CN116960253A - Flip light-emitting diode chip and preparation method thereof - Google Patents
Flip light-emitting diode chip and preparation method thereof Download PDFInfo
- Publication number
- CN116960253A CN116960253A CN202311206427.2A CN202311206427A CN116960253A CN 116960253 A CN116960253 A CN 116960253A CN 202311206427 A CN202311206427 A CN 202311206427A CN 116960253 A CN116960253 A CN 116960253A
- Authority
- CN
- China
- Prior art keywords
- layer
- photoresist
- ohmic contact
- light
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 239000010410 layer Substances 0.000 claims abstract description 450
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 193
- 238000006243 chemical reaction Methods 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000011241 protective layer Substances 0.000 claims abstract description 28
- 238000000151 deposition Methods 0.000 claims abstract description 17
- 239000011248 coating agent Substances 0.000 claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 13
- 238000002955 isolation Methods 0.000 claims abstract description 11
- 238000005530 etching Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 82
- 230000008569 process Effects 0.000 claims description 60
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 41
- 238000007747 plating Methods 0.000 claims description 31
- 238000005566 electron beam evaporation Methods 0.000 claims description 22
- 238000001312 dry etching Methods 0.000 claims description 12
- 238000009413 insulation Methods 0.000 claims description 11
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 4
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 4
- 239000013077 target material Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 238000001704 evaporation Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 239000007789 gas Substances 0.000 description 15
- 230000008020 evaporation Effects 0.000 description 13
- 238000000137 annealing Methods 0.000 description 10
- 230000001154 acute effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 8
- 238000010894 electron beam technology Methods 0.000 description 6
- -1 oxygen ions Chemical class 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229910008433 SnCU Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/034—Manufacture or treatment of coatings
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域Technical field
本发明涉及半导体技术领域,尤其涉及一种倒装发光二极管芯片及其制备方法。The present invention relates to the field of semiconductor technology, and in particular to a flip-chip light-emitting diode chip and a preparation method thereof.
背景技术Background technique
发光二极管芯片具有节能环保、高效、半永久寿命被广泛应用于照明和显示领域,倒装发光二极管芯片更是具有散热能力强,可大电流使用的优点。Light-emitting diode chips are energy-saving, environmentally friendly, highly efficient, and have a semi-permanent life and are widely used in the lighting and display fields. Flip-chip light-emitting diode chips have the advantages of strong heat dissipation and can be used with high current.
Ag金属凭借其对可见光极高的反射率被用做倒装发光二极管芯片的反射镜,反射来自外延层的光线使其从衬底面发出,但Ag金属对于基底材料的洁净度要求极高,且Ag金属与其它非金属材料的粘结度较差,故现有倒装发光二极管芯片将Ag金属制备为反射镜,在蓝膜剥离过程中Ag金属极易从基底材料上脱落,造成倒装发光二极管芯片良率降低。Ag metal is used as a reflector for flip-chip light-emitting diode chips due to its extremely high reflectivity of visible light. It reflects the light from the epitaxial layer and makes it emit from the substrate surface. However, Ag metal has extremely high requirements for the cleanliness of the base material, and Ag metal has poor adhesion with other non-metallic materials. Therefore, existing flip-chip light-emitting diode chips use Ag metal as a reflector. During the peeling process of the blue film, the Ag metal easily falls off from the base material, causing flip-chip light emission. Diode chip yield is reduced.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供了一种倒装发光二极管芯片及其制备方法。In order to solve the above technical problems, the present invention provides a flip-chip light-emitting diode chip and a preparation method thereof.
本发明采用以下技术方案:一种倒装发光二极管芯片的制备方法,包括以下步骤:The present invention adopts the following technical solution: a method for preparing a flip-chip light-emitting diode chip, which includes the following steps:
提供一衬底,在所述衬底上依次沉积N型GaN层、量子阱层及P型GaN层,以形成外延层,并在所述P型GaN层上沉积第一欧姆接触层;Provide a substrate, deposit an N-type GaN layer, a quantum well layer and a P-type GaN layer sequentially on the substrate to form an epitaxial layer, and deposit a first ohmic contact layer on the P-type GaN layer;
在所述第一欧姆接触层上沉积多个呈圆锥台状的光角转换层;depositing a plurality of frustum-shaped optical angle conversion layers on the first ohmic contact layer;
在所述第一欧姆接触层上沉积第二欧姆接触层,其中,所述第二欧姆接触层的下端与所述第一欧姆接触层抵接,所述第二欧姆接触层上具有与所述光角转换层对应的多个通孔,且所述通孔的孔径大于所述光角转换层的下端直径;A second ohmic contact layer is deposited on the first ohmic contact layer, wherein the lower end of the second ohmic contact layer is in contact with the first ohmic contact layer, and the second ohmic contact layer has a A plurality of through holes corresponding to the light angle conversion layer, and the aperture of the through holes is larger than the diameter of the lower end of the light angle conversion layer;
在所述第二欧姆接触层的边缘制备外延层凹部,所述外延层凹部的底面为所述N型GaN层;An epitaxial layer recess is prepared at the edge of the second ohmic contact layer, and the bottom surface of the epitaxial layer recess is the N-type GaN layer;
对所述外延层凹部的边缘进行刻蚀处理,形成隔离槽;Perform an etching process on the edge of the recessed portion of the epitaxial layer to form an isolation trench;
在所述第二欧姆接触层上依次涂覆多层光刻胶,并依次对所述光刻胶曝光,以形成反射层开口,所述反射层开口为下端宽、上端窄的结构;Apply multiple layers of photoresist on the second ohmic contact layer in sequence, and expose the photoresist in sequence to form a reflective layer opening, where the reflective layer opening has a structure with a wide lower end and a narrow upper end;
在最上层所述光刻胶表面依次沉积Ag层和Ti层,对所述衬底进行加热,将所述光刻胶及位于所述光刻胶表面的Ag层和Ti层去除,以形成反射镜层;An Ag layer and a Ti layer are sequentially deposited on the surface of the uppermost photoresist, the substrate is heated, and the photoresist and the Ag layer and Ti layer located on the surface of the photoresist are removed to form a reflection mirror layer;
在所述反射镜层上沉积绝缘保护层,在所述绝缘保护层上制备N型绝缘层通孔和P型绝缘层通孔;Deposit an insulating protective layer on the mirror layer, and prepare N-type insulating layer through holes and P-type insulating layer through holes on the insulating protective layer;
在所述绝缘保护层上沉积N型焊盘层和P型焊盘层,所述N型焊盘层通过所述N型绝缘层通孔与所述N型GaN层连接,所述P型焊盘层通过所述P型绝缘层通孔与所述反射镜层连接。An N-type pad layer and a P-type pad layer are deposited on the insulating protective layer. The N-type pad layer is connected to the N-type GaN layer through the N-type insulating layer through hole. The P-type bonding layer The disk layer is connected to the mirror layer through the P-type insulation layer through hole.
本发明一实施例的倒装发光二极管芯片的制备方法,通过设置光角转换层,使后续沉积在光角转换层之上的反射镜层形成一梯形斜面的台面,外延层发出的部分与衬底所夹锐角较小的光线通过该梯形斜面的台面的反射,转换为与衬底所夹锐角较大的光线,从而减小光在各层材料之间传播的全反射,提升倒装发光二极管芯片亮度;通过对衬底进行加热使得光刻胶软化坍塌,将沉积在反射层开口内的Ag层和Ti层边缘完成包覆,降低后续蓝膜剥离时反射镜层脱落的风险,而且最上层光刻胶与光刻胶表面的Ag层和Ti层会随着光刻胶的软化坍塌形成间隙,使得光刻胶表面的Ag层和Ti层更容易从光刻胶表面脱落,这样便可以减小蓝膜的粘度,进一步减小反射镜层脱落的风险,有效提高了倒装发光二极管的良率。A method for preparing a flip-chip light-emitting diode chip according to an embodiment of the present invention provides a light angle conversion layer so that the mirror layer subsequently deposited on the light angle conversion layer forms a trapezoidal sloped mesa. The part emitted by the epitaxial layer is in contact with the lining. The light with a smaller acute angle between the bottom and the substrate is converted into a light with a larger acute angle with the substrate through the reflection of the trapezoidal inclined surface, thereby reducing the total reflection of light propagating between each layer of materials and improving the flip-chip light-emitting diode. Chip brightness; by heating the substrate, the photoresist softens and collapses, and the edges of the Ag layer and Ti layer deposited in the opening of the reflective layer are completely covered, reducing the risk of the mirror layer falling off when the subsequent blue film is peeled off, and the uppermost layer The photoresist and the Ag layer and Ti layer on the photoresist surface will collapse as the photoresist softens, forming a gap, making it easier for the Ag layer and Ti layer on the photoresist surface to fall off from the photoresist surface, which can reduce The viscosity of the small blue film further reduces the risk of the mirror layer falling off, effectively improving the yield of flip-chip light-emitting diodes.
进一步的,所述光角转换层为AlN层,所述光角转换层的上端直径介于7μm-11μm,下端直径介于8μm-12μm,所述光角转换层的厚度介于0.5μm-5μm,相邻所述光角转换层的中心间距为所述光角转换层的下端直径的两倍。Further, the light angle conversion layer is an AlN layer, the upper end diameter of the light angle conversion layer is between 7 μm and 11 μm, the lower end diameter is between 8 μm and 12 μm, and the thickness of the light angle conversion layer is between 0.5 μm and 5 μm. , the center distance between adjacent light angle conversion layers is twice the diameter of the lower end of the light angle conversion layer.
进一步的,所述在所述第二欧姆接触层上依次涂覆多层光刻胶,并依次对所述光刻胶曝光,以形成反射层开口的步骤具体包括:Further, the step of sequentially coating multiple layers of photoresist on the second ohmic contact layer and sequentially exposing the photoresist to form openings in the reflective layer specifically includes:
在所述光角转换层上涂覆第一正性光刻胶,采用第一掩膜板对所述第一正性光刻胶进行第一曝光;Coating a first positive photoresist on the light angle conversion layer, and using a first mask to perform a first exposure on the first positive photoresist;
在所述第一正性光刻胶上涂覆第一负性光刻胶,采用第二掩膜板对所述第一负性光刻胶进行第二曝光;Coating a first negative photoresist on the first positive photoresist, and using a second mask to perform a second exposure on the first negative photoresist;
在所述第一负性光刻胶上涂覆第二正性光刻胶,采用第三掩膜板对所述第二正性光刻胶进行第三曝光;Coating a second positive photoresist on the first negative photoresist, and using a third mask to perform a third exposure on the second positive photoresist;
采用显影工艺去除曝光过的所述第一正性光刻胶、所述第二正性光刻胶以及未曝光的所述第一负性光刻胶,形成由相互连通的第一正性光刻胶开口、第一负性光刻胶开口及第二正性光刻胶开口组成的反射层开口。A development process is used to remove the exposed first positive photoresist, the second positive photoresist and the unexposed first negative photoresist to form a first positive photoresist interconnected with each other. The reflective layer opening is composed of the resist opening, the first negative photoresist opening and the second positive photoresist opening.
进一步的,所述第一正性光刻胶开口的截面呈倒立梯形,所述第一负性光刻胶开口的截面呈正梯形,所述第二正性光刻胶开口的截面呈倒立梯形,所述第一正性光刻胶开口的上端宽度大于所述第一负性光刻胶开口的下端宽度,第一负性光刻胶开口的上端宽度等于所述第二正性光刻胶开口的下端宽度。Further, the cross section of the first positive photoresist opening is an inverted trapezoid, the cross section of the first negative photoresist opening is a positive trapezoid, and the cross section of the second positive photoresist opening is an inverted trapezoid, The upper end width of the first positive photoresist opening is greater than the lower end width of the first negative photoresist opening, and the upper end width of the first negative photoresist opening is equal to the second positive photoresist opening. The width of the lower end.
进一步的,所述第三曝光使用的光线的波长大于所述第二曝光使用的光线的波长。Further, the wavelength of the light used for the third exposure is greater than the wavelength of the light used for the second exposure.
进一步的,所述在最上层所述光刻胶表面依次沉积Ag层和Ti层的步骤具体包括:Further, the step of sequentially depositing an Ag layer and a Ti layer on the surface of the uppermost photoresist specifically includes:
采用电子束蒸镀工艺在最上层所述光刻胶表面沉积Ag层,其中,电子束蒸镀工艺中的镀锅沿轨道进行公转,同时镀锅进行自转,且每沉积1/4厚的Ag层时,对镀锅公转的方向及镀锅自转的方向进行反向调整;An Ag layer is deposited on the surface of the uppermost photoresist using an electron beam evaporation process. In the electron beam evaporation process, the plating pot revolves along the track, and at the same time, the plating pot rotates, and every 1/4 of the thickness of Ag is deposited. When layering, reversely adjust the direction of revolution of the plating pot and the direction of rotation of the plating pot;
在Ag层上采用电子束蒸镀工艺沉积Ti层,Ti层的厚度为Ag层厚度的1/10-1/8;A Ti layer is deposited on the Ag layer using an electron beam evaporation process. The thickness of the Ti layer is 1/10-1/8 of the thickness of the Ag layer;
其中,在电子束蒸镀工艺中,镀锅与金属靶材所在平面夹角的角度介于30°-60°。Among them, in the electron beam evaporation process, the angle between the plating pot and the plane where the metal target is located is between 30° and 60°.
进一步的,所述对所述衬底进行加热的温度介于150℃-180℃。Further, the temperature for heating the substrate is between 150°C and 180°C.
进一步的, 所述在所述反射镜层上沉积绝缘保护层的步骤具体包括:Further, the step of depositing an insulating protective layer on the mirror layer specifically includes:
采用电子束蒸镀SiO2靶材的方法在所述反射镜层上沉积第一SiO2薄膜,所述第一SiO2薄膜厚度介于100Å-200Å;Depositing a first SiO 2 film on the mirror layer using an electron beam evaporation method of SiO 2 target material, the thickness of the first SiO 2 film being between 100Å and 200Å;
采用PECVD工艺在所述第一SiO2薄膜上沉积第二SiO2薄膜,所述第二SiO2薄膜厚度介于5000Å-20000Å,所述绝缘保护层由所述第一SiO2薄膜与所述第二SiO2薄膜组成。A PECVD process is used to deposit a second SiO 2 film on the first SiO 2 film. The thickness of the second SiO 2 film is between 5000Å and 20000Å. The insulating protective layer is composed of the first SiO 2 film and the third SiO 2 film. Composed of two SiO 2 films.
进一步的,所述在所述绝缘保护层上制备N型绝缘层通孔和P型绝缘层通孔的步骤之后,还包括:采用干法刻蚀工艺依次通入含Cl原子的气体和含Si原子的气体。Further, after the step of preparing N-type insulating layer through-holes and P-type insulating layer through-holes on the insulating protective layer, the step also includes: using a dry etching process to sequentially pass in a gas containing Cl atoms and a gas containing Si. Atomic gas.
本发明还提出一种倒装发光二极管芯片,采用如上所述的倒装发光二极管芯片的制备方法制备而成。The invention also proposes a flip-chip light-emitting diode chip, which is prepared by the above-mentioned method for preparing a flip-chip light-emitting diode chip.
附图说明Description of the drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments or prior art will be briefly introduced below. Obviously, the drawings in the following description are only illustrative of the present invention. For some embodiments, for those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为本发明的倒装发光二极管芯片的制备方法的流程图;Figure 1 is a flow chart of the preparation method of the flip-chip light-emitting diode chip of the present invention;
图2为图1中步骤S1相应的结构示意图;Figure 2 is a schematic structural diagram corresponding to step S1 in Figure 1;
图3为图1中步骤S2相应的结构示意图;Figure 3 is a schematic structural diagram corresponding to step S2 in Figure 1;
图4为图1中步骤S3相应的结构示意图;Figure 4 is a schematic structural diagram corresponding to step S3 in Figure 1;
图5为图1中步骤S4相应的结构示意图;Figure 5 is a schematic structural diagram corresponding to step S4 in Figure 1;
图6为图1中步骤S5相应的结构示意图;Figure 6 is a schematic structural diagram corresponding to step S5 in Figure 1;
图7为图1中步骤S6涂布第一正性光刻胶并利用第一掩膜板进行第一曝光相应的结构示意图;Figure 7 is a schematic structural diagram of applying the first positive photoresist and using the first mask to perform the first exposure in step S6 in Figure 1;
图8为图1中步骤S6涂布第一负性光刻胶并利用第二掩膜板进行第二曝光相应的结构示意图;Figure 8 is a schematic structural diagram of applying the first negative photoresist and using the second mask to perform the second exposure in step S6 in Figure 1;
图9为图1中步骤S6涂布第二正性光刻胶并利用第三掩膜板进行第三曝光相应的结构示意图;Figure 9 is a schematic structural diagram of applying the second positive photoresist and using the third mask to perform the third exposure in step S6 in Figure 1;
图10为图1中步骤S6利用显影去除掉曝光过的光刻胶相应的结构示意图;Figure 10 is a schematic structural diagram corresponding to removing the exposed photoresist using development in step S6 in Figure 1;
图11为图10中局部A的放大示意图;Figure 11 is an enlarged schematic diagram of part A in Figure 10;
图12为图1中步骤S7在最上层光刻胶表面依次沉积Ag层和Ti层相应的结构示意图;Figure 12 is a schematic diagram of the corresponding structure of sequentially depositing an Ag layer and a Ti layer on the surface of the uppermost photoresist layer in step S7 in Figure 1;
图13为图1中步骤S7对衬底进行加热相应的结构示意图;Figure 13 is a schematic structural diagram corresponding to heating the substrate in step S7 in Figure 1;
图14为图1中步骤S7将光刻胶及位于光刻胶表面的Ag层和Ti层去除相应的结构示意图;Figure 14 is a schematic structural diagram of the removal of the photoresist and the Ag layer and Ti layer located on the surface of the photoresist in step S7 in Figure 1;
图15为图1中步骤S8相应的结构示意图;Figure 15 is a schematic structural diagram corresponding to step S8 in Figure 1;
图16为图1中步骤S9相应的结构示意图。Figure 16 is a schematic structural diagram corresponding to step S9 in Figure 1.
附图标记说明:Explanation of reference symbols:
10、衬底;11、外延层;111、N型GaN层;112、量子阱层;113、P型GaN层;114、外延层凹部;115、隔离槽;12、第一欧姆接触层;13、光角转换层;14、第二欧姆接触层;15、反射镜层;151、第一正性光刻胶;152、第一掩膜板;153、第一负性光刻胶;154、第二掩膜板;155、第二正性光刻胶;156、第三掩膜板;157、第一正性光刻胶开口;158、第一负性光刻胶开口;159、第二正性光刻胶开口;1510、反射镜牺牲层;16、绝缘保护层;161、P型绝缘层通孔;162、N型绝缘层通孔;171、P型焊盘层;172、N型焊盘层。10. Substrate; 11. Epitaxial layer; 111. N-type GaN layer; 112. Quantum well layer; 113. P-type GaN layer; 114. Epitaxial layer recess; 115. Isolation trench; 12. First ohmic contact layer; 13 , light angle conversion layer; 14. second ohmic contact layer; 15. mirror layer; 151. first positive photoresist; 152. first mask; 153. first negative photoresist; 154. The second mask; 155, the second positive photoresist; 156, the third mask; 157, the first positive photoresist opening; 158, the first negative photoresist opening; 159, the second Positive photoresist opening; 1510, mirror sacrificial layer; 16, insulation protective layer; 161, P-type insulation layer through hole; 162, N-type insulation layer through hole; 171, P-type pad layer; 172, N-type pad layer.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明的实施例,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals throughout represent the same or similar elements or elements with the same or similar functions. The embodiments described below with reference to the drawings are exemplary and are intended to explain the embodiments of the present invention and are not to be construed as limitations of the present invention.
在本发明实施例的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the embodiments of the present invention, it should be understood that the terms "length", "width", "upper", "lower", "front", "back", "left", "right", "vertical" ", "horizontal", "top", "bottom", "inner", "outer", etc. indicate the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, and are only for convenience and simplicity in describing the embodiments of the present invention. The description does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore is not to be construed as a limitation of the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms “first” and “second” are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present invention, "plurality" means two or more than two, unless otherwise explicitly and specifically limited.
在本发明实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。In the embodiments of the present invention, unless otherwise expressly stipulated and limited, the terms "installation", "connection", "connection", "fixing" and other terms should be understood in a broad sense. For example, it can be a fixed connection or a removable connection. Disassembly and connection, or integration; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the embodiments of the present invention can be understood according to specific circumstances.
参照图1至图16,本发明一实施例,一种倒装发光二极管芯片的制备方法,包括以下步骤:Referring to Figures 1 to 16, one embodiment of the present invention, a method for preparing a flip-chip light-emitting diode chip, includes the following steps:
S1:提供一衬底10,在衬底10上依次沉积N型GaN层111、量子阱层112及P型GaN层113,以形成外延层11,并在P型GaN层113上沉积第一欧姆接触层12;S1: Provide a substrate 10, deposit the N-type GaN layer 111, the quantum well layer 112 and the P-type GaN layer 113 sequentially on the substrate 10 to form the epitaxial layer 11, and deposit the first ohm layer on the P-type GaN layer 113. contact layer 12;
具体的,在衬底10上利用MOCVD(金属有机化学气相沉积)工艺依次制备Si掺杂的N型GaN层111、周期性层叠的InGaN/GaN量子阱层112,Mg掺杂的P型GaN层113,组成外延层11,接着利用磁控溅射技术在P型GaN层113表面沉积ITO薄膜做为第一欧姆接触层12,ITO薄膜中In2O3和SnO2的比例介于85Wt%:15Wt%-90Wt%:10Wt%,第一欧姆接触层12厚度介于80Å-120Å,接着对第一欧姆接触层12进行第一快速退火,第一快速退火气体O2与N2比例介于5:1-10:1,第一快速退火温度介于500℃-600℃;本实施例中,ITO薄膜中In2O3和SnO2的比例为90Wt%:10Wt%,第一欧姆接触层12厚度为100Å,第一快速退火气体O2与N2比例为6:1,第一快速退火温度为550℃。Specifically, a MOCVD (Metal Organic Chemical Vapor Deposition) process is used to sequentially prepare a Si-doped N-type GaN layer 111, a periodically stacked InGaN/GaN quantum well layer 112, and an Mg-doped P-type GaN layer on the substrate 10. 113, to form the epitaxial layer 11, and then use magnetron sputtering technology to deposit an ITO film on the surface of the P-type GaN layer 113 as the first ohmic contact layer 12. The ratio of In 2 O 3 and SnO 2 in the ITO film is between 85Wt%: 15Wt%-90Wt%:10Wt%, the thickness of the first ohmic contact layer 12 is between 80Å-120Å, and then the first rapid annealing is performed on the first ohmic contact layer 12, and the ratio of the first rapid annealing gas O 2 to N 2 is between 5 :1-10:1, the first rapid annealing temperature is between 500℃-600℃; in this embodiment, the ratio of In 2 O 3 and SnO 2 in the ITO film is 90Wt%:10Wt%, the first ohmic contact layer 12 The thickness is 100Å, the ratio of O 2 and N 2 in the first rapid annealing gas is 6:1, and the first rapid annealing temperature is 550°C.
S2:在第一欧姆接触层12上沉积多个呈圆锥台状的光角转换层13;进一步的,光角转换层13为AlN层,光角转换层13的上端直径介于7μm-11μm,下端直径介于8μm-12μm,光角转换层13的厚度介于0.5μm-5μm,相邻光角转换层13的中心间距为光角转换层13的下端直径的两倍;S2: Deposit a plurality of frustum-shaped light angle conversion layers 13 on the first ohmic contact layer 12; further, the light angle conversion layer 13 is an AlN layer, and the upper end diameter of the light angle conversion layer 13 is between 7 μm and 11 μm. The diameter of the lower end is between 8 μm and 12 μm, the thickness of the light angle conversion layer 13 is between 0.5 μm and 5 μm, and the center distance between adjacent light angle conversion layers 13 is twice the diameter of the lower end of the light angle conversion layer 13;
具体的,利用PVD(物理气相沉积)的方法在第一欧姆接触层12表面制备一AlN薄膜,接着在AlN薄膜上利用选图法涂布一正性光刻胶,然后利用曝光、显影去除掉部分光刻胶,暴露出部分AlN薄膜,然后在第一反应槽内利用第一溶液腐蚀暴露出的AlN薄膜,接着在第二反应槽内利用第二溶液腐蚀部分位于剩余光刻胶底部与光刻胶接触的AlN薄膜,接着在第三反应槽利用去离子水清洗,第一溶液为7%-9%的四甲基氢氧化铵溶液,第二溶液为3%-5%的四甲基氢氧化铵溶液,然后去除剩余光刻胶,便得到光角转换层13,因为第二溶液浓度小于第一溶液浓度,所以可以得到圆锥台状的光角转换层13,通过控制第一溶液和第二溶液浓度的差异可以控制光角转换层13上下两端的直径;Specifically, a PVD (physical vapor deposition) method is used to prepare an AlN film on the surface of the first ohmic contact layer 12, and then a positive photoresist is coated on the AlN film using a pattern selection method, and then removed by exposure and development. Part of the photoresist is exposed to part of the AlN film, and then the exposed AlN film is etched with the first solution in the first reaction tank, and then the part located at the bottom of the remaining photoresist and the photoresistor is etched with the second solution in the second reaction tank. The AlN film in contact with the resist is then cleaned with deionized water in the third reaction tank. The first solution is 7%-9% tetramethylammonium hydroxide solution, and the second solution is 3%-5% tetramethylammonium hydroxide. ammonium hydroxide solution, and then remove the remaining photoresist to obtain the light angle conversion layer 13. Because the concentration of the second solution is less than the concentration of the first solution, a frustum-shaped light angle conversion layer 13 can be obtained. By controlling the first solution and The difference in concentration of the second solution can control the diameter of the upper and lower ends of the light angle conversion layer 13;
设光角转换层13与第一欧姆接触层12表面接触的一面的直径为a,背离第一欧姆接触层12一面的直径为b,光角转换层13的厚度为c,两个相邻光角转换层13的中心间距为d,其中a>b且(a-b)/2介于-/>/3,d=2a,a介于8μm-12μm,b介于7μm-11μm,c介于0.5μm-5μm,光角转换层13可以使后续置于光角转换层13之上反射镜层15形成一梯形斜面的台面,外延层11发出的部分与衬底10所夹锐角较小的光线通过该梯形斜面的台面的反射,转换为与衬底10所夹锐角较大的光线,从而减小光在各层材料之间传播的全反射,提升倒装发光二极管芯片亮度;本实施例中,第一溶液为8%的四甲基氢氧化铵溶液,第二溶液为4%的四甲基氢氧化铵溶液;a的取值为10μm,b的取值为9μm,c的取值为2μm。Let the diameter of the side of the light angle conversion layer 13 in contact with the surface of the first ohmic contact layer 12 be a, the diameter of the side facing away from the first ohmic contact layer 12 be b, the thickness of the light angle conversion layer 13 be c, and two adjacent light The center distance of the angle conversion layer 13 is d, where a>b and (ab)/2 is between -/> /3, d=2a, a is between 8μm-12μm, b is between 7μm-11μm, c is between 0.5μm-5μm, the light angle conversion layer 13 can enable the subsequent mirror layer 15 to be placed on the light angle conversion layer 13 A trapezoidal sloping mesa is formed. The part of the light emitted by the epitaxial layer 11 and the substrate 10 has a smaller acute angle. It is reflected by the trapezoidal sloping mesa and is converted into the light rays having a larger acute angle with the substrate 10, thus reducing the The total reflection of light propagating between each layer of materials improves the brightness of the flip-chip light-emitting diode chip; in this embodiment, the first solution is 8% tetramethylammonium hydroxide solution, and the second solution is 4% tetramethylammonium hydroxide. Ammonium hydroxide solution; the value of a is 10 μm, the value of b is 9 μm, and the value of c is 2 μm.
S3:在第一欧姆接触层12上沉积第二欧姆接触层14;其中,第二欧姆接触层14的下端与第一欧姆接触层12抵接,第二欧姆接触层14上具有与光角转换层13对应的多个通孔,且通孔的孔径大于光角转换层13的下端直径;S3: Deposit the second ohmic contact layer 14 on the first ohmic contact layer 12; wherein, the lower end of the second ohmic contact layer 14 is in contact with the first ohmic contact layer 12, and the second ohmic contact layer 14 has a light angle conversion Multiple through holes corresponding to layer 13, and the aperture of the through holes is larger than the diameter of the lower end of the light angle conversion layer 13;
具体的,在第一欧姆接触层12及光角转换层13表面涂布负性光刻胶,然后曝光、显影去除掉部分光刻胶,暴露出部分第一欧姆接触层12,然后利用电子束蒸镀工艺在剩余光刻胶及暴露出的第一欧姆接触层12表面蒸镀ITO薄膜,然后利用蓝膜剥离工艺去除掉剩余光刻胶上面的ITO薄膜,然后去除剩余光刻胶,便在各光角转换层13之间的第一欧姆接触层12上的形成了第二欧姆接触层14,然后对第二欧姆接触层14进行第二快速退火,第二快速退火气体O2与N2比例与第一快速退火气体比例相同,且介于5:1-10:1,第二快速退火温度小于第一快速退火温度,且介于400℃-500℃;第二欧姆接触层14中In2O3和SnO2的比例介于92Wt%:8Wt%-97Wt%:3Wt%,第二欧姆接触层14厚度介于100Å-600Å,第二欧姆接触层14靠近光角转换层13的边缘距光角转换层13的边缘的距离e介于1μm-2μm,即第二欧姆接触层14上的通孔的孔径比光角转换层13下端直径大1μm-2μm;本实施例中,第二快速退火温度为450℃,第二欧姆接触层14中In2O3和SnO2的比例为95Wt%:5Wt%,第二欧姆接触层14的厚度为300Å,第二欧姆接触层14靠近光角转换层13的边缘距光角转换层13的边缘的距离e为1.5μm。Specifically, a negative photoresist is coated on the surface of the first ohmic contact layer 12 and the light angle conversion layer 13, and then exposed and developed to remove part of the photoresist, exposing part of the first ohmic contact layer 12, and then using an electron beam. The evaporation process evaporates an ITO film on the surface of the remaining photoresist and the exposed first ohmic contact layer 12, and then uses a blue film stripping process to remove the ITO film on the remaining photoresist, and then removes the remaining photoresist. A second ohmic contact layer 14 is formed on the first ohmic contact layer 12 between the light angle conversion layers 13, and then the second ohmic contact layer 14 is subjected to a second rapid annealing using O 2 and N 2 gases. The ratio is the same as the first rapid annealing gas ratio, and is between 5:1-10:1. The second rapid annealing temperature is smaller than the first rapid annealing temperature, and is between 400℃-500℃; In in the second ohmic contact layer 14 The ratio of 2 O 3 and SnO 2 is between 92Wt%:8Wt%-97Wt%:3Wt%, the thickness of the second ohmic contact layer 14 is between 100Å-600Å, and the second ohmic contact layer 14 is close to the edge distance of the light angle conversion layer 13 The distance e between the edges of the light angle conversion layer 13 is between 1 μm and 2 μm, that is, the diameter of the through hole on the second ohmic contact layer 14 is 1 μm and 2 μm larger than the diameter of the lower end of the light angle conversion layer 13; in this embodiment, the second fast The annealing temperature is 450°C, the ratio of In 2 O 3 and SnO 2 in the second ohmic contact layer 14 is 95Wt%:5Wt%, the thickness of the second ohmic contact layer 14 is 300Å, and the second ohmic contact layer 14 is close to the light angle conversion The distance e from the edge of the layer 13 to the edge of the light angle conversion layer 13 is 1.5 μm.
S4:在第二欧姆接触层14的边缘制备外延层凹部114,外延层凹部114的底面为N型GaN层111;具体的:S4: Prepare an epitaxial layer recess 114 at the edge of the second ohmic contact layer 14, and the bottom surface of the epitaxial layer recess 114 is the N-type GaN layer 111; specifically:
在第二欧姆接触层14和光角转换层13及未被第二欧姆接触层14和光角转换层13覆盖的第一欧姆接触层12上涂布正性光刻胶,然后曝光、显影去除掉部分衬底边缘即需要制备外延层凹部114区域上方的光刻胶,暴露出这部分光刻胶下面的第二欧姆接触层14,接着利用ITO腐蚀液腐蚀掉暴露出的第二欧姆接触层14及这部分第二欧姆接触层14下面的第一欧姆接触层12,暴露出部分外延层11,然后利用电感耦合等离子体刻蚀工艺刻蚀暴露出的外延层11,去除掉部分外延层11直至暴露出N型GaN层111,形成外延层凹部114,然后去除光刻胶,外延层凹部114与后续制备的N型焊盘层172形成电性连接做为电流输出端。Coat positive photoresist on the second ohmic contact layer 14 and the light angle conversion layer 13 and the first ohmic contact layer 12 that is not covered by the second ohmic contact layer 14 and the light angle conversion layer 13, and then expose and develop to remove the part. At the edge of the substrate, it is necessary to prepare a photoresist above the recessed portion 114 of the epitaxial layer, exposing the second ohmic contact layer 14 under this part of the photoresist, and then use an ITO etching solution to etch away the exposed second ohmic contact layer 14 and The first ohmic contact layer 12 under this part of the second ohmic contact layer 14 exposes part of the epitaxial layer 11, and then uses an inductively coupled plasma etching process to etch the exposed epitaxial layer 11, and remove part of the epitaxial layer 11 until it is exposed. The N-type GaN layer 111 is removed to form the epitaxial layer recess 114, and then the photoresist is removed. The epitaxial layer recess 114 forms an electrical connection with the subsequently prepared N-type pad layer 172 as a current output terminal.
S5:对外延层凹部114的边缘进行刻蚀处理,形成隔离槽115;具体的:S5: Etch the edge of the epitaxial layer recess 114 to form an isolation trench 115; specifically:
在第二欧姆接触层14和光角转换层13及未被第二欧姆接触层14和光角转换层13覆盖的第一欧姆接触层12及外延层凹部114上涂布正性光刻胶,然后曝光、显影去除掉部分外延层凹部114位于衬底10边缘的光刻胶,暴露出下面的外延层凹部114,然后利用电感耦合等离子体刻蚀工艺去除暴露出的外延层凹部114,形成隔离槽115,然后去除光刻胶,隔离槽115可以防止后续将倒装发光二极管芯片焊接至照明灯板上时锡膏与N型GaN层111连接,造成倒装发光二极管芯片短路。Coat positive photoresist on the second ohmic contact layer 14 and the light angle conversion layer 13 and the first ohmic contact layer 12 and the epitaxial layer recess 114 that are not covered by the second ohmic contact layer 14 and the light angle conversion layer 13, and then expose Develop and remove part of the photoresist located at the edge of the substrate 10 in the epitaxial layer concave portion 114 to expose the underlying epitaxial layer concave portion 114 , and then use an inductively coupled plasma etching process to remove the exposed epitaxial layer concave portion 114 to form an isolation trench 115 , and then remove the photoresist. The isolation groove 115 can prevent the solder paste from connecting with the N-type GaN layer 111 when the flip-chip LED chip is subsequently welded to the lighting board, causing a short circuit in the flip-chip LED chip.
S6:在第二欧姆接触层14上依次涂覆多层光刻胶,并依次对光刻胶曝光,以形成反射层开口,反射层开口为下端宽、上端窄的结构;进一步的,在第二欧姆接触层14上依次涂覆多层光刻胶,并依次对光刻胶曝光,以形成反射层开口的步骤具体包括:在光角转换层13上涂覆第一正性光刻胶151,采用第一掩膜板152对第一正性光刻胶151进行第一曝光;在第一正性光刻胶151上涂覆第一负性光刻胶153,采用第二掩膜板154对第一负性光刻胶153进行第二曝光;在第一负性光刻胶153上涂覆第二正性光刻胶155,采用第三掩膜板156对第二正性光刻胶155进行第三曝光;采用显影工艺去除曝光过的第一正性光刻胶151、第二正性光刻胶155以及未曝光的第一负性光刻胶153,形成由相互连通的第一正性光刻胶开口157、第一负性光刻胶开口158及第二正性光刻胶开口159组成的反射层开口;S6: Coat multiple layers of photoresist on the second ohmic contact layer 14 in sequence, and expose the photoresist in sequence to form a reflective layer opening. The reflective layer opening has a structure with a wide lower end and a narrow upper end; further, in the third The steps of sequentially coating multiple layers of photoresist on the two-ohm contact layer 14 and sequentially exposing the photoresists to form openings in the reflective layer include: coating a first positive photoresist 151 on the light angle conversion layer 13 , using the first mask 152 to perform the first exposure on the first positive photoresist 151; coating the first negative photoresist 153 on the first positive photoresist 151, using the second mask 154 Perform a second exposure on the first negative photoresist 153; apply a second positive photoresist 155 on the first negative photoresist 153, and use a third mask 156 to expose the second positive photoresist 155 for the third exposure; a developing process is used to remove the exposed first positive photoresist 151, the second positive photoresist 155 and the unexposed first negative photoresist 153, forming a first interconnected The reflective layer opening is composed of the positive photoresist opening 157, the first negative photoresist opening 158 and the second positive photoresist opening 159;
其中,第一正性光刻胶开口157的截面呈倒立梯形,第一负性光刻胶开口158的截面呈正梯形,第二正性光刻胶开口159的截面呈倒立梯形,第一正性光刻胶开口157的上端宽度大于第一负性光刻胶开口158的下端宽度,第一负性光刻胶开口158的上端宽度等于第二正性光刻胶开口159的下端宽度;第三曝光使用的光线的波长大于第二曝光使用的光线的波长。Wherein, the cross section of the first positive photoresist opening 157 is an inverted trapezoid, the cross section of the first negative photoresist opening 158 is a positive trapezoid, the cross section of the second positive photoresist opening 159 is an inverted trapezoid, and the cross section of the first positive photoresist opening 159 is an inverted trapezoid. The upper end width of the photoresist opening 157 is greater than the lower end width of the first negative photoresist opening 158, and the upper end width of the first negative photoresist opening 158 is equal to the lower end width of the second positive photoresist opening 159; third The wavelength of light used for the exposure is greater than the wavelength of light used for the second exposure.
具体的,先利用等离子体清洗工艺清洗第二欧姆接触层14和光角转换层13及未被第二欧姆接触层14和光角转换层13覆盖的第一欧姆接触层12和外延层凹部114表面,等离子清洗工艺具体为向反应腔内通入氩气,然后开启射频功率电离,通入氧气,使电离的氧离子清洗晶圆表面,接着通入氮气,使电离的氮离子继续清洗晶圆表面,氩气、氧气、氮气流量比为1:5:5,氩气流量介于20sccm-30sccm,氧气和氮气流量介于100sccm-150sccm,射频功率介于50W-500W;本实施例中,氩气流量为25sccm,氧气和氮气流量为120sccm,射频功率为200W;Specifically, a plasma cleaning process is first used to clean the second ohmic contact layer 14 and the light angle conversion layer 13 as well as the surfaces of the first ohmic contact layer 12 and the epitaxial layer recess 114 that are not covered by the second ohmic contact layer 14 and the light angle conversion layer 13. The plasma cleaning process specifically involves introducing argon gas into the reaction chamber, then turning on radio frequency power ionization, introducing oxygen, so that the ionized oxygen ions clean the wafer surface, and then introducing nitrogen gas so that the ionized nitrogen ions continue to clean the wafer surface. The flow ratio of argon, oxygen, and nitrogen is 1:5:5, the argon flow is between 20 sccm-30 sccm, the oxygen and nitrogen flow is between 100 sccm-150 sccm, and the radio frequency power is between 50W-500W; in this embodiment, the argon flow is is 25sccm, the oxygen and nitrogen flow is 120sccm, and the RF power is 200W;
在第二欧姆接触层14和光角转换层13及未被第二欧姆接触层14和光角转换层13覆盖的第一欧姆接触层12和外延层凹部114及隔离槽115表面涂布第一正性光刻胶151,然后利用第一掩膜板152进行第一曝光;第一正性光刻胶151粘度介于30CPS-50CPS,厚度为后续制备的反射镜层15厚度的2倍-10倍,第一掩膜板152开口宽度为f,第一曝光能量介于200mj/cm²-230mj/cm²,第一曝光时间介于0.4S-0.6S;本实施例中,第一正性光刻胶151粘度为40CPS,厚度为后续制备的反射镜层15厚度的5倍,第一曝光能量为210mj/cm²,第一曝光时间为0.5S;The first positive layer is coated on the surface of the second ohmic contact layer 14 and the light angle conversion layer 13 and the first ohmic contact layer 12 and the epitaxial layer recess 114 and the isolation groove 115 that are not covered by the second ohmic contact layer 14 and the light angle conversion layer 13 . Photoresist 151, and then use the first mask 152 to perform the first exposure; the viscosity of the first positive photoresist 151 is between 30CPS-50CPS, and the thickness is 2 times to 10 times the thickness of the subsequently prepared mirror layer 15. The opening width of the first mask 152 is f, the first exposure energy is between 200mj/cm²-230mj/cm², and the first exposure time is between 0.4S-0.6S; in this embodiment, the first positive photoresist 151 The viscosity is 40CPS, the thickness is 5 times the thickness of the subsequently prepared mirror layer 15, the first exposure energy is 210mj/cm², and the first exposure time is 0.5S;
在第一正性光刻胶151上涂布第一负性光刻胶153,然后利用第二掩膜板154进行第二曝光,第一负性光刻胶153位于第二欧姆接触层14上方部分的厚度为第一正性光刻胶151位于第二欧姆接触层14上方部分厚度的5倍-10倍,第一负性光刻胶153粘度介于200CPS-240CPS,第二曝光能量介于300mj/cm²-350mj/cm²,第二曝光时间介于0.6S-0.8S;第二掩膜板154未开口区域的宽度为g;本实施例中,第一负性光刻胶153厚度为第一正性光刻胶151厚度的8倍,第一负性光刻胶153粘度为220CPS,第二曝光能量为330mj/cm²,第二曝光时间为0.7S;Coat the first negative photoresist 153 on the first positive photoresist 151, and then use the second mask 154 to perform a second exposure. The first negative photoresist 153 is located above the second ohmic contact layer 14. The thickness of the portion is 5 to 10 times the thickness of the portion of the first positive photoresist 151 located above the second ohmic contact layer 14 , the viscosity of the first negative photoresist 153 is between 200CPS and 240CPS, and the second exposure energy is between 300mj/cm²-350mj/cm², the second exposure time is between 0.6S-0.8S; the width of the unopened area of the second mask 154 is g; in this embodiment, the thickness of the first negative photoresist 153 is 8 times the thickness of the positive photoresist 151, the viscosity of the first negative photoresist 153 is 220CPS, the second exposure energy is 330mj/cm², and the second exposure time is 0.7S;
在第一负性光刻胶153上涂布第二正性光刻胶155,然后利用第三掩膜板156进行第三曝光,第二正性光刻胶155厚度为第一负性光刻胶153的1.5倍-3倍,第二正性光刻胶155粘度介于150CPS-200CPS,第三曝光能量介于250mj/cm²-300mj/cm²,第三曝光时间介于0.8S-1.0S,第三掩膜板156开口宽度与第二掩膜板154未开口区域的宽度一致,均为g;且第三曝光使用的光线波长大于第二曝光所使用的光线的波长,避免在进行第三曝光时对第一负性光刻胶153造成损伤,导致第一负性光刻胶153显影不净;本实施例中,第二正性光刻胶155厚度为第一负性光刻胶153的2倍,第二正性光刻胶155粘度为180CPS,第三曝光能量为280mj/cm²,第三曝光时间为0.9S;Coat the second positive photoresist 155 on the first negative photoresist 153, and then use the third mask 156 to perform a third exposure. The thickness of the second positive photoresist 155 is the thickness of the first negative photoresist. The viscosity of the second positive photoresist 155 is between 150CPS and 200CPS, the third exposure energy is between 250mj/cm² and 300mj/cm², and the third exposure time is between 0.8S and 1.0S. The opening width of the third mask plate 156 is consistent with the width of the unopened area of the second mask plate 154, both are g; and the wavelength of the light used in the third exposure is greater than the wavelength of the light used in the second exposure, so as to avoid the need for the third exposure. The first negative photoresist 153 is damaged during exposure, causing the first negative photoresist 153 to be incompletely developed; in this embodiment, the thickness of the second positive photoresist 155 is equal to that of the first negative photoresist 153 2 times, the viscosity of the second positive photoresist 155 is 180CPS, the third exposure energy is 280mj/cm², and the third exposure time is 0.9S;
利用显影去除掉曝光过的第一正性光刻胶151和第二正性光刻胶155以及未曝光的第一负性光刻胶153,形成第一正性光刻胶开口157、第一负性光刻胶开口158、第二正性光刻胶开口159,显影的具体方法为晶圆在设置有显影液的反应槽内浸泡5S-10S,然后在设置有去离子水的反应槽内冲水清洗120S-180S,接着重复上述两个动作两次;本实施例中,晶圆在设置有显影液的反应槽内浸泡8S,然后在设置有去离子水的反应槽内冲水清洗150S;The exposed first positive photoresist 151 and the second positive photoresist 155 as well as the unexposed first negative photoresist 153 are removed using development to form the first positive photoresist opening 157 and the first positive photoresist 157 . The negative photoresist opening 158 and the second positive photoresist opening 159. The specific development method is to soak the wafer in a reaction tank equipped with a developer for 5S-10S, and then immerse it in a reaction tank equipped with deionized water. Flush and clean for 120S-180S, and then repeat the above two actions twice; in this example, the wafer is soaked in a reaction tank equipped with developer for 8S, and then flushed and cleaned for 150S in a reaction tank equipped with deionized water. ;
得到的第一正性光刻胶开口157的截面为倒梯形,且靠近衬底10的开口宽度等于第一掩膜板152开口宽度f,第一正性光刻胶开口157的倒梯形的斜边与衬底10上端平面所夹锐角α角度介于75°-85°,第一负性光刻胶开口158的截面为正梯形,且背离衬底10的开口宽度等于第二掩膜板154未开口的宽度g,第一负性光刻胶开口158的正梯形的斜边与衬底10上端平面所夹锐角β角度介于20°-45°,第二正性光刻胶开口159的截面为倒梯形,且靠近衬底10的开口宽度等于第三掩膜板156开口宽度g,第二正性光刻胶开口159的倒梯形的斜边与衬底10上端平面所夹锐角γ角度介于60°-85°;本实施例中,α角度为80°,β角度为30°,γ角度为70°。The cross-section of the obtained first positive photoresist opening 157 is an inverted trapezoid, and the opening width close to the substrate 10 is equal to the opening width f of the first mask plate 152. The slope of the inverted trapezoid of the first positive photoresist opening 157 is The acute angle α between the edge and the upper plane of the substrate 10 is between 75° and 85°. The cross-section of the first negative photoresist opening 158 is a positive trapezoid, and the width of the opening away from the substrate 10 is equal to the second mask plate 154 The unopened width g, the acute angle β between the hypotenuse of the positive trapezoid of the first negative photoresist opening 158 and the upper end plane of the substrate 10 is between 20° and 45°, and the angle β of the second positive photoresist opening 159 is The cross-section is an inverted trapezoid, and the width of the opening close to the substrate 10 is equal to the opening width g of the third mask plate 156. The hypotenuse of the inverted trapezoid of the second positive photoresist opening 159 and the upper end plane of the substrate 10 form an acute angle γ. Between 60°-85°; in this embodiment, the α angle is 80°, the β angle is 30°, and the γ angle is 70°.
S7:在最上层光刻胶表面依次沉积Ag层和Ti层,对衬底10进行加热,将光刻胶及位于光刻胶表面的Ag层和Ti层去除,以形成反射镜层15;进一步的,在最上层光刻胶表面依次沉积Ag层和Ti层的步骤具体包括:采用电子束蒸镀工艺在最上层光刻胶表面沉积Ag层,其中,电子束蒸镀工艺中的镀锅沿轨道进行公转,同时镀锅进行自转,且每沉积1/4厚的Ag层时,对镀锅公转的方向及镀锅自转的方向进行反向调整;在Ag层上采用电子束蒸镀工艺沉积Ti层,Ti层的厚度为Ag层厚度的1/10倍-1/8倍;其中,在电子束蒸镀工艺中,镀锅与金属靶材所在平面夹角的角度介于30°-60°;进一步的,对衬底进行加热的温度介于150℃-180℃。S7: sequentially deposit the Ag layer and the Ti layer on the surface of the uppermost photoresist, heat the substrate 10, and remove the photoresist and the Ag layer and Ti layer on the surface of the photoresist to form the mirror layer 15; further The steps of sequentially depositing an Ag layer and a Ti layer on the surface of the uppermost photoresist specifically include: using an electron beam evaporation process to deposit an Ag layer on the surface of the uppermost photoresist, in which the edge of the plating pot in the electron beam evaporation process The orbit revolves and the plating pot rotates at the same time. Every time a 1/4 thick Ag layer is deposited, the direction of revolution of the plating pot and the direction of rotation of the plating pot are reversely adjusted; the Ag layer is deposited using an electron beam evaporation process. Ti layer, the thickness of the Ti layer is 1/10 times to 1/8 times the thickness of the Ag layer; in the electron beam evaporation process, the angle between the plating pot and the plane where the metal target is located is between 30° and 60° °; further, the temperature for heating the substrate is between 150°C and 180°C.
具体的,在剩余的第二正性光刻胶155表面及反射层开口暴露出的第二欧姆接触层14、光角转换层13及未被第二欧姆接触层14和光角转换层13覆盖的第一欧姆接触层12表面利用电子束蒸镀工艺依次蒸镀一Ag层和一Ti层,其中,置于第二正性光刻胶155表面的Ag层和Ti层为反射镜牺牲层1510,置于反射层开口暴露出的第二欧姆接触层14、光角转换层13及未被第二欧姆接触层14和光角转换层13覆盖的第一欧姆接触层12表面的Ag层和Ti层为反射镜层15;Specifically, the second ohmic contact layer 14 and the light angle conversion layer 13 exposed on the remaining surface of the second positive photoresist 155 and the opening of the reflective layer and the parts not covered by the second ohmic contact layer 14 and the light angle conversion layer 13 An Ag layer and a Ti layer are sequentially evaporated on the surface of the first ohmic contact layer 12 using an electron beam evaporation process. The Ag layer and the Ti layer placed on the surface of the second positive photoresist 155 are the mirror sacrificial layers 1510. The Ag layer and Ti layer placed on the surface of the second ohmic contact layer 14 and the light angle conversion layer 13 exposed by the opening of the reflective layer and the first ohmic contact layer 12 that are not covered by the second ohmic contact layer 14 and the light angle conversion layer 13 are: Reflector layer 15;
Ti层的厚度为Ag层的厚度的1/10倍-1/8倍,Ag层的厚度介于1200Å-5000Å;电子束蒸镀工艺为在一蒸镀腔内将需要蒸镀金属的晶圆贴在镀锅上,然后镀锅沿轨道进行公转,同时镀锅进行自传,在镀锅旋转过程中利用高能电子束轰击金属靶材使金属蒸发至晶圆上,本发明蒸镀Ag层的过程中,首先蒸镀1/4厚度的Ag层,这个蒸镀过程中镀锅沿轨道顺时针公转,镀锅也是顺时针自传;接着再蒸镀1/4厚度的Ag层,这个蒸镀过程中镀锅沿轨道逆时针公转,镀锅也是逆时针自传,接着继续蒸镀1/4厚度的Ag层,这个蒸镀过程中镀锅沿轨道顺时针公转,镀锅也是顺时针自传;接着再继续蒸镀1/4厚度的Ag层,这个蒸镀过程中镀锅沿轨道逆时针公转,镀锅也是逆时针自传,如此,共四个蒸镀过程,蒸镀整个Ag层,如此反复改变镀锅公转及自传的方向可以提高Ag金属在晶圆上厚度的均匀性;四个蒸镀Ag金属的过程中电子束功率相同,均介于120W-160W;本发明蒸镀Ti金属过程中,镀锅沿轨道顺时针公转,镀锅顺时针自传,且蒸镀Ti金属过程中电子束功率介于150W-200W;以上蒸镀Ag金属的四个过程及蒸镀Ti金属的过程中,镀锅与金属靶材所在平面夹角相同,均为θ,θ介于30°-60°,这个角度可以保证将Ag金属蒸镀至第一负性光刻胶开口158下面的第一正性光刻胶开口157内;蒸镀结束后,反射镜层15边缘距离第一正性光刻胶151边缘的距离为h,且所述h≤(f-g)/2;本实施例中,Ti层的厚度为Ag层的厚度的1/8倍,Ag层的厚度为3000Å;蒸镀Ag金属的过程中电子束功率为140W;蒸镀Ti金属过程中电子束功率为180W;θ为45°。The thickness of the Ti layer is 1/10 times to 1/8 times the thickness of the Ag layer, and the thickness of the Ag layer is between 1200Å and 5000Å; the electron beam evaporation process is to evaporate the wafer that needs to evaporate metal in an evaporation chamber. Attached to the plating pot, the plating pot then revolves along the track, and the plating pot performs self-propagation at the same time. During the rotation of the plating pot, high-energy electron beams are used to bombard the metal target to evaporate the metal onto the wafer. The process of evaporating the Ag layer in the present invention , first evaporate a 1/4 thickness Ag layer. During this evaporation process, the plating pot revolves clockwise along the track, and the plating pot also rotates clockwise. Then, a 1/4 thickness Ag layer is evaporated. During this evaporation process The plating pot revolves counterclockwise along the orbit, and the plating pot also rotates counterclockwise, and then continues to evaporate a 1/4 thickness Ag layer. During this evaporation process, the plating pot revolves clockwise along the orbit, and the plating pot also rotates clockwise; and then continues Evaporate 1/4 of the thickness of the Ag layer. During this evaporation process, the plating pot revolves counterclockwise along the track, and the plating pot also rotates counterclockwise. In this way, there are four evaporation processes in total, and the entire Ag layer is evaporated. The plating pot is changed repeatedly in this way. The direction of revolution and self-propagation can improve the uniformity of the thickness of Ag metal on the wafer; the electron beam power in the four processes of evaporating Ag metal is the same, all between 120W and 160W; in the process of evaporating Ti metal in the present invention, the plating pot The plating pot rotates clockwise along the orbit, and the electron beam power during the evaporation of Ti metal is between 150W and 200W. In the above four processes of evaporation of Ag metal and the process of evaporation of Ti metal, the plating pot and the metal The angles between the target planes are the same, both are θ, and θ is between 30° and 60°. This angle can ensure that the Ag metal is evaporated to the first positive photoresist opening below the first negative photoresist opening 158 Within 157; after evaporation, the distance between the edge of the mirror layer 15 and the edge of the first positive photoresist 151 is h, and h≤(f-g)/2; in this embodiment, the thickness of the Ti layer is Ag 1/8 times the thickness of the layer, the thickness of the Ag layer is 3000Å; the electron beam power during the evaporation of Ag metal is 140W; the electron beam power during the evaporation of Ti metal is 180W; θ is 45°.
接着将倒装发光二极管置于一烤板之上,衬底10与烤板接触,然后将烤板加热到150℃-180℃,且维持此温度180S-240S,此过程从衬底10的底面对倒装发光二极管芯片加热,使第一正性光刻胶151、第一负性光刻胶153和第二正性光刻胶155软化,使得第一正性光刻胶开口157、第一负性光刻胶开口158和第二正性光刻胶开口159坍塌,将反射镜层15边缘完全包住,避免后续蓝膜剥离时反射镜层15脱落,且第二正性光刻胶开口159坍塌,使得反射镜牺牲层1510边缘与第二正性光刻胶155表面形成缝隙,使得反射镜牺牲层1510更容易从第二正性光刻胶155表面脱落,这样便可以减小蓝膜的粘度,进一步减小反射镜层15脱落的风险;本实施例中,将烤板加热到180℃,且维持此温度210S;Then, the flip-chip light-emitting diode is placed on a baking plate, the substrate 10 is in contact with the baking plate, and then the baking plate is heated to 150°C-180°C and maintained at this temperature for 180S-240S. This process starts from the bottom of the substrate 10 Facing the flip-chip light-emitting diode chip, the first positive photoresist 151, the first negative photoresist 153 and the second positive photoresist 155 are softened, so that the first positive photoresist opening 157, the second positive photoresist 157 and the second positive photoresist 157 are softened. The first negative photoresist opening 158 and the second positive photoresist opening 159 collapse, completely covering the edge of the mirror layer 15 to prevent the mirror layer 15 from falling off when the subsequent blue film is peeled off, and the second positive photoresist The opening 159 collapses, causing a gap to form between the edge of the mirror sacrificial layer 1510 and the surface of the second positive photoresist 155, making it easier for the mirror sacrificial layer 1510 to fall off from the surface of the second positive photoresist 155, thus reducing blue The viscosity of the film further reduces the risk of the mirror layer 15 falling off; in this embodiment, the baking plate is heated to 180°C and maintained at this temperature for 210S;
最后利用蓝膜剥离工艺剥离掉位于第二正性光刻胶155之上的反射镜牺牲层1510,然后利用去胶液去除剩余的第一正性光刻胶151、第一负性光刻胶153和第二正性光刻胶155,便完成了反射镜层15的制备。Finally, the blue film stripping process is used to peel off the mirror sacrificial layer 1510 located on the second positive photoresist 155, and then the remaining first positive photoresist 151 and the first negative photoresist are removed using a glue stripper. 153 and the second positive photoresist 155, the preparation of the mirror layer 15 is completed.
S8:在反射镜层15上沉积绝缘保护层16,在绝缘保护层16上制备N型绝缘层通孔162和P型绝缘层通孔161;进一步的, 在反射镜层15上沉积绝缘保护层16的步骤具体包括:采用电子束蒸镀SiO2靶材的方法在反射镜层15上沉积第一SiO2薄膜,第一SiO2薄膜厚度介于100Å-200Å;采用PECVD工艺在第一SiO2薄膜上沉积第二SiO2薄膜,第二SiO2薄膜厚度介于5000Å-20000Å,绝缘保护层16由第一SiO2薄膜与第二SiO2薄膜组成;进一步的,在绝缘保护层16上制备N型绝缘层通孔162和P型绝缘层通孔161的步骤之后,还包括:采用干法刻蚀工艺依次通入含Cl原子的气体和含Si原子的气体。S8: Deposit an insulating protective layer 16 on the reflective mirror layer 15, and prepare N-type insulating layer through holes 162 and P-type insulating layer through holes 161 on the insulating protective layer 16; further, deposit an insulating protective layer on the reflective mirror layer 15. Step 16 specifically includes: using an electron beam evaporation SiO 2 target method to deposit a first SiO 2 film on the mirror layer 15, with a thickness of the first SiO 2 film ranging from 100Å to 200Å; using a PECVD process to deposit a first SiO 2 film on the mirror layer 15 A second SiO 2 film is deposited on the film. The thickness of the second SiO 2 film is between 5000Å and 20000Å. The insulating protective layer 16 is composed of the first SiO 2 film and the second SiO 2 film; further, N is prepared on the insulating protective layer 16 After the steps of the type insulating layer through hole 162 and the P type insulating layer through hole 161, it also includes: using a dry etching process to sequentially pass in the gas containing Cl atoms and the gas containing Si atoms.
具体的:在反射镜层15和外延层凹部114及隔离槽115表面利用电子束蒸镀SiO2靶材的方法制备第一SiO2薄膜,接着利用PECVD(等离子体增强化学气气相沉积)工艺填充SiH4和N2O在第一SiO2薄膜表面制备第二SiO2薄膜,第一SiO2薄膜厚度远远小于第二SiO2薄膜厚度,第一SiO2薄膜厚度介于100Å-200Å,第二SiO2薄膜厚度介于5000Å-20000Å,因为PECVD制备SiO2薄膜过程中有氧离子的参与,如果直接在反射镜层15表面直接用PECVD工艺制备SiO2薄膜,会引起氧离子氧化反射镜层中Ag金属的问题,电子束蒸镀工艺蒸镀的SiO2薄膜的过程没有氧离子的参与,但电子束蒸镀工艺蒸镀的SiO2薄膜侧面覆盖性又很差,比如外延层凹部114和隔离槽115的侧面需要SiO2薄膜覆盖保护,所以本发明先利用电子束蒸镀工艺制备一极薄的SiO2薄膜对反射镜层15进行保护,再利用PECVD工艺制备较厚的第二SiO2薄膜,既防止了反射镜层15被氧化,又保护了外延层凹部114和隔离槽115的侧面,第一SiO2薄膜和第二SiO2薄膜共同构成绝缘保护层16;本实施例中,第一SiO2薄膜厚度为150Å,第二SiO2薄膜厚度为10000Å;Specifically: the first SiO 2 film is prepared by electron beam evaporation of SiO 2 target material on the surface of the mirror layer 15 and the epitaxial layer recess 114 and the isolation groove 115, and then filled using the PECVD (Plasma Enhanced Chemical Vapor Deposition) process. SiH 4 and N 2 O prepare a second SiO 2 film on the surface of the first SiO 2 film. The thickness of the first SiO 2 film is much smaller than the thickness of the second SiO 2 film. The thickness of the first SiO 2 film is between 100Å-200Å. The thickness of the SiO 2 film is between 5000Å and 20000Å, because oxygen ions are involved in the process of preparing the SiO 2 film by PECVD. If the SiO 2 film is directly prepared by the PECVD process on the surface of the mirror layer 15, oxygen ions will oxidize the mirror layer. The problem with Ag metal is that the SiO 2 film evaporated by the electron beam evaporation process does not involve the participation of oxygen ions, but the side coverage of the SiO 2 film evaporated by the electron beam evaporation process is very poor, such as the epitaxial layer recess 114 and isolation. The side of the groove 115 needs to be covered and protected by the SiO 2 film, so the present invention first uses the electron beam evaporation process to prepare an extremely thin SiO 2 film to protect the mirror layer 15, and then uses the PECVD process to prepare a thicker second SiO 2 film , which not only prevents the mirror layer 15 from being oxidized, but also protects the epitaxial layer recess 114 and the side surfaces of the isolation trench 115. The first SiO 2 film and the second SiO 2 film together constitute the insulating protective layer 16; in this embodiment, the first The thickness of the SiO 2 film is 150Å, and the thickness of the second SiO 2 film is 10000Å;
在绝缘保护层16表面涂布正性光刻胶,然后曝光、显影去除掉部分光刻胶,暴露出部分绝缘保护层16,然后利用第一干法刻蚀的工艺去除暴露出的绝缘保护层16形成N型绝缘层通孔162和P型绝缘层通孔161,利用第二干法刻蚀工艺修复第一干法刻蚀损伤的N型绝缘层通孔162下方的外延层凹部114表面,然后去除光刻胶;因为第一干法刻蚀过程中通入的气体为可以与SiO2发生反应的含F原子的气体,但同时含F原子的气体也会与N型绝缘层通孔162下方的外延层凹部114表面掺杂的Si原子反应,造成外延层凹部114表面电阻值增加,引起倒装发光二极管芯片电压升高,故本发明在第一干法刻蚀结束后,利用第二干法刻蚀工艺修复第一干法刻蚀损伤的N型绝缘层通孔162下方的外延层凹部114表面,第二干法刻蚀工艺具体为先通入含Cl原子的气体使其与损伤的外延层凹部114表面GaN材料反应带走损伤的这部GaN材料,然后通入含Si原子的气体在外延层凹部114进行离子注入,再次对外延层凹部114进行掺杂,减小外延层凹部114的电阻率。Coat a positive photoresist on the surface of the insulating protective layer 16, then expose and develop to remove part of the photoresist, exposing part of the insulating protective layer 16, and then use a first dry etching process to remove the exposed insulating protective layer. 16. Form the N-type insulating layer through-hole 162 and the P-type insulating layer through-hole 161, and use the second dry etching process to repair the surface of the epitaxial layer recess 114 below the N-type insulating layer through-hole 162 damaged by the first dry etching. Then remove the photoresist; because the gas introduced during the first dry etching process is a gas containing F atoms that can react with SiO 2 , but at the same time, the gas containing F atoms will also interact with the N-type insulating layer through hole 162 The Si atoms doped on the surface of the epitaxial layer concave portion 114 below react, causing the surface resistance of the epitaxial layer concave portion 114 to increase, causing the voltage of the flip-chip light-emitting diode chip to increase. Therefore, the present invention uses the second dry etching process after the first dry etching is completed. The dry etching process repairs the surface of the epitaxial layer recess 114 below the N-type insulating layer through hole 162 damaged by the first dry etching process. The second dry etching process specifically involves first passing in a gas containing Cl atoms to separate it from the damage. The GaN material on the surface of the epitaxial layer concave part 114 reacts to take away the damaged GaN material, and then the gas containing Si atoms is passed into the epitaxial layer concave part 114 for ion implantation, and the epitaxial layer concave part 114 is doped again to reduce the epitaxial layer concave part. Resistivity of 114.
S9:在绝缘保护层16上沉积N型焊盘层172和P型焊盘层171,N型焊盘层172通过N型绝缘层通孔162与N型GaN层111连接,P型焊盘层171通过P型绝缘层通孔161与反射镜层15连接;S9: Deposit the N-type pad layer 172 and the P-type pad layer 171 on the insulating protective layer 16. The N-type pad layer 172 is connected to the N-type GaN layer 111 through the N-type insulating layer through hole 162. The P-type pad layer 171 is connected to the mirror layer 15 through the P-type insulation layer through hole 161;
具体的,在绝缘保护层16和N型绝缘层通孔162及P型绝缘层通孔161表面涂布负性光刻胶,然后利用电子束蒸镀工艺依次蒸镀第一金属层、第二金属层、第三金属层,第一金属层靠近绝缘保护层16,第三金属层背离绝缘保护层16,第二金属层介于第一金属层与第二金属层之间,第一金属层为Ni层,Ni层与P型绝缘层通孔161内的反射镜层15接触,可以很好的阻止Ag金属向外迁移,第二金属层可以为Cr层、Ti层、Pt层、Pb层中的一种或组合,第二金属层用于调节应力,第三金属层可以为Au层、Sn层、AuSn层、SnCu层、SnAgCu层中的一种,第三金属用于后续与电路板的键合连接,第一金属层、第二金属层、第三金属层共同构成焊盘层,焊盘层包括P型焊盘层171和N型焊盘层172,P型焊盘层171通过P型绝缘层通孔161与反射镜层15形成电性连接,N型焊盘层172通过N型绝缘层通孔162与外延层凹部114形成电性连接。Specifically, a negative photoresist is coated on the surface of the insulation protective layer 16 and the N-type insulation layer through hole 162 and the P-type insulation layer through hole 161, and then the first metal layer and the second metal layer are sequentially evaporated using an electron beam evaporation process. Metal layer, third metal layer, the first metal layer is close to the insulating protective layer 16, the third metal layer is away from the insulating protective layer 16, the second metal layer is between the first metal layer and the second metal layer, the first metal layer is a Ni layer. The Ni layer contacts the mirror layer 15 in the P-type insulating layer through hole 161, which can well prevent the Ag metal from migrating outward. The second metal layer can be a Cr layer, a Ti layer, a Pt layer, or a Pb layer. One or a combination of them, the second metal layer is used to adjust stress, the third metal layer can be one of Au layer, Sn layer, AuSn layer, SnCu layer, SnAgCu layer, the third metal is used for subsequent connection with the circuit board The bonding connection, the first metal layer, the second metal layer, and the third metal layer together constitute the pad layer. The pad layer includes a P-type pad layer 171 and an N-type pad layer 172. The P-type pad layer 171 passes The P-type insulation layer through hole 161 is electrically connected to the mirror layer 15 , and the N-type pad layer 172 is electrically connected to the epitaxial layer recess 114 through the N-type insulation layer through hole 162 .
本发明一实施例的倒装发光二极管芯片的制备方法,通过设置光角转换层13,使后续沉积在光角转换层13之上的反射镜层15形成一梯形斜面的台面,外延层11发出的部分与衬底10所夹锐角较小的光线通过该梯形斜面的台面的反射,转换为与衬底10所夹锐角较大的光线,从而减小光在各层材料之间传播的全反射,提升倒装发光二极管芯片亮度;通过对衬底10进行加热使得光刻胶软化坍塌,将沉积在反射层开口内的Ag层和Ti层边缘完成包覆,降低后续蓝膜剥离时反射镜层15脱落的风险,而且最上层光刻胶与光刻胶表面的Ag层和Ti层会随着光刻胶的软化坍塌形成间隙,使得光刻胶表面的Ag层和Ti层更容易从光刻胶表面脱落,这样便可以减小蓝膜的粘度,进一步减小反射镜层15脱落的风险,有效提高了倒装发光二极管的良率。In a method for preparing a flip-chip LED chip according to an embodiment of the present invention, the light angle conversion layer 13 is provided so that the mirror layer 15 subsequently deposited on the light angle conversion layer 13 forms a trapezoidal sloped mesa, and the epitaxial layer 11 emits light The light rays that have a smaller acute angle with the substrate 10 are converted into light rays that have a larger acute angle with the substrate 10 through the reflection of the trapezoidal slope table, thereby reducing the total reflection of light propagating between each layer of materials. , improve the brightness of the flip-chip light-emitting diode chip; by heating the substrate 10, the photoresist softens and collapses, and the edges of the Ag layer and Ti layer deposited in the opening of the reflective layer are completely covered, reducing the reflective mirror layer when the subsequent blue film is peeled off. 15 risk of falling off, and the top layer of photoresist and the Ag layer and Ti layer on the surface of the photoresist will collapse to form a gap as the photoresist softens, making it easier for the Ag layer and Ti layer on the surface of the photoresist to be removed from the photolithography The glue surface is peeled off, which can reduce the viscosity of the blue film, further reduce the risk of the mirror layer 15 falling off, and effectively improve the yield of flip-chip light-emitting diodes.
本发明还提出一种倒装发光二极管芯片,采用如上的倒装发光二极管芯片的制备方法制备而成。The invention also proposes a flip-chip light-emitting diode chip, which is prepared by using the above method for preparing a flip-chip light-emitting diode chip.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "an example," "specific examples," or "some examples" or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
在不出现冲突的前提下,本领域技术人员可以将上述附加技术特征自由组合以及叠加使用。On the premise that no conflict occurs, those skilled in the art can freely combine and superimpose the above additional technical features.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311206427.2A CN116960253B (en) | 2023-09-19 | 2023-09-19 | Flip light-emitting diode chip and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311206427.2A CN116960253B (en) | 2023-09-19 | 2023-09-19 | Flip light-emitting diode chip and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116960253A true CN116960253A (en) | 2023-10-27 |
CN116960253B CN116960253B (en) | 2023-12-19 |
Family
ID=88460498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311206427.2A Active CN116960253B (en) | 2023-09-19 | 2023-09-19 | Flip light-emitting diode chip and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116960253B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393680A (en) * | 2023-12-12 | 2024-01-12 | 江西兆驰半导体有限公司 | Flip light-emitting diode chip and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000183095A (en) * | 1998-12-21 | 2000-06-30 | Sanyo Electric Co Ltd | Manufacture of chip-size package |
JP2005347700A (en) * | 2004-06-07 | 2005-12-15 | Toyoda Gosei Co Ltd | Light emitting device and its manufacturing method |
JP2006344710A (en) * | 2005-06-08 | 2006-12-21 | Sony Corp | Semiconductor light emitting element, its manufacturing method, semiconductor light emitting device, and its manufacturing method |
CN101213678A (en) * | 2005-07-04 | 2008-07-02 | 昭和电工株式会社 | Gallium nitride-based compound semiconductor lihgt-emitting device |
CN103137441A (en) * | 2011-11-22 | 2013-06-05 | 上海华虹Nec电子有限公司 | Method for manufacturing elongated isolated line pattern in semiconductor process |
CN109524514A (en) * | 2018-11-23 | 2019-03-26 | 江苏新广联半导体有限公司 | A kind of flip LED chips and preparation method thereof with Ag reflection layer structure |
WO2019085538A1 (en) * | 2017-11-03 | 2019-05-09 | 江苏新广联半导体有限公司 | Led flip chip for improving current spreading uniformity, and manufacturing method therefor |
CN111509100A (en) * | 2019-01-31 | 2020-08-07 | 首尔伟傲世有限公司 | led |
CN215184030U (en) * | 2020-11-04 | 2021-12-14 | 山西中科潞安紫外光电科技有限公司 | Deep ultraviolet light-emitting diode with vertical structure |
-
2023
- 2023-09-19 CN CN202311206427.2A patent/CN116960253B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000183095A (en) * | 1998-12-21 | 2000-06-30 | Sanyo Electric Co Ltd | Manufacture of chip-size package |
JP2005347700A (en) * | 2004-06-07 | 2005-12-15 | Toyoda Gosei Co Ltd | Light emitting device and its manufacturing method |
JP2006344710A (en) * | 2005-06-08 | 2006-12-21 | Sony Corp | Semiconductor light emitting element, its manufacturing method, semiconductor light emitting device, and its manufacturing method |
CN101213678A (en) * | 2005-07-04 | 2008-07-02 | 昭和电工株式会社 | Gallium nitride-based compound semiconductor lihgt-emitting device |
CN103137441A (en) * | 2011-11-22 | 2013-06-05 | 上海华虹Nec电子有限公司 | Method for manufacturing elongated isolated line pattern in semiconductor process |
WO2019085538A1 (en) * | 2017-11-03 | 2019-05-09 | 江苏新广联半导体有限公司 | Led flip chip for improving current spreading uniformity, and manufacturing method therefor |
CN109524514A (en) * | 2018-11-23 | 2019-03-26 | 江苏新广联半导体有限公司 | A kind of flip LED chips and preparation method thereof with Ag reflection layer structure |
CN111509100A (en) * | 2019-01-31 | 2020-08-07 | 首尔伟傲世有限公司 | led |
CN215184030U (en) * | 2020-11-04 | 2021-12-14 | 山西中科潞安紫外光电科技有限公司 | Deep ultraviolet light-emitting diode with vertical structure |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393680A (en) * | 2023-12-12 | 2024-01-12 | 江西兆驰半导体有限公司 | Flip light-emitting diode chip and preparation method thereof |
CN117393680B (en) * | 2023-12-12 | 2024-04-12 | 江西兆驰半导体有限公司 | A flip-chip light-emitting diode chip and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN116960253B (en) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107195747B (en) | Micron-sized flip-chip LED chip and preparation method thereof | |
CN109545937B (en) | A high-brightness side-plated flip-chip LED chip and its manufacturing method | |
CN105070799B (en) | An LED chip manufacture method | |
CN103904180A (en) | LED chip structure and preparation method | |
CN206834196U (en) | A kind of micron-scale flip LED chips | |
CN116936711B (en) | Vertical light emitting diode, preparation method thereof and LED lamp panel | |
CN117393680A (en) | Flip light-emitting diode chip and preparation method thereof | |
CN110718613A (en) | Light-emitting diode chip and method of making the same | |
CN116581225B (en) | Flip-chip light-emitting diode chip and preparation method thereof | |
CN116960253A (en) | Flip light-emitting diode chip and preparation method thereof | |
CN110828483A (en) | Top-emitting OLED display back plate, manufacturing method thereof and OLED display device | |
CN115440867B (en) | Flip light-emitting diode chip and preparation method thereof | |
CN113054065A (en) | LED chip structure of double-slope inverted DBR and manufacturing method thereof | |
CN102931300A (en) | Method for manufacturing back metallic reflector array in manufacturing process of GaN-based LED | |
CN118610339B (en) | Flip light-emitting diode chip and preparation method thereof | |
CN115863498B (en) | Preparation method of forward-mounted LED chip | |
CN116722087A (en) | A flip-chip light-emitting diode chip and its preparation method | |
CN106159056A (en) | A kind of upside-down mounting high-voltage chip and preparation method thereof | |
CN115602775A (en) | Flip high-voltage light-emitting diode chip and preparation method thereof | |
CN118825156B (en) | A method for preparing an inverted light emitting diode and an inverted light emitting diode | |
CN106972088A (en) | A kind of LED metal electrode structures and preparation method thereof | |
CN118610340B (en) | LED chip and preparation method thereof | |
CN118825155B (en) | Preparation method of flip LED and flip LED | |
CN118231536B (en) | High-brightness inverted-mounting gauge chip and preparation method thereof | |
CN119730490A (en) | A parallel vertical LED chip and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |