[go: up one dir, main page]

CN116986894B - 一种单相多主元超高温陶瓷纳米粉体的低温制备方法 - Google Patents

一种单相多主元超高温陶瓷纳米粉体的低温制备方法 Download PDF

Info

Publication number
CN116986894B
CN116986894B CN202210444403.XA CN202210444403A CN116986894B CN 116986894 B CN116986894 B CN 116986894B CN 202210444403 A CN202210444403 A CN 202210444403A CN 116986894 B CN116986894 B CN 116986894B
Authority
CN
China
Prior art keywords
temperature
reaction
phase multi
transition metal
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210444403.XA
Other languages
English (en)
Other versions
CN116986894A (zh
Inventor
张文琛
郭芳威
张瑞吉
曾小勤
李德江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiao Tong University
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CN202210444403.XA priority Critical patent/CN116986894B/zh
Publication of CN116986894A publication Critical patent/CN116986894A/zh
Application granted granted Critical
Publication of CN116986894B publication Critical patent/CN116986894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种单相多主元超高温陶瓷纳米粉体的低温制备方法,该方法包括以下步骤:(1)过渡金属纳米氧化物前躯体的合成:将无机/有机金属盐和反应溶剂作为初始反应物,在反应釜中混合均匀,加热进行溶胶凝胶反应后,冷却;将溶胶凝胶反应产物进行分离、洗涤和干燥后,得到过渡金属纳米氧化物前躯体;(2)过渡金属氧化物的碳热还原:将过渡金属纳米氧化物前躯体与碳源混合均匀,在惰性气氛中加热碳化反应,冷却后得到单相多主元超高温陶瓷纳米粉体。与现有技术相比,本发明能够实现其具备较好的单相性,合成粉体的粒径在100nm以下,合成方法安全稳定可控,同时合成温度明显低于其他方法。

Description

一种单相多主元超高温陶瓷纳米粉体的低温制备方法
技术领域
本发明涉及碳化物超高温陶瓷粉体制备领域,具体涉及一种单相多主元超高温陶瓷纳米粉体的低温制备方法。
背景技术
超高温陶瓷一般定义为熔点在3000℃以上,工作温度在2000℃以上,化学组成为Ⅳ和ⅤB族过渡金属的硼化物、碳化物和氮化物的一类材料。其中碳化物超高温陶瓷是一类具有岩盐结构,金属与碳原子比例为1:1的材料,包括碳化钛、碳化钽、碳化铪、碳化锆等。在这类材料内部具有极强的共价键,因此其本征熔点极高,是已知地球上熔点最高的一类材料,被广泛应用于工业切削刀具、航空航天器的热结构部件及高超声速飞行器及推进系统(例如导弹)、第四代核反应堆的包壳材料等,在高超声速飞行器抗氧化烧蚀领域具有广阔的应用前景。
碳化物超高温陶瓷材料的缺点同样突出。主要包括本征脆性较大,烧结成型十分困难,1000℃附近的中低温抗氧化性能差。而且在超高温极端服役环境下抗烧蚀性能差,烧蚀后的氧化层结构疏松易被机械冲刷、剥离,导致该材料在氧化烧蚀后力学性能大幅度降低,限制了其作为高温结构材料在极端环境下的应用。
合成碳化物的多组元单相纳米粉体对解决上述问题是有关键作用的。首先,合成的纳米粉体烧结成型,能得到晶粒更细的块体;在材料学领域,更细的晶粒往往意味着更多的晶界,更高的强度和韧性;而且纳米粉流动性好,更易喷涂成涂层。其次,陶瓷烧结是消耗粉体表面能而使晶粒长大和块体致密化的过程;而碳化物纳米粉相比微米粉具有更大的比表面积,也就是更高的表面能,因此能降低烧结温度,节约能源。最后,多组元碳化物相比单组元碳化物在抗氧化烧蚀性能方面具有明显优势,因为在氧化过程中多组元金属具有协同作用,形成致密的氧化物中间层或碳氧化物过渡层,而单相陶瓷在高温服役时不会因热失配产生裂纹导致氧化失效或断裂失效等问题,从而大大提高碳化物的抗氧化烧蚀性能。
碳化还原法是目前制备碳化物粉体最简单,最常见的方法之一。目前已报道的采用碳化反应法合成碳化物粉体的方法存在以下缺点:1.碳化温度高,粉体颗粒尺寸大。如中国专利202010171717.8(一种含稀土的碳化物高熵陶瓷前驱体及高熵陶瓷及制备方法)和202011448224.0(一种高熵吸波碳化物陶瓷粉体材料、制备方法及其应用),形成多主元单相碳化物的温度均不低于1600℃,以使金属元素充分固溶成单相,而由此造成了粉体颗粒团聚或者异常长大,很难获得颗粒尺寸较小的纳米颗粒;2.工艺流程复杂,危险性高。如中国专利202011450491.1(一种高性能(TiTaHfZrNb)C高熵碳化物陶瓷及其制备方法),需要包括球磨、多步热处理在内的多个步骤,而且烧结温度1800-2000℃时,需要辅助以30-50MPa的压力;又如中国专利202111007346.0(一种(ZrTiCoNb)C高熵碳化物陶瓷材料及其制备方法)在烧结温度1200-2000℃时,需要辅助以2.45GHz的微波。因此,一种稳定而可靠地制备多主元单相碳化物纳米粉体的低温简单方法尤为重要。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种能够实现其具备较好的单相性,合成粉体的粒径在100nm以下,合成方法安全稳定可控,同时合成温度明显低于其他方法的单相多主元超高温陶瓷纳米粉体的低温制备方法。
本发明的目的可以通过以下技术方案来实现:
本方案由两部分组成,第一部分为过渡金属纳米氧化物的合成,第二部分为过渡金属氧化物的碳热还原法。氧化物纳米颗粒的合成有助于降低第二步中碳热还原反应的温度。两步合成的温度均低于其他方法,具体如下:
一种单相多主元超高温陶瓷纳米粉体的低温制备方法,该方法包括以下步骤:
(1)过渡金属纳米氧化物前躯体的合成:将无机/有机金属盐和反应溶剂作为初始反应物,在反应釜中混合均匀,加热进行溶胶凝胶反应后,冷却;将溶胶凝胶反应产物进行分离、洗涤和干燥后,得到过渡金属纳米氧化物前躯体;
(2)过渡金属氧化物的碳热还原:将过渡金属纳米氧化物前躯体与碳源混合均匀,在惰性气氛中加热碳化反应,冷却后得到单相多主元超高温陶瓷纳米粉体。过渡金属纳米氧化物前躯体与碳源的质量比为1:(3-6)。
进一步地,所述的金属为过渡金属或稀土金属,包括Hf、Zr、Ti、Ta、La、Ce、Nb或Y中的一种或多种。
进一步地,所述的有机基团包括异丙醇基、乙酰丙酮基、乙酸基或芳香族,无机基团包括Cl、Br或I。
进一步地,所述的反应溶剂包括醚类、醇类、酮类、酸类、胺类或醛类。
进一步地,所述的反应溶剂包括苯甲醇、苯甲酸、苯甲醚、油酸、油胺或氧化三辛基膦。
进一步地,所述溶胶凝胶反应的程序为:以5℃/min的升温速率从室温升至200-300℃,之后保温24-96小时,最后以5℃/min的降温速率冷却至室温。
进一步地,所述的碳源为多糖或/和单糖或/和树脂或/和碳黑。
进一步地,所述的碳源包括葡萄糖、蔗糖、果糖或酚醛树脂。
进一步地,所述碳化反应的程序为:先以5℃/min的升温速率从室温升至1200℃,再以2℃/min的升温速率从1200℃升至目标温度,之后保温1-5h,最后以5℃/min的降温速率冷却至室温。
进一步地,所述的目标温度为1500-2000℃。
与现有技术相比,本发明具有以下优点:
(1)本发明制备流程简单,反应温和可控。涉及的初始反应物为无机/有机金属盐与反应溶剂均是易得到的商业化药品,由于有机基团的存在,该反应的反应动力学缓慢温和,从而提高安全性;
(2)本发明反应温度低,粉体尺寸小。无论是前驱体合成温度还是碳化反应温度均低于已知方法,有利于降低反应成本,节约能源。而且氧化物前驱体仅3-5nm,碳化物粉体尺寸低于100nm,无论在喷涂还是烧结致密化方面都有很大优势;
(3)本发明适用性广,各组元分布均匀,第二相含量少。本方法可以适用于III、Ⅳ和ⅤB族的大部分金属元素的多组元单相碳化物合成,包括部分稀土元素。各组元在碳化产物中分布均匀,未见有偏析。合理控制碳源添加量可以最小化第二相氧化物的残留。
附图说明
图1为实施例1中氧化物前驱体的形貌;
图2为实施例1中多组元碳化物的形貌;
图3为实施例1中多组元碳化物的XRD谱图;
图4为实施例1中多组元碳化物的元素分布分析图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
一种单相多主元超高温陶瓷纳米粉体的低温制备方法
1、过渡金属纳米氧化物的合成
过渡金属纳米氧化物的合成采用溶胶凝胶法,具体化学过程为:
采用无机/有机金属盐和反应溶剂作为初始反应物,将定好量的初始反应物在室温下的聚四氟乙烯反应釜内衬中混合均匀,如需加速金属盐溶解可适当加热,温度不超过60℃。将反应釜密封好,置于高温干燥箱中,以5℃/min的升温速率从室温升至200-300℃,此过程约需40-60分钟,之后保温24-96小时,最后以5℃/min的降温速率随炉冷却至室温。金属可以是Hf、Zr、Ti、Ta、La、Ce、Nb、Y等过渡金属或稀土金属元素;有机基团可以是异丙醇基、乙酰丙酮基、乙酸基、芳香族基等,无机基团可以是Cl、Br、I等。所述无机/有机金属盐即为金属和有机或无机两部分的自由组合。一般无机/有机金属盐的状态为固体粉末,少部分为液体如四异丙醇钛等。反应溶剂为多类有机溶剂,包括醚类、醇类、酮类、酸类、胺类和醛类等。反应时使用其中的一种或多种。常见为苯甲醇、苯甲酸、苯甲醚、油酸、油胺、氧化三辛基膦等。自由组合的标准为目标碳化物中所含金属元素种类以及它们的反应进度是否能相互匹配,如果不匹配或差距较大则不能形成单相碳化物,一般采用预先实验的试错法判断金属盐之间的反应进度是否相互匹配。
取出溶胶凝胶反应产物,置于离心管中,加入有机溶剂进行洗涤操作,再置于离心机中进行离心操作,离心结束后倒去洗涤废液,洗涤和离心操作重复至少3次。将最终产物置于干燥箱中干燥,得到氧化物前驱体。洗涤用有机溶剂包括乙醇、异丙醇、乙醚、三氯甲烷等,其中以乙醚和三氯甲烷为佳。所述离心操作中离心试管以50mL为佳,离心转速不低于10000rpm,离心时间5-20min,干燥温度60-120℃。
2、过渡金属氧化物的碳热还原
将步骤1中制备好的前驱体与碳源按照一定比例采用固相或液相混合的方法混合均匀,置于石墨坩埚中,将坩埚置入干燥箱中预热。然后将预热后的坩埚置于管式炉中,在流动的氩气中进行反应,先以5℃/min的升温速率从室温升至1200℃,再以2℃/min的升温速率从1200℃升至目标温度,之后保温1-5小时,最后以5℃/min的降温速率随炉冷却至室温,即可得到目标产物。
碳源为各种多糖、单糖或/和树脂以及碳黑,例如葡萄糖、蔗糖、果糖、酚醛树脂等。前驱体与碳源的比例通过试错法确定,碳源添加较少则碳化不完全,添加较多则可能产生二碳化物,视金属元素而定。预热的温度视碳源而定,预热的目的是减少管式炉升温过程中碳源产生气体副产物而在到达目标温度之前影响碳热还原反应物的混合状态,因此预热温度由碳源的热分析结果而定,但不超过400℃,或不需预热。氩气流速0.05-1L/min,以0.2L/min为佳。目标温度为1500-2000℃,一般1600℃即可使碳化反应完全。所述目标产物为多组元单相碳化物纳米粉。
实施例1
采用Hf、Zr、Ce、La四种元素的乙酰丙酮盐和四异丙醇钛和苯甲醇作为初始反应物,五种金属盐的初始配比为:乙酰丙酮铪1.2g,乙酰丙酮锆1g,乙酰丙酮铈和乙酰丙酮镧各0.9g,四异丙醇钛0.6g,苯甲醇50mL。初始反应物在室温下的聚四氟乙烯反应釜内衬中混合均匀。将反应釜密封好,置于高温干燥箱中,以5℃/min的升温速率从室温升至220℃,之后保温24小时,最后以5℃/min的降温速率随炉冷却至室温。
取出溶胶凝胶反应产物,置于50mL离心管中,加入三氯甲烷进行洗涤操作,再置于离心机中进行离心操作,离心参数为10000rpm,10min;离心结束后倒去洗涤废液。洗涤和离心操作重复2次。再加入乙醚重复1次,总共3次。将最终产物置于干燥箱中在80℃下干燥,得到氧化物前驱体。氧化物前驱体的形貌如图1所示,其粒径仅3-5nm。
将氧化物前驱体与葡萄糖按照1:5的质量比采用固相混合的方法混合均匀,置于石墨坩埚中,将坩埚置入干燥箱中,在200℃下预热24小时。然后将预热后的坩埚置于管式炉中,在流动的氩气中进行反应,先以5℃/min的升温速率从室温升至1200℃,再以2℃/min的升温速率从1200℃升至1600℃,之后保温5小时,最后以5℃/min的降温速率随炉冷却至室温,即可得到五组元的单相碳化物纳米粉,其形貌如图2所示,其粒径仅约15nm。其XRD谱图如图3所示,可以看出除微量氧化物残余外,粉体单相性较好。其EDS分析如图4所示,可以看出元素分布在纳米尺度上都是均匀的。
实施例2
采用Hf、Zr、Ta、Y四种元素的乙酰丙酮盐和四异丙醇钛和苯甲醇作为初始反应物,五种金属盐的初始配比为:乙酰丙酮铪1.2g,乙酰丙酮钇0.8g,乙酰丙酮钽和乙酰丙酮锆各1g,四异丙醇钛0.6g,苯甲醇50mL。初始反应物在室温下的聚四氟乙烯反应釜内衬中混合均匀。将反应釜密封好,置于高温干燥箱中,以5℃/min的升温速率从室温升至270℃,之后保温48小时,最后以5℃/min的降温速率随炉冷却至室温。
取出溶胶凝胶反应产物,置于50mL离心管中,加入乙醚进行洗涤操作,再置于离心机中进行离心操作,离心参数为10000rpm,15min;离心结束后倒去洗涤废液。洗涤和离心操作重复3次。将最终产物置于干燥箱中在80℃下干燥,得到氧化物前驱体。
将氧化物前驱体与葡萄糖按照1:6的质量比采用液相混合的方法混合均匀,置于石墨坩埚中,将坩埚置入干燥箱中,在80℃下预热24小时。然后将预热后的坩埚置于管式炉中,在流动的氩气中进行反应,先以5℃/min的升温速率从室温升至1200℃,再以2℃/min的升温速率从1200℃升至1600℃,之后保温5小时,最后以5℃/min的降温速率随炉冷却至室温,即可得到五组元的单相碳化物纳米粉。
实施例3
采用Hf、Zr、Ti三种元素的乙酰丙酮盐和苯甲醇作为初始反应物,五种金属盐的初始配比为:乙酰丙酮铪1.2g,乙酰丙酮锆1g,乙酰丙酮钛0.6g,苯甲醇50mL。初始反应物在室温下的聚四氟乙烯反应釜内衬中混合均匀。将反应釜密封好,置于高温干燥箱中,以5℃/min的升温速率从室温升至200℃,之后保温96小时,最后以5℃/min的降温速率随炉冷却至室温。
取出溶胶凝胶反应产物,置于50mL离心管中,加入三氯甲烷进行洗涤操作,再置于离心机中进行离心操作,离心参数为10000rpm,20min;离心结束后倒去洗涤废液。洗涤和离心操作重复3次。将最终产物置于干燥箱中在80℃下干燥,得到氧化物前驱体。
将氧化物前驱体与碳黑按照1:3的质量比采用固相混合的方法混合均匀,置于石墨坩埚中。然后将坩埚置于管式炉中,在流动的氩气中进行反应,先以5℃/min的升温速率从室温升至1200℃,再以2℃/min的升温速率从1200℃升至1600℃,之后保温5小时,最后以5℃/min的降温速率随炉冷却至室温,即可得到三组元的单相碳化物纳米粉。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (6)

1.一种单相多主元超高温陶瓷纳米粉体的低温制备方法,其特征在于,该方法包括以下步骤:
(1)过渡金属纳米氧化物前驱体的合成:将无机和/或有机金属盐和反应溶剂作为初始反应物,在反应釜中混合均匀,加热进行溶胶凝胶反应后,冷却;将溶胶凝胶反应产物进行分离、洗涤和干燥后,得到过渡金属纳米氧化物前驱体;
(2)过渡金属氧化物的碳热还原:将过渡金属纳米氧化物前驱体与碳源混合均匀,在惰性气氛中加热碳化反应,冷却后得到单相多主元超高温陶瓷纳米粉体;
所述的金属盐中的金属包括Hf、Zr、Ti、Ta、La、Ce、Nb或Y中的两种以上;
所述的反应溶剂包括醚类、醇类、酮类、酸类、胺类或醛类;
所述的碳源为多糖或/和单糖或/和树脂或/和碳黑;
所述的碳化反应的温度为1500-2000℃,合成粉体的粒径在100 nm以下。
2.根据权利要求1所述的一种单相多主元超高温陶瓷纳米粉体的低温制备方法,其特征在于,所述的有机金属盐中的有机基团包括异丙醇基、乙酰丙酮基、乙酸基或芳香族,无机金属盐中的无机基团包括Cl、Br或I。
3.根据权利要求1所述的一种单相多主元超高温陶瓷纳米粉体的低温制备方法,其特征在于,所述的反应溶剂包括苯甲醇、苯甲酸、苯甲醚、油酸、油胺或氧化三辛基膦。
4.根据权利要求1所述的一种单相多主元超高温陶瓷纳米粉体的低温制备方法,其特征在于,所述溶胶凝胶反应的程序为:以5℃/min的升温速率从室温升至200-300℃,之后保温24-96小时,最后以5℃/min的降温速率冷却至室温。
5.根据权利要求1所述的一种单相多主元超高温陶瓷纳米粉体的低温制备方法,其特征在于,所述的碳源包括葡萄糖、蔗糖、果糖或酚醛树脂。
6.根据权利要求1所述的一种单相多主元超高温陶瓷纳米粉体的低温制备方法,其特征在于,所述碳化反应的程序为:先以5℃/min的升温速率从室温升至1200℃,再以2℃/min的升温速率从1200℃升至1500-2000℃,之后保温1-5 h,最后以5℃/min的降温速率冷却至室温。
CN202210444403.XA 2022-04-25 2022-04-25 一种单相多主元超高温陶瓷纳米粉体的低温制备方法 Active CN116986894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210444403.XA CN116986894B (zh) 2022-04-25 2022-04-25 一种单相多主元超高温陶瓷纳米粉体的低温制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210444403.XA CN116986894B (zh) 2022-04-25 2022-04-25 一种单相多主元超高温陶瓷纳米粉体的低温制备方法

Publications (2)

Publication Number Publication Date
CN116986894A CN116986894A (zh) 2023-11-03
CN116986894B true CN116986894B (zh) 2025-03-21

Family

ID=88521933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210444403.XA Active CN116986894B (zh) 2022-04-25 2022-04-25 一种单相多主元超高温陶瓷纳米粉体的低温制备方法

Country Status (1)

Country Link
CN (1) CN116986894B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118754650B (zh) * 2024-07-05 2025-02-21 云南汇达新材料有限公司 一种高熔点碳氧化物复相陶瓷的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303581A (zh) * 2020-03-12 2020-06-19 中国科学院化学研究所 一种含稀土的碳化物高熵陶瓷前驱体及高熵陶瓷及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491253C1 (ru) * 2012-03-07 2013-08-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" Способ изготовления заготовок керамических изделий
CN103373743A (zh) * 2013-07-12 2013-10-30 南京宇热材料科技有限公司 一种多元醇辅助水热法合成氧化锆纳米粉体的方法
CN105664987B (zh) * 2014-11-21 2018-04-03 中国科学院大连化学物理研究所 一种纳米陶瓷和纳米碳化物复合材料的合成方法
CN104961465B (zh) * 2015-06-30 2017-05-10 中国人民解放军国防科学技术大学 Ta‑Hf‑C三元陶瓷及其制备方法
CN111471268B (zh) * 2020-03-12 2021-03-26 中国科学院化学研究所 一种碳化物高熵陶瓷前驱体及高熵陶瓷及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303581A (zh) * 2020-03-12 2020-06-19 中国科学院化学研究所 一种含稀土的碳化物高熵陶瓷前驱体及高熵陶瓷及制备方法

Also Published As

Publication number Publication date
CN116986894A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN109676124B (zh) 一种金属材料的烧结致密化及晶粒尺寸控制方法
JPS5934147B2 (ja) 炭化ケイ素焼結セラミツク体及びその製造法
CN116986894B (zh) 一种单相多主元超高温陶瓷纳米粉体的低温制备方法
CN110407213B (zh) 一种(Ta, Nb, Ti, V)C高熵碳化物纳米粉体及其制备方法
CN112679213B (zh) 一种超多元高熵陶瓷及其制备方法和应用
CN106588020A (zh) 一种HfxTa1‑xC合金前驱体的制备方法及其得到的HfxTa1‑xC合金
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN101348370A (zh) 一种碳化物陶瓷的先驱体溶液、碳化物陶瓷及制备方法
CN103664194A (zh) 一种基于溶剂热聚合反应制备非氧化物陶瓷超细粉体方法
CN108706974A (zh) 一种常压固相烧结致密铪固溶的碳化钽超高温陶瓷及其制备方法
CN110282976A (zh) 一种三维结构碳化铪-钛硅碳复相陶瓷的制备方法
CN106588018A (zh) 一种超高温碳化铪陶瓷纳米粉体的制备方法
CN106032323A (zh) 一种以TiAl粉体为原料的Ti2AlC陶瓷粉体制备方法
CN112125680A (zh) 碳化硼微粉提纯方法、碳化硼陶瓷及碳化硼陶瓷制备方法
EP1761474B1 (en) Process for manufacturing high density boron carbide
CN105780123A (zh) 一种碳化铪纳米晶须及其制备方法
CN113751707A (zh) 一种制备纳米碳化物颗粒弥散强化合金粉末的方法
CN112250102A (zh) 一种Y2Ti2O7复合纳米颗粒及其制备方法和应用
Wang et al. Synthesis of nanoscale zirconium carbide powders via a two-step process
CN117587309A (zh) 一种激光/电子束原位反应制备亚微米Nb5Si3颗粒增强Nb基难熔高熵合金的方法
CN110791674A (zh) 一种难熔碳化物颗粒增强钨渗铜复合材料的制备方法
CN105439162B (zh) 一种粗粒径mo2粉体合成细mb2粉体的制备方法
CN115806277A (zh) 一种超高熔点碳氮化铪粉体的新型制备方法
CN108584958B (zh) 一种碳化锆纳米粉体的原位合成方法
CN111517799A (zh) 一种醇类溶剂辅助制备硼化锆粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant