[go: up one dir, main page]

CN116893565A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
CN116893565A
CN116893565A CN202310921566.7A CN202310921566A CN116893565A CN 116893565 A CN116893565 A CN 116893565A CN 202310921566 A CN202310921566 A CN 202310921566A CN 116893565 A CN116893565 A CN 116893565A
Authority
CN
China
Prior art keywords
light
light source
beam splitter
color
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310921566.7A
Other languages
Chinese (zh)
Inventor
许雅伶
蔡威弘
林经纶
林钧尉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Young Optics Inc
Original Assignee
Young Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Young Optics Inc filed Critical Young Optics Inc
Priority to CN202310921566.7A priority Critical patent/CN116893565A/en
Publication of CN116893565A publication Critical patent/CN116893565A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Microscoopes, Condenser (AREA)
  • Projection Apparatus (AREA)

Abstract

The light source device comprises a first light source, a second light source, a reflecting mirror, a first spectroscope, a filter film and a diffusion sheet. The first light source is used for outputting first light and the second light source is used for outputting second light. The reflector is arranged on the transmission path of the second light ray and provided with a wavelength conversion material layer. The wavelength conversion material layer receives the second light and converts the second light to output a third light. The first spectroscope is arranged between the first light source and the second light source and is only arranged on the transmission paths of the first light, the second light and the third light. The filter film is arranged on the transmission paths of the first light ray and the third light ray, and the first spectroscope is arranged between the reflector and the filter film. The diffusion sheet is arranged on the transmission path of the second light and between the second light source and the first spectroscope, and the diffusion sheet is used for increasing the conversion efficiency of the wavelength conversion material layer.

Description

光源装置Light source device

技术领域Technical field

本发明涉及一种光源装置,尤其是一种具有新颖合光架构的光源装置。The present invention relates to a light source device, in particular to a light source device with a novel light combining structure.

背景技术Background technique

随着近年来固态光源以及投影技术的发展,以发光二极管(light-emittingdiode,LED)以及激光二极管(laser diode)等固态光源为主的投影装置逐渐受到市场的青睐。With the development of solid-state light sources and projection technology in recent years, projection devices based on solid-state light sources such as light-emitting diodes (LEDs) and laser diodes have gradually gained favor in the market.

在已知的投影机架构中,有见一种利用穿透与反射兼具的荧光粉轮的合光架构。荧光粉轮上有部分区域铺设荧光粉,而有部分区域为透明。当荧光粉轮进行转动时,自外部而来的短波长光线(例如是蓝光)会激发荧光粉轮上的荧光粉而产生特定色光,且一部分的蓝光则可以穿透荧光粉轮的透明区域而通过适当的光路架构而与荧光粉所产生的特定色光与具有其他颜色的光源所提供的色光合并,而形成此投影机架构的照明光束。然而,由于在上述投影机架构中,需要设置适当的光路架构来引导穿透荧光粉轮的蓝光与其他色光进行合并,使得整体投影机架构较为复杂,其所需要的光学元件较多,且组装工时也较长。Among the known projector architectures, there is a light-combining architecture that utilizes a phosphor wheel that has both penetration and reflection. Some areas on the phosphor wheel are covered with phosphor, while some areas are transparent. When the phosphor wheel rotates, short-wavelength light (such as blue light) from the outside will excite the phosphor on the phosphor wheel to produce specific color light, and part of the blue light can penetrate the transparent area of the phosphor wheel. Through an appropriate light path structure, the specific color light generated by the phosphor and the color light provided by the light source with other colors are combined to form the illumination beam of the projector structure. However, since in the above-mentioned projector architecture, an appropriate light path structure needs to be set up to guide the blue light that penetrates the phosphor wheel to be combined with other color lights, the overall projector architecture is more complex, requiring more optical components and assembly. The working hours are also longer.

发明内容Contents of the invention

本发明提供一种光源装置,其具有简化的光路架构,且采用此光源装置的投影装置得具有较佳的色彩表现及较佳的成本效益。The present invention provides a light source device with a simplified light path structure, and a projection device using the light source device has better color performance and better cost-effectiveness.

本发明的一实施例中,光源装置包括第一光源、第二光源、反射镜、第一分光镜、滤光膜以及扩散片。第一光源用以输出第一光线,第二光源用以输出第二光线。反射镜设置于第二光线的传输路径上,且反射镜具有波长转换材料层。波长转换材料层接收第二光线并转变而输出第三光线。第一分光镜设置于第一光源与第二光源之间且仅设置于第一光线、第二光线以及第三光线的传输路径上。滤光膜设置于第一光线以及第三光线的传输路径上且第一分光镜设置于反射镜与滤光膜之间。扩散片设置于第二光线的传输路径上,且设置于第二光源与第一分光镜之间,扩散片用以增加波长转换材料层的转换效率。In an embodiment of the present invention, the light source device includes a first light source, a second light source, a reflector, a first beam splitter, a filter film and a diffusion sheet. The first light source is used to output the first light, and the second light source is used to output the second light. The reflective mirror is disposed on the transmission path of the second light, and the reflective mirror has a wavelength conversion material layer. The wavelength conversion material layer receives the second light and converts it to output the third light. The first beam splitter is disposed between the first light source and the second light source and is only disposed on the transmission path of the first light, the second light and the third light. The filter film is disposed on the transmission path of the first light and the third light, and the first beam splitter is disposed between the reflector and the filter film. The diffusion sheet is disposed on the transmission path of the second light and between the second light source and the first beam splitter. The diffusion sheet is used to increase the conversion efficiency of the wavelength conversion material layer.

本发明的另一实施例中,光源装置至少包括第一光源、第二光源、反射式基板、第一分光镜、滤光膜以及扩散片。所述第一光源用以输出第一光线。所述第二光源用以输出第二光线。所述反射式基板具有荧光粉层,且所述荧光粉层用以接受所述第二光线并转变而输出第三光线。所述第一分光镜仅设置于所述第一光线、所述第二光线以及所述第三光线的传输路径上。所述第一分光镜具有第一表面以及第二表面。所述第一表面设置为将所述第二光线反射至所述反射式基板,并让所述第三光线的至少一部分通过,且所述第二表面设置为反射所述第一光线。所述滤光膜设置于所述第一光线以及所述第三光线的传输路径上且所述第一分光镜设置于所述反射式基板与所述滤光膜之间。所述扩散片设置于所述第二光线的所述传输路径上,且设置于所述第二光源与所述第一分光镜之间。所述扩散片用以增加所述波长转换材料层的转换效率。In another embodiment of the present invention, the light source device at least includes a first light source, a second light source, a reflective substrate, a first beam splitter, a filter film and a diffusion sheet. The first light source is used to output first light. The second light source is used to output second light. The reflective substrate has a phosphor layer, and the phosphor layer is used to receive the second light and convert it to output a third light. The first beam splitter is only disposed on the transmission path of the first light, the second light and the third light. The first beam splitter has a first surface and a second surface. The first surface is configured to reflect the second light to the reflective substrate and allow at least a portion of the third light to pass through, and the second surface is configured to reflect the first light. The filter film is disposed on the transmission path of the first light and the third light, and the first beam splitter is disposed between the reflective substrate and the filter film. The diffusion sheet is disposed on the transmission path of the second light and between the second light source and the first beam splitter. The diffusion sheet is used to increase the conversion efficiency of the wavelength conversion material layer.

基于上述,在本发明的相关实施例中,由于光源装置的反射镜接收第二光线并输出第三光线,因此光源装置可以不采用穿透与反射兼具的荧光粉轮的合光架构,而具有较简化的光路架构。光源装置的光学元件较少,使得光源装置的组装工时可以有效减少。另外,光源装置的滤光膜设置于第一光线以及第三光线的传输路径上,因此通过滤光膜的第三光线可以具有较纯的颜色,使得采用光源装置的投影装置具有较广的色域。另外,基于光源装置的光路架构,分光镜可以设计成使对应于该第三颜色的光波段通过,相对于允许间断且具不同颜色的多个光波段通过,允许单一颜色的光波段通过的分光镜的镀膜涂层设计相对简单且较易于制作,使得光源装置具有较佳的成本效益。扩散片用以增加所述波长转换材料层的转换效率以达到较佳的转换效率。Based on the above, in relevant embodiments of the present invention, since the reflector of the light source device receives the second light and outputs the third light, the light source device does not need to use a light combining structure of a phosphor wheel that has both penetration and reflection. Has a simpler optical path architecture. The light source device has fewer optical components, so the assembly time of the light source device can be effectively reduced. In addition, the filter film of the light source device is disposed on the transmission path of the first light and the third light, so the third light passing through the filter film can have a purer color, so that the projection device using the light source device has a wider range of colors. area. In addition, based on the optical path structure of the light source device, the spectroscope can be designed to pass the light waveband corresponding to the third color. Compared with allowing multiple light wavebands with discontinuous and different colors to pass, the spectroscope allows the light waveband of a single color to pass. The coating design of the mirror is relatively simple and easy to manufacture, making the light source device more cost-effective. The diffusion sheet is used to increase the conversion efficiency of the wavelength conversion material layer to achieve better conversion efficiency.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, embodiments are given below and described in detail with reference to the accompanying drawings.

附图说明Description of the drawings

图1示出本发明一实施例的光源装置以及采用此光源装置的投影装置的架构示意图。FIG. 1 shows a schematic structural diagram of a light source device and a projection device using the light source device according to an embodiment of the present invention.

图2示出图1实施例中第一分光镜的第一表面的光线穿透率对光线波长的简化作图。FIG. 2 shows a simplified plot of light transmittance of the first surface of the first beam splitter versus light wavelength in the embodiment of FIG. 1 .

图3示出图1实施例中离开反射镜的第三光线的正规化光强度对波长的作图。FIG. 3 shows a plot of normalized light intensity versus wavelength for a third ray exiting the reflector in the embodiment of FIG. 1 .

图4示出本发明一些实施例中在有无设置扩散片的情况下,转换光线的转换效率对第二光线的半高宽能量密度的作图。Figure 4 shows a plot of the conversion efficiency of the converted light versus the half-maximum energy density of the second light with or without a diffuser in some embodiments of the present invention.

图5示出本发明另一实施例的光源装置以及采用此光源装置的投影装置的架构示意图。FIG. 5 shows a schematic structural diagram of a light source device and a projection device using the light source device according to another embodiment of the present invention.

附图标记说明Explanation of reference signs

100、500:光源装置100, 500: Light source device

101、103、105、106、107、109、201、203:光学透镜101, 103, 105, 106, 107, 109, 201, 203: Optical lens

102、130:反射镜102, 130: Reflector

110:第一光源110: First light source

120:第二光源120: Second light source

132:基板132: Substrate

134:反光层134: Reflective layer

136:波长转换材料层136: Wavelength conversion material layer

138:马达138: Motor

140:第一分光镜140: First beam splitter

150:滤光膜150: Filter film

160:第三光源160: Third light source

170:第二分光镜170: Second beam splitter

180:光均匀元件180: Light uniformity component

190:扩散片190: Diffuser

200、600:投影装置200, 600: Projection device

202:棱镜202: Prism

210:光阀210: Light valve

220:投影镜头220: Projection lens

530:反射式基板530: Reflective substrate

536:荧光粉层536: Phosphor layer

CL:转换光线CL: Convert light

I、II、III:区域I, II, III: Area

L1:第一光线L1: first ray

L2:第二光线L2: Second ray

L3:第三光线L3: The third ray

L4:第四光线L4: The fourth ray

L5:照明光线L5: lighting light

L6:投影光线L6: Projection light

S1:第一表面S1: first surface

S2:第二表面S2: Second surface

S3、S4、S5:表面S3, S4, S5: surface

具体实施方式Detailed ways

图1示出本发明一实施例的光源装置以及采用此光源装置的投影装置的架构示意图,请参考图1。在本实施例中,投影装置200包括光源装置100、光阀210以及投影镜头220,而光源装置100包括第一光源110、第二光源120、反射镜130、第一分光镜140、滤光膜150、第三光源160、第二分光镜170、光均匀元件180以及扩散片190。FIG. 1 shows a schematic structural diagram of a light source device and a projection device using the light source device according to an embodiment of the present invention. Please refer to FIG. 1 . In this embodiment, the projection device 200 includes a light source device 100, a light valve 210, and a projection lens 220. The light source device 100 includes a first light source 110, a second light source 120, a reflector 130, a first beam splitter 140, and a filter film. 150. The third light source 160, the second beam splitter 170, the light uniformity element 180 and the diffusion sheet 190.

以下将分别对各元件的设计进行说明。第一光源110、第二光源120及第三光源160分别用以输出第一光线L1、第二光线L2及第四光线L4。第一光源110、第二光线120及第三光线160分别可以包括例如是能发出各种可见光的激光二极管(laser diode,LD)芯片、发光二极管(light-emitting diode,LED)芯片及其封装体的任一者。在本例中,第一光源110包括了一红光发光二极管芯片,而第一颜色为实质红色。更明确的说,第一光线L1在一光谱能量分布图谱中具有一相对应的光谱能量分布曲线(spectral energy distributioncurve),而该分布曲线的波峰落在红色(例如是620纳米至750纳米)的波长区间之中。而除了发光芯片本身外,第一光源110也得设有一具有屈光度的透镜(未标示),用以收敛光线的发散方向。The design of each component will be described separately below. The first light source 110, the second light source 120 and the third light source 160 are respectively used to output the first light L1, the second light L2 and the fourth light L4. The first light source 110 , the second light 120 and the third light 160 may respectively include, for example, a laser diode (LD) chip, a light-emitting diode (LED) chip that can emit various visible lights, and a package thereof. any of. In this example, the first light source 110 includes a red light emitting diode chip, and the first color is substantially red. More specifically, the first light L1 has a corresponding spectral energy distribution curve (spectral energy distribution curve) in a spectral energy distribution diagram, and the peak of the distribution curve falls in red (for example, 620 nanometers to 750 nanometers). within the wavelength range. In addition to the light-emitting chip itself, the first light source 110 must also be provided with a lens (not labeled) with diopter to converge the divergence direction of the light.

在本例中,第二光源120包括了可发出第二光线的蓝光激光二极管阵列(BlueLaser diode Bank),而第二光线发出的光线的颜色为第二颜色,其实质为蓝色。而同样地,第二光线L2的分布曲线的波峰落在蓝色(例如是440纳米至460纳米)的波长区间之中。而除了发光芯片本身外,第二光源120上方也得设有一布局与前述各激光二极管芯片相对应的微透镜矩阵以调整其光型。In this example, the second light source 120 includes a blue laser diode array (BlueLaser diode bank) that can emit the second light, and the color of the light emitted by the second light is the second color, which is essentially blue. Similarly, the peak of the distribution curve of the second light L2 falls in the wavelength range of blue (for example, 440 nanometers to 460 nanometers). In addition to the light-emitting chip itself, a microlens matrix with a layout corresponding to each of the aforementioned laser diode chips must also be provided above the second light source 120 to adjust its light pattern.

在本例中,第三光源160包括了一可发出第四光线的发光二极管芯片,而第四光线发出的光线的颜色为第二颜色,其实质为蓝色。举例来说,第四光线L4的分布曲线的波峰落在蓝色(例如是440纳米至460纳米)的波长区间之中。需要注意的是,第三光源160所发出的光线的波长与第二光源120的波长类似,但并不必需要完全相同。举例来说,第二光线L2的波峰的对应波长数值可较第四光线L4的波峰的对应波长数值略小。In this example, the third light source 160 includes a light-emitting diode chip that can emit a fourth light, and the color of the light emitted by the fourth light is the second color, which is essentially blue. For example, the peak of the distribution curve of the fourth light L4 falls in the wavelength range of blue (for example, 440 nanometers to 460 nanometers). It should be noted that the wavelength of the light emitted by the third light source 160 is similar to the wavelength of the second light source 120 , but does not necessarily need to be exactly the same. For example, the corresponding wavelength value of the wave peak of the second light beam L2 may be slightly smaller than the corresponding wavelength value of the wave peak of the fourth light beam L4.

另一方面,在本例中,系统包括了反射镜130。反射镜130泛指具有改变光线行进方向的光学元件。在本例中,反射镜指荧光轮。更明确的说,反射镜130包括基板132、反光层134、波长转换材料层136以及马达138。基板132例如是环状片材,而环状片材的中间环体嵌设于马达138的转轴上,使得基板132适于被马达138驱动而旋转。另外,反光层134设置于基板132上,且波长转换材料层136设置于反光层134上。而波长转换材料层136包括荧光粉。荧光粉可以是可以轮出绿色、黄色或是其他颜色光线的荧光粉,本发明并不以此为限。在本实施例中,波长转换材料层136可以接受第二光线L2的蓝光,通过激发波长转换材料层136中的荧光粉的光致发光(Photoluminescence)现象并产生转换光线CL。转换光线CL例如包括第三颜色,且转换光线CL的波峰例如是落在495纳米至570纳米的范围内的,例如,转换光线CL的波长可以是540纳米。与此同时,在一些相关实施例中,一部分的第二光线L2并不会被荧光粉吸收而会与转换光线CL一并被反射,也即,第三光线除了转换光线CL外,也包括部份未经吸收,来自第二光线L2的蓝光。On the other hand, in this example, the system includes a reflector 130 . The reflector 130 generally refers to an optical element that changes the traveling direction of light. In this case, the reflector is the phosphor wheel. To be more specific, the reflector 130 includes a substrate 132 , a reflective layer 134 , a wavelength conversion material layer 136 and a motor 138 . The base plate 132 is, for example, an annular sheet, and the middle ring body of the annular sheet is embedded on the rotating shaft of the motor 138 , so that the base plate 132 is suitable to be driven by the motor 138 to rotate. In addition, the reflective layer 134 is provided on the substrate 132 , and the wavelength conversion material layer 136 is provided on the reflective layer 134 . The wavelength conversion material layer 136 includes phosphor. The phosphor can be a phosphor that emits green, yellow or other colors of light, and the invention is not limited thereto. In this embodiment, the wavelength conversion material layer 136 can receive the blue light of the second light L2 and generate the conversion light CL by stimulating the photoluminescence phenomenon of the phosphor in the wavelength conversion material layer 136 . The converted light CL includes, for example, a third color, and the peak of the converted light CL falls within the range of 495 nanometers to 570 nanometers. For example, the wavelength of the converted light CL may be 540 nanometers. At the same time, in some related embodiments, a part of the second light L2 will not be absorbed by the phosphor but will be reflected together with the conversion light CL. That is, in addition to the conversion light CL, the third light also includes part of the conversion light CL. The blue light from the second light L2 is unabsorbed.

再者,在本实施例中,系统设有第一分光镜140。一般来说,第一分光镜140泛指具有分光功能的光学元件,如半反半透镜、利用P、S极性分光的偏振片、各种波片、利用入光角分光的各种棱镜、利用波长分光的分光片等等。而在本例中,第一分光镜140利用波长分光的分光片,也即二向色镜(dichroic mirror,DM)。第一分光镜140具有第一表面S1以及第二表面S2,第一表面S1以及第二表面S2例如是彼此相对设置。在本实施例中,第一表面S1具有波长选择性的。图2示出图1实施例中第一分光镜140的第一表面S1的光线穿透率对光线波长的简化作图。图2的横轴标示“波长”表示光线的波长,而纵轴标示的“穿透率”表示第一表面S1的光线穿透率(Transmittance)。在图2中,区域I表示具有较短波长的蓝光的穿透率,区域II表示绿光的穿透率,而区域III表示具有较长波长的红光的穿透率。具体而言,在本实施例中,第一表面S1例如是具有镀膜,而对于呈现绿色的例如是第三光线L3为带通(bandpass)。因此,第一表面S1可以例如使绿光通过而反射红光以及蓝光。需注意的是,图2仅示例性地示出第一表面S1对于绿光呈现带通。实际而言,第一表面S1的光线穿透率可以依据镀膜等制程条件而在一波长范围内有其他的分布情形,本发明并不以此为限。实际而言,有鉴于镀膜技术不易形成如图2所示完美地对于绿光为带通,在一些实施例中,蓝光还是可以有一部分通过第一分光镜140。Furthermore, in this embodiment, the system is provided with a first beam splitter 140 . Generally speaking, the first beam splitter 140 generally refers to an optical element with a light splitting function, such as a half-reflective half-mirror, a polarizer that uses P and S polarity light splitting, various wave plates, and various prisms that use the incident angle to split light. Beam splitters using wavelength splitting, etc. In this example, the first beam splitter 140 uses a wavelength splitter, that is, a dichroic mirror (DM). The first beam splitter 140 has a first surface S1 and a second surface S2. The first surface S1 and the second surface S2 are, for example, arranged opposite to each other. In this embodiment, the first surface S1 is wavelength selective. FIG. 2 shows a simplified plot of light transmittance versus light wavelength of the first surface S1 of the first beam splitter 140 in the embodiment of FIG. 1 . The "wavelength" marked on the horizontal axis of Figure 2 represents the wavelength of light, and the "transmittance" marked on the vertical axis represents the light transmittance (Transmittance) of the first surface S1. In FIG. 2, area I represents the transmittance of blue light with a shorter wavelength, area II represents the transmittance of green light, and area III represents the transmittance of red light with a longer wavelength. Specifically, in this embodiment, the first surface S1 has a coating, for example, and the third light L3 that appears green, for example, is bandpass. Therefore, the first surface S1 may, for example, pass green light and reflect red light and blue light. It should be noted that FIG. 2 only illustrates that the first surface S1 exhibits a bandpass for green light. Practically speaking, the light transmittance of the first surface S1 may have other distributions within a wavelength range depending on process conditions such as coating, and the present invention is not limited thereto. Practically speaking, since coating technology is not easy to form a perfect bandpass for green light as shown in FIG. 2 , in some embodiments, part of the blue light can still pass through the first beam splitter 140 .

请继续参考图1,在本实施例中,设有滤光膜150。一般来说,滤光膜150泛指以反射或吸收的形式来滤除特定的光波段,以移除光线之中的特定波长或颜色的结构。通常来说,滤光膜150可以选择性地以涂布、粘合等方式形成于特定光学的表面处,或是以独立元件的方式来设置。而在本实施例中,滤光膜150是形成在特定光学元件的表面的,且滤光膜150可防止大部份的蓝色光穿透。Please continue to refer to FIG. 1. In this embodiment, a filter film 150 is provided. Generally speaking, the filter film 150 generally refers to a structure that filters out specific light wavelength bands in the form of reflection or absorption to remove specific wavelengths or colors in the light. Generally speaking, the filter film 150 can be selectively formed on a specific optical surface by coating, bonding, etc., or it can be provided as an independent component. In this embodiment, the filter film 150 is formed on the surface of the specific optical element, and the filter film 150 can prevent most of the blue light from penetrating.

在本实施例中,系统进一步包括第二分光镜170。第二分光镜170的性质与第一分光镜140类似。而在本例中,第二分光镜为二向色元件(dichroic member)而具有波长选择性。更明确的说,在本例中,第二分光镜170反射蓝光但允许红、绿光通过。In this embodiment, the system further includes a second beam splitter 170 . The properties of the second beam splitter 170 are similar to those of the first beam splitter 140 . In this example, the second beam splitter is a dichroic member and has wavelength selectivity. More specifically, in this example, the second beam splitter 170 reflects blue light but allows red and green light to pass.

在本实施例中,系统进一步包括光均匀元件180,用以使照明光线L5的强度分布均匀化。一般来说,光均匀元件180可以是复眼透镜(Fly-eye lens)或是光积分柱(lightintegration rod)等光学元件,本发明并不以此为限。而在本例中,光均匀元件180为复眼透镜。In this embodiment, the system further includes a light uniformity element 180 to uniformize the intensity distribution of the illumination light L5. Generally speaking, the light uniformity element 180 can be an optical element such as a fly-eye lens or a light integration rod, but the invention is not limited thereto. In this example, the light uniformity element 180 is a fly-eye lens.

在本实施例中,系统进一步包括扩散片(diffuser)190。扩散片190包括例如是渗有扩散粒子的膜层、具有增加扩散功效的微纳米结构或是透镜等具有光扩散效果的光学元件,其例如是包括多个光扩散微结构,而可以对通过扩散片190的光线进行功率的调整。In this embodiment, the system further includes a diffuser 190 . The diffusion sheet 190 includes, for example, a film layer infiltrated with diffusion particles, a micro-nano structure with increased diffusion effect, or an optical element with a light diffusion effect such as a lens. It includes, for example, a plurality of light diffusion microstructures, which can diffuse light The power of the light of the piece 190 is adjusted.

在本实施例中,系统进一步包括光阀,适于将照明光线L5转换为投影光线L6。详细而言,光阀210例如是数字微镜元件(digital micro-mirror device,DMD)或硅基液晶面板(liquid-crystal-on-silicon panel,LCOS panel)。然而,在其他实施例中,光阀210也可以是穿透式液晶面板或其他空间光调制器,本发明并不以此为限。而在本例中,光阀210为数字微镜元件。In this embodiment, the system further includes a light valve adapted to convert the illumination light L5 into the projection light L6. Specifically, the light valve 210 is, for example, a digital micro-mirror device (DMD) or a liquid-crystal-on-silicon panel (LCOS panel). However, in other embodiments, the light valve 210 may also be a transmissive liquid crystal panel or other spatial light modulator, and the present invention is not limited thereto. In this example, the light valve 210 is a digital micromirror element.

在本实施例中,系统进一步包括投影镜头220,由至少一枚透镜所组成。通常投影镜头220内部可设有孔径光栏,而孔径光栏的前后分设有多枚透镜以调整图像光的形状及像差。In this embodiment, the system further includes a projection lens 220, which is composed of at least one lens. Generally, the projection lens 220 may be provided with an aperture diaphragm inside, and multiple lenses are provided in front and behind the aperture diaphragm to adjust the shape and aberration of the image light.

以下示例性地说明投影装置200的各元件的安排及光线的传输过程。在本实施例中,第一分光镜140设置于第一光线L1、第二光线L2以及第三光线L3的传输路径上。具体而言,第一分光镜140相对于第一光源是倾斜的,更明确的说,第一光线L1对第一分光镜140的入光角为45度角。第一表面S1面对反射镜130及第二光源120,而第二表面S2面对第一光源110及光学透镜101。The arrangement of each element of the projection device 200 and the light transmission process are exemplarily described below. In this embodiment, the first beam splitter 140 is disposed on the transmission path of the first light L1, the second light L2, and the third light L3. Specifically, the first beam splitter 140 is tilted relative to the first light source. To be more specific, the incident angle of the first light ray L1 to the first beam splitter 140 is 45 degrees. The first surface S1 faces the reflector 130 and the second light source 120 , and the second surface S2 faces the first light source 110 and the optical lens 101 .

第二光源120输出蓝色的第二光线L2后,第二光线L2经由光路的引导而通过扩散片190。也即,扩散片(diffuser)190设置于第二光线L2的传输路径上,且扩散片190设置于第二光源120及反射镜130之间。具体而言,扩散片190是沿着第二光线L2的传输路径设置于第一光源110及反射镜130之间。第二光线L2通过扩散片190之后,传输至第一分光镜140的第一表面S1。接着,第二光线L2在第一表面S1上反射而传输至反射镜130的波长转换材料层136。第二光线L2进入波长转换材料层136之后,第二光线L2的至少一部分被波长转换材料层136转变成包括第三颜色(例如是绿色)的转换光线CL。转换光线CL例如是直接朝向离开反射镜130的方向离开或是在反光层134上发生反射后朝向离开反射镜130的方向离开。另外,未被波长转换材料层136(荧光粉)转变的蓝色的第二光线L2例如在反光层134上发生反射后朝向离开反射镜130的方向离开。在本实施例中,由于第三光线L3包括转换光线CL以及未被转变的第二光线L2,因此第三光线L3包括第三颜色(例如是绿色)及第二颜色(例如是蓝色)。反射镜130设置于第二光线L2的传输路径上。需注意的是,在其他实施例中,上述的第一颜色、第二颜色以及第三颜色可以依据实际出光的相关需求或是投影的相关需求而设计为其他的颜色,本发明并不以此为限。After the second light source 120 outputs the blue second light L2, the second light L2 passes through the diffusion sheet 190 through the guidance of the optical path. That is, the diffuser 190 is disposed on the transmission path of the second light L2, and the diffuser 190 is disposed between the second light source 120 and the reflector 130 . Specifically, the diffusion sheet 190 is disposed between the first light source 110 and the reflector 130 along the transmission path of the second light L2. After the second light L2 passes through the diffuser 190, it is transmitted to the first surface S1 of the first beam splitter 140. Then, the second light L2 is reflected on the first surface S1 and transmitted to the wavelength conversion material layer 136 of the reflector 130 . After the second light L2 enters the wavelength conversion material layer 136, at least part of the second light L2 is converted by the wavelength conversion material layer 136 into converted light CL including a third color (for example, green). For example, the converted light CL leaves directly in the direction away from the reflector 130 or leaves in the direction away from the reflector 130 after being reflected on the reflective layer 134 . In addition, the second blue light L2 that has not been converted by the wavelength conversion material layer 136 (phosphor) is reflected on, for example, the reflective layer 134 and then leaves in a direction away from the reflective mirror 130 . In this embodiment, since the third light ray L3 includes the converted light CL and the unconverted second light ray L2, the third light ray L3 includes a third color (eg, green) and a second color (eg, blue). The reflector 130 is disposed on the transmission path of the second light L2. It should be noted that in other embodiments, the above-mentioned first color, second color and third color can be designed as other colors according to actual light emission requirements or projection requirements, and the present invention does not use this method. is limited.

图3示出图1实施例中离开反射镜的第三光线的正规化光强度对波长的作图,请同时参考图1以及图3。图3呈现第三光线L3在刚离开反射镜130时在不同波长下的光强度,且此时第三光线L3包括转换光线CL以及未被波长转换材料层136转变的第二光线L2。图3的横轴所标示的“波长”表示第三光线L3的波长,其单位为纳米(nanometer,nm),而纵轴所标示的“正规化光强度”表示第三光线L3在所对应波长下所测量的光强度正规化(normalization)之后的结果。具体而言,由于第三光线L3包括未被波长转换材料层136转变的第二光线L2,因此第三光线L3在蓝光的波段(例如是在450纳米附近)呈现一个小的波峰。详细而言,由于在第三光线L3中,绿色的转换光线CL的光强度明显大于蓝色的第二光线L2,因此第三光线L3看起来还是呈现为绿色。FIG. 3 shows a plot of normalized light intensity versus wavelength of the third light ray leaving the reflector in the embodiment of FIG. 1 . Please refer to FIG. 1 and FIG. 3 at the same time. FIG. 3 shows the light intensity of the third light ray L3 at different wavelengths when it just leaves the reflector 130 , and at this time the third light ray L3 includes the converted light CL and the second light ray L2 that is not converted by the wavelength conversion material layer 136 . The "wavelength" marked on the horizontal axis of Figure 3 represents the wavelength of the third light L3, and its unit is nanometer (nm), while the "normalized light intensity" marked on the vertical axis represents the corresponding wavelength of the third light L3. The results after normalization of the measured light intensity below. Specifically, since the third light L3 includes the second light L2 that has not been converted by the wavelength conversion material layer 136, the third light L3 exhibits a small peak in the wavelength band of blue light (for example, around 450 nanometers). In detail, since in the third light ray L3, the light intensity of the green converted light CL is significantly greater than the blue second light ray L2, the third light ray L3 still appears to be green.

请继续参考图1,在本实施例中,离开反射镜130的第三光线L3传输至第一分光镜140的第一表面S1。由于第一表面S1例如可以使绿光通过,因此第三光线L3的至少一部分依序通过第一表面S1以及第二表面S2而离开第一分光镜140。然而实际而言,由于镀膜技术不易形成如图2所示完美地对于绿光为带通,因此第三光线L3的蓝光部分还是会有一部分通过第一分光镜140。Please continue to refer to FIG. 1 . In this embodiment, the third light ray L3 leaving the reflector 130 is transmitted to the first surface S1 of the first beam splitter 140 . Since the first surface S1 can pass green light, for example, at least a part of the third light L3 passes through the first surface S1 and the second surface S2 sequentially and leaves the first beam splitter 140 . However, in practice, since the coating technology is not easy to form a perfect bandpass for green light as shown in FIG. 2 , part of the blue light part of the third light L3 will still pass through the first beam splitter 140 .

另外,在本实施例中,第一光源110输出红色的第一光线L1后,第一光线L1在第一分光镜140的第二表面S2上反射而离开第一分光镜140。在本实施例中,离开第一分光镜140的第三光线L3的至少一部分以及离开第一分光镜140的第一光线L1通过滤光膜150。具体而言,滤光膜150用以移除第三光线L3的第二颜色(例如是蓝色)。举例而言,滤光膜150可以用以滤除第三光线L3所包含的未被波长转换材料层136转变的蓝色的第二光线L2,或者,滤光膜150也可以用以滤除因其他因素而混在第三光线L3之中的蓝光。具体而言,滤光膜150可以例如是使得混在第三光线L3之中的蓝光无法通过滤光膜150。因此,通过滤光膜150的第三光线L3具有较纯的绿光。In addition, in this embodiment, after the first light source 110 outputs the red first light L1, the first light L1 is reflected on the second surface S2 of the first beam splitter 140 and leaves the first beam splitter 140. In this embodiment, at least part of the third light ray L3 leaving the first beam splitter 140 and the first light ray L1 leaving the first beam splitter 140 pass through the filter film 150 . Specifically, the filter film 150 is used to remove the second color (eg, blue) of the third light L3. For example, the filter film 150 can be used to filter out the second blue light L2 contained in the third light L3 that has not been converted by the wavelength conversion material layer 136 , or the filter film 150 can also be used to filter out the blue second light L2 that is not converted by the wavelength conversion material layer 136 . The blue light mixed in the third light L3 due to other factors. Specifically, the filter film 150 may, for example, prevent the blue light mixed in the third light L3 from passing through the filter film 150 . Therefore, the third light L3 passing through the filter film 150 has relatively pure green light.

在本例中,滤光膜150可以例如是设置在图1示出的光学透镜101的表面S3、表面S4或是第二分光镜170的表面S5上。或者,光源装置100可以在第一光线L1以及第三光线L3的传输路径上设置其他光学元件,而此光学元件设置滤光膜150。又或者,在另一例中,滤光膜150可以是设置于第一光线L1以及第三光线L3的传输路径上的独立元件,本发明并不以此为限。In this example, the filter film 150 may be, for example, disposed on the surface S3 or S4 of the optical lens 101 shown in FIG. 1 or the surface S5 of the second beam splitter 170 . Alternatively, the light source device 100 may be provided with other optical elements on the transmission paths of the first light L1 and the third light L3, and the optical elements are provided with the filter film 150 . Or, in another example, the filter film 150 may be an independent component disposed on the transmission path of the first light L1 and the third light L3, and the invention is not limited thereto.

在本实施例中,通过滤光膜150的第三光线L3以及通过滤光膜150的第一光线L1传输至第二分光镜170,而第四光线L4的蓝光自第三光源160发出后也传输至第二分光镜170。在本实施例中,第二分光镜170使第一光线L1、第三光线L3通过,并反射第四光线L4。也即,第二分光镜170设置在第四光线L4、第三光线L3以及第一光线L1的传输路径上。藉此,第一光线L1、第三光线L3以及第四光线L4被合并而形成照明光线L5。照明光线L5通过位于照明光线L5的传输路径上的光均匀元件180,而使其强度分布均匀化之后,传输至光阀210。详细而言,在本实施例中,离开第一分光镜140的第三光线L3行进至光阀210之前并没有经过反射。另外,光阀210将照明光线L5转换为投影光线L6,且投影镜头220用以将投影光线L6投影至成像平面或是屏幕(未示出)上以形成图像画面。In this embodiment, the third light L3 passing through the filter film 150 and the first light L1 passing through the filter film 150 are transmitted to the second beam splitter 170 , and the blue light of the fourth light L4 is emitted from the third light source 160 . transmitted to the second beam splitter 170. In this embodiment, the second beam splitter 170 passes the first light L1 and the third light L3 and reflects the fourth light L4. That is, the second beam splitter 170 is disposed on the transmission path of the fourth light L4, the third light L3, and the first light L1. Thereby, the first light L1, the third light L3 and the fourth light L4 are combined to form the illumination light L5. The illumination light L5 passes through the light uniformity element 180 located on the transmission path of the illumination light L5 to uniformize its intensity distribution, and then is transmitted to the light valve 210 . Specifically, in this embodiment, the third light L3 leaving the first beam splitter 140 is not reflected before traveling to the light valve 210 . In addition, the light valve 210 converts the illumination light L5 into the projection light L6, and the projection lens 220 is used to project the projection light L6 onto an imaging plane or a screen (not shown) to form an image.

详细而言,扩散片190例如是可以对通过扩散片190的第二光线L2进行功率分布的调整,且第二光线L2的功率也可以通过驱动第二光源120的电压或电流进行调整。图4示出本发明一些实施例中在有无设置扩散片的情况下,转换光线的转换效率对第二光线的半高宽能量密度的作图。请同时参考图1以及图4,在图4中,横轴标示“半高宽能量密度”表示第二光源120发出第二光线L2的半高宽能量密度,其单位为瓦特/毫米平方(W/mm2)。另外,纵轴标示“效率”表示第二光线L2被波长转换材料层136转换成转换光线CL的转换效率,其单位为流明/瓦特(lm/W)。在图4中,正方形的数据点为光源装置100未设置扩散片190的数据点,而菱形的数据点为光源装置100有设置扩散片190的数据点。具体而言,当第二光线L2的半高宽能量密度太小时,波长转换材料层136的荧光粉例如会对第二光线L2进行吸收,且不会转换出对应的转换光线CL,致使转换效率不佳。另外,当第二光线L2的半高宽能量密度太大时,波长转换材料层136的荧光粉会例如发生热淬火效应(thermal quench effect)而致使转换效率不佳。在本实施例中,若欲达到较佳的转换效率,则第二光线L2的半高宽能量密度落在5至60瓦特/毫米平方则可以达到基本的效果。较佳地,第二光线L2的半高宽能量密度例如落在5至30瓦特/毫米平方。另外,当第二光线L2的半高宽能量密度落在5至21瓦特/毫米平方时,则荧光粉将第二光线L2转换为转换光线CL的转换效率可以达到最佳。举例而言,在本实施例中,第二光线L2的半高宽能量密度为20.8瓦特/毫米平方。另外,在最大操作条件下,当光源装置100设置扩散片190之后,则上述转换效率可以例如是增加9.5%。Specifically, the diffusion sheet 190 can adjust the power distribution of the second light L2 passing through the diffusion sheet 190 , and the power of the second light L2 can also be adjusted by driving the voltage or current of the second light source 120 . Figure 4 shows a plot of the conversion efficiency of the converted light versus the half-maximum energy density of the second light with or without a diffuser in some embodiments of the present invention. Please refer to FIG. 1 and FIG. 4 at the same time. In FIG. 4 , the horizontal axis labeled “energy density at half maximum width” represents the energy density at half maximum width of the second light L2 emitted by the second light source 120 , and its unit is Watt/mm square (W /mm 2 ). In addition, the vertical axis marked "efficiency" represents the conversion efficiency of the second light L2 converted into the converted light CL by the wavelength conversion material layer 136, and its unit is lumens/watt (lm/W). In FIG. 4 , the square data points are data points where the light source device 100 is not provided with the diffusion sheet 190 , and the diamond-shaped data points are the data points where the light source device 100 is provided with the diffusion sheet 190 . Specifically, when the half-width energy density of the second light L2 is too small, the phosphor of the wavelength conversion material layer 136 will absorb the second light L2 and will not convert the corresponding conversion light CL, resulting in a decrease in conversion efficiency. Not good. In addition, when the half-width energy density of the second light L2 is too large, the phosphor of the wavelength conversion material layer 136 may, for example, undergo a thermal quenching effect, resulting in poor conversion efficiency. In this embodiment, if you want to achieve better conversion efficiency, the half-width energy density of the second light L2 falls between 5 and 60 watts/mm square to achieve the basic effect. Preferably, the half-width energy density of the second light L2 falls within a range of 5 to 30 watts/mm square, for example. In addition, when the half-width energy density of the second light L2 falls between 5 and 21 watts/mm square, the conversion efficiency of the phosphor to convert the second light L2 into the conversion light CL can be optimal. For example, in this embodiment, the half-width energy density of the second light L2 is 20.8 watts/mm square. In addition, under the maximum operating condition, when the light source device 100 is provided with the diffusion sheet 190 , the conversion efficiency may be increased by, for example, 9.5%.

请继续参考图1,在本实施例中,光源装置100还包括多个光学透镜101、103、105、106、107、109以及反射镜102,且这些光学透镜101、103、105、106、107、109以及反射镜102至少用以引导第一光线L1、第二光线L2、第三光线L3以及第四光线L4的行进。另外,投影装置200还包括多个倾斜设置的光学透镜201、203以及棱镜202,且这些光学透镜201、203以及棱镜202至少用以引导照明光线L5以及投影光线L6的行进。具体而言,上述光学透镜101、103、105、106、107、109、201、203、反射镜102、棱镜202以及其他的光学元件的数量以及设置位置仅用以例示说明,并不用以限定本发明。Please continue to refer to Figure 1. In this embodiment, the light source device 100 also includes a plurality of optical lenses 101, 103, 105, 106, 107, 109 and a reflector 102, and these optical lenses 101, 103, 105, 106, 107 , 109 and the reflector 102 are at least used to guide the progression of the first light L1, the second light L2, the third light L3 and the fourth light L4. In addition, the projection device 200 also includes a plurality of obliquely arranged optical lenses 201, 203 and prisms 202, and these optical lenses 201, 203 and prisms 202 are at least used to guide the progression of the illumination light L5 and the projection light L6. Specifically, the number and arrangement positions of the above-mentioned optical lenses 101, 103, 105, 106, 107, 109, 201, 203, reflector 102, prism 202 and other optical elements are only for illustration and are not intended to limit the present invention. invention.

在本实施例中,由于反射镜130用以接收第二光线L2并输出第三光线L3,光源装置100可以不采用穿透与反射兼具的荧光粉轮的合光架构。另外,可以不必设置可使蓝光穿透的区域在作为荧光轮的反射镜130上,且光源装置100也不必设置用以引导穿透荧光轮的蓝光的光路架构。另外,照明光线L5之中的蓝光可以通过第三光源160来提供。因此,光源装置100可以具有较简化的光路架构。光源装置100的光学元件较少,使得光源装置100的组装工时可以有效减少。此外,在本发明实施例的光源装置100中,当第三光线L3通过滤光膜150时,滤光膜150可以滤除第三光线L3之中对应于蓝色的光波段,因此通过滤光膜150的第三光线L3具有较纯的绿色,这使得采用光源装置100的投影装置200具有较广的色域。除此之外,基于光源装置100的光路架构,光源装置100的第一分光镜140的第一表面S1可以设计成使绿色的第三光线L3通过而反射红色的第一光线L1以及蓝色的第二光线L2,因此,第一分光镜140可以设计成对应于绿色的光波段通过。相对于允许间断且具不同颜色的多个光波段通过,允许单一颜色的光波段通过的分光镜的镀膜涂层设计相对简单且较易于制作。因此,第一分光镜140的制作难度较低且成本也较低,这使得采用第一分光镜140的光源装置100具有较佳的成本效益。In this embodiment, since the reflector 130 is used to receive the second light L2 and output the third light L3, the light source device 100 does not need to use a light combining structure of a phosphor wheel that has both penetration and reflection. In addition, it is not necessary to provide an area that can transmit blue light on the reflector 130 as a phosphor wheel, and the light source device 100 does not need to be provided with an optical path structure for guiding the blue light that penetrates the phosphor wheel. In addition, the blue light in the illumination light L5 may be provided by the third light source 160 . Therefore, the light source device 100 can have a simpler optical path structure. The light source device 100 has fewer optical components, so that the assembly time of the light source device 100 can be effectively reduced. In addition, in the light source device 100 of the embodiment of the present invention, when the third light L3 passes through the filter film 150, the filter film 150 can filter out the light wavelength band corresponding to blue in the third light L3, so through the filter The third light L3 of the film 150 has a relatively pure green color, which enables the projection device 200 using the light source device 100 to have a wider color gamut. In addition, based on the optical path structure of the light source device 100, the first surface S1 of the first beam splitter 140 of the light source device 100 can be designed to allow the green third light L3 to pass through and reflect the red first light L1 and blue Therefore, the first beam splitter 140 may be designed to pass the second light L2 corresponding to the green light band. Compared to allowing multiple intermittent light wavelength bands with different colors to pass through, the coating design of a spectroscope that allows a single color light band to pass through is relatively simple and easier to produce. Therefore, the manufacturing difficulty and cost of the first beam splitter 140 are relatively low, which makes the light source device 100 using the first beam splitter 140 more cost-effective.

图5示出本发明另一实施例的光源装置以及采用此光源装置的投影装置的架构示意图。请参考图5,光源装置500以及投影装置600类似于图1实施例的光源装置100以及投影装置200,其差异如下所述。在本实施例中,光源装置500包括反射式基板530,且反射式基板530具有荧光粉层536。荧光粉层536例如是铺设于反射式基板530的表面上,且荧光粉层536类似于图1实施例的波长转换材料层136,用以接受来自第二光源120的第二光线L2并输出包括第三颜色的第三光线L3。具体而言,在本实施例中,第一分光镜140的第一表面S1用以将第二光线L2反射至反射式基板530。被第一分光镜140反射的第二光线L2可以进入荧光粉层536,且第二光线L2被荧光粉层536转变成第三光线L3。第三光线L3包括呈第三颜色的转换光线CL以及呈第二颜色的未转换光线。另外,第三光线L3例如是在反射式基板530上反射后朝向离开反射式基板530的方向发出。详细而言,光源装置500以及投影装置600至少可以获致类似于图1实施例中光源装置100以及投影装置200的技术效果。光源装置500具有简化的光路架构,且采用光源装置500的投影装置600具有较广的色域及较佳的成本效益。FIG. 5 shows a schematic structural diagram of a light source device and a projection device using the light source device according to another embodiment of the present invention. Please refer to FIG. 5 . The light source device 500 and the projection device 600 are similar to the light source device 100 and the projection device 200 in the embodiment of FIG. 1 . The differences are as follows. In this embodiment, the light source device 500 includes a reflective substrate 530 , and the reflective substrate 530 has a phosphor layer 536 . The phosphor layer 536 is, for example, laid on the surface of the reflective substrate 530, and the phosphor layer 536 is similar to the wavelength conversion material layer 136 in the embodiment of FIG. 1, for receiving the second light L2 from the second light source 120 and outputting The third ray L3 of the third color. Specifically, in this embodiment, the first surface S1 of the first beam splitter 140 is used to reflect the second light L2 to the reflective substrate 530 . The second light L2 reflected by the first beam splitter 140 may enter the phosphor layer 536 , and the second light L2 is converted into a third light L3 by the phosphor layer 536 . The third light ray L3 includes the converted light CL in the third color and the unconverted light ray in the second color. In addition, the third light L3 is, for example, reflected on the reflective substrate 530 and then emitted in a direction away from the reflective substrate 530 . In detail, the light source device 500 and the projection device 600 can at least achieve technical effects similar to those of the light source device 100 and the projection device 200 in the embodiment of FIG. 1 . The light source device 500 has a simplified optical path structure, and the projection device 600 using the light source device 500 has a wider color gamut and better cost-effectiveness.

综上所述,在本发明的相关实施例中,由于光源装置的反射镜接收第二光线并输出第三光线,因此光源装置可以具有较简化的光路架构。另外,光源装置的滤光膜设置于第一光线以及第三光线的传输路径上,因此通过滤光膜的第三光线可以具有较纯的颜色,使得采用光源装置的投影装置具有较广的色域。此外,基于光源装置的光路架构,光源装置的分光镜可以设计成使对应于该第三颜色的光波段通过,使得光源装置具有较佳的成本效益。扩散片用以增加所述波长转换材料层的转换效率以达到较佳的转换效率。To sum up, in the relevant embodiments of the present invention, since the reflector of the light source device receives the second light and outputs the third light, the light source device can have a simpler optical path structure. In addition, the filter film of the light source device is disposed on the transmission path of the first light and the third light, so the third light passing through the filter film can have a purer color, so that the projection device using the light source device has a wider range of colors. area. In addition, based on the optical path structure of the light source device, the beam splitter of the light source device can be designed to pass the light band corresponding to the third color, so that the light source device has better cost-effectiveness. The diffusion sheet is used to increase the conversion efficiency of the wavelength conversion material layer to achieve better conversion efficiency.

虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视权利要求所界定者为准。Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Any person skilled in the art can make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention is The protection scope of the invention shall be determined by the claims.

Claims (10)

1.一种光源装置,包括:1. A light source device, including: 第一光源,用以输出第一光线;The first light source is used to output the first light; 第二光源,用以输出第二光线;The second light source is used to output the second light; 反射镜,设置于所述第二光线的传输路径上,所述反射镜具有波长转换材料层,所述波长转换材料层接收所述第二光线并转变而输出第三光线;A reflector, disposed on the transmission path of the second light, the reflector having a wavelength conversion material layer, the wavelength conversion material layer receiving the second light and converting it to output a third light; 第一分光镜,设置于所述第一光源与所述第二光源之间且仅设置于所述第一光线、所述第二光线以及所述第三光线的传输路径上;A first beam splitter, disposed between the first light source and the second light source and only disposed on the transmission path of the first light, the second light and the third light; 滤光膜,设置于所述第一光线以及所述第三光线的传输路径上且所述第一分光镜设置于所述反射镜与所述滤光膜之间;以及A filter film is disposed on the transmission path of the first light and the third light, and the first beam splitter is disposed between the reflector and the filter film; and 扩散片,设置于所述第二光线的所述传输路径上,且设置于所述第二光源与所述第一分光镜之间,所述扩散片用以增加所述波长转换材料层的转换效率。A diffusion sheet is provided on the transmission path of the second light and between the second light source and the first beam splitter. The diffusion sheet is used to increase the conversion of the wavelength conversion material layer. efficiency. 2.根据权利要求1所述的光源装置,其中所述扩散片设置为使所述第二光线的半高宽能量密度落在5至60瓦特/毫米平方。2. The light source device according to claim 1, wherein the diffusion sheet is configured so that the half-width energy density of the second light falls between 5 and 60 watts/mm square. 3.根据权利要求1所述的光源装置,其中所述第一光线包括第一颜色,所述第二光线包括第二颜色,所述第三光线包括第三颜色及所述第二颜色,所述滤光膜用以移除所述第二颜色。3. The light source device according to claim 1, wherein the first light includes a first color, the second light includes a second color, the third light includes a third color and the second color, so The filter film is used to remove the second color. 4.根据权利要求1所述的光源装置,其中所述第一分光镜具有第一表面以及第二表面,所述第一表面设置为将所述第二光线反射至所述反射镜,并让所述第三光线的至少一部分穿透,所述第二表面设置为反射所述第一光线,其中离开所述第一分光镜的所述第三光线的至少一部分以及离开所述第一分光镜的所述第一光线通过所述滤光膜。4. The light source device according to claim 1, wherein the first beam splitter has a first surface and a second surface, the first surface is configured to reflect the second light to the reflector and allow At least a portion of the third light ray passes through and the second surface is configured to reflect the first light ray, wherein at least a portion of the third light ray exiting the first beam splitter and the first beam splitter The first light passes through the filter film. 5.根据权利要求1所述的光源装置,还包括第三光源以及第二分光镜,所述第三光源用以输出包括所述第二颜色的第四光线,且所述第二分光镜设置于所述第一光线、所述第三光线以及所述第四光线的传输路径上,其中所述第二分光镜用以合并所述第一光线、所述第三光线以及所述第四光线。5. The light source device according to claim 1, further comprising a third light source and a second beam splitter, the third light source is used to output fourth light including the second color, and the second beam splitter is configured On the transmission path of the first light, the third light and the fourth light, the second beam splitter is used to combine the first light, the third light and the fourth light . 6.一种光源装置,包括:6. A light source device, including: 第一光源,用以输出第一光线;The first light source is used to output the first light; 第二光源,用以输出第二光线;The second light source is used to output the second light; 反射式基板,具有荧光粉层,且所述荧光粉层用以接受所述第二光线并转变而输出第三光线;A reflective substrate having a phosphor layer, and the phosphor layer is used to receive the second light and convert it to output a third light; 第一分光镜,仅设置于所述第一光线、所述第二光线以及所述第三光线的传输路径上,所述第一分光镜具有第一表面以及第二表面,所述第一表面设置为将所述第二光线反射至所述反射式基板,并让所述第三光线的至少一部分通过,且所述第二表面设置为反射所述第一光线;The first beam splitter is only disposed on the transmission path of the first light, the second light and the third light. The first beam splitter has a first surface and a second surface. The first surface configured to reflect the second light ray to the reflective substrate and allow at least a portion of the third light ray to pass through, and the second surface is configured to reflect the first light ray; 滤光膜,设置于所述第一光线以及所述第三光线的传输路径上且所述第一分光镜设置于所述反射式基板与所述滤光膜之间;以及A filter film is disposed on the transmission path of the first light and the third light, and the first beam splitter is disposed between the reflective substrate and the filter film; and 扩散片,设置于所述第二光线的所述传输路径上,且设置于所述第二光源与所述第一分光镜之间,所述扩散片用以增加所述波长转换材料层的转换效率。A diffusion sheet is provided on the transmission path of the second light and between the second light source and the first beam splitter. The diffusion sheet is used to increase the conversion of the wavelength conversion material layer. efficiency. 7.根据权利要求6所述的光源装置,其中所述扩散片设置为使所述第二光线的半高宽能量密度落在5至60瓦特/毫米平方。7. The light source device according to claim 6, wherein the diffusion sheet is configured so that the half-width energy density of the second light falls between 5 and 60 watts/mm square. 8.根据权利要求6所述的光源装置,所述第一光线包括第一颜色,所述第二光线包括第二颜色,所述第三光线包括第三颜色及所述第二颜色。8. The light source device according to claim 6, the first light includes a first color, the second light includes a second color, and the third light includes a third color and the second color. 9.根据权利要求6所述的光源装置,其中离开所述第一分光镜的所述第三光线的至少一部分以及离开所述第一分光镜的所述第一光线通过所述滤光膜,其中离开所述分光镜的所述第三光线的至少一部分包括所述第三颜色以及所述第二颜色,且所述滤光膜用以移除所述第二颜色。9. The light source device according to claim 6, wherein at least a portion of the third light ray leaving the first beam splitter and the first light ray leaving the first beam splitter pass through the filter film, At least a portion of the third light ray exiting the beam splitter includes the third color and the second color, and the filter film is used to remove the second color. 10.根据权利要求6所述的光源装置,还包括:10. The light source device according to claim 6, further comprising: 一第三光源,用以输出包括所述第二颜色的第四光线;a third light source for outputting fourth light including the second color; 一第二分光镜,设置于所述第一光线、所述第三光线以及所述第四光线的传输路径上,其中所述第二分光镜用以合并所述第一光线、所述第三光线以及所述第四光线。A second beam splitter is disposed on the transmission path of the first light, the third light and the fourth light, wherein the second beam splitter is used to combine the first light, the third light ray and said fourth ray.
CN202310921566.7A 2017-04-12 2017-04-12 Light source device Pending CN116893565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310921566.7A CN116893565A (en) 2017-04-12 2017-04-12 Light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710235583.XA CN108693689A (en) 2017-04-12 2017-04-12 Light source device
CN202310921566.7A CN116893565A (en) 2017-04-12 2017-04-12 Light source device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201710235583.XA Division CN108693689A (en) 2017-04-12 2017-04-12 Light source device

Publications (1)

Publication Number Publication Date
CN116893565A true CN116893565A (en) 2023-10-17

Family

ID=63842536

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710235583.XA Pending CN108693689A (en) 2017-04-12 2017-04-12 Light source device
CN202310921566.7A Pending CN116893565A (en) 2017-04-12 2017-04-12 Light source device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710235583.XA Pending CN108693689A (en) 2017-04-12 2017-04-12 Light source device

Country Status (1)

Country Link
CN (2) CN108693689A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111176059A (en) * 2018-11-09 2020-05-19 扬明光学股份有限公司 Lighting system
CN110159942A (en) * 2019-06-13 2019-08-23 广州光联电子科技有限公司 A kind of LD laser light source mould group

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213399B (en) * 2010-04-02 2015-04-08 鸿富锦精密工业(深圳)有限公司 Projector
CN104102079B (en) * 2013-04-02 2016-08-03 扬明光学股份有限公司 Light source module and projection device
CN105223761B (en) * 2014-07-01 2017-05-24 中强光电股份有限公司 Projection device and illumination system
EP3250851B1 (en) * 2015-01-27 2018-10-17 Philips Lighting Holding B.V. High intensity white light source
WO2016157365A1 (en) * 2015-03-30 2016-10-06 Necディスプレイソリューションズ株式会社 Projector and image light projection method

Also Published As

Publication number Publication date
CN108693689A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
US12210276B2 (en) Light-source system and projection device
CN104238248B (en) Light source module and projection device
CN102385232B (en) Lighting device and projector
CN205992115U (en) Light-source system and projector equipment
CN105278226B (en) Light source module and projection device
US9249949B2 (en) Lighting device and projection-type display device using the same including a color-combining prism
US8632197B2 (en) Illumination system and wavelength-transforming device thereof
US20130321777A1 (en) Illumination system and projection apparatus
WO2014196020A1 (en) Illumination optical system and projector
US11181814B2 (en) Light source device and projector
CN109521633A (en) Lighting system and projection device
JP2012027052A (en) Light source device and projection type display apparatus using the same
CN110703552A (en) Illumination system and projection apparatus
CN110389486B (en) Light source device and display device
US11112684B2 (en) Projection apparatus with illumination system having plurality of laser modules
CN209590519U (en) Illumination system and projection device
TWI720144B (en) Light source apparatus
TWI731073B (en) Illumination system
WO2020088671A1 (en) Illumination system
CN208588892U (en) Lighting system and projection device
US10288992B2 (en) Laser light source for projector and laser projection device
CN106950785B (en) A light source device and lighting device
CN116893565A (en) Light source device
TWI726073B (en) Optical system
US11402738B2 (en) Illumination system and projection apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination