘或其同系物、烷烃或其同系物和环烷烃或其同系物中的至少一种;所述含硅二烯烃或其衍生物为3,3-二甲基-3-硅-1,5-己二烯、3,3-二苯基-3-硅-1,5-己二烯或3-甲基-3-苯基-3-硅-1,5-己二烯中的一种。Further, the hydrocarbon compound solvent is at least one of benzene or its homologues, naphthalene or its homologues, alkanes or its homologues, and cycloalkanes or its homologues; the silicon-containing diene or its derivatives It is 3,3-dimethyl-3-silicon-1,5-hexadiene, 3,3-diphenyl-3-silicon-1,5-hexadiene or 3-methyl-3-phenyl -One of 3-silicon-1,5-hexadiene.
进一步地,所述混合液中含硅二烯烃或其衍生物的浓度为0~1mol/L,优选的为0.3~0.9mol/L;所述4-甲基-1-戊烯与所述含硅二烯烃或其衍生物的摩尔比为0~100%。Further, the concentration of silicon-containing diene or derivatives thereof in the mixed liquid is 0 to 1 mol/L, preferably 0.3 to 0.9 mol/L; the 4-methyl-1-pentene and the silicon-containing diene are The molar ratio of silicon diene or derivatives thereof is 0 to 100%.
进一步地,所述助催化剂为甲基铝氧烷、干甲基铝氧烷、乙基铝氧烷、乙基-异丁基铝氧烷、三甲基铝、三乙基铝、三异丙基铝、三异丁基铝、二氯化乙基铝、氯化二乙基铝、二乙基锌、二乙基镁、二异丁基镁或正丁基乙基镁中的一种或多种,以及三五氟苯基烷硼烷、三全氟联苯硼烷、三苯基甲基四(五氟苯基)硼酸盐和叔丁基三苯基甲基四(五氟苯基)硼酸盐中的一种或多种;优选的,所述助催化剂为三异丁基铝与三苯基甲基四(五氟)硼酸酯盐的混合物。Further, the cocatalyst is methylaluminoxane, dry methylaluminoxane, ethylaluminoxane, ethyl-isobutylaluminoxane, trimethylaluminum, triethylaluminum, triisopropyl or Various, as well as trispentafluorophenylalkborane, trisperfluorobiphenylborane, triphenylmethyltetrakis(pentafluorophenyl)borate, and tert-butyltriphenylmethyltetrakis(pentafluorobenzene) base) borate; preferably, the cocatalyst is a mixture of triisobutylaluminum and triphenylmethyltetrakis(pentafluoro)borate salt.
进一步地,所述单活性中心过渡金属催化剂的结构式如式Ⅲ、式Ⅳ或式Ⅴ所示:Further, the structural formula of the single active center transition metal catalyst is as shown in Formula III, Formula IV or Formula V:
其中,式Ⅲ中,R1=2-iPr-Ph、tBu或CH3,R2=H或CH3。Among them, in formula III, R 1 =2- i Pr-Ph, t Bu or CH 3 , R 2 =H or CH 3 .
优选的,所述单活性中心过渡金属催化剂为Cat.1-Cat.5中的一种,具体如下:Preferably, the single active center transition metal catalyst is one of Cat.1-Cat.5, specifically as follows:
更优选的,所述单活性中心过渡金属催化剂为Cat.1。 More preferably, the single active center transition metal catalyst is Cat.1.
进一步地,所述助催化剂与所述单活性中心过渡金属催化剂的摩尔比为(1~2000):1,优选的为(50~2000):1,更优选的为(50~300):1。Further, the molar ratio of the cocatalyst to the single active center transition metal catalyst is (1-2000):1, preferably (50-2000):1, and more preferably (50-300):1. .
进一步地,所述聚合反应具体为:在0~85℃下聚合反应2~720min;优选的,聚合反应的温度为25~85℃,更优选的,为35℃。Further, the polymerization reaction is specifically: polymerization reaction at 0 to 85°C for 2 to 720 minutes; preferably, the temperature of the polymerization reaction is 25 to 85°C, and more preferably, it is 35°C.
进一步地,所述聚合反应后还包括加入乙醇终止反应得到反应液,将所述反应液加入沉淀剂中,之后纯化处理的步骤。Further, after the polymerization reaction, the step of adding ethanol to terminate the reaction to obtain a reaction liquid, adding the reaction liquid to a precipitant, and then purifying the reaction liquid is included.
所述纯化处理具体为依次过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥。The purification treatment specifically includes filtering, washing, dissolving, adsorbing, settling again, filtering again, and vacuum drying in sequence.
所述沉淀剂包括乙醇、甲醇、石油醚、乙醚、正己烷、丙酮、正戊烷、四氢呋喃或二氯甲烷中的至少一种。优选的,所述沉淀剂为乙醇和质量分数为0.5-2.5%酸的混合溶液。The precipitating agent includes at least one of ethanol, methanol, petroleum ether, diethyl ether, n-hexane, acetone, n-pentane, tetrahydrofuran or dichloromethane. Preferably, the precipitating agent is a mixed solution of ethanol and acid with a mass fraction of 0.5-2.5%.
吸附采用的吸附剂可以为100~500目硅胶粉、100~800目中性氧化铝、100~200目分子筛中的一种;优选的,吸附剂为200~300目中性氧化铝。The adsorbent used for adsorption can be one of 100-500 mesh silica gel powder, 100-800 mesh neutral alumina, and 100-200 mesh molecular sieves; preferably, the adsorbent is 200-300 mesh neutral alumina.
本发明技术方案之三,上述的超低介电共聚物在5G/6G领域中的应用。The third technical solution of the present invention is the application of the above-mentioned ultra-low dielectric copolymer in the 5G/6G field.
本发明技术构思:Technical concept of the present invention:
将含硅原子的环结构及芳环结构等引入到聚4-甲基-1-戊烯主链中,有望实现其玻璃化温度的提升和介电性能的优化,基于以上分析,本发明设计通过在聚3,3-二甲基-3-硅-1,5-己二烯(PDMSHD)及其含苯基的衍生物主链上引入4-甲基-1-戊烯单体,利用形成的独特环结构和芳环结构可显著提升共聚物的玻璃化转变温度,利用硅原子含量调节介电性能。通过对其微观结构进行精准调控,平衡共聚物材料的介电常数和耐热性等性能以及综合物理性能与加工性能,保留下来的双键可进一步交联提升材料稳定性,该新型高性能的超低介电含硅二烯烃与1-烯烃的共聚物具有超低介电、耐受高温的特点,在高温高频通信领域具有广阔的发展前景。Introducing ring structures containing silicon atoms and aromatic ring structures into the main chain of poly4-methyl-1-pentene is expected to increase its glass transition temperature and optimize its dielectric properties. Based on the above analysis, the present invention designs By introducing 4-methyl-1-pentene monomer into the main chain of poly3,3-dimethyl-3-silyl-1,5-hexadiene (PDMSHD) and its phenyl-containing derivatives, utilizing The unique ring structure and aromatic ring structure formed can significantly increase the glass transition temperature of the copolymer, and the silicon atom content is used to adjust the dielectric properties. By precisely controlling its microstructure and balancing the dielectric constant, heat resistance and comprehensive physical properties and processing properties of the copolymer material, the retained double bonds can be further cross-linked to improve material stability. This new high-performance The copolymer of ultra-low dielectric silicon-containing diene and 1-olefin has the characteristics of ultra-low dielectric and high temperature resistance, and has broad development prospects in the field of high-temperature and high-frequency communications.
本发明公开了以下技术效果:The invention discloses the following technical effects:
本发明利用单活性中心过渡金属催化剂结合助催化剂合成了一系列4-甲基-1-戊烯与含硅二烯烃(DMSHD)或其衍生物的共聚物,根据各类催化剂对α-烯烃和含硅二烯烃具有共聚能力的特点,可根据单体配比的不同实现4-甲基-1-戊烯与DMSHD(或其衍生物)共聚物中单体含量、Tg、分子量及其分布和链段微观结构的高效可控,而且可制备出高性能的超低介电的共聚物。The present invention uses a single active center transition metal catalyst combined with a cocatalyst to synthesize a series of copolymers of 4-methyl-1-pentene and silicon-containing diene (DMSHD) or its derivatives. According to various catalysts, α-olefins and Silicon-containing dienes have the characteristics of copolymerization ability. The monomer content, T g , molecular weight and distribution of the copolymer of 4-methyl-1-pentene and DMSHD (or its derivatives) can be realized according to the different monomer ratios. and chain segment microstructure are highly controllable, and high-performance ultra-low dielectric copolymers can be prepared.
本发明制备的超低介电含硅二烯烃与4-甲基-1-戊烯的共聚物的Tg在50~160℃之间可调,其分子量在18~80×104g/mol之间可调。通过调节DMSHD(或其衍生物)加入比例,可降低共聚物的介电常数。当DMSHD在聚合物中的含量达到70%时,介电常数可降低至1.97。共聚物还表现出优异拉伸性能,拉伸强度保持30MPa以上;同时,其断裂伸长率能达到10%以上;在可见光范围内,光的透过率超过88%。值得注意的是,本发明采用廉价的有机硼盐与烷基金属结合为助催化剂,与单活性中心过渡金属催化剂配合能高效催化4-甲基-1-戊烯与DMSHD(或其衍生物)共聚,具有商业价值的潜能。另外,这种方式合成的超低介电共聚物同样能保持较优的力学性质与耐热性,本发明合成超低介电的共聚物的策略在诸多技术领域中未见报道,有望扩宽此超低介电共聚物材料在5G/6G移动领域中的广泛应用。The T g of the copolymer of ultra-low dielectric silicon-containing diene and 4-methyl-1-pentene prepared by the invention is adjustable between 50 and 160°C, and its molecular weight is between 18 and 80×10 4 g/mol adjustable between. By adjusting the addition ratio of DMSHD (or its derivatives), the dielectric constant of the copolymer can be reduced. When the content of DMSHD in the polymer reaches 70%, the dielectric constant can be reduced to 1.97. The copolymer also shows excellent tensile properties, with a tensile strength of more than 30MPa; at the same time, its elongation at break can reach more than 10%; in the visible light range, the light transmittance exceeds 88%. It is worth noting that the present invention uses cheap organic boron salts combined with alkyl metals as cocatalysts, and can efficiently catalyze 4-methyl-1-pentene and DMSHD (or its derivatives) when combined with a single active center transition metal catalyst. Co-polymerization has the potential for commercial value. In addition, the ultra-low dielectric copolymer synthesized in this way can also maintain excellent mechanical properties and heat resistance. The strategy of the present invention to synthesize ultra-low dielectric copolymer has not been reported in many technical fields and is expected to be broadened. This ultra-low dielectric copolymer material is widely used in the 5G/6G mobile field.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the drawings of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts.
图1为实施例2、3、5、7、9制备共聚物的高温GPC曲线图。Figure 1 is a high-temperature GPC curve chart of the copolymers prepared in Examples 2, 3, 5, 7, and 9.
图2为实施例2、3、5、8、9制备共聚物的DSC曲线图。Figure 2 is a DSC curve chart of the copolymers prepared in Examples 2, 3, 5, 8 and 9.
图3为实施例1、2、3、8、9、11制备共聚物的应力-应变曲线图。Figure 3 is a stress-strain curve diagram of copolymers prepared in Examples 1, 2, 3, 8, 9, and 11.
图4为实施例1、3、5、7、8、11制备共聚物的透光率-频率曲线图。Figure 4 is a light transmittance-frequency curve diagram of the copolymers prepared in Examples 1, 3, 5, 7, 8, and 11.
图5为实施例3、4、6-8制备的共聚物介电常数曲线图。Figure 5 is a dielectric constant curve diagram of the copolymers prepared in Examples 3, 4, and 6-8.
图6为实施例2、4-6制备的共聚物介电损耗曲线图。Figure 6 is a dielectric loss curve of the copolymer prepared in Examples 2 and 4-6.
图7为实施例2制备共聚物的1H NMR和13C NMR。Figure 7 shows 1 H NMR and 13 C NMR of the copolymer prepared in Example 2.
图8为实施例3制备共聚物的1H NMR和13C NMR。Figure 8 shows 1 H NMR and 13 C NMR of the copolymer prepared in Example 3.
图9为实施例4制备共聚物的1H NMR和13C NMR。Figure 9 shows 1 H NMR and 13 C NMR of the copolymer prepared in Example 4.
具体实施方式Detailed ways
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the invention will now be described in detail. This detailed description should not be construed as limitations of the invention, but rather as a more detailed description of certain aspects, features and embodiments of the invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms used in the present invention are only used to describe particular embodiments and are not intended to limit the present invention. In addition, for numerical ranges in the present invention, it should be understood that every intermediate value between the upper and lower limits of the range is also specifically disclosed. Every smaller range between any stated value or value intermediate within a stated range, and any other stated value or value intermediate within a stated range, is also included within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded from the range.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although only the preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention. All documents mentioned in this specification are incorporated by reference to disclose and describe the methods and/or materials in connection with which the documents relate. In the event of conflict with any incorporated document, the contents of this specification shall prevail.
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and changes can be made to the specific embodiments described herein without departing from the scope or spirit of the invention. Other embodiments will be apparent to the skilled person from the description of the invention. The specification and examples of the present invention are exemplary only.
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。The words "includes", "includes", "has", "contains", etc. used in this article are all open terms, which mean including but not limited to.
本发明中所述的“室温”,如无特殊说明,均表示25-35℃。The "room temperature" mentioned in the present invention means 25-35°C unless otherwise specified.
本发明探究了不同类型催化剂和不同含硅二烯烃DMSHD或其衍生物与4-甲基-1-戊烯比例对共聚物电学性能、力学性能和光学性能的影响规律。另外,对合成的一系列共聚物进行表征,采用高温核磁碳谱表征聚合物的微观化学结构、高温GPC测试聚合物的分子量及其分布、DSC研究聚合物的热学行为、拉力机表征聚合物的拉伸性能、紫外分光光度计测试聚合物的透光率、宽频介电谱仪测试聚合物的介电性能等。The present invention explores the influence of different types of catalysts and the ratio of different silicon-containing dienes DMSHD or its derivatives to 4-methyl-1-pentene on the electrical properties, mechanical properties and optical properties of the copolymer. In addition, a series of synthesized copolymers were characterized, using high-temperature nuclear magnetic carbon spectroscopy to characterize the microchemical structure of the polymer, high-temperature GPC to test the molecular weight and distribution of the polymer, DSC to study the thermal behavior of the polymer, and tensile testing machine to characterize the polymer's properties. Tensile properties, ultraviolet spectrophotometer to test the light transmittance of the polymer, broadband dielectric spectrometer to test the dielectric properties of the polymer, etc.
本发明主要利用单活性中心金属催化剂并结合有机硼盐和烷基金属为助催化剂组成不同的催化体系,优化主催化剂和助催化剂的配比和反应温度、反应时间和单体初始摩尔比合成了一系列具有优异性能的低介电高分子共聚物材料。首先,依据单活性中心金属催化剂对各种α-烯烃和含硅二烯烃具有优越的共聚能力,系统地研究了不同含硅二烯烃DMSHD或其衍生物与4-甲基-1-戊烯配比对聚合分子量的影响,实现对共聚物分子量的控制。另外,改变单体配比和不同种类的催化剂探究对共聚物的介电、力学、光学、热学影响规律。The present invention mainly uses a single active center metal catalyst combined with organoboron salts and alkyl metals as cocatalysts to form different catalytic systems, and optimizes the ratio of the main catalyst and cocatalyst, reaction temperature, reaction time and initial molar ratio of monomers to synthesize the A series of low dielectric polymer copolymer materials with excellent properties. First, based on the superior copolymerization ability of single-active center metal catalysts for various α-olefins and silicon-containing dienes, the complexation of different silicon-containing dienes DMSHD or its derivatives with 4-methyl-1-pentene was systematically studied. Compare the effect on polymerization molecular weight to achieve control of copolymer molecular weight. In addition, changing the monomer ratio and different types of catalysts were used to explore the dielectric, mechanical, optical, and thermal effects on the copolymer.
GPC和宽频介电谱仪结果表明,利用单活性中心过渡金属类催化剂的聚合体系中维持固定的单体总浓度,增大含硅二烯烃或其衍生物的比例,共聚物分子量提高,介电常数和介电损耗降低。结合光学和热学表征结果表明,随着含硅二烯烃或其衍生物比例提高,在可见光范围内共聚物不仅能维持优异的光透过率(~90%),其Tg提高,耐热性能也得到提升。拉伸性能表征表明,随着含硅二烯烃或其衍生物比例提高,拉伸强度和模量同时得到提高,共聚物也具有令人满意的断裂伸长率(>10%)。The results of GPC and broadband dielectric spectrometer show that by maintaining a fixed total monomer concentration in the polymerization system using a single active center transition metal catalyst and increasing the proportion of silicon-containing diene or its derivatives, the molecular weight of the copolymer increases, and the dielectric Constant and dielectric losses are reduced. Combining optical and thermal characterization results show that as the proportion of silicon-containing diene or its derivatives increases, the copolymer can not only maintain excellent light transmittance (~90%) in the visible light range, but also increase its Tg and improve its heat resistance. Also promoted. Tensile property characterization shows that as the proportion of silicon-containing diene or its derivatives increases, the tensile strength and modulus are simultaneously improved, and the copolymer also has satisfactory elongation at break (>10%).
综上所述,本发明能够平衡4-甲基-1-戊烯与含硅二烯烃DMSHD或其衍生物共聚物综合性能,获得的高性能超低介电材料有望在5G/6G移动领域实现广泛应用。In summary, the present invention can balance the comprehensive properties of the copolymer of 4-methyl-1-pentene and silicon-containing diene DMSHD or its derivatives, and the obtained high-performance ultra-low dielectric material is expected to be implemented in the 5G/6G mobile field. widely used.
本发明的单活性中心过渡金属催化剂Cat.1、2和3为吡啶亚胺铪类催化剂,是根据文献Angewandte Chemie 2006,45(20),3278-3283合成,其他单活性中心过渡金属催化剂购买于中国安耐吉化学公司。The single active center transition metal catalysts Cat.1, 2 and 3 of the present invention are pyridine imine hafnium catalysts, which are synthesized according to the literature Angewandte Chemie 2006, 45(20), 3278-3283. Other single active center transition metal catalysts are purchased from Anaiji Chemical Company of China.
在合成催化剂的过程中,所涉及的操作除特殊说明外,均由熟悉本技术领域的专业人员在MBraun手套箱或者利用标准Schlenk技术在氮气或者氩气等惰性气体保护下进行。In the process of synthesizing the catalyst, the operations involved, unless otherwise specified, are performed by professionals familiar with the technical field in an MBraun glove box or using standard Schlenk technology under the protection of inert gases such as nitrogen or argon.
本发明中所涉及的溶剂均为后处理过后无水无氧的溶剂。The solvents involved in the present invention are all water-free and oxygen-free solvents after post-treatment.
在制备超低介电含硅二烯烃与1-烯烃的共聚物过程中,所有对湿气和氧敏感的操作均由熟悉本技术领域的专业人员在MBraun手套箱或者利用标准Schlenk技术在氮气保护下进行。During the preparation of ultralow dielectric copolymers of silicon-containing dienes and 1-olefins, all moisture- and oxygen-sensitive operations were performed by professionals familiar with the art in an MBraun glove box or under nitrogen protection using standard Schlenk techniques. proceed below.
本发明涉及到的测试方法如下:The test methods involved in the present invention are as follows:
采用核磁共振波谱(NMR)表征共聚物的化学结构。Nuclear magnetic resonance spectroscopy (NMR) was used to characterize the chemical structure of the copolymer.
使用示差热扫描热量仪(DSC)表征共聚物热学性能。Differential scanning calorimetry (DSC) was used to characterize the thermal properties of the copolymers.
采用高温凝胶色谱(GPC)表征共聚物的分子量以及分子量分布,其中共聚物的1H和13CNMR由Bruker-400型核磁共振仪在120℃测定,TMS为内标,溶剂为氘代邻二氯苯或氘代1,1,2,2-四氯乙烷。High-temperature gel chromatography (GPC) was used to characterize the molecular weight and molecular weight distribution of the copolymer. The 1 H and 13 CNMR of the copolymer were measured by a Bruker-400 nuclear magnetic resonance instrument at 120°C. TMS was used as the internal standard, and the solvent was deuterated ortho-2. Chlorobenzene or deuterated 1,1,2,2-tetrachloroethane.
共聚物玻璃化转变温度(Tg)由示差热扫描量热仪(Q2000 DSC)测定,测试条件为,氮气氛围下,升/降温速率为20℃/min。The glass transition temperature (T g ) of the copolymer was measured by a differential thermal scanning calorimeter (Q2000 DSC). The test conditions were: under nitrogen atmosphere, the temperature rise/fall rate was 20°C/min.
凝胶色谱采用(GPC)PL GPC-220型凝胶渗透色谱仪测定,测试仪为RI-Laser,以PLEasiCal PS-1为标准样,填充柱为Plgel 10μm MIXED-BLS,1,2,4-三氯苯(TCB)为溶剂,加入0.05wt%的2,6-二叔丁基-4-甲基苯酚(BHT)作为抗氧化剂测试温度为150℃,流速为1.0mL/min。Gel chromatography was measured using (GPC)PL GPC-220 gel permeation chromatography. The tester was RI-Laser, PLEasiCal PS-1 was used as the standard sample, and the packed column was Plgel 10μm MIXED-BLS, 1,2,4- Trichlorobenzene (TCB) was used as the solvent, and 0.05wt% 2,6-di-tert-butyl-4-methylphenol (BHT) was added as an antioxidant. The test temperature was 150°C, and the flow rate was 1.0mL/min.
采用万能试验机(Instron 3360),在25℃的温度下对样品进行拉伸测试(拉伸样条长10mm,宽度5mm,厚度0.5mm;以ISO 527-1为标准,拉伸速率为10mm/min)。A universal testing machine (Instron 3360) was used to perform a tensile test on the sample at a temperature of 25°C (tensile spline length 10mm, width 5mm, thickness 0.5mm; based on ISO 527-1 as the standard, the tensile rate is 10mm/ min).
使用Lambda750紫外分光光度计,测试共聚物薄膜在波长350~800nm范围内的透光率(T.),测试方式是共聚物膜夹粘到直径为2cm的石英片上。Use a Lambda750 UV spectrophotometer to test the light transmittance (T.) of the copolymer film in the wavelength range of 350 to 800 nm. The test method is to clamp the copolymer film onto a quartz plate with a diameter of 2cm.
使用宽频介电谱仪(Novelcontrol,德国),测试共聚物在100~10M Hz下的介电性能。A broadband dielectric spectrometer (Novelcontrol, Germany) was used to test the dielectric properties of the copolymer at 100-10M Hz.
本发明实施例中所用单活性中心过渡金属催化剂的结构式如下所示:The structural formula of the single active center transition metal catalyst used in the embodiments of the present invention is as follows:
本发明实施例中所用的三异丁基铝甲苯溶液中三异丁基铝的浓度为1.0mol/L。The concentration of triisobutylaluminum in the toluene solution of triisobutylaluminum used in the embodiments of the present invention is 1.0 mol/L.
实施例1Example 1
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入9equiv的4-甲基-1-戊烯(浓度为0.54mol/L);然后,加入1equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.06mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物(即,超低介电含硅二烯烃与1-烯烃的共聚物,简称共聚物),待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.1 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 9 equiv of 4-methyl-1-pentene (concentration: 0.54 mol/L) to the polymerization bottle under nitrogen conditions; then, add 1 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.06mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, settling again, filtering again, and vacuum drying to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer (i.e., Ultra-low dielectric copolymer of silicon-containing diene and 1-olefin (referred to as copolymer), pending subsequent characterization.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃含量为22.2mol%,其共聚物玻璃化转变温度(Tg)为60.4℃,聚合表现为无定形行为,单体转化率为53.5%。在100~10M Hz内,共聚物的介电常数低至2.20。高温GPC结果分析表明,重均分子量18.2×104g/mol,分子量分布较窄(PDI=1.79)。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度(δ)为34.0MPa,拉伸模量为2602.5MPa,拉伸断裂伸长率(&)16.8%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为89.4%以上。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The content of silicon-containing diene in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 22.2 mol%, and the copolymer is vitrified. The transition temperature (T g ) was 60.4°C, the polymerization showed amorphous behavior, and the monomer conversion rate was 53.5%. Within 100-10M Hz, the dielectric constant of the copolymer is as low as 2.20. High-temperature GPC result analysis shows that the weight average molecular weight is 18.2×10 4 g/mol, and the molecular weight distribution is narrow (PDI=1.79). In addition, tensile property characterization results show that the tensile strength (δ) of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 34.0MPa , the tensile modulus is 2602.5MPa, and the tensile elongation at break (&) is 16.8%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is more than 89.4%. Specific copolymer data are shown in Table 1.
实施例2Example 2
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入8equiv的4-甲基-1-戊烯(浓度为0.48mol/L);然后,加入2equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.12mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物(即,超低介电含硅二烯烃与1-烯烃的共聚物,简称共聚物),待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.1 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 8 equiv of 4-methyl-1-pentene (concentration: 0.48 mol/L) to the polymerization bottle under nitrogen conditions; then, add 2 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.12mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, settling again, filtering again, and vacuum drying to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer (i.e., Ultra-low dielectric copolymer of silicon-containing diene and 1-olefin (referred to as copolymer), pending subsequent characterization.
本实施例获得的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃插入率为39.1mol%,其共聚物玻璃化转变温度(Tg)为66.5℃,聚合表现为无定形行为,单体转化率为60.4%。在100~10M Hz内,共聚物的介电常数低至2.19。高温GPC结果分析表明,重均分子量23.9×104g/mol,分子量分布较窄(PDI=1.72)。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度为37.7MPa,拉伸模量为2266.5MPa,拉伸断裂伸长率15.3%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为90.4%以上。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer obtained in this example was subjected to nuclear magnetic and DSC tests. The test results showed that this example The silicon-containing diene insertion rate in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 39.1 mol%, and its copolymer glass The chemical transition temperature (T g ) is 66.5°C, the polymerization shows amorphous behavior, and the monomer conversion rate is 60.4%. Within 100-10M Hz, the dielectric constant of the copolymer is as low as 2.19. High-temperature GPC result analysis shows that the weight average molecular weight is 23.9×10 4 g/mol, and the molecular weight distribution is narrow (PDI=1.72). In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 37.7MPa. The modulus is 2266.5MPa, and the tensile elongation at break is 15.3%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is more than 90.4%. Specific copolymer data are shown in Table 1.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的1H和13CNMR的数据如图7所示。The 1 H and 13 CNMR data of the 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example are shown in Figure 7.
实施例3Example 3
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入7equiv的4-甲基-1-戊烯(浓度为0.42mol/L);然后,加入3equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.18mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物(即,超低介电含硅二烯烃与1-烯烃的共聚物,简称共聚物),待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.1 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 7 equiv of 4-methyl-1-pentene (concentration: 0.42 mol/L) to the polymerization bottle under nitrogen conditions; then, add 3 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.18mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, settling again, filtering again, and vacuum drying to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer (i.e., Ultra-low dielectric copolymer of silicon-containing diene and 1-olefin (referred to as copolymer), pending subsequent characterization.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃为60.4mol%,其共聚物玻璃化转变温度(Tg)为72.2℃,聚合表现为无定形行为,单体转化率为66.6%。在100~10M Hz内,共聚物的介电常数低至2.18。高温GPC结果分析表明,重均分子量30.9×104g/mol,分子量分布较窄(PDI=1.60)。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度为46.7MPa,拉伸模量为2346.3MPa,拉伸断裂伸长率12.1%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为90.4%以上。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The silicon-containing diene in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 60.4 mol%, and the glass transition of the copolymer is The temperature (T g ) was 72.2°C, the polymerization showed amorphous behavior, and the monomer conversion rate was 66.6%. Within 100~10M Hz, the dielectric constant of the copolymer is as low as 2.18. High-temperature GPC result analysis shows that the weight average molecular weight is 30.9×10 4 g/mol, and the molecular weight distribution is narrow (PDI=1.60). In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 46.7MPa. The modulus is 2346.3MPa, and the tensile elongation at break is 12.1%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is more than 90.4%. Specific copolymer data are shown in Table 1.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的1H和13CNMR的数据如图8所示。The 1 H and 13 CNMR data of the 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example are shown in Figure 8.
实施例4Example 4
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入6equiv的4-甲基-1-戊烯(浓度为0.36mol/L);然后,加入4equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.24mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物(即,超低介电含硅二烯烃与1-烯烃的共聚物,简称共聚物),待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.1 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 6 equiv of 4-methyl-1-pentene (concentration of 0.36 mol/L) to the polymerization bottle under nitrogen conditions; then, add 4 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.24mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washed, and vacuum dried to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer (i.e., ultra-low dielectric silicon-containing diene and 1 -Olefin copolymer, referred to as copolymer), to be characterized later.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃含量为70.8mol%,其共聚物玻璃化转变温度(Tg)为85.5℃,聚合表现为无定形行为,单体转化率为70.9%。在100~10M Hz内,共聚物的介电常数低至2.14。高温GPC结果分析表明,重均分子量44.7×104g/mol,分子量分布较窄(PDI=1.73)。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度为51.3MPa,拉伸模量为2313.9MPa,拉伸断裂伸长率9.5%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为89.7%以上。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The content of silicon-containing diene in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 70.8 mol%, and the copolymer is vitrified. The transition temperature (T g ) was 85.5°C, the polymerization showed amorphous behavior, and the monomer conversion rate was 70.9%. Within 100-10M Hz, the dielectric constant of the copolymer is as low as 2.14. High-temperature GPC result analysis shows that the weight average molecular weight is 44.7×10 4 g/mol, and the molecular weight distribution is narrow (PDI=1.73). In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 51.3MPa. The modulus is 2313.9MPa, and the tensile elongation at break is 9.5%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is more than 89.7%. Specific copolymer data are shown in Table 1.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的1H和13CNMR的数据如图9所示。The 1 H and 13 CNMR data of the 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example are shown in Figure 9.
实施例5Example 5
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入5equiv的4-甲基-1-戊烯(浓度为0.30mol/L);然后,加入5equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.30mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物(即,超低介电含硅二烯烃与1-烯烃的共聚物,简称共聚物),待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.1 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 5 equiv of 4-methyl-1-pentene (concentration of 0.30 mol/L) to the polymerization bottle under nitrogen conditions; then, add 5 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.30mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washed, and vacuum dried to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer (i.e., ultra-low dielectric silicon-containing diene and 1 -Olefin copolymer, referred to as copolymer), to be characterized later.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃含量为79.6mol%,其共聚物玻璃化转变温度(Tg)为90.1℃,聚合表现为无定形行为,单体转化率为77.8%。在100~10M Hz内,共聚物的介电常数低至2.10。高温GPC结果分析表明,重均分子量62.9×104g/mol,分子量分布较窄(PDI=1.56)。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度为56.4MPa,拉伸模量为2333.0MPa,拉伸断裂伸长率6.7%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为90.4%以上。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The content of silicon-containing diene in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 79.6 mol%, and the copolymer is vitrified. The transition temperature (T g ) was 90.1°C, the polymerization showed amorphous behavior, and the monomer conversion rate was 77.8%. Within 100-10M Hz, the dielectric constant of the copolymer is as low as 2.10. High-temperature GPC result analysis shows that the weight average molecular weight is 62.9×10 4 g/mol, and the molecular weight distribution is narrow (PDI=1.56). In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 56.4MPa. The modulus is 2333.0MPa, and the tensile elongation at break is 6.7%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is more than 90.4%. Specific copolymer data are shown in Table 1.
实施例6Example 6
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入4equiv的4-甲基-1-戊烯(浓度为0.24mol/L);然后,加入6equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.36mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物(即,超低介电含硅二烯烃与1-烯烃的共聚物,简称共聚物),待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.1 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using a Schlenk experimental device and under nitrogen conditions, add 4 equiv of 4-methyl-1-pentene (concentration: 0.24 mol/L) into the polymerization bottle; then, add 6 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.36mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, settling again, filtering again, and vacuum drying to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer (i.e., Ultra-low dielectric copolymer of silicon-containing diene and 1-olefin (referred to as copolymer), pending subsequent characterization.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃插入率为84.7mol%,其共聚物玻璃化转变温度(Tg)为92.3℃,聚合表现为无定形行为,单体转化率为87.3%。在100~10M Hz内,共聚物的介电常数低至2.09。高温GPC结果分析表明,重均分子量64.2×104g/mol,分子量分布较窄(PDI=1.76)。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度为60.3MPa,拉伸模量为2523.8MPa,拉伸断裂伸长率5.4%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为90.1%以上。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The silicon-containing diene insertion rate in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 84.7 mol%, and its copolymer glass The chemical transition temperature (T g ) is 92.3°C, the polymerization shows amorphous behavior, and the monomer conversion rate is 87.3%. Within 100~10M Hz, the dielectric constant of the copolymer is as low as 2.09. Analysis of high-temperature GPC results showed that the weight average molecular weight was 64.2×10 4 g/mol and the molecular weight distribution was narrow (PDI=1.76). In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 60.3MPa. The modulus is 2523.8MPa, and the tensile elongation at break is 5.4%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is more than 90.1%. Specific copolymer data are shown in Table 1.
实施例7Example 7
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入3equiv的4-甲基-1-戊烯(浓度为0.18mol/L);然后,加入7equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.42mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物(即,超低介电含硅二烯烃与1-烯烃的共聚物,简称共聚物),待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.1 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and under nitrogen conditions, add 3 equiv of 4-methyl-1-pentene (concentration: 0.18 mol/L) into the polymerization bottle; then, add 7 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.42mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, settling again, filtering again, and vacuum drying to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer (i.e., Ultra-low dielectric copolymer of silicon-containing diene and 1-olefin (referred to as copolymer), pending subsequent characterization.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃的含量为90.2mol%,其共聚物玻璃化转变温度(Tg)为95.7℃,聚合表现为无定形行为,单体转化率为90.6%。在100~10M Hz内,共聚物的介电常数低至1.97。高温GPC结果分析表明,重均分子量69.3×104g/mol,分子量分布较窄(PDI=1.49)。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度为62.1MPa,拉伸模量为2534.3MPa,拉伸断裂伸长率5.0%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为90.3%以上。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The content of silicon-containing diene in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 90.2 mol%, and its copolymer glass The chemical transition temperature (T g ) is 95.7°C, the polymerization shows amorphous behavior, and the monomer conversion rate is 90.6%. Within 100~10M Hz, the dielectric constant of the copolymer is as low as 1.97. High-temperature GPC result analysis shows that the weight average molecular weight is 69.3×10 4 g/mol, and the molecular weight distribution is narrow (PDI=1.49). In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 62.1MPa. The modulus is 2534.3MPa, and the tensile elongation at break is 5.0%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is more than 90.3%. Specific copolymer data are shown in Table 1.
实施例8Example 8
一种4-甲基-1-戊烯的超低介电均聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入4-甲基-1-戊烯(浓度为0.60mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得4-甲基-1-戊烯均聚物,待后续表征。A method for preparing an ultra-low dielectric homopolymer of 4-methyl-1-pentene, using a single active center transition metal Cat.1 as a catalyst for olefin coordination copolymerization. All polymerization reactions require anhydrous conditions. It is carried out under anaerobic conditions. The polymerization bottles, syringes, ampoules and other glassware involved in the reaction, such as weighing and transferring catalysts, co-catalysts, solutions, etc., have all undergone anhydrous and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 4-methyl-1-pentene (concentration: 0.60 mol/L) to the polymerization bottle under nitrogen conditions; after stabilization, the chain transfer agent triisotope is added in sequence. Butylaluminum toluene solution (10mmol), 0.25mmol/L catalyst (Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C][B(C 6 F 5 ) 4 ], maintain the total capacity of the polymerization bottle at 40 mL with toluene solvent, and stir the reaction at room temperature for 240 min at 400 rpm; then add 0.5 mL of ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a solution containing 300 mL of ethanol/ Hydrochloric acid (volume ratio 50:1) was settled in a beaker, and then filtered, washed, dissolved, adsorbed, sedimented again, filtered again, and vacuum dried to obtain 4-methyl-1-pentene homopolymer, which will be characterized later.
本实施例制备的4-甲基-1-戊烯均聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的4-甲基-1-戊烯均聚物熔融温度(Tm)为236.7℃,单体转化率为43.9%。聚合物在150℃加热震荡条件下在三氯苯中不溶解。另外,拉伸性能表征结果表明,4-甲基-1-戊烯均聚物的拉伸强度为32.0MPa,拉伸模量为2419.7MPa,拉伸断裂伸长率64.5%。在100~10MHz内,均聚物的介电常数低至2.21。紫外分光光度计测试结果表明,在可见光的范围内,均聚物的透光率为90.1%以上。具体均聚物的数据如表1所示。The 4-methyl-1-pentene homopolymer prepared in this example was subjected to nuclear magnetic and DSC tests. The test results showed that the melting temperature (T m ) is 236.7°C, and the monomer conversion rate is 43.9%. The polymer is insoluble in trichlorobenzene under heating and shaking conditions at 150°C. In addition, the tensile property characterization results show that the tensile strength of 4-methyl-1-pentene homopolymer is 32.0MPa, the tensile modulus is 2419.7MPa, and the tensile elongation at break is 64.5%. Within 100 to 10MHz, the dielectric constant of the homopolymer is as low as 2.21. UV spectrophotometer test results show that in the range of visible light, the homopolymer has a light transmittance of more than 90.1%. Specific homopolymer data are shown in Table 1.
实施例9Example 9
一种含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯的超低介电均聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入3,3-二甲基-3-硅-1,5-己二烯(浓度为0.60mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯均聚物,待后续表征。A method for preparing an ultra-low dielectric homopolymer of silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene, using single active center transition metal Cat.1 as a catalyst For olefin coordination copolymerization, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules and other glassware involved in the reaction, such as weighing and transferring catalysts, co-catalysts, solutions, etc., must be anhydrous and oxygen-free. Oxygen treatment. The specific reaction steps are: using Schlenk experimental device and adding 3,3-dimethyl-3-silyl-1,5-hexadiene (concentration: 0.60 mol/L) to the polymerization bottle under nitrogen flow conditions; After stabilization, chain transfer agent triisobutylaluminum toluene solution (10mmol), 0.25mmol/L catalyst (Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], maintain the total capacity of the polymerization bottle at 40 mL with toluene solvent, stir the reaction at room temperature at 400 rpm for 240 min; then add 0.5 mL of ethanol to terminate the polymerization, and obtain a reaction solution; The reaction solution was poured dropwise into a beaker containing 300 mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filtered, washed, dissolved, adsorbed, sedimented again, filtered again, and vacuum dried to obtain 3,3-dimethyl-3 -Silicon-1,5-hexadiene homopolymer, pending subsequent characterization.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯均聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯均聚物玻璃化转变温度(Tg)为99.1℃,熔融温度(Tm)为227.7℃,单体转化率为91.9%。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯均聚物的拉伸强度为56.5MPa,拉伸模量为2605.7MPa,拉伸断裂伸长率4.0%。在100~10M Hz内,均聚物的介电常数低至1.85。高温GPC结果分析表明,重均分子量102.6×104g/mol,分子量分布较窄(PDI=1.95)。紫外分光光度计测试结果表明,在可见光的范围内,均聚物的透光率为90.2%以上。具体均聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene homopolymer prepared in this example was subjected to nuclear magnetic and DSC tests. The test results showed that the 3,3-dimethyl The glass transition temperature (T g ) of the base-3-silicon-1,5-hexadiene homopolymer is 99.1°C, the melting temperature (T m ) is 227.7°C, and the monomer conversion rate is 91.9%. In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene homopolymer is 56.5MPa, the tensile modulus is 2605.7MPa, and the tensile fracture Elongation 4.0%. Within 100~10M Hz, the dielectric constant of the homopolymer is as low as 1.85. High-temperature GPC result analysis shows that the weight average molecular weight is 102.6×10 4 g/mol, and the molecular weight distribution is narrow (PDI=1.95). UV spectrophotometer test results show that in the range of visible light, the homopolymer has a light transmittance of more than 90.2%. Specific homopolymer data are shown in Table 1.
实施例10Example 10
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.2为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入7equiv的4-甲基-1-戊烯(浓度为0.42mol/L);然后,加入3equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.18mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物,待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.2 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 7 equiv of 4-methyl-1-pentene (concentration: 0.42 mol/L) to the polymerization bottle under nitrogen conditions; then, add 3 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.18mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, re-sedimentation, re-filtering, and vacuum drying to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer, which will be processed later. representation.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃含量为48.7mol%,其共聚物玻璃化转变温度(Tg)为70.1℃,聚合表现为无定形行为,单体转化率为37.4%。在100~10M Hz内,共聚物的介电常数最低为2.82。高温GPC结果分析表明,重均分子量21.8×104g/mol,分子量分布宽度PDI=2.92。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度为36.8MPa,拉伸模量为2216.4MPa,拉伸断裂伸长率14.1%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为88.4%。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The content of silicon-containing diene in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 48.7 mol%, and the copolymer is vitrified. The transition temperature (T g ) was 70.1°C, the polymerization showed amorphous behavior, and the monomer conversion rate was 37.4%. Within 100~10M Hz, the dielectric constant of the copolymer is the lowest 2.82. High-temperature GPC result analysis shows that the weight average molecular weight is 21.8×10 4 g/mol, and the molecular weight distribution width PDI=2.92. In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 36.8MPa. The modulus is 2216.4MPa, and the tensile elongation at break is 14.1%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is 88.4%. Specific copolymer data are shown in Table 1.
实施例11Example 11
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.3为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入7equiv的4-甲基-1-戊烯(浓度为0.42mol/L);然后,加入3equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.18mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应后的溶液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物,待后续表征。。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using single active center transition metal Cat.3 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 7 equiv of 4-methyl-1-pentene (concentration: 0.42 mol/L) to the polymerization bottle under nitrogen conditions; then, add 3 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.18mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction solution; pour the reacted solution dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then After filtration, washing, dissolving, adsorption, re-sedimentation, re-filtration and vacuum drying, 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is obtained. Awaiting subsequent characterization. .
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物中含硅二烯烃的含量为43.6mol%,其共聚物玻璃化转变温度(Tg)为68.8℃,聚合物表现为无定形行为,聚合转化率为29.8%。在100~10M Hz内,均聚物的介电常数最低为2.49。高温GPC结果分析表明,重均分子量19.2×104g/mol,分子量分布较宽(PDI=3.06)。另外,拉伸性能表征结果表明,3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物的拉伸强度为43.7MPa,拉伸模量为2456.3MPa,拉伸断裂伸长率10.2%。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为86.4%。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The content of silicon-containing diene in the polymerized 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 43.6 mol%, and its copolymer glass The chemical transition temperature (T g ) is 68.8°C, the polymer exhibits amorphous behavior, and the polymerization conversion rate is 29.8%. Within 100~10M Hz, the lowest dielectric constant of homopolymer is 2.49. High-temperature GPC result analysis shows that the weight average molecular weight is 19.2×10 4 g/mol, and the molecular weight distribution is broad (PDI=3.06). In addition, the tensile property characterization results show that the tensile strength of 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer is 43.7MPa. The modulus is 2456.3MPa, and the tensile elongation at break is 10.2%. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is 86.4%. Specific copolymer data are shown in Table 1.
实施例12Example 12
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用Cat.4rac-Et(Ind)2ZrCl2为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入7equiv的4-甲基-1-戊烯(浓度为0.18mol/L);然后,加入3equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.42mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物,待后续表征。A preparation method of ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using Cat.4rac-Et(Ind) 2 ZrCl 2 is a catalyst for olefin coordination copolymerization. All polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction are weighed and transferred to glass such as catalysts, cocatalysts, solutions, etc. The utensils are treated without water or oxygen. The specific reaction steps are: using the Schlenk experimental device and adding 7 equiv of 4-methyl-1-pentene (concentration: 0.18 mol/L) to the polymerization bottle under nitrogen conditions; then, add 3 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.42mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, re-sedimentation, re-filtering, and vacuum drying to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer, which will be processed later. representation.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物含硅二烯烃为31.8mol%,共聚物的玻璃化转变温度(Tg)为66.4℃,聚合表现为无定形行为,单体转化率为5.6%。在100~10M Hz内,共聚物的介电常数最低为2.76。高温GPC结果分析表明,重均分子量10.3×104g/mol,分子量分布较宽(PDI=5.64)。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为84.3%。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer obtained by polymerization contains 31.8 mol% of silicon diene, and the glass transition temperature of the copolymer is (T g ) was 66.4°C, the polymerization showed amorphous behavior, and the monomer conversion rate was 5.6%. Within 100~10M Hz, the dielectric constant of the copolymer is the lowest 2.76. High-temperature GPC result analysis shows that the weight average molecular weight is 10.3×10 4 g/mol, and the molecular weight distribution is broad (PDI=5.64). The UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is 84.3%. Specific copolymer data are shown in Table 1.
实施例13Example 13
一种基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)的超低介电共聚物的制备方法,采用Cat.5rac-Et(Ind)2ZrCl2为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入7equiv的4-甲基-1-戊烯(浓度为0.18mol/L);然后,加入3equiv的3,3-二甲基-3-硅-1,5-己二烯(浓度为0.42mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物,待后续表征。A preparation method of ultra-low dielectric copolymer based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD), using Cat.5rac-Et(Ind) 2 ZrCl 2 is a catalyst for olefin coordination copolymerization. All polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction are weighed and transferred to glass such as catalysts, cocatalysts, solutions, etc. The utensils are treated without water or oxygen. The specific reaction steps are: using the Schlenk experimental device and adding 7 equiv of 4-methyl-1-pentene (concentration: 0.18 mol/L) to the polymerization bottle under nitrogen conditions; then, add 3 equiv of 3,3 -Dimethyl-3-silyl-1,5-hexadiene (concentration: 0.42mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, re-sedimentation, re-filtering, and vacuum drying to obtain 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer, which will be processed later. representation.
本实施例制备的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二甲基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物含硅二烯烃为37.9mol%,共聚物的玻璃化转变温度(Tg)为68.7℃,聚合表现为无定形行为,单体转化率为48.2%。在100~10M Hz内,共聚物的介电常数最低为2.27。高温GPC结果分析表明,重均分子量12.2×104g/mol,分子量分布较宽(PDI=2.41)。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为88.7%。具体共聚物的数据如表1所示。The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The 3,3-dimethyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer obtained by polymerization contains 37.9 mol% of silicon diene, and the glass transition temperature of the copolymer is (T g ) was 68.7°C, the polymerization showed amorphous behavior, and the monomer conversion rate was 48.2%. Within 100~10M Hz, the dielectric constant of the copolymer is the lowest 2.27. Analysis of high-temperature GPC results showed that the weight average molecular weight was 12.2×10 4 g/mol and the molecular weight distribution was broad (PDI=2.41). UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is 88.7%. Specific copolymer data are shown in Table 1.
实施例14Example 14
一种基于含硅二烯烃3,3-二苯基-3-硅-1,5-己二烯(DPSHD)的超低介电共聚物的制备方法,采用单活性中心过渡金属Cat.1为催化剂进行的烯烃配位共聚合,所有聚合反应均需在无水无氧条件下进行,涉及反应的聚合瓶、注射器、安瓿瓶等称量和转移催化剂、助催化剂、溶液等的玻璃器皿均经过无水无氧处理。具体反应步骤为:利用Schlenk实验装置,并在通氮气条件下,向聚合瓶中加入7equiv的4-甲基-1-戊烯(浓度为0.42mol/L);然后,加入3equiv的3,3-二苯基-3-硅-1,5-己二烯(浓度为0.18mol/L);稳定后,依次加入链转移剂三异丁基铝甲苯溶液(10mmol)、0.25mmol/L催化剂(Cat.1)和0.5mmol/L三苯基甲基四(五氟)硼酸酯盐[Ph3C][B(C6F5)4],将聚合瓶的总容量用甲苯溶剂维持在40mL,在400rpm作用下于室温搅拌反应240min;之后加入0.5mL乙醇终止聚合,得到反应液;将反应液逐滴倾入含有300mL乙醇/盐酸(体积比50:1)烧杯中沉降,然后经过滤、洗涤、溶解、吸附、再沉降、再过滤、真空干燥获得3,3-二苯基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物,待后续表征。A method for preparing an ultra-low dielectric copolymer based on silicon-containing diene 3,3-diphenyl-3-silicon-1,5-hexadiene (DPSHD), using single active center transition metal Cat.1 as For olefin coordination copolymerization carried out by catalyst, all polymerization reactions must be carried out under anhydrous and oxygen-free conditions. The polymerization bottles, syringes, ampoules, etc. involved in the reaction and the glassware for weighing and transferring catalysts, cocatalysts, solutions, etc. Water-free and oxygen-free treatment. The specific reaction steps are: using the Schlenk experimental device and adding 7 equiv of 4-methyl-1-pentene (concentration: 0.42 mol/L) to the polymerization bottle under nitrogen conditions; then, add 3 equiv of 3,3 -Diphenyl-3-silicon-1,5-hexadiene (concentration: 0.18mol/L); after stabilization, add chain transfer agent triisobutylaluminum toluene solution (10mmol) and 0.25mmol/L catalyst ( Cat.1) and 0.5mmol/L triphenylmethyltetrakis(pentafluoro)borate salt [Ph 3 C] [B(C 6 F 5 ) 4 ], and use toluene solvent to maintain the total capacity of the polymerization bottle at 40mL, stir the reaction at room temperature for 240min at 400rpm; then add 0.5mL ethanol to terminate the polymerization to obtain a reaction liquid; pour the reaction liquid dropwise into a beaker containing 300mL ethanol/hydrochloric acid (volume ratio 50:1) to settle, and then filter , washing, dissolving, adsorbing, re-sedimentation, re-filtering, and vacuum drying to obtain 3,3-diphenyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer, which will be processed later. representation.
本实施例制备的3,3-二苯基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物进行核磁和DSC测试,测试的结果表明,本实施例聚合得到的3,3-二苯基-3-硅-1,5-己二烯/4-甲基-1-戊烯共聚物含硅二烯烃为52.7mol%,单体转化率为53.3%,Tg=121.2℃。高温GPC结果分析表明,重均分子量32.3×104g/mol,分子量分布较窄(PDI=1.71)。在100~10M Hz内,均聚物的介电常数最低为1.96。紫外分光光度计测试结果表明,在可见光的范围内,共聚物的透光率为90.4%。具体共聚物的数据如表1所示。The 3,3-diphenyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer prepared in this example was subjected to NMR and DSC tests. The test results showed that this example The 3,3-diphenyl-3-silicon-1,5-hexadiene/4-methyl-1-pentene copolymer obtained by polymerization contains 52.7 mol% of silicon diene and the monomer conversion rate is 53.3%. , T g =121.2℃. High-temperature GPC result analysis shows that the weight average molecular weight is 32.3×10 4 g/mol, and the molecular weight distribution is narrow (PDI=1.71). Within 100~10M Hz, the lowest dielectric constant of homopolymer is 1.96. UV spectrophotometer test results show that in the range of visible light, the light transmittance of the copolymer is 90.4%. Specific copolymer data are shown in Table 1.
表14-甲基-1-戊烯与含硅二烯烃共聚物性能数据a Table 14 - Performance data of methyl-1 - pentene and silicon-containing diene copolymera
a反应条件;b高温GPC测试出;c含硅二烯烃或其衍生物插入率(含量),13C NMR计算出;dDSC测试出;e拉力机测试出、δ=拉伸强度、&=断裂伸长率;f紫外分光光度计表征出、T=透光率(800nm);g宽频介电谱仪测试出。 a Reaction conditions; b High-temperature GPC test; c Silicon-containing diene or its derivative insertion rate (content), calculated by 13 C NMR; d DSC test; e Tensile machine test, δ = tensile strength, &= Elongation at break; f Characterized by ultraviolet spectrophotometer, T = transmittance (800nm); g Tested by broadband dielectric spectrometer.
图1为实施例2、3、5、7、9制备的共聚物的高温GPC曲线图。Figure 1 is a high-temperature GPC curve chart of the copolymers prepared in Examples 2, 3, 5, 7, and 9.
图2为实施例2、3、5、8、9制备的共聚物的DSC曲线图。Figure 2 is a DSC curve chart of the copolymers prepared in Examples 2, 3, 5, 8 and 9.
图3为实施例1、2、3、8、9、11制备的共聚物的应力-应变曲线图。Figure 3 is a stress-strain curve diagram of the copolymers prepared in Examples 1, 2, 3, 8, 9, and 11.
图4为实施例1、3、5、7、8、11制备的共聚物的透光率-频率曲线图。Figure 4 is a light transmittance-frequency curve diagram of the copolymers prepared in Examples 1, 3, 5, 7, 8, and 11.
图5为实施例3、4、6-8制备的共聚物的介电常数曲线图。Figure 5 is a dielectric constant curve diagram of the copolymers prepared in Examples 3, 4, and 6-8.
图6为实施例2、4-6制备的共聚物的介电损耗曲线图。Figure 6 is a dielectric loss curve of the copolymer prepared in Examples 2 and 4-6.
由上述的各图和表1数据可知,实施例10-13和实施例3相比,共聚物的分子量较低,分子量分布较宽,获得的共聚物力学性能和光学性能较差,介电性能也较差,从而突显Cat.1催化4-甲基-1-戊烯和3,3-二甲基-3-硅-1,5-己二烯或其衍生物共聚获得的共聚物具有更好的性能优势。It can be seen from the above figures and the data in Table 1 that compared with Example 3, the molecular weight of the copolymers in Examples 10-13 is lower and the molecular weight distribution is wider. The mechanical properties and optical properties of the obtained copolymers are poor, and the dielectric properties are poor. is also poor, thus highlighting that the copolymer obtained by Cat.1 catalyzed copolymerization of 4-methyl-1-pentene and 3,3-dimethyl-3-silyl-1,5-hexadiene or its derivatives has better Good performance advantages.
本发明公开和提出的基于含硅二烯烃3,3-二甲基-3-硅-1,5-己二烯(DMSHD)及其衍生物的超低介电共聚物材料的制备方法,利用本发明方法制备得到的高性能超低介电性能共聚物中含硅二烯烃DMSHD或其衍生物的含量为0~100%;Tg=25~121℃;共聚物的重均分子量为18~80×104g/mol,分子量分布在1.5~5.6之间;单体的转化率为5~92%之间;共聚物的介电常数为1.9~2.4,介电损耗为0.00001~0.001;共聚物的拉伸强度为30~70MPa,拉伸模量>2000MPa,断裂伸长率为10~90%;共聚物透明度>88%。本发明扩宽了聚碳硅烷的应用范围,并系统地揭示含硅二烯3,3-二甲基-3-硅-1,5-己二烯(DMSHD)或其衍生物含量与介电性能之间的影响规律,具有非常重要的研究意义。The present invention discloses and proposes a method for preparing ultra-low dielectric copolymer materials based on silicon-containing diene 3,3-dimethyl-3-silicon-1,5-hexadiene (DMSHD) and its derivatives. The content of the silicon-containing diene DMSHD or its derivatives in the high-performance ultra-low dielectric copolymer prepared by the method of the present invention is 0 to 100%; T g =25 to 121°C; the weight average molecular weight of the copolymer is 18 to 80×10 4 g/mol, the molecular weight distribution is between 1.5 and 5.6; the conversion rate of the monomer is between 5 and 92%; the dielectric constant of the copolymer is 1.9~2.4, and the dielectric loss is 0.00001~0.001; copolymerization The tensile strength of the material is 30~70MPa, the tensile modulus is >2000MPa, the elongation at break is 10~90%; the transparency of the copolymer is >88%. The present invention broadens the application scope of polycarbosilane and systematically reveals the relationship between the content of silicon-containing diene 3,3-dimethyl-3-silyl-1,5-hexadiene (DMSHD) or its derivatives and the dielectric The influence rules between performances are of very important research significance.
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-described embodiments only describe the preferred modes of the present invention and do not limit the scope of the present invention. Without departing from the design spirit of the present invention, those of ordinary skill in the art can make various modifications to the technical solutions of the present invention. All deformations and improvements shall fall within the protection scope determined by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311050838.7A CN117089005B (en) | 2023-08-21 | 2023-08-21 | Ultralow dielectric copolymer and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311050838.7A CN117089005B (en) | 2023-08-21 | 2023-08-21 | Ultralow dielectric copolymer and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117089005A true CN117089005A (en) | 2023-11-21 |
CN117089005B CN117089005B (en) | 2024-06-21 |
Family
ID=88774586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311050838.7A Active CN117089005B (en) | 2023-08-21 | 2023-08-21 | Ultralow dielectric copolymer and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117089005B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5739217A (en) * | 1994-10-07 | 1998-04-14 | Hitachi Chemical Company, Ltd. | Epoxy resin molding for sealing electronic parts containing organic polymer-grafted silicone |
CN102731721A (en) * | 2012-05-08 | 2012-10-17 | 中国科学院长春应用化学研究所 | Cycloolefin copolymer and preparation method thereof |
CN113861348A (en) * | 2021-10-09 | 2021-12-31 | 天津大学 | PMP copolymer and preparation method thereof |
CN115948147A (en) * | 2022-12-30 | 2023-04-11 | 广州市白云化工实业有限公司 | Organic silicon polymer/benzoxazine/epoxy resin packaging adhesive and preparation method thereof |
-
2023
- 2023-08-21 CN CN202311050838.7A patent/CN117089005B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5739217A (en) * | 1994-10-07 | 1998-04-14 | Hitachi Chemical Company, Ltd. | Epoxy resin molding for sealing electronic parts containing organic polymer-grafted silicone |
CN102731721A (en) * | 2012-05-08 | 2012-10-17 | 中国科学院长春应用化学研究所 | Cycloolefin copolymer and preparation method thereof |
CN113861348A (en) * | 2021-10-09 | 2021-12-31 | 天津大学 | PMP copolymer and preparation method thereof |
CN115948147A (en) * | 2022-12-30 | 2023-04-11 | 广州市白云化工实业有限公司 | Organic silicon polymer/benzoxazine/epoxy resin packaging adhesive and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
BIN WANG等: "Cyclopolymerization of Si-Containing α, ω-Diolefins by a Pyridylamidohafnium Catalyst with High Cyclization Selectivity and Stereoselectivity", 《MACROMOLECULES》, no. 47, 16 September 2014 (2014-09-16), pages 6627 - 6634 * |
BIN WANG等: "Non-porous ultra low dielectric constant materials based on novel silicon-containing cycloolefin copolymers with tunable performance", 《POLYMER》, no. 116, 27 March 2017 (2017-03-27), pages 105 - 112 * |
Also Published As
Publication number | Publication date |
---|---|
CN117089005B (en) | 2024-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2670752C9 (en) | Olefin based polymer with excellent processing ability | |
KR20190074963A (en) | Polyethylene copolymer and method for preparing the same | |
CN105814101A (en) | Ethylene/1-hexene or ethylene/1-butene copolymer having outstanding working properties and environmental stress cracking resistance | |
CN105980417A (en) | Method for preparing supported metallocene catalyst | |
CN106232638A (en) | There is the polyolefin of excellent environmental stress crack resistance | |
KR102629595B1 (en) | Polyolefin | |
CN103483482B (en) | Functional isotactic polypropylene and preparation method thereof | |
CN108752526B (en) | Process for preparing copolymers of ethylene and/or alpha-olefins and cycloolefins and catalytic system therefor | |
JP6114195B2 (en) | Active carrier | |
CN115651101A (en) | Supported metallocene catalyst for ethylene polymerization and preparation method thereof | |
CN117089005B (en) | Ultralow dielectric copolymer and preparation method and application thereof | |
CN113861348B (en) | PMP copolymer and preparation method thereof | |
CN114736321B (en) | Modified cyclic olefin copolymer in-kettle alloy and preparation method thereof | |
CN110291117B (en) | Olefin polymer, method for producing the same, and film using the same | |
JP2010501663A (en) | Cyclobutene polymer and process for producing the same | |
CN118027264A (en) | Cycloolefin copolymer and preparation method thereof | |
KR102580844B1 (en) | Preparation method of ethylene-alpha olefin copolymer and manufacturing method of injection molded article | |
CN117586441B (en) | Narrow-distribution ultra-high molecular weight polymer based on alpha-olefin, and preparation method and application thereof | |
JP2004107442A (en) | Method for producing cyclic olefin polymer | |
CN116023538B (en) | Metallocene catalyst and preparation method thereof and method for preparing olefin copolymer | |
CN115806642A (en) | Preparation method of transparent ultrahigh molecular weight cycloolefin copolymer | |
CN118909172A (en) | Anti-aging poly-alpha-olefin, and preparation method and application thereof | |
CN117624420A (en) | Metallocene catalyst | |
CN117624421A (en) | Process for preparing metallocene catalyst | |
CN117624422A (en) | Polyethylene resin for melt-blowing process and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |