[go: up one dir, main page]

CN116660191A - 一种定量分析半胱氨酸的无显色分光光度法 - Google Patents

一种定量分析半胱氨酸的无显色分光光度法 Download PDF

Info

Publication number
CN116660191A
CN116660191A CN202310784138.4A CN202310784138A CN116660191A CN 116660191 A CN116660191 A CN 116660191A CN 202310784138 A CN202310784138 A CN 202310784138A CN 116660191 A CN116660191 A CN 116660191A
Authority
CN
China
Prior art keywords
cysteine
solution
concentration
test
spectrophotometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310784138.4A
Other languages
English (en)
Other versions
CN116660191B (zh
Inventor
胡超
杨子磐
黄梦瑶
杨凡
胡红青
邓友军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Engineering University
Original Assignee
Hubei Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Engineering University filed Critical Hubei Engineering University
Priority to CN202310784138.4A priority Critical patent/CN116660191B/zh
Publication of CN116660191A publication Critical patent/CN116660191A/zh
Application granted granted Critical
Publication of CN116660191B publication Critical patent/CN116660191B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及小分子检测技术领域,具体涉及一种定量分析半胱氨酸的无显色分光光度法。本发明利用半胱氨酸水溶液在190~195 nm波长下,在一定的浓度范围内,吸光度值随半胱氨酸含量的增加而增大,并且呈现一定的线性关系。以此作为半胱氨酸的定量基础,建立了分析半胱氨酸的无显色分光光度法。本方法不需添加显色剂,减少了显色环节的各种干扰因素,对仪器设备要求低,操作简单,确保了定量的稳定性和重现性。在无其他有机分子或无机配体干扰下,对可控体系(或纯体系)中半胱氨酸的定量分析具有极好的适用性。

Description

一种定量分析半胱氨酸的无显色分光光度法
技术领域
本发明涉及小分子检测技术领域,具体涉及一种定量分析半胱氨酸的无显色分光光度法。
背景技术
半胱氨酸是一种具有生理活性且具有氨基和巯基的氨基酸。在蛋白氨基酸中,半胱氨酸可能是唯一一种在侧链上含有硫醇基团并具有细胞解毒结合位点的氨基酸。半胱氨酸可用于合成具有优异电化学性能的MoS2/石墨烯复合材料、重金属离子的电化学传感器、非织造土工织物中二价重金属离子的去除等领域。近年来,在医药、食品、化工、环保等领域受到研究者的广泛关注。
在半胱氨酸与固相的相互作用、半胱氨酸的复合领域,半胱氨酸的定量研究对深入探讨相关研究的机理十分必要,其准确定量的方法值得探究。
半胱氨酸目前的定量方法主要以测定其氨基浓度为主,分为比色检测法、高效液相色谱法、元素分析、紫外光谱法等(表1)。体积排阻色谱法、高效液相色谱法、元素分析、紫外光谱法对仪器条件或操作细节要求较高,相对来说,因分光光度计普及率较高,茚三酮比色法较为常用。但茚三酮比色法包括混合加热显色环节,显色结果容易受到pH、温度和显色时间的影响,分别出现半胱氨酸与茚三酮的缩合反应、受热不均和随时间光解的弊端。基于此,开发适用性强、操作简单、精确度高的半胱氨酸无显色定量方法十分必要。
表1:现有氨基定量方法的优缺点
发明内容
为解决上述技术问题,本发明提供一种定量分析半胱氨酸的无显色分光光度法。本发明利用半胱氨酸溶液在190~195nm波长下,在一定的浓度范围内,吸光度值随半胱氨酸含量的增加而增大,并且呈现一定的线性关系。以此作为半胱氨酸的定量基础,建立了分析半胱氨酸的无显色分光光度法。
一种定量分析半胱氨酸的无显色分光光度法,包括以下步骤:
(1)绘制标准曲线:精密称取不同质量的半胱氨酸对照品,用超纯水溶解并稀释至不同浓度(浓度在0.1~50mg/L范围),作为线性溶液;以超纯水作为参比溶液,在190~195nm波长下,检测各线性溶液的吸光度A;以浓度为横坐标,以A为纵坐标,绘制标准曲线。
(2)样品检测:精密称取一定量的供试品,用超纯水溶解并定容,作为供试品溶液;以超纯水作为参比溶液,在190~195nm波长下,检测供试品溶液的吸光度A;代入步骤(1)的标准曲线方程得到半胱氨酸的浓度,单位为mg/L,根据公式:含量(%)=半胱氨酸的浓度/供试品溶液的浓度*100%,计算出供试品中半胱氨酸的含量。
本发明方法的供试品中无其他有机物质或无机配体存在。
优选地,供试品为无机矿物吸附材料—半胱氨酸溶液的吸附体系,其中无机矿物吸附材料包括蒙脱石、高岭石、伊利石、磁铁矿等至少一种。
与现有技术相比,本发明具有的有益效果:
相较现有技术,本方法不需添加显色剂,减少了显色环节的各种干扰因素,对仪器设备要求低,操作简单,确保了定量的稳定性和重现性。在无其他有机分子或无机配体干扰下,对可控体系(或纯体系)中半胱氨酸的定量分析具有极好的适用性。
附图说明
图1a、图1b为不同浓度的半胱氨酸水溶液在190~500nm范围的扫描图谱,其中图1b为该扫描图谱在190~250nm的放大图;
图2为半胱氨酸的线性关系图。
具体实施方式
下面申请人结合实施例和说明书附图对本发明作进一步描述,但本发明的保护范围并不限于这些实施例。本领域技术人员应理解,对本发明的技术特征所作的等同替换,或相应的改进,仍属于本发明的保护范围之内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;所用水均为超纯水(电阻率>18.25MΩ);所使用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例中使用的设备为双光束分光光度计(北京普析TU-1901,波长范围190-700nm),所使用的L-半胱氨酸来源于国药集团,沪试BR,产品号为62007234,批号为20201215。
实施例1:分析方法建立
1)波长选择
有机物不饱和官能团在190nm-1000nm波长范围内会产生特征吸收带,如C=C,C=O,N=N等,称为生色团。而一些含有n电子的基团,如-OH,-NH2等,它们本身没有生色功能(不能吸收>190nm的光),但当它们与生色团相连时,就会发生n-π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加)。这为半胱氨酸的无显色定量提供了基本依据。
先使用超纯水扫谱检测机器短波波段稳定性,确保超纯水短波无明显光吸收。以超纯水谱线为基线,在190~500nm范围扫谱不同浓度的半胱氨酸水溶液,见图1a。
半胱氨酸水溶液的配制过程:称取0.1g避光保存的半胱氨酸,溶于100mL超纯水即得1000mg/L半胱氨酸,然后用超纯水稀释可得所需浓度。
由图1b可看出,不同浓度半胱氨酸的吸收峰在190-195nm之间,而190nm是仪器的临界检测波长,此波长下仪器可能存在不稳定性,因此本发明选择195nm作为定量检测的波长。
2)阴离子的影响考察
在电磁辐射下,一些无机物可能因电荷迁移跃迁和配位场跃迁产生光吸收,在实现半胱氨酸的短波无显色定量前,需厘清各种配位体及其他阴阳离子共存条件下对半胱氨酸准确定量的影响。
考虑到半胱氨酸吸光度的大小范围,我们认为0.01的吸光度误差可以通过校正扣除,而0.1的吸光度则会对半胱氨酸定量产生影响。
配制不同浓度的硫酸、硝酸、盐酸、高氯酸以及乙酸水溶液,以超纯水作为参比溶液,在195nm波长下测定各溶液的吸光度,结果如下表2、3所示:
表2:阴离子吸光度大于0.01的浓度范围
表3:阴离子吸光度大于0.1的浓度范围
综上,本方法中常见阴离子(配体)如硫酸根、乙酸根、硝酸根、氯离子和高氯酸根分别在约10、2、10、10、100μmol/L浓度条件下即可产生大于0.01的吸光度。这说明阴离子配体(高氯酸根除外)对195nm条件下半胱氨酸的定量存在干扰。使用本测定方法应避免待测溶液中出现较高浓度的硫酸根、硝酸根、氯离子、乙酸根等常见配位离子。
3)阳离子的影响考察
配制不同浓度的KClO4、NaClO4、Ca(ClO4)2、Mg(ClO4)2水溶液,以超纯水作为参比溶液,在195nm波长下测定各溶液的吸光度,结果如下表4所示:
表4:阳离子吸光度大于0.01的浓度范围(扣除0.01M高氯酸根吸光度)
结论:在195nm波长条件下,常见K、Na、Ca、Mg(高氯酸盐)阳离子对本发明的方法几乎无干扰。
4)pH的影响考察
经过试验,氢氧根离子在0.00001mol/L浓度时(0.00001mol/L NaOH溶液),在195nm处产生约0.008的吸光度;且氢氧根离子的浓度越高,吸光度越高(其原因在于氢氧根是较强配体,电磁辐射下,发生电荷迁移跃迁,产生光吸收),0.01mol/L NaOH的吸光度超过本方法检测限。而酸性或中性环境下,因氢离子造成的光吸收几乎没有。半胱氨酸水溶液显酸性,氢氧根的影响可以忽略不计。
实施例2:分析方法验证
1)线性试验
线性贮备液:精密称取0.1g半胱氨酸,加超纯水溶解并稀释至1L,摇匀,作为线性贮备液。
线性溶液:取适量线性贮备液,用超纯水分别稀释至0.1、0.2、0.5、1、2、5、10、20、50mg/L,作为线性溶液。
以超纯水作为参比溶液,在195nm波长下,检测各线性溶液的吸光度A。以浓度为横坐标,以A为纵坐标,绘制标准曲线,见图2,结果见下表5:
表5:半胱氨酸的线性试验结果
2)重复性试验
重复性试验溶液:配制10mg/L的半胱氨酸。以超纯水作为参比溶液,在195nm波长下,测定上述浓度样品的吸光度A。将A代入1)线性试验中的标准曲线方程,得到测定浓度。回收率=(测定浓度*100/配制浓度)%。
表6:半胱氨酸的重复性试验结果(%)
结论:重复5次,回收率在104.2%-107.9%之间,回收率RSD为1.27%,本法的重复性良好。

Claims (5)

1.一种定量分析半胱氨酸的无显色分光光度法,其特征在于,包括以下步骤:
(1)绘制标准曲线:精密称取不同质量的半胱氨酸对照品,用超纯水溶解并稀释至不同浓度,作为线性溶液,浓度在0.1~50mg/L范围;以超纯水作为参比溶液,在190~195 nm波长下,检测各线性溶液的吸光度A;以浓度为横坐标,以A为纵坐标,绘制标准曲线;
(2)样品检测:精密称取一定量的供试品,用超纯水溶解并定容,作为供试品溶液;以超纯水作为参比溶液,在190~195 nm波长下,检测供试品溶液的吸光度A;代入步骤(1)的标准曲线方程得到半胱氨酸的浓度,单位为mg/L,根据公式:含量(%)= 半胱氨酸的浓度/供试品溶液的浓度*100%,计算出供试品中半胱氨酸的含量。
2.根据权利要求1所述的无显色分光光度法,其特征在于,所述检测波长为195 nm。
3.根据权利要求1或2所述的无显色分光光度法,其特征在于,所述供试品中无其他有机物质,或无机配体存在。
4.根据权利要3所述的无显色分光光度法,其特征在于,所述供试品为无机矿物吸附材料-半胱氨酸溶液的吸附体系。
5.根据权利要4所述的无显色分光光度法,其特征在于,所述无机矿物吸附材料为蒙脱石、高岭石、伊利石、磁铁矿中的一种或几种。
CN202310784138.4A 2023-06-28 2023-06-28 一种定量分析半胱氨酸的无显色分光光度法 Active CN116660191B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310784138.4A CN116660191B (zh) 2023-06-28 2023-06-28 一种定量分析半胱氨酸的无显色分光光度法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310784138.4A CN116660191B (zh) 2023-06-28 2023-06-28 一种定量分析半胱氨酸的无显色分光光度法

Publications (2)

Publication Number Publication Date
CN116660191A true CN116660191A (zh) 2023-08-29
CN116660191B CN116660191B (zh) 2025-01-14

Family

ID=87711880

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310784138.4A Active CN116660191B (zh) 2023-06-28 2023-06-28 一种定量分析半胱氨酸的无显色分光光度法

Country Status (1)

Country Link
CN (1) CN116660191B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592249A (zh) * 2013-11-11 2014-02-19 中国科学院青海盐湖研究所 一种测定食盐中碘酸根的方法
CN105466875A (zh) * 2015-11-23 2016-04-06 中国科学院青海盐湖研究所 一种测定十二烷基吗啉的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592249A (zh) * 2013-11-11 2014-02-19 中国科学院青海盐湖研究所 一种测定食盐中碘酸根的方法
CN105466875A (zh) * 2015-11-23 2016-04-06 中国科学院青海盐湖研究所 一种测定十二烷基吗啉的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
江书庆 等: "基于磁性印迹的紫外法测定血液中同型半胱氨酸", 《化学研究与应用》, vol. 32, no. 6, 30 June 2020 (2020-06-30), pages 1072 - 1075 *

Also Published As

Publication number Publication date
CN116660191B (zh) 2025-01-14

Similar Documents

Publication Publication Date Title
Shamsipur et al. Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12] aneNS2O) for selective subnanomolar detection of Hg (II) ions
US20240068950A1 (en) Aldehyde detection and analysis using surface-enhanced raman spectroscopy
Arsawiset et al. Ready-to-use, functionalized paper test strip used with a smartphone for the simultaneous on-site detection of free chlorine, hydrogen sulfide and formaldehyde in wastewater
Baumbach et al. Quantitative determination of sulfur by high-resolution graphite furnace molecular absorption spectrometry
Feng et al. Determination of arsenic, antimony, selenium, tellurium and bismuth in nickel metal by hydride generation atomic fluorescence spectrometry
CN103760160A (zh) 一种过氧化氢的比色检测方法
Mousapour et al. Colorimetric speciation analysis of chromium using 2-thiobarbituric acid capped silver nanoparticles
KR100764892B1 (ko) 염소 핵자기공명 분광기를 이용한 염소이온 정량법
CN102706814A (zh) 以裸纳米金为显色探针的三聚氰胺快速测定方法
Li et al. Resonance Rayleigh scattering and resonance nonlinear scattering methods for the determination of nicardipine hydrochloride using eosin Y as a probe
Afkhami et al. Indirect determination of sulfide by cold vapor atomic absorption spectrometry
Arkhipova et al. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
JP3924625B2 (ja) ヒ素・リン・シリカの高感度吸光検出法
CN116660191A (zh) 一种定量分析半胱氨酸的无显色分光光度法
CN112082978A (zh) 一种用于检测Hg2+的氮化碳荧光传感器及其制备方法和应用
Ayres et al. Spectrophotometric Study of Ruthenium-Dithio-oxamide Complex
Gao et al. Light-absorption ratio variation approach to determination of nickel (II) in ng/ml level with 1, 5-di (2-hydroxy-5-sulfophenyl)-3-cyanoformazan
Liu et al. Fluorescence quenching method for the determination of sodium carboxymethyl cellulose with acridine yellow or acridine orange
Ensafi et al. Catalytic spectrophotometric determination of ruthenium by flow injection method
Deng et al. Derivatization reaction-based multi-spectroscopic techniques for ultrasensitive and rapid detection of phosphate in food using Nile blue A as probe
Jiang et al. A new and sensitive resonance-scattering method for determination of trace nitrite in water with rhodamine 6G
Fernandez-de Cordova et al. Determination of Trace Amounts of Cobalt at sub-μg 1− 1Level by Solid Phase Spectrophotometry
Hao et al. Sensitive and reliable hybrid nanosensor (Co2+-CDs@ R-CDs) for ratiometric fluorescent and colorimetric detecting NO2−
CN102128798A (zh) 基于苯胺聚合反应的痕量过氧化氢的测定

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant