CN116988102A - Nano transport alkaline electrolyzed water diaphragm and manufacturing method thereof - Google Patents
Nano transport alkaline electrolyzed water diaphragm and manufacturing method thereof Download PDFInfo
- Publication number
- CN116988102A CN116988102A CN202310922126.3A CN202310922126A CN116988102A CN 116988102 A CN116988102 A CN 116988102A CN 202310922126 A CN202310922126 A CN 202310922126A CN 116988102 A CN116988102 A CN 116988102A
- Authority
- CN
- China
- Prior art keywords
- powder
- particles
- polyphenylene sulfide
- pps
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 112
- 239000004734 Polyphenylene sulfide Substances 0.000 claims abstract description 87
- 229920000069 polyphenylene sulfide Polymers 0.000 claims abstract description 87
- 239000002245 particle Substances 0.000 claims abstract description 86
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 39
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 39
- 239000012528 membrane Substances 0.000 claims abstract description 36
- 229910000278 bentonite Inorganic materials 0.000 claims abstract description 31
- 239000000440 bentonite Substances 0.000 claims abstract description 31
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 30
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 28
- 229940092782 bentonite Drugs 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 24
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 15
- 229920000570 polyether Polymers 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 14
- 239000008188 pellet Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 125000000524 functional group Chemical group 0.000 claims description 12
- GQKDZDYQXPOXEM-UHFFFAOYSA-N 3-chlorocatechol Chemical group OC1=CC=CC(Cl)=C1O GQKDZDYQXPOXEM-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 7
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 7
- FUTDYIMYZIMPBJ-UHFFFAOYSA-N 3,4,5-trichlorobenzene-1,2-diol Chemical compound OC1=CC(Cl)=C(Cl)C(Cl)=C1O FUTDYIMYZIMPBJ-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 229960004063 propylene glycol Drugs 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- AYNPIRVEWMUJDE-UHFFFAOYSA-N 2,5-dichlorohydroquinone Chemical compound OC1=CC(Cl)=C(O)C=C1Cl AYNPIRVEWMUJDE-UHFFFAOYSA-N 0.000 claims description 5
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 5
- 239000008187 granular material Substances 0.000 claims description 5
- 238000007731 hot pressing Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 238000001179 sorption measurement Methods 0.000 claims description 5
- KEWNKZNZRIAIAK-UHFFFAOYSA-N 2,3,5,6-tetrachlorophenol Chemical compound OC1=C(Cl)C(Cl)=CC(Cl)=C1Cl KEWNKZNZRIAIAK-UHFFFAOYSA-N 0.000 claims description 4
- LZHZRJKVYOHNTJ-UHFFFAOYSA-N 3,4,6-trichlorocatechol Chemical compound OC1=C(O)C(Cl)=C(Cl)C=C1Cl LZHZRJKVYOHNTJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- STOSPPMGXZPHKP-UHFFFAOYSA-N tetrachlorohydroquinone Chemical compound OC1=C(Cl)C(Cl)=C(O)C(Cl)=C1Cl STOSPPMGXZPHKP-UHFFFAOYSA-N 0.000 claims description 4
- 206010016654 Fibrosis Diseases 0.000 claims description 3
- 229910000281 calcium bentonite Inorganic materials 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 3
- ONCZQWJXONKSMM-UHFFFAOYSA-N dialuminum;disodium;oxygen(2-);silicon(4+);hydrate Chemical compound O.[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Na+].[Na+].[Al+3].[Al+3].[Si+4].[Si+4].[Si+4].[Si+4] ONCZQWJXONKSMM-UHFFFAOYSA-N 0.000 claims description 3
- 230000004761 fibrosis Effects 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 229910000280 sodium bentonite Inorganic materials 0.000 claims description 3
- 229940080314 sodium bentonite Drugs 0.000 claims description 3
- 239000010455 vermiculite Substances 0.000 claims description 3
- 229910052902 vermiculite Inorganic materials 0.000 claims description 3
- 235000019354 vermiculite Nutrition 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000002105 nanoparticle Substances 0.000 claims 1
- 238000010008 shearing Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 238000005491 wire drawing Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 230000032258 transport Effects 0.000 abstract description 7
- 230000004888 barrier function Effects 0.000 abstract description 6
- 238000005098 hot rolling Methods 0.000 abstract description 4
- 238000004804 winding Methods 0.000 abstract description 2
- 238000005056 compaction Methods 0.000 abstract 1
- 230000037427 ion transport Effects 0.000 abstract 1
- 230000004048 modification Effects 0.000 abstract 1
- 238000012986 modification Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 238000004502 linear sweep voltammetry Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 238000005868 electrolysis reaction Methods 0.000 description 7
- 238000003475 lamination Methods 0.000 description 7
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 3
- 239000010425 asbestos Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005660 hydrophilic surface Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 235000013772 propylene glycol Nutrition 0.000 description 3
- 229910052895 riebeckite Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
- C25B13/08—Diaphragms; Spacing elements characterised by the material based on organic materials
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明提供了一种纳米输运碱性电解水隔膜及制造方法,所制造的纳米输运碱性电解水隔膜中,表面亲水的聚苯硫醚(PPS)颗粒呈现扁平状,PPS颗粒之间形成部分或全部粘连,PPS颗粒表面被膨润土颗粒、亲水性无机粉料颗粒包覆,且由纤维化的聚四氟乙烯缠结形成连续的膜状;PPS颗粒界面和间隙被膨润土颗粒、无机粉料填满,形成纳米级输运通道,纤维化的聚四氟乙烯将PPS颗粒和无机粉料颗粒缠结在一起。本发明中膨润土的加入提高了纤维状聚四氟乙烯对PPS和无机粉料的缠绕固定,提高了膜材的机械强度;两次热辊压提高了PPS隔膜的阻气效果,PPS表面经过无机粉料的修饰压实后,呈现出纳米级OH‑离子的输运通道,具有更加优异的OH‑离子导电率、高孔隙率、高亲水性。
The invention provides a nano-transport alkaline electrolyzed water separator and a manufacturing method. In the manufactured nano-transported alkaline electrolyzed water separator, the surface hydrophilic polyphenylene sulfide (PPS) particles are flat, and the PPS particles are Partial or complete adhesion is formed between the PPS particles. The surface of the PPS particles is coated by bentonite particles and hydrophilic inorganic powder particles, and is entangled with fibrous polytetrafluoroethylene to form a continuous film; the interface and gaps of the PPS particles are covered by bentonite particles, The inorganic powder is filled to form a nanoscale transport channel, and the fibrous polytetrafluoroethylene entangles the PPS particles and the inorganic powder particles together. The addition of bentonite in the present invention improves the winding and fixation of fibrous polytetrafluoroethylene to PPS and inorganic powder, and improves the mechanical strength of the membrane material; the two hot rolling operations improve the gas barrier effect of the PPS separator, and the surface of the PPS undergoes inorganic After modification and compaction of the powder, nanoscale OH - ion transport channels appear, with better OH-ion conductivity, high porosity, and high hydrophilicity.
Description
技术领域Technical field
本发明涉及隔膜及隔膜的制造方法,属于新能源材料领域。The invention relates to a diaphragm and a manufacturing method of the diaphragm, and belongs to the field of new energy materials.
背景技术Background technique
氢能是指氢和氧反应所产生的化学能,将能量释放以后变成水,不会对人类生存环境带来任何不利影响,具有零污染、能量密度大、零排放、重量轻、储存丰富和燃烧性能良好等特点。它广泛应用于交通、工业、建筑等领域。我国目前的制氢技术主要有三种碱性(AWE)、质子交换膜(PEM)和固体氧化物电解水(SOEC)。AWE技术的发展和应用最为成熟,碱性电解水制氢技术因成本低、寿命长和材料来源丰富等优点及适用于大规模制氢而备受关注。PEM电解水技术正处于前期,电解水的设备成本仍然较高。SOEC仍处于实验室验证和小型示范阶段。碱性电解水制氢技术因成本低、寿命长和材料来源丰富等优点及适用于大规模制氢而备受关注。然而,在大规模制氢应用场景下,仍需进一步提高碱性电解水技术的电流密度和能量效率,以提高其设备和电耗成本,而隔膜和电极材料作为关键部件在其中扮演不容忽视的作用。Hydrogen energy refers to the chemical energy produced by the reaction of hydrogen and oxygen. The energy is released and turned into water. It will not have any adverse effects on the human living environment. It has zero pollution, high energy density, zero emissions, light weight, and abundant storage. and good combustion performance. It is widely used in transportation, industry, construction and other fields. There are three main hydrogen production technologies in my country: alkaline (AWE), proton exchange membrane (PEM) and solid oxide electrolyzed water (SOEC). The development and application of AWE technology are the most mature. Alkaline electrolysis water hydrogen production technology has attracted much attention due to its advantages such as low cost, long life and abundant material sources, and its suitability for large-scale hydrogen production. PEM water electrolysis technology is in its early stages, and the equipment cost for water electrolysis is still high. SOEC is still in the laboratory verification and small-scale demonstration stages. Alkaline water electrolysis hydrogen production technology has attracted much attention due to its advantages such as low cost, long life, abundant sources of materials, and its suitability for large-scale hydrogen production. However, in large-scale hydrogen production applications, the current density and energy efficiency of alkaline water electrolysis technology still need to be further improved to increase its equipment and power consumption costs, and separators and electrode materials, as key components, play a role that cannot be ignored. effect.
碱性电解水所用隔膜的性能对电解槽的电耗和所产氢气的纯度有较大影响。碱性电解水制氢在早期所用的隔膜为石棉,最初,石棉由于具有多孔特点而被广泛应用,但石棉的高温耐碱腐蚀性差,隔气能力较差,存在爆炸风险,并且会危害呼吸道,因此逐渐被其他材料替代。但PPS无纺布的隔气效果仍需进一步提高,以提高氢气的纯度。近年来人们研究了多种材料,以期获得电阻较低且亲水性和隔气能力较好的隔膜。研究较多的是有机高分子聚合物及其复合膜,如聚砜类隔膜、聚醚类隔膜、聚四氟乙烯隔膜、PPS隔膜等。The performance of the separator used in alkaline electrolysis of water has a great impact on the power consumption of the electrolyzer and the purity of the hydrogen produced. The diaphragm used in the early days of alkaline electrolysis of water for hydrogen production was asbestos. Initially, asbestos was widely used due to its porous characteristics. However, asbestos has poor resistance to high-temperature alkali corrosion and poor gas isolation capabilities, which poses an explosion risk and can harm the respiratory tract. Therefore, it is gradually replaced by other materials. However, the gas barrier effect of PPS non-woven fabrics still needs to be further improved to improve the purity of hydrogen. In recent years, a variety of materials have been studied in order to obtain separators with lower resistance and better hydrophilicity and gas barrier capabilities. More research has been done on organic polymers and their composite membranes, such as polysulfone membranes, polyether membranes, polytetrafluoroethylene membranes, PPS membranes, etc.
发明内容Contents of the invention
本发明提供了碱性电解水固态隔膜的制造方法,高精度的辊压提高了PPS隔膜的阻气效果,PPS表面经过无机粉料的修饰压实后,呈现出纳米级OH-离子的输运通道,与传统的电解水隔膜相比具有更加优异的OH-离子导电率、高孔隙率、高亲水性,所制作的隔膜厚度薄、孔径小、机械性能高、尺寸稳定性好、成本更低。The invention provides a method for manufacturing a solid separator for alkaline electrolytic water. High-precision rolling improves the gas barrier effect of the PPS separator. After the PPS surface is modified and compacted by inorganic powder, it exhibits the transport of nanoscale OH- ions. channel, compared with traditional electrolytic water separators, it has better OH - ion conductivity, high porosity, and high hydrophilicity. The produced separator has thin thickness, small pore size, high mechanical properties, good dimensional stability, and lower cost. Low.
本发明的目的通过以下技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种纳米输运碱性电解水隔膜,其特征在于,所述隔膜中包含表面为亲水性的交联态聚苯硫醚颗粒、膨润土颗粒、亲水性无机粉料、纤维化的聚四氟乙烯,所述聚苯硫醚颗粒被膨润土颗粒、亲水性无机粉料包覆,且由纤维化的聚四氟乙烯缠结形成连续的膜状;所述聚苯硫醚颗粒在膜内呈现扁平状、且相邻聚苯硫醚颗粒之间形成部分或全部粘连,相邻的聚苯硫醚颗粒之间的界面和间隙被膨润土颗粒、亲水性无机粉料填满,形成纳米级输运通道。A nano-transport alkaline electrolytic water separator, characterized in that the separator contains cross-linked polyphenylene sulfide particles with a hydrophilic surface, bentonite particles, hydrophilic inorganic powder, and fibrillated polytetrafluoroethylene. Vinyl fluoride, the polyphenylene sulfide particles are coated with bentonite particles and hydrophilic inorganic powder, and are entangled with fibrous polytetrafluoroethylene to form a continuous film; the polyphenylene sulfide particles are in the film It appears flat, and adjacent polyphenylene sulfide particles are partially or fully adhered. The interfaces and gaps between adjacent polyphenylene sulfide particles are filled with bentonite particles and hydrophilic inorganic powder to form a nano-scale transport channel.
进一步地,所述的扁平状聚苯硫醚颗粒厚度为1-10μm,扁平面的延伸长度为5-20μm。Further, the thickness of the flat polyphenylene sulfide particles is 1-10 μm, and the extension length of the flat surface is 5-20 μm.
进一步地,所述聚苯硫醚颗粒表面具有亲水官能团,聚苯硫醚分子链末端呈现交联态,所述亲水官能团为聚醚官能团或氯儿茶酚官能团,优选地,所述的聚醚官能团优选烯丙基聚醚,优选地,所述氯儿茶酚官能团为2,5-二氯对苯二酚、2,3,5,6-四氯酚、3,4,5-三氯邻苯二酚、四氯氢醌、3,4,6-三氯邻苯二酚中的一种或几种。Further, the surface of the polyphenylene sulfide particles has hydrophilic functional groups, and the ends of the polyphenylene sulfide molecular chains are in a cross-linked state. The hydrophilic functional groups are polyether functional groups or chlorocatechol functional groups. Preferably, the The polyether functional group is preferably allyl polyether. Preferably, the chlorocatechol functional group is 2,5-dichlorohydroquinone, 2,3,5,6-tetrachlorophenol, 3,4,5- One or more of trichlorocatechol, tetrachlorohydroquinone, and 3,4,6-trichlorocatechol.
进一步地,所述的亲水性无机粉料为BaSO4,ZrO2中的一种或几种的混合物,优选地,无机粉料的粒径大小为10nm-4μm。Further, the hydrophilic inorganic powder is one or a mixture of one or more of BaSO 4 and ZrO 2. Preferably, the particle size of the inorganic powder is 10 nm-4 μm.
进一步地,所述的纤维化聚四氟乙烯(PTFE)呈现线状长链拉丝的结构,聚四氟乙烯的C-F键末端与膨润土颗粒中的金属键形成偶极吸附,牢固的缠结固定PPS颗粒和无机粉料颗粒。Furthermore, the fiberized polytetrafluoroethylene (PTFE) exhibits a linear long-chain drawing structure. The C-F bond ends of the PTFE form dipole adsorption with the metal bonds in the bentonite particles, and the PPS is firmly entangled and fixed. Granules and inorganic powder particles.
进一步地,所述的膨润土颗粒粒径为10nm-4μm;优选为钠基膨润土、钙基膨润土、蒙脱石粉、蛭石粉中的一种或几种的混合物。Further, the bentonite particles have a particle size of 10 nm-4 μm; preferably, they are one or a mixture of sodium bentonite, calcium bentonite, montmorillonite powder, and vermiculite powder.
所述的纳米输运碱性电解水隔膜的制造方法,其特征在于,包括以下步骤:The manufacturing method of the nano-transport alkaline electrolytic water separator is characterized in that it includes the following steps:
(1)混粉:(1) Mixed powder:
将表面亲水化处理的交联态聚苯硫醚粉料、亲水无机粉料、膨润土粉料和聚四氟乙烯(PTFE)粉料在<5℃的环境下混合制成粉料A;所述交联态聚苯硫醚粉料的表面亲水化处理是在交联态PPS表面形成亲水官能团;Mix the surface hydrophilized cross-linked polyphenylene sulfide powder, hydrophilic inorganic powder, bentonite powder and polytetrafluoroethylene (PTFE) powder in an environment of <5°C to prepare powder A; The surface hydrophilization treatment of the cross-linked polyphenylene sulfide powder is to form hydrophilic functional groups on the surface of the cross-linked PPS;
(2)纤维化:(2) Fibrosis:
将粉料A倒入高速剪切机或气流磨中纤维化至粉料B,纤维化过程中聚四氟乙烯的分子链延展打开,同所述聚苯硫醚粉料、亲水无机粉料、膨润土粉料形成物理粘连,且不发生化学反应;Pour powder A into a high-speed shear or airflow mill and fiberize to powder B. During the fiberization process, the molecular chain of polytetrafluoroethylene is extended and opened, which is the same as the polyphenylene sulfide powder and hydrophilic inorganic powder. , Bentonite powder forms physical adhesion and does not undergo chemical reaction;
(3)密炼:(3) Secret refining:
将纤维化粉料B冷却到室温后,倒入密炼机,喷洒醇,进行密炼,最后得到粒料C;After cooling the fibrous powder B to room temperature, pour it into an internal mixer, spray alcohol, and perform internal mixing to finally obtain pellet C;
(4)制膜:(4) Film making:
将粒料C均匀倒入高精度热辊压机的上料系统,并进行初次辊压,挤出呈条连续膜D,再将薄膜D倒入高速切碎机中,得到切碎的粉料E,将粉料E再倒入热辊压机的上料系统,进行二次辊压,得到膜材F,再将PPS网和膜材F在热压复合机中进行热压复合隔膜H,收卷、烘干后得到成品隔膜I。Pour the pellets C evenly into the feeding system of the high-precision hot roller press, and perform initial rolling to extrude the continuous film D into strips. Then pour the film D into the high-speed chopper to obtain the chopped powder. E. Pour the powder E into the feeding system of the hot roller press and perform secondary rolling to obtain the membrane material F. Then heat-press the PPS mesh and membrane material F in the hot-press composite machine to composite the separator H. After winding and drying, the finished separator I is obtained.
进一步地,所述表面亲水化处理的交联态聚苯硫醚粉料是交联态聚苯硫醚颗粒经与聚醚或氯儿茶酚水热反应,在表面修饰亲水性的聚醚官能团或氯儿茶酚官能团;所述聚醚优选烯丙基聚醚,所述氯儿茶酚优选2,5-二氯对苯二酚、2,3,5,6-四氯酚、3,4,5-三氯邻苯二酚、四氯氢醌、3,4,6-三氯邻苯二酚中的一种或几种。Further, the cross-linked polyphenylene sulfide powder with surface hydrophilization treatment is a hydrophilic polyphenylene sulfide particle modified on the surface through hydrothermal reaction with polyether or chlorocatechol. Ether functional group or chlorocatechol functional group; the polyether is preferably allyl polyether, and the chlorocatechol is preferably 2,5-dichlorohydroquinone, 2,3,5,6-tetrachlorophenol, One or more of 3,4,5-trichlorocatechol, tetrachlorohydroquinone, and 3,4,6-trichlorocatechol.
进一步地,所述的表面亲水化处理的交联态的聚苯硫醚粉料、亲水无机粉料、膨润土粉料和聚四氟乙烯粉料的重量百分比为20%-80%:20%-80%:1%-5%和1-10%。Further, the weight percentage of the surface hydrophilized cross-linked polyphenylene sulfide powder, hydrophilic inorganic powder, bentonite powder and polytetrafluoroethylene powder is 20%-80%: 20 %-80%: 1%-5% and 1-10%.
进一步地,所述密炼过程中,喷洒的醇优选为乙醇、乙二醇、1,2-丙二醇中的一种或几种的混合醇;优选地,混合后固液的重量百分比为5%-50%;密炼时间为10分钟至300分钟;优选地,密炼后粒料C的大小为100μm-3mm。Furthermore, during the internal mixing process, the alcohol sprayed is preferably one or a mixture of ethanol, ethylene glycol, and 1,2-propanediol; preferably, the weight percentage of the solid liquid after mixing is 5%. -50%; the internal mixing time is 10 minutes to 300 minutes; preferably, the size of the granular material C after internal mixing is 100 μm-3mm.
进一步地,所述制膜过程中,一次压膜的辊压机的辊表面温度是50℃-130℃,一次压膜D的厚度为50-300μm,切碎的粉料E的大小为100μm-3mm,二次压膜的辊压机的辊表面温度是50℃-130℃,二次压膜F的厚度为50-300μm,PPS网为10-100目且厚度为100-300μm,膜材F与PPS网单面或双面复合,复合后的成品隔膜H的厚度为150-400μm。Further, during the film making process, the roller surface temperature of the roller press for one-time lamination is 50°C-130°C, the thickness of the one-time lamination D is 50-300 μm, and the size of the chopped powder E is 100 μm- 3mm, the roller surface temperature of the secondary lamination roller press is 50℃-130℃, the thickness of the secondary lamination F is 50-300μm, the PPS mesh is 10-100 mesh and the thickness is 100-300μm, film material F Composite with PPS mesh on one side or both sides, the thickness of the composite separator H is 150-400 μm.
本发明所述的碱性电解水隔膜的制造方法,采用表面为亲水性的交联态聚苯硫醚颗粒、膨润土颗粒、亲水性无机粉料和聚四氟乙烯为原料,经过高速剪切机或气流磨中纤维化后,聚四氟乙烯的分子链延展打开,同所述聚苯硫醚粉料、亲水无机粉料、膨润土粉料形成物理粘连,纤维状的聚四氟乙烯的分子链将聚苯硫醚粉料、亲水无机粉料、膨润土粉料包裹缠绕;同时,聚四氟乙烯的C-F键末端与膨润土颗粒中的金属键形成偶极吸附,使聚四氟乙烯与PPS颗粒和无机粉料颗粒的缠结更加牢固。在成膜过程中,经过采用了两遍压膜的工艺,第一遍热压成膜后膜材全部剪碎成细粒,可以消除一遍压膜出现的热辊压织构,膜材宽度方向强度低,第二遍热压成膜后的膜材各个方向强度均提高,无穿孔和裂纹缺陷,两次热辊压的工艺提高了PPS隔膜的阻气效果。The manufacturing method of the alkaline electrolytic water separator of the present invention uses cross-linked polyphenylene sulfide particles with hydrophilic surfaces, bentonite particles, hydrophilic inorganic powder and polytetrafluoroethylene as raw materials. After fiberization in the cutting machine or airflow mill, the molecular chain of polytetrafluoroethylene is extended and opened, forming physical adhesion with the polyphenylene sulfide powder, hydrophilic inorganic powder, and bentonite powder, and the fibrous polytetrafluoroethylene The molecular chains wrap and entangle the polyphenylene sulfide powder, hydrophilic inorganic powder, and bentonite powder; at the same time, the C-F bond ends of the polytetrafluoroethylene form dipole adsorption with the metal bonds in the bentonite particles, making the polytetrafluoroethylene The entanglement with PPS particles and inorganic powder particles is stronger. In the film forming process, a two-pass lamination process is adopted. After the first hot-pressing film is formed, the film material is all cut into fine particles, which can eliminate the hot-rolling texture that appears in the first pass of lamination. The width direction of the film material The strength is low. After the second hot-pressing process, the strength of the membrane material is increased in all directions, without perforation and crack defects. The two hot-rolling processes improve the gas barrier effect of the PPS separator.
综上,本发明所述的隔膜的结构稳定性和强度有四点保证,①膨润土的添加增强了PTFE缠结网络的强度,使得膜材在热碱水溶液中结构更加稳定;②交联态PPS粉料间粘接热压成膜,进一步提高了膜材在热碱中的结构稳定性;③隔膜在制造过程中采用了两遍压膜的工艺,热压成膜后的膜材各个方向强度均提高,无穿孔和裂纹缺陷,两次热辊压的工艺提高了PPS隔膜的阻气效果;④膜材与高强度PPS网复合在一起,再一次提高了膜材的强度,确保膜材长期服役。In summary, the structural stability and strength of the separator of the present invention are guaranteed by four points. ① The addition of bentonite enhances the strength of the PTFE entangled network, making the membrane structure more stable in hot alkali aqueous solution; ② Cross-linked PPS The powders are bonded and hot-pressed to form a film, which further improves the structural stability of the membrane in hot alkali; ③ The separator adopts a two-pass lamination process during the manufacturing process. The strength of the membrane in all directions after hot-pressing is Both are improved, without perforation and crack defects. The two hot rolling processes improve the gas barrier effect of the PPS separator; ④ The membrane material is combined with the high-strength PPS mesh to once again improve the strength of the membrane material and ensure the long-term performance of the membrane material. service.
本发明制备的纳米输运碱性电解水隔膜中,PPS表面经过无机粉料的修饰压实后,呈现出纳米级OH-离子的输运通道,与传统的电解水隔膜相比具有更加优异的OH-离子导电率、高孔隙率、高亲水性,所制作的隔膜厚度薄、孔径小、机械性能高、尺寸稳定性好、成本更低。In the nano-transport alkaline electrolyzed water separator prepared by the present invention, after the PPS surface is modified and compacted by inorganic powder, it presents a nano-scale OH-ion transport channel, which has better performance than the traditional electrolyzed water separator. OH-ion conductivity, high porosity, and high hydrophilicity make the separator thin in thickness, small in pore size, high in mechanical properties, good in dimensional stability, and lower in cost.
附图说明Description of drawings
图1为本发明所述的纳米输运碱性电解水隔膜的结构示意图。Figure 1 is a schematic structural diagram of the nanometer transport alkaline electrolytic water separator according to the present invention.
图2DFT计算出的PTFE的C-F键末端与膨润土颗粒中的金属键形成偶极吸附。Figure 2DFT calculation shows that the C-F bond ends of PTFE form dipolar adsorption with the metal bonds in the bentonite particles.
图3PTFE与膨润土颗粒形成的多链球结构。Figure 3: Multi-chain ball structure formed by PTFE and bentonite particles.
图4纳米输运碱性电解水隔膜产品外观图。Figure 4 Appearance of the nano-transport alkaline electrolyzed water separator product.
图5纳米输运碱性电解水隔膜的FIB-SEM图。Figure 5 FIB-SEM image of the nano-transporting alkaline electrolytic water separator.
图6是实施方式1中有纳米输运碱性电解水隔膜和无膜的下H池电解水LSV的对比图;Figure 6 is a comparison diagram of the lower H cell electrolyzed water LSV with a nano-transport alkaline electrolyzed water separator and without a membrane in Embodiment 1;
图7是实施方式1中有纳米输运碱性电解水隔膜和无膜的下H池电解水EIS的对比图。Figure 7 is a comparative diagram of the EIS of the lower H cell electrolyzed water with a nano-transport alkaline electrolyzed water separator and without a membrane in Embodiment 1.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。在本发明的一种实施方式中描述的元素和特征可以与一个或更多个其它实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below. Obviously, the described embodiments are part of the embodiments of the present invention, not all of them. Embodiments. Elements and features described in one embodiment of the invention may be combined with elements and features illustrated in one or more other embodiments. It should be noted that for purposes of clarity, representation and description of components and processes known to those of ordinary skill in the art that are not relevant to the present invention have been omitted from the description. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without any creative effort fall within the scope of protection of the present invention.
本发明所述的纳米输运碱性电解水隔膜,包含表面为亲水性的交联态聚苯硫醚颗粒、膨润土颗粒、亲水性无机粉料、纤维化的聚四氟乙烯,所述聚苯硫醚颗粒被膨润土颗粒、亲水性无机粉料包覆,且由纤维化的聚四氟乙烯缠结形成连续的膜状,如图1所示。所述聚苯硫醚颗粒在膜内呈现扁平状、且相邻聚苯硫醚颗粒之间形成部分或全部粘连,相邻的聚苯硫醚颗粒之间的界面和间隙被膨润土颗粒、亲水性无机粉料填满,形成纳米级输运通道。The nano-transport alkaline electrolytic water separator of the present invention includes cross-linked polyphenylene sulfide particles with a hydrophilic surface, bentonite particles, hydrophilic inorganic powder, and fibrillated polytetrafluoroethylene. Polyphenylene sulfide particles are coated with bentonite particles and hydrophilic inorganic powder, and are entangled with fibrous polytetrafluoroethylene to form a continuous film, as shown in Figure 1. The polyphenylene sulfide particles are flat in the film, and adjacent polyphenylene sulfide particles are partially or fully adhered. The interfaces and gaps between adjacent polyphenylene sulfide particles are formed by bentonite particles and hydrophilic particles. It is filled with organic inorganic powder to form a nanoscale transport channel.
所述的扁平状聚苯硫醚颗粒厚度为1-10μm,扁平面的延伸长度为5-20μm。所述聚苯硫醚颗粒表面具有亲水官能团,聚苯硫醚分子链末端呈现交联态。所述的亲水性无机粉料为BaSO4,ZrO2中的一种或几种的混合物,优选地,无机粉料的粒径大小为10nm-4μm。所述的纤维化聚四氟乙烯(PTFE)呈现线状长链拉丝的结构,聚四氟乙烯的C-F键末端与膨润土颗粒中的金属键形成偶极吸附,如图2所示,形成多链球结构,如图3所示,牢固的缠结固定PPS颗粒和无机粉料颗粒。所述的膨润土颗粒粒径为10nm-4μm;优选为钠基膨润土、钙基膨润土、蒙脱石粉、蛭石粉中的一种或几种的混合物。The thickness of the flat polyphenylene sulfide particles is 1-10 μm, and the extension length of the flat surface is 5-20 μm. The surface of the polyphenylene sulfide particles has hydrophilic functional groups, and the ends of the polyphenylene sulfide molecular chains are in a cross-linked state. The hydrophilic inorganic powder is one or a mixture of one or more of BaSO 4 and ZrO 2. Preferably, the particle size of the inorganic powder is 10 nm-4 μm. The fiberized polytetrafluoroethylene (PTFE) exhibits a linear long-chain drawing structure. The CF bond ends of the PTFE form dipolar adsorption with the metal bonds in the bentonite particles, as shown in Figure 2, forming multi-chain balls. The structure, as shown in Figure 3, is firmly entangled to fix PPS particles and inorganic powder particles. The particle diameter of the bentonite particles is 10 nm-4 μm; preferably, it is one or a mixture of sodium bentonite, calcium bentonite, montmorillonite powder, and vermiculite powder.
实施例1:Example 1:
制备纳米输运碱性电解水隔膜:采用2,5-二氯对苯二酚对交联态的聚苯硫醚粉料表面进行亲水化处理,称取40g的表面亲水化处理的交联态的聚苯硫醚、50g硫酸钡、9g聚四氟乙烯和1g的蒙脱石粉,在1℃条件下混合得到粉料A,将粉料A放入高速剪切机中纤维化,纤维化完成后得到粉料B。将粉料B冷藏,待冷却至室温后放入密炼机密炼,加入17g 1,2-丙二醇,密炼60分钟,得到颗粒大小为1mm的粒料C。将粒料C倒入高精度热辊压机上料系统,辊压机温度为100℃,得到厚度为150μm的条连续膜D,将条连续膜D放入切碎机中打碎,得到颗粒大小为1mm的粒料E,再将粉料E倒入高精度热辊压机上料系统,得到厚度为200μm的膜材F,再将膜材F与孔径为40目厚度为250μm的PPS网在热复合机中复合制成成品隔膜H的厚度为275μm,之后对隔膜H烘干后,产品如图4所示,即隔膜I进行表征。Preparation of nano-transport alkaline electrolytic water separator: Use 2,5-dichlorohydroquinone to hydrophilize the surface of cross-linked polyphenylene sulfide powder, and weigh 40g of the cross-linked polyphenylene sulfide powder. Combined polyphenylene sulfide, 50g barium sulfate, 9g polytetrafluoroethylene and 1g montmorillonite powder were mixed at 1°C to obtain powder A. Powder A was put into a high-speed shear for fiberization. After completion of the reaction, powder B is obtained. Refrigerate powder B. After cooling to room temperature, put it into an internal mixer for kneading. Add 17g of 1,2-propanediol and mix for 60 minutes to obtain pellet C with a particle size of 1 mm. Pour the granules C into the feeding system of the high-precision hot roller press. The temperature of the roller press is 100°C to obtain a continuous film D with a thickness of 150 μm. Put the continuous film D into a chopper and crush it to obtain particles. Particle E with a size of 1mm, and then pour the powder E into the high-precision hot roller press feeding system to obtain a membrane material F with a thickness of 200 μm, and then combine the membrane material F with a PPS mesh with a pore diameter of 40 mesh and a thickness of 250 μm. The thickness of the finished separator H is 275 μm after compounding in a thermal laminating machine. After the separator H is dried, the product is shown in Figure 4, that is, the separator I is characterized.
本实施例制得的隔膜I即为纳米输运碱性电解水隔膜,其结构如图5所示的FIB-SEM所示,聚苯硫醚(PPS)颗粒在辊压作用下呈现扁平状,PPS颗粒的长度为20μm,宽度为4μm,PPS颗粒之间形成粘连,PPS颗粒表面,1μm无机粉料颗粒包覆,界面和间隙被无机粉料填满,形成纳米级输运通道,纤维化的聚四氟乙烯将PPS颗粒和无机粉料颗粒缠结在一起。聚四氟乙烯与1μm膨润土粉料形成多链球结构,进一步牢固缠结固定PPS颗粒和无机粉料颗粒。The separator I prepared in this embodiment is a nano-transport alkaline electrolytic water separator. Its structure is shown in the FIB-SEM shown in Figure 5. The polyphenylene sulfide (PPS) particles appear flat under the action of roller pressing. The length of the PPS particles is 20 μm and the width is 4 μm. Adhesion is formed between the PPS particles. The surface of the PPS particles is coated with 1 μm inorganic powder particles. The interfaces and gaps are filled with inorganic powder to form nanoscale transport channels and fibrosis. PTFE entangles PPS particles and inorganic powder particles together. Polytetrafluoroethylene and 1μm bentonite powder form a multi-chain ball structure, which further entangles and fixes PPS particles and inorganic powder particles firmly.
实验材料:30%的KOH溶液、阳极铂电极、阴极为催化剂、隔膜I、H形电导池。Experimental materials: 30% KOH solution, anode platinum electrode, cathode as catalyst, separator I, H-shaped conductivity cell.
实验方法:通过电化学工作站测试交流阻抗(EIS)获得内阻和线性扫描伏安法(LSV)获得电流。所测试的隔膜I均已烘干。设置EIS频率范围为0.1~10000HZ、LSV电压范围0~2V、扫描率为0.005V/S。Experimental method: The electrochemical workstation was used to test the AC impedance (EIS) to obtain the internal resistance and the linear sweep voltammetry (LSV) to obtain the current. The separators I tested were all dried. Set the EIS frequency range to 0.1~10000HZ, LSV voltage range 0~2V, and scan rate 0.005V/S.
实验结果如图6和7所示,首先进行无膜测试,得到无膜时2KHZ下的内阻为5.309Ω,无膜时的电流为35.074mA,将膜片I放在电导池中间测试其内阻和电流。得到2KHZ下的内阻为5.895Ω,电流为32.854mA。根据隔膜面积为1.766cm2,根据计算得出面电阻为1.034Ω*cm2。将膜片I放入碱液中浸泡2小时后,进行测试得到2KHZ下的内阻为5.613Ω,电流为35.719mA,计算得出面电阻为0.53Ω*cm2。再将膜片I放入碱液中浸泡24小时后,无膜测试得到2KHZ下的内阻为4.944Ω,无膜时的电流为34.596mA,将膜片I放在电导池中间测试其内阻和电流。得到2KHZ下的内阻为5.192Ω,电流为33.866mA。计算得出面电阻为0.43Ω*cm2。The experimental results are shown in Figures 6 and 7. First, a film-free test was performed. The internal resistance at 2KHZ without a film was 5.309Ω, and the current without a film was 35.074mA. The diaphragm I was placed in the middle of the conductivity cell and tested. resistance and current. The internal resistance at 2KHZ is 5.895Ω, and the current is 32.854mA. According to the diaphragm area being 1.766cm 2 , the surface resistance is calculated to be 1.034Ω*cm 2 . After soaking the diaphragm I in alkali solution for 2 hours, the internal resistance at 2KHZ was measured to be 5.613Ω, the current was 35.719mA, and the surface resistance was calculated to be 0.53Ω*cm 2 . Then put the diaphragm I into the alkali solution and soak it for 24 hours. The internal resistance at 2KHZ was 4.944Ω without the membrane, and the current without the membrane was 34.596mA. Place the diaphragm I in the middle of the conductivity cell to test its internal resistance. and current. The internal resistance at 2KHZ is 5.192Ω, and the current is 33.866mA. The surface resistance is calculated to be 0.43Ω*cm 2 .
实施例2:Example 2:
称取50g的烯丙基聚醚水热处理的交联态聚苯硫醚粉料、40二氧化锆、9g聚四氟乙烯和1g的蒙脱石粉在1℃混合得到粉料A,将粉料A放入高速剪切机中纤维化,纤维化完成后得到粉料B,将粉料B冷藏,待冷却至室温后放入密炼机密炼,加入17g 1,2-丙二醇,密炼60分钟,得到颗粒大小为1mm的粒料C,将粒料C倒入高精度热辊压机上料系统,辊压机温度为100℃,得到厚度为150μm的条连续膜D,将条连续膜D放入切碎机中打碎,得到颗粒大小为1mm的粒料E,再将粉料E倒入高精度热辊压机上料系统,得到厚度为200μm的膜材F,再将膜材F与40目250μmPPS网在热复合机中复合制成成品隔膜H的厚度为267m,之后对隔膜H烘干后,即隔膜I进行表征。Weigh 50g of allyl polyether hydrothermally treated cross-linked polyphenylene sulfide powder, 40g of zirconium dioxide, 9g of polytetrafluoroethylene and 1g of montmorillonite powder and mix them at 1°C to obtain powder A. A is put into a high-speed shear for fiberization. After the fiberization is completed, powder B is obtained. Refrigerate powder B. After cooling to room temperature, put it into an internal mixer for kneading. Add 17g of 1,2-propanediol and mix for 60 minutes. , obtain pellet C with a particle size of 1mm, pour pellet C into the high-precision hot roller press feeding system, the temperature of the roller press is 100°C, and obtain a strip continuous film D with a thickness of 150 μm, and put the strip continuous film D Put it into a chopper and crush it to obtain pellets E with a particle size of 1 mm. Then pour the powder E into the high-precision hot roller press feeding system to obtain a film material F with a thickness of 200 μm. Then put the film material F It was compounded with a 40-mesh 250μm PPS mesh in a thermal laminating machine to produce a finished separator H with a thickness of 267m. After that, the separator H was dried and the separator I was characterized.
实验材料:30%的KOH溶液、阳极铂电极、阴极为催化剂、隔膜I、H形电导池。Experimental materials: 30% KOH solution, anode platinum electrode, cathode as catalyst, separator I, H-shaped conductivity cell.
实验方法:通过电化学工作站测试交流阻抗(EIS)获得内阻和线性扫描伏安法(LSV)获得电流。所测试的隔膜I均已烘干。设置EIS频率范围为0.1~10000HZ、LSV电压范围0~2V、扫描率为0.005V/S。Experimental method: The electrochemical workstation was used to test the AC impedance (EIS) to obtain the internal resistance and the linear sweep voltammetry (LSV) to obtain the current. The separators I tested were all dried. Set the EIS frequency range to 0.1~10000HZ, LSV voltage range 0~2V, and scan rate 0.005V/S.
首先进行无膜测试,得到无膜时2KHZ下的内阻为5.107Ω,无膜时的电流为29.18mA,将膜片I放在电导池中间测试其内阻和电流。得到2KHZ下的内阻为6.378Ω,电流为24.892mA。根据隔膜面积为1.766cm2,根据计算得出面电阻为2.24Ω*cm2。First, conduct a test without a film. The internal resistance at 2KHZ without a film is 5.107Ω, and the current without a film is 29.18mA. Place the diaphragm I in the middle of the conductivity cell to test its internal resistance and current. The internal resistance at 2KHZ is 6.378Ω, and the current is 24.892mA. According to the diaphragm area being 1.766cm 2 , the surface resistance is calculated to be 2.24Ω*cm 2 .
实施例3:Example 3:
称取40g的3,4,5-三氯邻苯二酚水热处理的交联态聚苯硫醚粉料、50硫酸钡、9g聚四氟乙烯和1g的蒙脱石粉在1℃混合得到粉料A,将粉料A放入高速剪切机中纤维化,纤维化完成后得到粉料B,将粉料B冷藏,待冷却至室温后放入密炼机密炼,加入17g 1,2-丙二醇,密炼60分钟,得到颗粒大小为1mm的粒料C,将粒料C倒入高精度热辊压机上料系统,辊压机温度为100℃,得到厚度为150μm的条连续膜D,将条连续膜D放入切碎机中打碎,得到颗粒大小为1mm的粒料E,再将粉料E倒入高精度热辊压机上料系统,得到厚度为200μm的膜材F,再将膜材F与40目250μmPPS网在热复合机中复合制成成品隔膜H的厚度为262μm,之后对隔膜H烘干后,即隔膜I进行表征。Weigh 40g of 3,4,5-trichlorocatechol hydrothermally treated cross-linked polyphenylene sulfide powder, 50g of barium sulfate, 9g of polytetrafluoroethylene and 1g of montmorillonite powder and mix them at 1°C to obtain a powder Material A, put powder A into a high-speed shear for fiberization. After fiberization is completed, powder B is obtained. Refrigerate powder B. After cooling to room temperature, put it into an internal mixer for kneading. Add 17g of 1,2- Propylene glycol, mix for 60 minutes to obtain pellet C with a particle size of 1 mm. Pour pellet C into the high-precision hot roller press feeding system. The temperature of the roller press is 100°C to obtain a continuous film D with a thickness of 150 μm. , put the continuous film D into a chopper and crush it to obtain pellets E with a particle size of 1mm. Then pour the powder E into the high-precision hot roller press feeding system to obtain a film material F with a thickness of 200 μm. , and then composite the membrane material F with a 40-mesh 250 μm PPS mesh in a thermal laminating machine to form a finished separator H with a thickness of 262 μm. After that, the separator H is dried, that is, the separator I is characterized.
实验材料:30%的KOH溶液、阳极铂电极、阴极为催化剂、隔膜I、H形电导池。Experimental materials: 30% KOH solution, anode platinum electrode, cathode as catalyst, separator I, H-shaped conductivity cell.
实验方法:通过电化学工作站测试交流阻抗(EIS)获得内阻和线性扫描伏安法(LSV)获得电流。所测试的隔膜I均已烘干。设置EIS频率范围为0.1~10000HZ、LSV电压范围0~2V、扫描率为0.005V/S。Experimental method: The electrochemical workstation was used to test the AC impedance (EIS) to obtain the internal resistance and the linear sweep voltammetry (LSV) to obtain the current. The separators I tested were all dried. Set the EIS frequency range to 0.1~10000HZ, LSV voltage range 0~2V, and scan rate 0.005V/S.
首先进行无膜测试,得到无膜时2KHZ下的内阻为4.7Ω,无膜时的电流为30.56mA,将膜片I放在电导池中间测试其内阻和电流。得到2KHZ下的内阻为4.9Ω,电流为30.05mA。根据隔膜面积为1.766cm2,根据计算得出面电阻为0.43Ω*cm2。First, conduct a test without a membrane, and find that the internal resistance at 2KHZ without a membrane is 4.7Ω, and the current without a membrane is 30.56mA. Place the diaphragm I in the middle of the conductivity cell to test its internal resistance and current. The internal resistance at 2KHZ is 4.9Ω and the current is 30.05mA. According to the diaphragm area being 1.766cm 2 , the surface resistance is calculated to be 0.43Ω*cm 2 .
实施例4:Example 4:
称取50g的3,4,5-三氯邻苯二酚水热处理的交联态聚苯硫醚粉料、40g硫酸钡、9g聚四氟乙烯和1g的蒙脱石粉在1℃混合得到粉料A,将粉料A放入高速剪切机中纤维化,纤维化完成后得到粉料B,将粉料B冷藏,待冷却至室温后放入密炼机密炼,加入17g 1,2-丙二醇,密炼60分钟,得到颗粒大小为1mm的粒料C,将粒料C倒入高精度热辊压机上料系统,辊压机温度为100℃,得到厚度为150μm的条连续膜D,将条连续膜D放入切碎机中打碎,得到颗粒大小为1mm的粒料E,再将粉料E倒入高精度热辊压机上料系统,得到厚度为200μm的膜材F,再将膜材F与40目250μmPPS网在热复合机中复合制成成品隔膜H的厚度为280μm,之后对隔膜H烘干后,即隔膜I进行表征。Weigh 50g of 3,4,5-trichlorocatechol hydrothermally treated cross-linked polyphenylene sulfide powder, 40g of barium sulfate, 9g of polytetrafluoroethylene and 1g of montmorillonite powder and mix them at 1°C to obtain a powder Material A, put powder A into a high-speed shear for fiberization. After fiberization is completed, powder B is obtained. Refrigerate powder B. After cooling to room temperature, put it into an internal mixer for kneading. Add 17g of 1,2- Propylene glycol, mix for 60 minutes to obtain pellet C with a particle size of 1 mm. Pour pellet C into the high-precision hot roller press feeding system. The temperature of the roller press is 100°C to obtain a continuous film D with a thickness of 150 μm. , put the continuous film D into a chopper and crush it to obtain pellets E with a particle size of 1mm. Then pour the powder E into the high-precision hot roller press feeding system to obtain a film material F with a thickness of 200 μm. , and then composite the membrane material F with the 40 mesh 250 μm PPS mesh in a thermal laminating machine to form the finished separator H with a thickness of 280 μm. After that, the separator H is dried, that is, the separator I is characterized.
实验材料:30%的KOH溶液、阳极铂电极、阴极为催化剂、隔膜I、H形电解池。Experimental materials: 30% KOH solution, anode platinum electrode, cathode as catalyst, separator I, H-shaped electrolytic cell.
实验方法:通过电化学工作站测试交流阻抗(EIS)获得内阻和线性扫描伏安法(LSV)获得电流。所测试的隔膜H均已烘干。设置EIS频率范围为0.1~10000HZ、LSV电压范围0~2V、扫描率为0.005V/S。Experimental method: The electrochemical workstation was used to test the AC impedance (EIS) to obtain the internal resistance and the linear sweep voltammetry (LSV) to obtain the current. The separators H tested were all dried. Set the EIS frequency range to 0.1~10000HZ, LSV voltage range 0~2V, and scan rate 0.005V/S.
首先进行无膜测试,得到无膜时2KHZ下的内阻为4.995Ω,无膜时的电流为31.829mA,将膜片I放在电导池中间测试其内阻和电流。得到2KHZ下的内阻为5.886Ω,电流为26.83mA。根据隔膜面积为1.766cm2,计算得出面电阻为1.57Ω*cm2。First, conduct a test without a film, and find that the internal resistance at 2KHZ without a film is 4.995Ω, and the current without a film is 31.829mA. Place the diaphragm I in the middle of the conductivity cell to test its internal resistance and current. The internal resistance at 2KHZ is 5.886Ω, and the current is 26.83mA. According to the diaphragm area being 1.766cm 2 , the surface resistance is calculated to be 1.57Ω*cm 2 .
虽然以上已经详细说明了本发明及其优点,但是应当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本发明的范围不仅限于说明书所描述的过程、设备、手段、方法和步骤的具体实施例。本领域内的普通技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在此所述的相应实施例基本相同的功能或者获得与其基本相同的结果的、现有和将来要被开发的过程、设备、手段、方法或者步骤。因此,所附的权利要求旨在它们的范围内包括这样的过程、设备、手段、方法或者步骤。Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made without departing from the spirit and scope of the invention as defined by the appended claims. Furthermore, the scope of the present invention is not limited to the specific embodiments of the processes, equipment, means, methods and steps described in the specification. Those of ordinary skill in the art will readily understand from the disclosure of the present invention that existing and future devices that perform substantially the same functions or obtain substantially the same results as corresponding embodiments described herein may be used in accordance with the present invention. The process, equipment, means, method or procedure being developed. It is therefore intended that the appended claims include within their scope such processes, apparatus, means, methods or steps.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310922126.3A CN116988102B (en) | 2023-07-26 | 2023-07-26 | Nano transport alkaline electrolyzed water diaphragm and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310922126.3A CN116988102B (en) | 2023-07-26 | 2023-07-26 | Nano transport alkaline electrolyzed water diaphragm and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116988102A true CN116988102A (en) | 2023-11-03 |
CN116988102B CN116988102B (en) | 2024-04-09 |
Family
ID=88531439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310922126.3A Active CN116988102B (en) | 2023-07-26 | 2023-07-26 | Nano transport alkaline electrolyzed water diaphragm and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116988102B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118156691A (en) * | 2024-03-27 | 2024-06-07 | 江苏大学 | A zinc metallurgical energy storage device |
CN118238445A (en) * | 2024-02-22 | 2024-06-25 | 江苏通灵电器股份有限公司 | Method for manufacturing polyphenylene sulfide-based composite solid-state diaphragm by differential rolling |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4720334A (en) * | 1986-11-04 | 1988-01-19 | Ppg Industries, Inc. | Diaphragm for electrolytic cell |
US20110040017A1 (en) * | 2007-08-13 | 2011-02-17 | Leibniz-Institut Fuer Polymerforschung Dresden E.V. | Polyphenylene sulfide (per)fluoropolymer materials and process for preparation and use therof |
US20160312371A1 (en) * | 2013-12-18 | 2016-10-27 | Kawasaki Jukogyo Kabushiki Kaisha | Alkaline water electrolysis diaphragm, method of manufacturing same, and alkaline water electrolyzer |
JP2019065349A (en) * | 2017-09-29 | 2019-04-25 | 旭化成株式会社 | Alkaline water electrolysis diaphragm and production method thereof, and bipolar-type electrolytic bath |
CN113862821A (en) * | 2021-09-24 | 2021-12-31 | 天津工业大学 | A kind of polyphenylene sulfide fiber fabric type alkaline water electrolysis diaphragm and preparation method thereof |
CN114351186A (en) * | 2021-11-26 | 2022-04-15 | 中国华能集团清洁能源技术研究院有限公司 | Hydrophilic modification method of diaphragm for electrolyzed water, hydrophilic diaphragm and application |
KR20220081811A (en) * | 2020-12-09 | 2022-06-16 | 한국에너지기술연구원 | Sulfonated polyphenyl sulfide mesh supported diaphragms and membranes as separators for alkaline water electrolysis |
CN114774988A (en) * | 2022-06-21 | 2022-07-22 | 清华大学 | Electrolyzer composite diaphragm, preparation method, alkaline electrolyzed water hydrogen production device and application |
CN115161702A (en) * | 2022-07-14 | 2022-10-11 | 北京化工大学 | Preparation method of high-toughness cross-linked organic-inorganic composite alkaline water electrolytic membrane |
CN115513415A (en) * | 2022-10-09 | 2022-12-23 | 江苏大学 | Low-cost positive electrode prefabricated lithium and high specific energy electrode, manufacturing method and quasi-solid-state battery |
CN115928145A (en) * | 2022-12-28 | 2023-04-07 | 嘉庚创新实验室 | An organic-inorganic composite diaphragm for hydrogen production by alkaline electrolysis of water and its preparation method |
CN116001332A (en) * | 2022-12-26 | 2023-04-25 | 江苏大学 | Apparatus and method for manufacturing solid-state separator |
CN116334690A (en) * | 2023-03-07 | 2023-06-27 | 海卓迈博(苏州)新材料有限公司 | High-hydrophilicity alkaline electrolyzed water diaphragm and preparation method thereof |
-
2023
- 2023-07-26 CN CN202310922126.3A patent/CN116988102B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4720334A (en) * | 1986-11-04 | 1988-01-19 | Ppg Industries, Inc. | Diaphragm for electrolytic cell |
US20110040017A1 (en) * | 2007-08-13 | 2011-02-17 | Leibniz-Institut Fuer Polymerforschung Dresden E.V. | Polyphenylene sulfide (per)fluoropolymer materials and process for preparation and use therof |
US20160312371A1 (en) * | 2013-12-18 | 2016-10-27 | Kawasaki Jukogyo Kabushiki Kaisha | Alkaline water electrolysis diaphragm, method of manufacturing same, and alkaline water electrolyzer |
JP2019065349A (en) * | 2017-09-29 | 2019-04-25 | 旭化成株式会社 | Alkaline water electrolysis diaphragm and production method thereof, and bipolar-type electrolytic bath |
KR20220081811A (en) * | 2020-12-09 | 2022-06-16 | 한국에너지기술연구원 | Sulfonated polyphenyl sulfide mesh supported diaphragms and membranes as separators for alkaline water electrolysis |
CN113862821A (en) * | 2021-09-24 | 2021-12-31 | 天津工业大学 | A kind of polyphenylene sulfide fiber fabric type alkaline water electrolysis diaphragm and preparation method thereof |
CN114351186A (en) * | 2021-11-26 | 2022-04-15 | 中国华能集团清洁能源技术研究院有限公司 | Hydrophilic modification method of diaphragm for electrolyzed water, hydrophilic diaphragm and application |
CN114774988A (en) * | 2022-06-21 | 2022-07-22 | 清华大学 | Electrolyzer composite diaphragm, preparation method, alkaline electrolyzed water hydrogen production device and application |
CN115161702A (en) * | 2022-07-14 | 2022-10-11 | 北京化工大学 | Preparation method of high-toughness cross-linked organic-inorganic composite alkaline water electrolytic membrane |
CN115513415A (en) * | 2022-10-09 | 2022-12-23 | 江苏大学 | Low-cost positive electrode prefabricated lithium and high specific energy electrode, manufacturing method and quasi-solid-state battery |
CN116001332A (en) * | 2022-12-26 | 2023-04-25 | 江苏大学 | Apparatus and method for manufacturing solid-state separator |
CN115928145A (en) * | 2022-12-28 | 2023-04-07 | 嘉庚创新实验室 | An organic-inorganic composite diaphragm for hydrogen production by alkaline electrolysis of water and its preparation method |
CN116334690A (en) * | 2023-03-07 | 2023-06-27 | 海卓迈博(苏州)新材料有限公司 | High-hydrophilicity alkaline electrolyzed water diaphragm and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
孙亚颇: "水电解制氢用聚苯硫醚纤维膜的运行测试研究", 《中原工学院学报》, vol. 33, no. 5, 31 October 2022 (2022-10-31), pages 23 - 27 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118238445A (en) * | 2024-02-22 | 2024-06-25 | 江苏通灵电器股份有限公司 | Method for manufacturing polyphenylene sulfide-based composite solid-state diaphragm by differential rolling |
CN118238445B (en) * | 2024-02-22 | 2024-10-22 | 江苏通灵电器股份有限公司 | Method for manufacturing polyphenylene sulfide-based composite solid-state diaphragm by differential rolling |
CN118156691A (en) * | 2024-03-27 | 2024-06-07 | 江苏大学 | A zinc metallurgical energy storage device |
Also Published As
Publication number | Publication date |
---|---|
CN116988102B (en) | 2024-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116988102B (en) | Nano transport alkaline electrolyzed water diaphragm and manufacturing method thereof | |
US9876246B2 (en) | Nanofiber membrane-electrode-assembly and method of fabricating same | |
CN110880611B (en) | Anode support plate type solid oxide fuel cell structure and preparation process thereof | |
CN105789634B (en) | A kind of self-humidifying proton exchange film fuel cell membrane electrode and preparation method thereof | |
CN103531826B (en) | A kind of method based on sacrificing template structure direct methanol fuel cell nano-porous structure membrane electrode | |
CN101252199A (en) | A kind of preparation method of hollow fiber type solid oxide fuel cell | |
CN107737614A (en) | It is a kind of that Bipolar Membrane of intermediate layer catalyst and preparation method thereof is used as using aluminium hydroxide | |
CN106450106A (en) | Automotive lithium battery diaphragm and preparation method thereof | |
CN110379646A (en) | A kind of preparation method based on two selenizing molybdenums/charcoal Asymmetric Supercapacitor | |
CN116613000A (en) | A modified cement-based supercapacitor utilizing activated carbon fibers | |
CN115064710B (en) | Membrane electrode CCM, preparation method thereof, membrane electrode assembly MEA and fuel cell | |
CN116344877A (en) | Ultrathin composite proton exchange membrane and preparation method and application thereof | |
CN100589268C (en) | Microporous-film-reinforced multilayer fluorine-containing cross-linking doping ionic membrane and preparation method thereof | |
CN102522569A (en) | Method for modifying carbon porous material | |
CN112928315A (en) | Preparation and application of composite membrane for alkaline zinc-based flow battery | |
CN112897581B (en) | Preparation method of all-vanadium redox battery electrode material | |
CN110165241B (en) | Corrosion-resistant microporous layer of fuel cell based on graphitized carbon and preparation method thereof | |
JP2001093543A (en) | Proton conductor and fuel cell utilizing same | |
CN117487199A (en) | A method for preparing a dual network structure gelatin-based gel electrolyte for metal fuel cells | |
CN116525899A (en) | High-temperature moisturizing enhanced composite proton exchange membrane based on perfluorosulfonic acid membrane modification and preparation and application thereof | |
CN111342099B (en) | Preparation method of proton exchange membrane of fiber framework fuel cell | |
CN103400972A (en) | Formula and preparation method of zinc-air battery electrode | |
CN115020736A (en) | A kind of gas diffusion layer based on fiber-arranged microporous layer and its preparation method and application | |
CN116199934B (en) | Proton conducting membrane and method for preparing proton conducting membrane | |
Pintauro et al. | Nanofiber membrane-electrode-assembly and method of fabricating same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |