[go: up one dir, main page]

CN116978944A - High electron mobility transistor and preparation method thereof - Google Patents

High electron mobility transistor and preparation method thereof Download PDF

Info

Publication number
CN116978944A
CN116978944A CN202311188654.7A CN202311188654A CN116978944A CN 116978944 A CN116978944 A CN 116978944A CN 202311188654 A CN202311188654 A CN 202311188654A CN 116978944 A CN116978944 A CN 116978944A
Authority
CN
China
Prior art keywords
layer
alingan
transition
polar
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311188654.7A
Other languages
Chinese (zh)
Other versions
CN116978944B (en
Inventor
侯合林
谢志文
张铭信
陈铭胜
文国昇
金从龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhao Chi Semiconductor Co Ltd
Original Assignee
Jiangxi Zhao Chi Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Zhao Chi Semiconductor Co Ltd filed Critical Jiangxi Zhao Chi Semiconductor Co Ltd
Priority to CN202311188654.7A priority Critical patent/CN116978944B/en
Publication of CN116978944A publication Critical patent/CN116978944A/en
Application granted granted Critical
Publication of CN116978944B publication Critical patent/CN116978944B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • H10D30/4755High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/824Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供一种高电子迁移率晶体管及制备方法,所述高电子迁移率晶体管包括复合插入层及沉积在所述复合插入层上的沟道层;所述沟道层为InGaN沟道层,所述复合插入层包括依次沉积的电子阻挡层、过渡层及改善层,所述电子阻挡层包括周期性交替生长的Ga2O3层和氮极性AlGaN层,所述过渡层为镓极性AlInGaN过渡层,所述改善层为氮极性InGaN改善层,所述镓极性AlInGaN过渡层其Al组分沿所述镓极性AlInGaN过渡层生长方向逐渐降低,所述镓极性AlInGaN过渡层其In组分沿所述镓极性AlInGaN过渡层生长方向逐渐升高,可产生更高浓度的二维电子气浓度,且InGaN其更深的InGaN势阱也更利于限制所产生的二维电子气,且InGaN其更深的InGaN势阱也更利于限制所产生的二维电子气。

The invention provides a high electron mobility transistor and a preparation method. The high electron mobility transistor includes a composite insertion layer and a channel layer deposited on the composite insertion layer; the channel layer is an InGaN channel layer, The composite insertion layer includes an electron blocking layer, a transition layer and an improvement layer deposited in sequence. The electron blocking layer includes periodically alternately grown Ga 2 O 3 layers and nitrogen polarity AlGaN layers. The transition layer is gallium polarity. AlInGaN transition layer, the improvement layer is a nitrogen polarity InGaN improvement layer, the Al component of the gallium polarity AlInGaN transition layer gradually decreases along the growth direction of the gallium polarity AlInGaN transition layer, the gallium polarity AlInGaN transition layer Its In component gradually increases along the growth direction of the gallium polar AlInGaN transition layer, which can produce a higher concentration of two-dimensional electron gas concentration, and the deeper InGaN potential well of InGaN is also more conducive to limiting the generated two-dimensional electron gas. , and InGaN’s deeper InGaN potential well is also more conducive to confining the generated two-dimensional electron gas.

Description

一种高电子迁移率晶体管及制备方法A high electron mobility transistor and preparation method

技术领域Technical field

本发明属于半导体技术领域,具体地涉及一种高电子迁移率晶体管及制备方法。The invention belongs to the field of semiconductor technology, and specifically relates to a high electron mobility transistor and a preparation method.

背景技术Background technique

常规AlGaN/GaN异质结构的高电子迁移率晶体管,其外延结构包括衬底、成核层、缓冲层、GaN沟道层、AlN插入层、AlGaN势垒层、GaN盖帽层;The epitaxial structure of a conventional AlGaN/GaN heterostructure high electron mobility transistor includes a substrate, a nucleation layer, a buffer layer, a GaN channel layer, an AlN insertion layer, an AlGaN barrier layer, and a GaN cap layer;

然而现有的高电子迁移率晶体管存在如下不足,However, existing high electron mobility transistors have the following shortcomings:

1、AlGaN/GaN异质结构中,GaN沟道层因其有限的势阱深度,使其限制二维电子能力有限,二维电子气浓度相对较低,且电子迁移率能力相对较弱,器件的短沟道效应较明显,影响了器件的工作频率以及输出功率。1. In the AlGaN/GaN heterostructure, the GaN channel layer has limited ability to confine two-dimensional electrons due to its limited potential well depth. The two-dimensional electron gas concentration is relatively low, and the electron mobility capability is relatively weak. The device The short channel effect is obvious, which affects the operating frequency and output power of the device.

2、GaN沟道层受到缓冲层压应力的作用,导致沟道层内产生从势垒层至缓冲层方向的内建电场,此内建电场会降低沟道层的二维电子气浓度。2. The GaN channel layer is affected by the compressive stress of the buffer layer, causing a built-in electric field in the channel layer from the barrier layer to the buffer layer. This built-in electric field will reduce the two-dimensional electron gas concentration of the channel layer.

3、GaN沟道层电子较容易泄漏至缓冲层,引起电流崩塌效应,也使得GaN沟道层的二维限制特性减弱,二维电子气浓度降低,这限制了高频、高功率器件的输出,降低了器件被击穿电压,影响了器件的可靠性,因此为提高器件工作频率和输出功率及可靠性,制备具有高二维电子气浓度且低缓冲层泄漏电流的器件则至关重要。3. GaN channel layer electrons are more likely to leak into the buffer layer, causing a current collapse effect, which also weakens the two-dimensional confinement characteristics of the GaN channel layer and reduces the two-dimensional electron gas concentration, which limits the output of high-frequency and high-power devices. , reduces the breakdown voltage of the device and affects the reliability of the device. Therefore, in order to improve the operating frequency, output power and reliability of the device, it is crucial to prepare devices with high two-dimensional electron gas concentration and low buffer layer leakage current.

发明内容Contents of the invention

为了解决上述技术问题,本发明提供了一种高电子迁移率晶体管及制备方法,用于解决沟道层二维电子气浓度低的技术问题。In order to solve the above technical problems, the present invention provides a high electron mobility transistor and a preparation method to solve the technical problem of low concentration of two-dimensional electron gas in the channel layer.

一方面,该发明提供以下技术方案,一种高电子迁移率晶体管,包括复合插入层及沉积在所述复合插入层上的沟道层;On the one hand, the invention provides the following technical solution: a high electron mobility transistor, including a composite insertion layer and a channel layer deposited on the composite insertion layer;

所述沟道层为InGaN沟道层,所述复合插入层包括依次沉积的电子阻挡层、过渡层及改善层,所述电子阻挡层包括周期性交替生长的Ga2O3层和氮极性AlGaN层,所述过渡层为镓极性AlInGaN过渡层,所述改善层为氮极性InGaN改善层,所述镓极性AlInGaN过渡层其Al组分沿所述镓极性AlInGaN过渡层生长方向逐渐降低,所述镓极性AlInGaN过渡层其In组分沿所述镓极性AlInGaN过渡层生长方向逐渐升高。The channel layer is an InGaN channel layer. The composite insertion layer includes an electron blocking layer, a transition layer and an improvement layer deposited in sequence. The electron blocking layer includes periodically alternately grown Ga 2 O 3 layers and nitrogen polarity layers. AlGaN layer, the transition layer is a gallium polarity AlInGaN transition layer, the improvement layer is a nitrogen polarity InGaN improvement layer, the Al component of the gallium polarity AlInGaN transition layer is along the growth direction of the gallium polarity AlInGaN transition layer Gradually decreases, and the In composition of the gallium polar AlInGaN transition layer gradually increases along the growth direction of the gallium polar AlInGaN transition layer.

与现有技术相比,本发明的有益效果是:第一、InGaN沟道层与AlGaN势垒层因其强极化作用,可产生更高浓度的二维电子气浓度,且InGaN其更深的InGaN势阱也更利于限制所产生的二维电子气;Compared with the existing technology, the beneficial effects of the present invention are: first, the InGaN channel layer and the AlGaN barrier layer can produce a higher concentration of two-dimensional electron gas concentration due to their strong polarization, and InGaN has a deeper The InGaN potential well is also more conducive to confining the generated two-dimensional electron gas;

第二、复合插入层中氮极性InGaN改善层的引入,可为InGaN沟道层提供良好的生长平台,提高InGaN沟道层晶体质量,另一方面也避免了沟道层直接受到缓冲层、复合插入层中电子阻挡层以及过渡层压应力,减少了InGaN沟道层中由AlGaN势垒层沿缓冲层方向的内建电场,改善了因此内建电场降低沟道层二维电子气浓度的问题,而氮极性InGaN改善层的极性反转,其在代替沟道层受到压应力时,产生的内建电场反转,进一步的提升了InGaN沟道层的二维电子气浓度,提升了器件的工作频率和输出功率;Second, the introduction of the nitrogen polarity InGaN improvement layer in the composite insertion layer can provide a good growth platform for the InGaN channel layer and improve the crystal quality of the InGaN channel layer. On the other hand, it also avoids the channel layer being directly affected by the buffer layer, The electron blocking layer and transition layer compressive stress in the composite insertion layer reduce the built-in electric field in the InGaN channel layer from the AlGaN barrier layer along the direction of the buffer layer, thereby improving the ability of the built-in electric field to reduce the two-dimensional electron gas concentration in the channel layer. problem, and the polarity reversal of the nitrogen polarity InGaN improvement layer, when the channel layer is subjected to compressive stress, the built-in electric field reversal further increases the two-dimensional electron gas concentration of the InGaN channel layer, improving The operating frequency and output power of the device are determined;

第三、复合插入层中镓极性AlInGaN过渡层沿外延层生长方向,Al组分逐渐减少,In组分逐渐升高,提使得复合插入层中电子阻挡层与氮极性InGaN改善层晶格更加匹配,提高氮极性InGaN改善层的晶体质量,而镓极性的AlInGaN过渡层在受到复合插入层中电子阻挡层的压应力时产生的内建电场,可使沟道层向缓冲层迁移的电子回流,减少缓冲层漏电流。Third, along the growth direction of the epitaxial layer of the gallium polar AlInGaN transition layer in the composite insertion layer, the Al component gradually decreases and the In component gradually increases, which improves the layer lattice of the electron blocking layer and nitrogen polarity InGaN in the composite insertion layer. Better matching, improves the crystal quality of the nitrogen polarity InGaN improvement layer, and the built-in electric field generated by the gallium polarity AlInGaN transition layer when subjected to the compressive stress of the electron blocking layer in the composite insertion layer can cause the channel layer to migrate to the buffer layer The electrons reflow and reduce the leakage current of the buffer layer.

第四、复合插入层中电子阻挡层中Ga2O3层具有较高的禁带宽度,可有效阻挡沟道层电子向缓冲层迁移,另一方面氮极性AlGaN层在受到Ga2O3层的拉应力时产生的内建电场与复合插入层中镓极性AlInGaN过渡层内建电场一致,加强沟道层向缓冲层迁移的电子的回流能力,周期性交替生长的Ga2O3层和氮极性AlGaN层大幅降低了缓冲层的漏电流,提升了器件的抗击穿电压能力,提高了可靠性能。Fourth, the Ga 2 O 3 layer in the electron blocking layer in the composite insertion layer has a high band gap, which can effectively block the migration of electrons from the channel layer to the buffer layer. On the other hand, the nitrogen polar AlGaN layer is affected by Ga 2 O 3 The built-in electric field generated by the tensile stress of the layer is consistent with the built-in electric field of the gallium polar AlInGaN transition layer in the composite insertion layer, which strengthens the reflow ability of electrons migrating from the channel layer to the buffer layer, and periodically alternates the growth of Ga 2 O 3 layers And the nitrogen polarity AlGaN layer greatly reduces the leakage current of the buffer layer, improves the device's ability to withstand breakdown voltage, and improves reliability performance.

进一步的,所述Ga2O3层的厚度范围为50 nm -200nm,所述氮极性AlGaN层的厚度范围为100 nm -400nm,所述镓极性AlInGaN过渡层的厚度范围为50 nm -300nm,所述氮极性InGaN改善层的厚度范围为100 nm -400nm。Further, the thickness range of the Ga 2 O 3 layer is 50 nm -200 nm, the thickness range of the nitrogen polar AlGaN layer is 100 nm -400 nm, and the thickness range of the gallium polar AlInGaN transition layer is 50 nm - 300nm, and the thickness of the nitrogen polarity InGaN improvement layer ranges from 100nm to 400nm.

进一步的,所述镓极性AlInGaN过渡层的Al组分范围为0-0.2,所述镓极性AlInGaN过渡层In组分范围为0.05-0.3。Further, the Al component range of the gallium polar AlInGaN transition layer is 0-0.2, and the In component range of the gallium polar AlInGaN transition layer is 0.05-0.3.

进一步的,所述高电子迁移率晶体管还包括衬底、缓冲层、AlN插入层、势垒层及盖帽层,所述缓冲层、所述复合插入层、所述沟道层、所述AlN插入层、所述势垒层及所述盖帽层依次沉积在所述衬底上。Further, the high electron mobility transistor further includes a substrate, a buffer layer, an AlN insertion layer, a barrier layer and a cap layer. The buffer layer, the composite insertion layer, the channel layer, the AlN insertion layer layer, the barrier layer and the capping layer are sequentially deposited on the substrate.

进一步的,所述缓冲层的厚度范围为1.4 μm -2.8μm,所述沟道层的厚度范围为50nm -300nm,所述势垒层的厚度范围为10 nm -45nm,所述盖帽层的厚度范围为10nm-50nm,所述势垒层为AlGaN势垒层,所述盖帽层为GaN盖帽层。Further, the thickness of the buffer layer ranges from 1.4 μm to 2.8 μm, the thickness of the channel layer ranges from 50 nm to 300 nm, the thickness of the barrier layer ranges from 10 nm to 45 nm, and the thickness of the cap layer The range is 10nm-50nm, the barrier layer is an AlGaN barrier layer, and the capping layer is a GaN capping layer.

进一步的,所述电子阻挡层中所述Ga2O3层和所述氮极性AlGaN层交替生长周期取值范围为2-6。Further, the alternate growth period of the Ga 2 O 3 layer and the nitrogen polar AlGaN layer in the electron blocking layer ranges from 2 to 6.

另一方面,本发明还提出一种高电子迁移率晶体管制备方法,所述制备方法包括以下步骤:On the other hand, the present invention also proposes a method for preparing a high electron mobility transistor, which method includes the following steps:

提供一衬底;provide a substrate;

在所述衬底上沉积缓冲层;depositing a buffer layer on the substrate;

在所述缓冲层上沉积复合插入层,其中,所述复合插入层包括依次沉积的电子阻挡层、过渡层及改善层,所述电子阻挡层包括周期性交替生长的Ga2O3层和氮极性AlGaN层,所述过渡层为镓极性AlInGaN过渡层,所述改善层为氮极性InGaN改善层,所述镓极性AlInGaN过渡层其Al组分沿所述镓极性AlInGaN过渡层生长方向逐渐降低,所述镓极性AlInGaN过渡层其In组分沿所述镓极性AlInGaN过渡层生长方向逐渐升高;A composite insertion layer is deposited on the buffer layer, wherein the composite insertion layer includes an electron blocking layer, a transition layer and an improvement layer deposited in sequence, and the electron blocking layer includes periodically alternately grown Ga 2 O 3 layers and nitrogen. Polar AlGaN layer, the transition layer is a gallium polar AlInGaN transition layer, the improvement layer is a nitrogen polarity InGaN improvement layer, the Al component of the gallium polar AlInGaN transition layer is along the gallium polarity AlInGaN transition layer The growth direction gradually decreases, and the In component of the gallium polar AlInGaN transition layer gradually increases along the growth direction of the gallium polar AlInGaN transition layer;

在所述复合插入层上沉积沟道层,其中,所述沟道层为InGaN沟道层;Deposit a channel layer on the composite insertion layer, wherein the channel layer is an InGaN channel layer;

在所述沟道层上沉积AlN插入层;depositing an AlN insertion layer on the channel layer;

在所述AlN插入层上沉积势垒层;depositing a barrier layer on the AlN insertion layer;

在所述势垒层上沉积盖帽层。A capping layer is deposited on the barrier layer.

进一步的,生长所述电子阻挡层中所述氮极性AlGaN层的N源与Ga源的摩尔流量比值大于或者等于1400。Further, the molar flow ratio of the N source to the Ga source for growing the nitrogen polar AlGaN layer in the electron blocking layer is greater than or equal to 1,400.

进一步的,生长所述镓极性AlInGaN过渡层的N源与Ga源的摩尔流量比值小于或者等于300。Further, the molar flow ratio of the N source to the Ga source for growing the gallium polar AlInGaN transition layer is less than or equal to 300.

进一步的,生长所述氮极性InGaN改善层的N源与Ga源的摩尔流量比值大于或者等于1400。Further, the molar flow ratio of the N source to the Ga source for growing the nitrogen polarity InGaN improvement layer is greater than or equal to 1,400.

附图说明Description of the drawings

图1为本发明第一实施例中的高电子迁移率晶体管的结构示意图。FIG. 1 is a schematic structural diagram of a high electron mobility transistor in the first embodiment of the present invention.

图2为本发明第二实施例中高电子迁移率晶体管的制备方法流程图。FIG. 2 is a flow chart of a method for manufacturing a high electron mobility transistor in the second embodiment of the present invention.

主要元件符号说明:1、衬底;2、缓冲层;3、复合插入层;4、InGaN沟道层;5、AlN插入层;6、势垒层;7、盖帽层;31、电子阻挡层;32、镓极性AlInGaN过渡层;33、氮极性InGaN改善层。Description of main component symbols: 1. Substrate; 2. Buffer layer; 3. Composite insertion layer; 4. InGaN channel layer; 5. AlN insertion layer; 6. Barrier layer; 7. Capping layer; 31. Electronic blocking layer ; 32. Gallium polarity AlInGaN transition layer; 33. Nitrogen polarity InGaN improvement layer.

如下具体实施方式将结合上述附图进一步说明本发明。The following specific embodiments will further illustrate the present invention in conjunction with the above-mentioned drawings.

具体实施方式Detailed ways

为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。In order to facilitate understanding of the present invention, the present invention will be described more fully below with reference to the relevant drawings. Several embodiments of the invention are shown in the drawings. However, the invention may be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete.

需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。It should be noted that when an element is referred to as being "mounted" on another element, it can be directly on the other element or intervening elements may also be present. When an element is said to be "connected" to another element, it can be directly connected to the other element or there may also be intervening elements present. The terms "vertical," "horizontal," "left," "right" and similar expressions are used herein for illustrative purposes only.

除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which the invention belongs. The terminology used herein in the description of the invention is for the purpose of describing specific embodiments only and is not intended to limit the invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

实施例一Embodiment 1

请参阅图1,所示为本发明第一实施例中的高电子迁移率晶体管,包括衬底1及依次沉积在所述衬底1上的缓冲层2、复合插入层3、沟道层、AlN插入层5、势垒层6及盖帽层7。Please refer to Figure 1, which shows a high electron mobility transistor in a first embodiment of the present invention, including a substrate 1 and a buffer layer 2, a composite insertion layer 3, a channel layer, and a buffer layer 2 deposited on the substrate 1 in sequence. AlN insertion layer 5, barrier layer 6 and capping layer 7.

其中,所述沟道层为InGaN沟道层4,所述复合插入层3包括依次沉积的电子阻挡层31、过渡层及改善层,所述电子阻挡层31包括周期性交替生长的Ga2O3层和氮极性AlGaN层,所述过渡层为镓极性AlInGaN过渡层32,所述改善层为氮极性InGaN改善层33,所述镓极性AlInGaN过渡层其Al组分沿所述镓极性AlInGaN过渡层生长方向逐渐降低,所述镓极性AlInGaN过渡层其In组分沿所述镓极性AlInGaN过渡层生长方向逐渐升高。Wherein, the channel layer is an InGaN channel layer 4, and the composite insertion layer 3 includes an electron blocking layer 31, a transition layer and an improvement layer deposited in sequence, and the electron blocking layer 31 includes periodically alternately grown Ga 2 O 3 layers and a nitrogen polarity AlGaN layer, the transition layer is a gallium polarity AlInGaN transition layer 32, the improvement layer is a nitrogen polarity InGaN improvement layer 33, the Al component of the gallium polarity AlInGaN transition layer is along the The growth direction of the gallium polar AlInGaN transition layer gradually decreases, and the In component of the gallium polar AlInGaN transition layer gradually increases along the growth direction of the gallium polar AlInGaN transition layer.

具体的,所述Ga2O3层的厚度范围为50 nm -200nm,所述氮极性AlGaN层的厚度范围为100 nm -400nm,所述镓极性AlInGaN过渡层32的厚度范围为50 nm -300nm,所述氮极性InGaN改善层33的厚度范围为100 nm -400nm。可选择的,所述Ga2O3层的厚度为50 nm、100nm、或者200nm,所述氮极性AlGaN层的厚度为100 nm 、200 nm 、250 nm 、300 nm或者400nm,所述镓极性AlInGaN过渡层32的厚度为50 nm 、100 nm、175 nm 、200 nm或者300nm,所述氮极性InGaN改善层33的厚度范围为100 nm 、200 nm、 250 nm 、300 nm 或者400nm。Specifically, the thickness of the Ga 2 O 3 layer ranges from 50 nm to 200 nm, the thickness of the nitrogen polar AlGaN layer ranges from 100 nm to 400 nm, and the thickness of the gallium polar AlInGaN transition layer 32 ranges from 50 nm. -300nm, and the thickness of the nitrogen polarity InGaN improvement layer 33 ranges from 100nm -400nm. Optionally, the thickness of the Ga 2 O 3 layer is 50 nm, 100 nm, or 200 nm, the thickness of the nitrogen polar AlGaN layer is 100 nm, 200 nm, 250 nm, 300 nm, or 400 nm, and the gallium electrode The thickness of the polar AlInGaN transition layer 32 is 50 nm, 100 nm, 175 nm, 200 nm or 300 nm, and the thickness of the nitrogen polar InGaN improvement layer 33 is in the range of 100 nm, 200 nm, 250 nm, 300 nm or 400 nm.

具体的,所述镓极性AlInGaN过渡层32的Al组分范围为0-0.2,所述镓极性AlInGaN过渡层32In组分范围为0.05-0.3。可选择的,镓极性AlInGaN过渡层32的Al组分沿所述镓极性AlInGaN过渡层32生长方向由0.15下降至0、或者镓极性AlInGaN过渡层32的Al组分沿所述镓极性AlInGaN过渡层32生长方向由0.2下降至0,所述镓极性AlInGaN过渡层32In组分沿所述镓极性AlInGaN过渡层32生长方向由0.05上升至0.3、或者所述镓极性AlInGaN过渡层32In组分沿所述镓极性AlInGaN过渡层32生长方向由0.1上升至0.25。Specifically, the Al composition range of the gallium polar AlInGaN transition layer 32 is 0-0.2, and the In composition range of the gallium polar AlInGaN transition layer 32 is 0.05-0.3. Optionally, the Al composition of the gallium polar AlInGaN transition layer 32 decreases from 0.15 to 0 along the growth direction of the gallium polar AlInGaN transition layer 32, or the Al composition of the gallium polar AlInGaN transition layer 32 decreases along the growth direction of the gallium electrode. The growth direction of the gallium polar AlInGaN transition layer 32 decreases from 0.2 to 0, and the In component of the gallium polar AlInGaN transition layer 32 increases from 0.05 to 0.3 along the growth direction of the gallium polar AlInGaN transition layer 32, or the gallium polar AlInGaN transition layer The In composition of layer 32 increases from 0.1 to 0.25 along the growth direction of the gallium polar AlInGaN transition layer 32 .

具体的,所述缓冲层2的厚度范围为1.4 μm -2.8μm,所述沟道层的厚度范围为50nm -300nm,所述势垒层6的厚度范围为10 nm -45nm,所述盖帽层7的厚度范围为10nm-50nm,所述势垒层6为AlGaN势垒层,所述盖帽层7为GaN盖帽层。可选择的,所述缓冲层2的厚度为1.4 μm 、2.1 μm 或者2.8μm,所述沟道层的厚度为50 nm 、160nm 或者300nm,所述势垒层6的厚度为10 nm、25 nm 或者45nm,所述盖帽层7的厚度为10nm、或者30nm 或者50nm。Specifically, the thickness of the buffer layer 2 ranges from 1.4 μm to 2.8 μm, the thickness of the channel layer ranges from 50 nm to 300 nm, the thickness of the barrier layer 6 ranges from 10 nm to 45 nm, and the cap layer The thickness range of 7 is 10 nm-50 nm, the barrier layer 6 is an AlGaN barrier layer, and the cap layer 7 is a GaN cap layer. Optionally, the thickness of the buffer layer 2 is 1.4 μm, 2.1 μm or 2.8 μm, the thickness of the channel layer is 50 nm, 160nm or 300nm, and the thickness of the barrier layer 6 is 10 nm, 25 nm. Or 45nm, and the thickness of the capping layer 7 is 10nm, or 30nm, or 50nm.

所述电子阻挡层31中层中所述Ga2O3层和所述氮极性AlGaN层交替生长周期取值为2、4或者6。The alternate growth period of the Ga 2 O 3 layer and the nitrogen polar AlGaN layer in the electron blocking layer 31 is 2, 4 or 6.

在本实施例中, 所述电子阻挡层31中层中所述Ga2O3层和所述氮极性AlGaN层交替生长周期取值为4,其中,Ga2O3层生长的单层厚度为100nm,氮极性AlGaN层生长的单层厚度为250nm;In this embodiment, the value of the alternating growth cycle of the Ga 2 O 3 layer and the nitrogen polar AlGaN layer in the middle layer of the electron blocking layer 31 is 4, where the single layer thickness of the Ga 2 O 3 layer is 100nm, the single layer thickness of nitrogen polar AlGaN layer growth is 250nm;

所述过渡层为镓极性AlInGaN过渡层32,镓极性AlInGaN过渡层32的Al组分沿所述镓极性AlInGaN过渡层32生长方向由0.15下降至0,所述镓极性AlInGaN过渡层32In组分沿所述镓极性AlInGaN过渡层32生长方向由0.1上升至0.25,其中,镓极性AlInGaN过渡层32生长的厚度为175nm;The transition layer is a gallium polar AlInGaN transition layer 32. The Al component of the gallium polar AlInGaN transition layer 32 decreases from 0.15 to 0 along the growth direction of the gallium polar AlInGaN transition layer 32. The gallium polar AlInGaN transition layer The 32In component increases from 0.1 to 0.25 along the growth direction of the gallium polar AlInGaN transition layer 32, where the thickness of the gallium polar AlInGaN transition layer 32 is 175 nm;

所述改善层为氮极性InGaN改善层33,其生长的厚度为250nm;The improvement layer is a nitrogen polarity InGaN improvement layer 33, and its growth thickness is 250nm;

所述沟道层为InGaN沟道层4。The channel layer is InGaN channel layer 4 .

为了方便后续的测试以及便于理解,在本申请中引入实验组一、实验组二、实验组三、实验组四、实验组五、实验组六、实验组七、实验组八、实验组九以及对照组一和对照组二;In order to facilitate subsequent testing and understanding, experimental group one, experimental group two, experimental group three, experimental group four, experimental group five, experimental group six, experimental group seven, experimental group eight, experimental group nine and Control group one and control group two;

其中,实验组一、实验组二、实验组三、实验组四、实验组五、实验组六、实验组七、实验组八、实验组九均采用如实施例一所述的高电子迁移率晶体管,其均包括实施例一中的复合插入层3及InGaN沟道层4,而对照组一和对照组二则采用现有技术中的晶体管,其结构与实施例一相同,但区别如下:对照组一中采用现有技术中的不设有复合插入层3,对照组二中采用现有技术中的沟道层为GaN沟道层。Among them, experimental group 1, experimental group 2, experimental group 3, experimental group 4, experimental group 5, experimental group 6, experimental group 7, experimental group 8, and experimental group 9 all adopt high electron mobility as described in Example 1. The transistors all include the composite insertion layer 3 and the InGaN channel layer 4 in Embodiment 1, while Control Groups 1 and 2 use transistors in the prior art. Their structures are the same as those in Embodiment 1, but the differences are as follows: In the control group 1, the prior art is used without the composite insertion layer 3. In the control group 2, the channel layer in the prior art is used as a GaN channel layer.

具体的,实验组一中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值4,Ga2O3层厚度100 nm,氮极性AlGaN层厚度250 nm,镓极性AlInGaN过渡层32厚度175 nm,氮极性InGaN改善层33厚度250 nm;Specifically, the electron blocking layer 31 (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) in the experimental group 1 has an alternate growth period value of 4, a Ga 2 O 3 layer thickness of 100 nm, and a nitrogen polar AlGaN layer thickness. 250 nm, the thickness of the gallium polar AlInGaN transition layer 32 is 175 nm, and the thickness of the nitrogen polarity InGaN improvement layer 33 is 250 nm;

实验组二中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值2,Ga2O3层厚度100 nm,氮极性AlGaN层厚度250 nm,镓极性AlInGaN过渡层32厚度175 nm,氮极性InGaN改善层33厚度250 nm;The electron blocking layer 31 (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) in the experimental group 2 has an alternate growth period value of 2, the thickness of the Ga 2 O 3 layer is 100 nm, and the thickness of the nitrogen polar AlGaN layer is 250 nm. The thickness of the gallium polar AlInGaN transition layer 32 is 175 nm, and the thickness of the nitrogen polarity InGaN improvement layer 33 is 250 nm;

实验组三中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值6,Ga2O3层厚度100 nm,氮极性AlGaN层厚度250 nm,镓极性AlInGaN过渡层32厚度175 nm,氮极性InGaN改善层33厚度250 nm;The electron blocking layer 31 (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) in experimental group three has an alternate growth period value of 6, a Ga 2 O 3 layer thickness of 100 nm, and a nitrogen polar AlGaN layer thickness of 250 nm. The thickness of the gallium polar AlInGaN transition layer 32 is 175 nm, and the thickness of the nitrogen polarity InGaN improvement layer 33 is 250 nm;

实验组四中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值4,Ga2O3层厚度50nm,氮极性AlGaN层厚度100 nm,镓极性AlInGaN过渡层32厚度175 nm,氮极性InGaN改善层33厚度250 nm;The electron blocking layer 31 (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) in experimental group 4 has an alternate growth period value of 4, a Ga 2 O 3 layer thickness of 50 nm, a nitrogen polar AlGaN layer thickness of 100 nm, and gallium The thickness of the polar AlInGaN transition layer 32 is 175 nm, and the thickness of the nitrogen polar InGaN improvement layer 33 is 250 nm;

实验组五中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值4,Ga2O3层厚度200nm,氮极性AlGaN层厚度400nm,镓极性AlInGaN过渡层32厚度175 nm,氮极性InGaN改善层33厚度250 nm;The electron blocking layer 31 in experimental group five (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) has an alternate growth period value of 4, a Ga 2 O 3 layer thickness of 200 nm, a nitrogen polar AlGaN layer thickness of 400 nm, and a gallium electrode. The thickness of the polar AlInGaN transition layer 32 is 175 nm, and the thickness of the nitrogen polar InGaN improvement layer 33 is 250 nm;

实验组六中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值4,Ga2O3层厚度100 nm,氮极性AlGaN层厚度250 nm,镓极性AlInGaN过渡层32厚度50nm,氮极性InGaN改善层33厚度250 nm;The electron blocking layer 31 (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) in experimental group six has an alternate growth period value of 4, the thickness of the Ga 2 O 3 layer is 100 nm, and the thickness of the nitrogen polar AlGaN layer is 250 nm. The thickness of the gallium polar AlInGaN transition layer 32 is 50 nm, and the thickness of the nitrogen polar InGaN improvement layer 33 is 250 nm;

实验组七中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值4,Ga2O3层厚度100 nm,氮极性AlGaN层厚度250 nm,镓极性AlInGaN过渡层32厚度300 nm,氮极性InGaN改善层33厚度250 nm;The electron blocking layer 31 (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) in experimental group seven has an alternate growth period value of 4, the thickness of the Ga 2 O 3 layer is 100 nm, and the thickness of the nitrogen polar AlGaN layer is 250 nm. The thickness of the gallium polar AlInGaN transition layer 32 is 300 nm, and the thickness of the nitrogen polarity InGaN improvement layer 33 is 250 nm;

实验组八中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值4,Ga2O3层厚度100 nm,氮极性AlGaN层厚度250 nm,镓极性AlInGaN过渡层32厚度175 nm,氮极性InGaN改善层33厚度100 nm;The electron blocking layer 31 (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) in experimental group eight has an alternate growth period value of 4, the thickness of the Ga 2 O 3 layer is 100 nm, and the thickness of the nitrogen polar AlGaN layer is 250 nm. The thickness of the gallium polar AlInGaN transition layer 32 is 175 nm, and the thickness of the nitrogen polarity InGaN improvement layer 33 is 100 nm;

实验组九中的电子阻挡层31(所述Ga2O3层和所述氮极性AlGaN层)交替生长周期值4,Ga2O3层厚度100 nm,氮极性AlGaN层厚度250 nm,镓极性AlInGaN过渡层32厚度175 nm,氮极性InGaN改善层33厚度400 nm。The electron blocking layer 31 (the Ga 2 O 3 layer and the nitrogen polar AlGaN layer) in experimental group nine has an alternate growth period value of 4, the thickness of the Ga 2 O 3 layer is 100 nm, and the thickness of the nitrogen polar AlGaN layer is 250 nm. The thickness of the gallium polar AlInGaN transition layer 32 is 175 nm, and the thickness of the nitrogen polarity InGaN improvement layer 33 is 400 nm.

将上述实验组一、实验组二、实验组三、实验组四、实验组五、实验组六、实验组七、实验组八、实验组九以及对照组一和对照组二中的二维电子气浓度及缓冲层2漏电流进行测试,测试结果如下表所示:The two-dimensional electrons in the above experimental groups one, two, three, four, five, six, seven, eight, nine and the control groups one and two are Gas concentration and buffer layer 2 leakage current were tested. The test results are shown in the following table:

由上表可知,实验组一、二维电子气浓度为3.4×1013cm-2,缓冲层2漏电流8.7×10-4A/mm;It can be seen from the above table that the first and two-dimensional electron gas concentrations of the experimental group are 3.4×10 13 cm -2 and the leakage current of buffer layer 2 is 8.7×10 -4 A/mm;

实验组二、二维电子气浓度为3.2×1013cm-2,缓冲层2漏电流4.15×10-3A/mm;Experimental group 2, the two-dimensional electron gas concentration is 3.2×10 13 cm -2 , and the leakage current of buffer layer 2 is 4.15×10 -3 A/mm;

实验组三、二维电子气浓度为2.9×1013cm-2,缓冲层2漏电流9.3×10-4A/mm;Experimental group three, the two-dimensional electron gas concentration is 2.9×10 13 cm -2 and the leakage current of buffer layer 2 is 9.3×10 -4 A/mm;

实验组四、二维电子气浓度为3.0×1013cm-2,缓冲层2漏电流3.2×10-3A/mm;Experimental group 4. The two-dimensional electron gas concentration is 3.0×10 13 cm -2 and the leakage current of buffer layer 2 is 3.2×10 -3 A/mm;

实验组五、二维电子气浓度为2.7×1013cm-2,缓冲层2漏电流1.08×10-3A/mm;Experimental group 5. The two-dimensional electron gas concentration is 2.7×10 13 cm -2 and the leakage current of buffer layer 2 is 1.08×10 -3 A/mm;

实验组六、二维电子气浓度为2.3×1013cm-2,缓冲层2漏电流9.96×10-4A/mm;Experimental group 6. The two-dimensional electron gas concentration is 2.3×10 13 cm -2 and the leakage current of buffer layer 2 is 9.96×10 -4 A/mm;

实验组七、二维电子气浓度为3.0×1013cm-2,缓冲层2漏电流8.5×10-4A/mm;Experimental group 7. The two-dimensional electron gas concentration is 3.0×10 13 cm -2 and the leakage current of buffer layer 2 is 8.5×10 -4 A/mm;

实验组八、二维电子气浓度为8.7×1012cm-2,缓冲层2漏电流8.1×10-4A/mm;Experimental group 8. The two-dimensional electron gas concentration is 8.7×10 12 cm -2 and the leakage current of buffer layer 2 is 8.1×10 -4 A/mm;

实验组九、二维电子气浓度为3.3×1013cm-2,缓冲层2漏电流1.2×10-4A/mm;Experimental group 9. The two-dimensional electron gas concentration is 3.3×10 13 cm -2 and the leakage current of buffer layer 2 is 1.2×10 -4 A/mm;

对照组一、二维电子气浓度为1.1×1013cm-2,缓冲层2漏电流7.4×10-2A/mm;In control group 1, the two-dimensional electron gas concentration is 1.1×10 13 cm -2 and the leakage current of buffer layer 2 is 7.4×10 -2 A/mm;

对照组二、二维电子气浓度为2.8×1012cm-2,缓冲层2漏电流6.7×10-4A/mm。In control group 2, the two-dimensional electron gas concentration is 2.8×10 12 cm -2 and the leakage current of buffer layer 2 is 6.7×10 -4 A/mm.

由上表可知,根据本发明上述实验例与对比例的实验数据可知,相比于传统的制备方法,采用本发明公开的制备方法制备的晶体管,其提高了二维电子气浓度及降低了缓冲层2的漏电流,从而提高了器件的可靠性能。改善了沟道层二维电子气浓度低,高频、高功率器件输出被限制的问题。降低了缓冲层2漏电流大,抗击穿电压能力低问题,提高了器件的可靠性能。As can be seen from the above table, according to the experimental data of the above-mentioned experimental examples and comparative examples of the present invention, compared with the traditional preparation method, the transistor prepared using the preparation method disclosed in the present invention has an increased two-dimensional electron gas concentration and a reduced buffer. Layer 2 leakage current, thereby improving device reliability. It improves the problem that the two-dimensional electron gas concentration in the channel layer is low and the output of high-frequency and high-power devices is limited. The problem of large leakage current and low breakdown voltage capability of the buffer layer 2 is reduced, and the reliability of the device is improved.

实施例二Embodiment 2

请参阅图2,所示为本发明第二实施例中的一种高电子迁移率晶体管的制备方法,所述方法包括以下步骤:步骤S01~ S07;Please refer to Figure 2, which shows a method for preparing a high electron mobility transistor in a second embodiment of the present invention. The method includes the following steps: steps S01~S07;

S01:提供一衬底1;S01: Provide a substrate 1;

衬底1包括但不限于硅衬、蓝宝石衬底、碳化硅衬底、GaN衬底;作为本发明的一个示例,采用硅衬底作为本示例的外延层生长衬底。The substrate 1 includes but is not limited to a silicon substrate, a sapphire substrate, a silicon carbide substrate, and a GaN substrate; as an example of the present invention, a silicon substrate is used as the epitaxial layer growth substrate in this example.

S02:在所述衬底1上沉积缓冲层2;S02: Deposit buffer layer 2 on the substrate 1;

所述缓冲层2包括但不限于AlN、AlGaN、GaN中任意一种或其组合,作为本发明的一个示例,成核层为AlGaN缓冲层,N(氮)源可为NH3,Ga(镓)源可为TMGa,Al(铝)源可为TMAl,具体沉积工艺为,反应腔温度可为750℃-1050℃,腔体压力可为100 torr -200torr,生长厚度可为1.4 μm -2.8μm,具体的,AlGaN缓冲层厚度可为2.1μm。The buffer layer 2 includes but is not limited to any one of AlN, AlGaN, GaN or a combination thereof. As an example of the present invention, the nucleation layer is an AlGaN buffer layer, and the N (nitrogen) source can be NH 3 , Ga (gallium) ) source can be TMGa, Al (aluminum) source can be TMAl, the specific deposition process is, the reaction chamber temperature can be 750℃-1050℃, the chamber pressure can be 100 torr -200torr, and the growth thickness can be 1.4 μm -2.8μm , specifically, the thickness of the AlGaN buffer layer may be 2.1 μm.

S03:在所述缓冲上沉积复合插入层3;S03: Deposit composite insertion layer 3 on the buffer;

所述复合插入层3包括依次沉积的电子阻挡层31、过渡层、及改善层;The composite insertion layer 3 includes an electron blocking layer 31, a transition layer, and an improvement layer deposited in sequence;

所述电子阻挡层31为周期性交替生长的Ga2O3层和氮极性AlGaN层;所述过渡层为镓极性AlInGaN过渡层32;所述镓极性AlInGaN过渡层其Al组分沿外延层生长方向逐渐降低,其In组分沿外延层生长方向逐渐升高;所述改善层为氮极性InGaN改善层33;The electron blocking layer 31 is a periodically alternately grown Ga 2 O 3 layer and a nitrogen polar AlGaN layer; the transition layer is a gallium polar AlInGaN transition layer 32; the Al component of the gallium polar AlInGaN transition layer is along The growth direction of the epitaxial layer gradually decreases, and its In composition gradually increases along the growth direction of the epitaxial layer; the improvement layer is the nitrogen polarity InGaN improvement layer 33;

沉积电子阻挡层31具体工艺为,向反应腔内通入生长所需O(氧)源,Ga(镓)源,维持反应腔温度为800℃-1200℃,反应腔压力为150 torr -200torr,生长单层厚度为200nm-500nm的Ga2O3层,随后停止通入O(氧)源,向反应腔内通入N(氮)源Al(铝)源,Ga(镓)源,其中通入反应腔中N(氮)源的摩尔流量与Ga(镓)源的摩尔流量比值≥1400,反应腔压力可为50 torr -200torr,生长单层厚度为100nm-400nm的氮极性AlGaN层,使得生长出的电子阻挡层31为2-6个周期性交替生长的Ga2O3层和氮极性AlGaN层组成。The specific process of depositing the electron blocking layer 31 is to introduce the O (oxygen) source and Ga (gallium) source required for growth into the reaction chamber, maintain the reaction chamber temperature at 800°C-1200°C, and the reaction chamber pressure at 150 torr-200torr. Grow a Ga 2 O 3 layer with a single layer thickness of 200nm-500nm, then stop feeding the O (oxygen) source, and feed the N (nitrogen) source, Al (aluminum) source, and Ga (gallium) source into the reaction chamber, where The ratio of the molar flow rate of the N (nitrogen) source to the molar flow rate of the Ga (gallium) source entering the reaction chamber is ≥1400. The reaction chamber pressure can be 50 torr -200torr, and a nitrogen polar AlGaN layer with a single layer thickness of 100nm-400nm is grown. The grown electron blocking layer 31 is composed of 2-6 periodically alternately grown Ga 2 O 3 layers and nitrogen polar AlGaN layers.

沉积过渡层的具体工艺为,向反应腔内通入生长所需N(氮)源,Al(铝)源,Ga(镓)源,In(铟)源,其中通入反应腔中N(氮)源的摩尔流量与Ga(镓)源的摩尔流量比值≤300,反应腔温度为800℃-1050℃,反应腔压力可为150 torr -250torr,生长Al组分为0-0.15、In组分为0.15-0.25的厚度为50nm-300nm的镓极性AlInGaN过渡层32,其中Al组分沿生长方向逐渐降低,In组分沿生长方向逐渐升高。The specific process of depositing the transition layer is to introduce the N (nitrogen) source, Al (aluminum) source, Ga (gallium) source, and In (indium) source required for growth into the reaction chamber. ) source to the molar flow rate of the Ga (gallium) source ≤ 300, the reaction chamber temperature is 800℃-1050℃, the reaction chamber pressure can be 150 torr -250torr, the growth Al component is 0-0.15, and the In component A gallium polar AlInGaN transition layer 32 with a thickness of 50 nm to 300 nm is 0.15-0.25, in which the Al component gradually decreases along the growth direction, and the In component gradually increases along the growth direction.

沉积改善层的具体工艺为,向反应腔内通入生长所需N(氮)源,Ga(镓)源,In(铟)源,其中通入反应腔中N(氮)源的摩尔流量与Ga(镓)源的摩尔流量比值≥1400,反应腔温度为800℃-1000℃,反应腔压力可为150 torr -300torr,生长单层厚度为100nm-400nm的氮极性InGaN改善层33。The specific process for depositing the improvement layer is to introduce the N (nitrogen) source, Ga (gallium) source, and In (indium) source required for growth into the reaction chamber. The molar flow rate of the N (nitrogen) source into the reaction chamber is equal to The molar flow ratio of the Ga (gallium) source is ≥1400, the reaction chamber temperature is 800°C-1000°C, the reaction chamber pressure can be 150 torr-300torr, and a nitrogen polarity InGaN improvement layer 33 with a single layer thickness of 100nm-400nm is grown.

S04:在所述复合插入层3上沉积沟道层。S04: Deposit a channel layer on the composite insertion layer 3 .

作为本发明的一个示例,所述沟道层为InGaN沟道层,InGaN沟道层的具体沉积工艺为,反应腔温度可为650℃-950℃,反应腔压力可为50 torr -200torr,N(氮)源可为NH3,Ga(镓)源可为TEGa,In(铟)源可为TMIn,生长厚度可为50 nm -300nm,具体的作为本发明的一个示例,InGaN沟道层4厚度可为160nm。As an example of the present invention, the channel layer is an InGaN channel layer. The specific deposition process of the InGaN channel layer is: the reaction chamber temperature can be 650°C-950°C, and the reaction chamber pressure can be 50 torr-200torr, N The (nitrogen) source can be NH 3 , the Ga (gallium) source can be TEGa, the In (indium) source can be TMIn, and the growth thickness can be 50 nm-300nm. Specifically, as an example of the present invention, the InGaN channel layer 4 The thickness can be 160nm.

S05:在所述沟道层上沉积AlN插入层5;S05: Deposit an AlN insertion layer 5 on the channel layer;

作为本发明的一个示例,N(氮)源可为NH3,Al(铝)源可为TMGa,AlN插入层5的具体沉积工艺为,反应腔温度可为750℃-1050℃,反应腔压力可为100 torr -150torr,生长厚度可为1 nm -6nm,具体的AlN插入层5厚度可为4nm。As an example of the present invention, the N (nitrogen) source can be NH 3 and the Al (aluminum) source can be TMGa. The specific deposition process of the AlN insertion layer 5 is: the reaction chamber temperature can be 750°C-1050°C, and the reaction chamber pressure It can be 100 torr -150torr, the growth thickness can be 1 nm -6nm, and the specific thickness of the AlN insertion layer 5 can be 4nm.

S06:在所述AlN插入层5上沉积势垒层6;S06: Deposit barrier layer 6 on the AlN insertion layer 5;

作为本发明的一个示例,所述势垒层6为AlGaN势垒层, N(氮)源可为NH3,Al(铝)源可为TMAl,Ga(镓)源可为TEGa,反应腔温度可为850℃-1150℃,反应腔压力可为100 torr-200torr,AlGaN势垒层生长厚度可为10 nm -45nm,具体的AlGaN势垒层厚度可为25nm。As an example of the present invention, the barrier layer 6 is an AlGaN barrier layer, the N (nitrogen) source can be NH3, the Al (aluminum) source can be TMAl, the Ga (gallium) source can be TEGa, and the reaction chamber temperature can be The temperature is 850℃-1150℃, the reaction chamber pressure can be 100 torr-200torr, the AlGaN barrier layer growth thickness can be 10 nm-45nm, and the specific AlGaN barrier layer thickness can be 25nm.

S07:在所述势垒层6上沉积盖帽层7;S07: Deposit the capping layer 7 on the barrier layer 6;

所述盖帽层7为GaN盖帽层, N(氮)源可为NH3,Ga(镓)源可为TEGa,反应腔温度可为750℃-1100℃,反应腔压力可为150 torr -250torr,生长厚度可为10 nm -50nm,具体的,GaN盖帽层厚度可为30nm。The cap layer 7 is a GaN cap layer, the N (nitrogen) source can be NH3, the Ga (gallium) source can be TEGa, the reaction chamber temperature can be 750°C-1100°C, and the reaction chamber pressure can be 150 torr-250torr. The thickness can be 10 nm-50nm. Specifically, the thickness of the GaN cap layer can be 30nm.

综上,本发明上述实施例当中的高电子迁移率晶体管及制备方法,第一、InGaN沟道层4与AlGaN势垒层因其强极化作用,可产生更高浓度的二维电子气浓度,且InGaN其更深的InGaN势阱也更利于限制所产生的二维电子气;To sum up, in the high electron mobility transistor and the preparation method in the above embodiments of the present invention, first, the InGaN channel layer 4 and the AlGaN barrier layer can generate a higher concentration of two-dimensional electron gas concentration due to their strong polarization. , and the deeper InGaN potential well of InGaN is also more conducive to confining the generated two-dimensional electron gas;

第二、复合插入层3中氮极性InGaN改善层33的引入,可为InGaN沟道层4提供良好的生长平台,提高InGaN沟道层4晶体质量,另一方面也避免了沟道层直接受到缓冲层2、复合插入层3中电子阻挡层31以及过渡层压应力,减少了InGaN沟道层4中由AlGaN势垒层沿缓冲层2方向的内建电场,改善了因此内建电场降低沟道层二维电子气浓度的问题,而氮极性InGaN改善层33的极性反转,其在代替沟道层受到压应力时,产生的内建电场反转,进一步的提升了InGaN沟道层4的二维电子气浓度,提升了器件的工作频率和输出功率;Second, the introduction of the nitrogen polarity InGaN improvement layer 33 in the composite insertion layer 3 can provide a good growth platform for the InGaN channel layer 4 and improve the crystal quality of the InGaN channel layer 4. On the other hand, it also avoids direct contact between the channel layer and the InGaN channel layer 4. Due to the compressive stress of the electron blocking layer 31 in the buffer layer 2, the composite insertion layer 3 and the transition layer, the built-in electric field from the AlGaN barrier layer in the InGaN channel layer 4 along the direction of the buffer layer 2 is reduced, thereby improving the built-in electric field reduction The problem of two-dimensional electron gas concentration in the channel layer, and the polarity reversal of the nitrogen polarity InGaN improvement layer 33, which generates a built-in electric field reversal when the channel layer is subjected to compressive stress, further improves the performance of the InGaN channel. The two-dimensional electron gas concentration in channel layer 4 increases the operating frequency and output power of the device;

第三、复合插入层3中镓极性AlInGaN过渡层32沿外延层生长方向,Al组分逐渐减少,In组分逐渐升高,提使得复合插入层3中电子阻挡层31与氮极性InGaN改善层33晶格更加匹配,提高氮极性InGaN改善层33的晶体质量,而镓极性的AlInGaN过渡层在受到复合插入层3中电子阻挡层31的压应力时产生的内建电场,可使沟道层向缓冲层2迁移的电子回流,减少缓冲层2漏电流。Third, along the growth direction of the epitaxial layer, the Al component of the gallium polar AlInGaN transition layer 32 in the composite insertion layer 3 gradually decreases, and the In component gradually increases, which improves the relationship between the electron blocking layer 31 in the composite insertion layer 3 and the nitrogen polarity InGaN. The lattice of the improvement layer 33 is more matched, improving the crystal quality of the nitrogen polarity InGaN improvement layer 33, and the built-in electric field generated by the gallium polarity AlInGaN transition layer when subjected to the compressive stress of the electron blocking layer 31 in the composite insertion layer 3 can The electrons migrating from the channel layer to the buffer layer 2 are reflowed, thereby reducing the leakage current of the buffer layer 2 .

第四、复合插入层3中电子阻挡层31中Ga2O3层具有较高的禁带宽度,可有效阻挡沟道层电子向缓冲层2迁移,另一方面氮极性AlGaN层在受到Ga2O3层的拉应力时产生的内建电场与复合插入层3中镓极性AlInGaN过渡层32内建电场一致,加强沟道层向缓冲层2迁移的电子的回流能力,周期性交替生长的Ga2O3层和氮极性AlGaN层大幅降低了缓冲层2的漏电流,提升了器件的抗击穿电压能力,提高了可靠性能。Fourth, the Ga 2 O 3 layer in the electron blocking layer 31 in the composite insertion layer 3 has a high bandgap, which can effectively block the migration of electrons from the channel layer to the buffer layer 2. On the other hand, the nitrogen polar AlGaN layer is affected by Ga The built-in electric field generated by the tensile stress of the 2 O 3 layer is consistent with the built-in electric field of the gallium polar AlInGaN transition layer 32 in the composite insertion layer 3, which strengthens the reflow ability of electrons migrating from the channel layer to the buffer layer 2, and periodically grows alternately. The Ga 2 O 3 layer and the nitrogen polar AlGaN layer greatly reduce the leakage current of the buffer layer 2, improve the device's ability to withstand breakdown voltage, and improve the reliability performance.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "an example," "specific examples," or "some examples" or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围为的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围为。因此,本发明专利的保护范围为应以所附权利要求为准。The above-described embodiments only express several implementation modes of the present invention, and their descriptions are relatively specific and detailed, but they should not be construed as limiting the patent scope of the present invention. It should be noted that for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all fall within the protection scope of the present invention. Therefore, the scope of protection of the patent of the present invention shall be determined by the appended claims.

Claims (10)

1.一种高电子迁移率晶体管,其特征在于,包括复合插入层及沉积在所述复合插入层上的沟道层;1. A high electron mobility transistor, characterized in that it includes a composite insertion layer and a channel layer deposited on the composite insertion layer; 所述沟道层为InGaN沟道层,所述复合插入层包括依次沉积的电子阻挡层、过渡层及改善层,所述电子阻挡层包括周期性交替生长的Ga2O3层和氮极性AlGaN层,所述过渡层为镓极性AlInGaN过渡层,所述改善层为氮极性InGaN改善层,所述镓极性AlInGaN过渡层其Al组分沿所述镓极性AlInGaN过渡层生长方向逐渐降低,所述镓极性AlInGaN过渡层其In组分沿所述镓极性AlInGaN过渡层生长方向逐渐升高。The channel layer is an InGaN channel layer. The composite insertion layer includes an electron blocking layer, a transition layer and an improvement layer deposited in sequence. The electron blocking layer includes periodically alternately grown Ga 2 O 3 layers and nitrogen polarity layers. AlGaN layer, the transition layer is a gallium polar AlInGaN transition layer, the improvement layer is a nitrogen polarity InGaN improvement layer, the Al component of the gallium polar AlInGaN transition layer is along the growth direction of the gallium polar AlInGaN transition layer Gradually decreases, and the In composition of the gallium polar AlInGaN transition layer gradually increases along the growth direction of the gallium polar AlInGaN transition layer. 2.根据权利要求1所述的高电子迁移率晶体管,其特征在于,所述Ga2O3层的厚度范围为50 nm -200nm,所述氮极性AlGaN层的厚度范围为100 nm -400nm,所述镓极性AlInGaN过渡层的厚度范围为50 nm -300nm,所述氮极性InGaN改善层的厚度范围为100 nm -400nm。2. The high electron mobility transistor according to claim 1, characterized in that the thickness of the Ga 2 O 3 layer ranges from 50 nm to 200 nm, and the thickness of the nitrogen polar AlGaN layer ranges from 100 nm to 400 nm. , the thickness of the gallium polar AlInGaN transition layer ranges from 50 nm to 300 nm, and the thickness of the nitrogen polar InGaN improvement layer ranges from 100 nm to 400 nm. 3.根据权利要求1所述的高电子迁移率晶体管,其特征在于,所述镓极性AlInGaN过渡层的Al组分范围为0-0.2,所述镓极性AlInGaN过渡层In组分范围为0.05-0.3。3. The high electron mobility transistor according to claim 1, wherein the Al component range of the gallium polar AlInGaN transition layer is 0-0.2, and the In component range of the gallium polar AlInGaN transition layer is 0.05-0.3. 4.根据权利要求1~3任一项所述的高电子迁移率晶体管,其特征在于,所述高电子迁移率晶体管还包括衬底、缓冲层、AlN插入层、势垒层及盖帽层,所述缓冲层、所述复合插入层、所述沟道层、所述AlN插入层、所述势垒层及所述盖帽层依次沉积在所述衬底上。4. The high electron mobility transistor according to any one of claims 1 to 3, characterized in that the high electron mobility transistor further includes a substrate, a buffer layer, an AlN insertion layer, a barrier layer and a cap layer, The buffer layer, the composite insertion layer, the channel layer, the AlN insertion layer, the barrier layer and the capping layer are sequentially deposited on the substrate. 5.根据权利要求4所述的高电子迁移率晶体管,其特征在于,所述缓冲层的厚度范围为1.4 μm -2.8μm,所述沟道层的厚度范围为50 nm -300nm,所述势垒层的厚度范围为10 nm-45nm,所述盖帽层的厚度范围为10nm-50nm,所述势垒层为AlGaN势垒层,所述盖帽层为GaN盖帽层。5. The high electron mobility transistor according to claim 4, wherein the thickness of the buffer layer ranges from 1.4 μm to 2.8 μm, the thickness of the channel layer ranges from 50 nm to 300 nm, and the potential The thickness of the barrier layer ranges from 10 nm to 45 nm, the thickness of the cap layer ranges from 10 nm to 50 nm, the barrier layer is an AlGaN barrier layer, and the cap layer is a GaN cap layer. 6.根据权利要求1所述的高电子迁移率晶体管,其特征在于,所述电子阻挡层中所述Ga2O3层和所述氮极性AlGaN层交替生长周期取值范围为2-6。6. The high electron mobility transistor according to claim 1, wherein the alternating growth period of the Ga 2 O 3 layer and the nitrogen polarity AlGaN layer in the electron blocking layer ranges from 2 to 6 . 7.一种如权利要求1-6任一项所述的高电子迁移率晶体管的制备方法,其特征在于,包括以下步骤:7. A method for preparing a high electron mobility transistor according to any one of claims 1 to 6, characterized in that it includes the following steps: 提供一衬底;provide a substrate; 在所述衬底上沉积缓冲层;depositing a buffer layer on the substrate; 在所述缓冲层上沉积复合插入层,其中,所述复合插入层包括依次沉积的电子阻挡层、过渡层及改善层,所述电子阻挡层包括周期性交替生长的Ga2O3层和氮极性AlGaN层,所述过渡层为镓极性AlInGaN过渡层,所述改善层为氮极性InGaN改善层,所述镓极性AlInGaN过渡层其Al组分沿所述镓极性AlInGaN过渡层生长方向逐渐降低,所述镓极性AlInGaN过渡层其In组分沿所述镓极性AlInGaN过渡层生长方向逐渐升高;A composite insertion layer is deposited on the buffer layer, wherein the composite insertion layer includes an electron blocking layer, a transition layer and an improvement layer deposited in sequence, and the electron blocking layer includes periodically alternately grown Ga 2 O 3 layers and nitrogen. Polar AlGaN layer, the transition layer is a gallium polar AlInGaN transition layer, the improvement layer is a nitrogen polarity InGaN improvement layer, the Al component of the gallium polar AlInGaN transition layer is along the gallium polarity AlInGaN transition layer The growth direction gradually decreases, and the In component of the gallium polar AlInGaN transition layer gradually increases along the growth direction of the gallium polar AlInGaN transition layer; 在所述复合插入层上沉积沟道层,其中,所述沟道层为InGaN沟道层;Deposit a channel layer on the composite insertion layer, wherein the channel layer is an InGaN channel layer; 在所述沟道层上沉积AlN插入层;depositing an AlN insertion layer on the channel layer; 在所述AlN插入层上沉积势垒层;depositing a barrier layer on the AlN insertion layer; 在所述势垒层上沉积盖帽层。A capping layer is deposited on the barrier layer. 8.根据权利要求7所述的高电子迁移率晶体管的制备方法,其特征在于,生长所述电子阻挡层中所述氮极性AlGaN层的N源与Ga源的摩尔流量比值大于或者等于1400。8. The method for preparing a high electron mobility transistor according to claim 7, wherein the molar flow ratio of the N source to the Ga source for growing the nitrogen polar AlGaN layer in the electron blocking layer is greater than or equal to 1400 . 9.根据权利要求7所述的高电子迁移率晶体管的制备方法,其特征在于,生长所述镓极性AlInGaN过渡层的N源与Ga源的摩尔流量比值小于或者等于300。9. The method for preparing a high electron mobility transistor according to claim 7, wherein the molar flow ratio of the N source to the Ga source for growing the gallium polar AlInGaN transition layer is less than or equal to 300. 10.根据权利要求7所述的高电子迁移率晶体管的制备方法,其特征在于,生长所述氮极性InGaN改善层的N源与Ga源的摩尔流量比值大于或者等于1400。10. The method for preparing a high electron mobility transistor according to claim 7, wherein the molar flow ratio of the N source to the Ga source for growing the nitrogen polarity InGaN improvement layer is greater than or equal to 1400.
CN202311188654.7A 2023-09-15 2023-09-15 A high electron mobility transistor and preparation method Active CN116978944B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311188654.7A CN116978944B (en) 2023-09-15 2023-09-15 A high electron mobility transistor and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311188654.7A CN116978944B (en) 2023-09-15 2023-09-15 A high electron mobility transistor and preparation method

Publications (2)

Publication Number Publication Date
CN116978944A true CN116978944A (en) 2023-10-31
CN116978944B CN116978944B (en) 2023-12-01

Family

ID=88479870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311188654.7A Active CN116978944B (en) 2023-09-15 2023-09-15 A high electron mobility transistor and preparation method

Country Status (1)

Country Link
CN (1) CN116978944B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031229A1 (en) * 2012-08-24 2014-02-27 Northrop Grumman Systems Corporation Ingan channel n-polar gan hemt profile
CN106158950A (en) * 2015-04-17 2016-11-23 北京大学 A kind of device architecture improving enhancement mode GaN MOS channel mobility and implementation method
US20190348532A1 (en) * 2016-11-16 2019-11-14 The Regents Of The University Of California A structure for increasing mobility in a high electron mobility transistor
CN114420754A (en) * 2021-12-08 2022-04-29 华灿光电(浙江)有限公司 High electron mobility transistor epitaxial wafer with improved high resistance layer and preparation method thereof
CN115101585A (en) * 2022-08-22 2022-09-23 江西兆驰半导体有限公司 Gallium nitride-based high electron mobility transistor and preparation method thereof
CN116565003A (en) * 2023-07-04 2023-08-08 江西兆驰半导体有限公司 Epitaxial wafer, preparation method thereof and high-electron-mobility transistor
CN116741822A (en) * 2023-06-06 2023-09-12 江西兆驰半导体有限公司 High electron mobility transistor epitaxial structure, preparation method and HEMT device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031229A1 (en) * 2012-08-24 2014-02-27 Northrop Grumman Systems Corporation Ingan channel n-polar gan hemt profile
CN106158950A (en) * 2015-04-17 2016-11-23 北京大学 A kind of device architecture improving enhancement mode GaN MOS channel mobility and implementation method
US20190348532A1 (en) * 2016-11-16 2019-11-14 The Regents Of The University Of California A structure for increasing mobility in a high electron mobility transistor
CN114420754A (en) * 2021-12-08 2022-04-29 华灿光电(浙江)有限公司 High electron mobility transistor epitaxial wafer with improved high resistance layer and preparation method thereof
CN115101585A (en) * 2022-08-22 2022-09-23 江西兆驰半导体有限公司 Gallium nitride-based high electron mobility transistor and preparation method thereof
CN116741822A (en) * 2023-06-06 2023-09-12 江西兆驰半导体有限公司 High electron mobility transistor epitaxial structure, preparation method and HEMT device
CN116565003A (en) * 2023-07-04 2023-08-08 江西兆驰半导体有限公司 Epitaxial wafer, preparation method thereof and high-electron-mobility transistor

Also Published As

Publication number Publication date
CN116978944B (en) 2023-12-01

Similar Documents

Publication Publication Date Title
CN101834248B (en) Gallium Nitride-based Light Emitting Diodes
CN108987538B (en) LED epitaxial structure, preparation method thereof and semiconductor device
CN115101585B (en) GaN-based high electron mobility transistor and its preparation method
CN103123934B (en) The gallium nitride based transistor structure with high electron mobility of tool barrier layer and manufacture method
CN115020558B (en) High-recombination-efficiency light-emitting diode epitaxial wafer and preparation method thereof
CN104241352A (en) GaN-based HEMT structure with polarized induction doped high-resistance layer and growing method of GaN-based HEMT structure
CN106128948A (en) Strain modulating layer is utilized to reduce structure and the method for GaN layer threading dislocation on a si substrate
CN111900237A (en) A kind of ultraviolet LED chip and its manufacturing method
CN110828627A (en) Covariable stress AlN structure and preparation method thereof
CN114551594A (en) Epitaxial wafer, epitaxial wafer growth method and high-electron-mobility transistor
CN117393667A (en) Light-emitting diode epitaxial wafer and preparation method thereof, LED
CN104916745A (en) GaN-based LED epitaxial structure and its preparation method
CN116565003A (en) Epitaxial wafer, preparation method thereof and high-electron-mobility transistor
CN105336825B (en) A kind of LED epitaxial growth method
CN105990106A (en) Semiconductor heterostructure, and preparation method and applications thereof
CN117153878B (en) HEMT epitaxial structure, preparation method thereof and HEMT device
CN116646248B (en) Epitaxial wafer preparation method, epitaxial wafer thereof and high-electron mobility transistor
CN116960248B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN110429128B (en) Low-barrier multi-quantum-well high-resistance buffer layer epitaxial structure and preparation method thereof
CN106299059A (en) A kind of LED epitaxial structure improving internal quantum efficiency having electronic barrier layer
CN108110048A (en) High resistant III nitride semiconductor epitaxial structure and preparation method thereof
CN116454184B (en) A high-light-efficiency LED epitaxial wafer and its preparation method, LED
CN108550668A (en) A kind of LED epitaxial slice and preparation method thereof
CN116978944A (en) High electron mobility transistor and preparation method thereof
CN116936631B (en) Epitaxial structure and preparation method of gallium nitride-based transistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant