CN116646435B - Flip-chip light-emitting diode chip and preparation method thereof - Google Patents
Flip-chip light-emitting diode chip and preparation method thereof Download PDFInfo
- Publication number
- CN116646435B CN116646435B CN202310920711.XA CN202310920711A CN116646435B CN 116646435 B CN116646435 B CN 116646435B CN 202310920711 A CN202310920711 A CN 202310920711A CN 116646435 B CN116646435 B CN 116646435B
- Authority
- CN
- China
- Prior art keywords
- layer
- type
- edge
- layers
- connection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 108
- 229910052751 metal Inorganic materials 0.000 claims abstract description 108
- 239000004065 semiconductor Substances 0.000 claims abstract description 84
- 239000000758 substrate Substances 0.000 claims abstract description 54
- 230000005540 biological transmission Effects 0.000 claims abstract description 43
- 230000000903 blocking effect Effects 0.000 claims abstract description 36
- 230000001681 protective effect Effects 0.000 claims abstract description 14
- 239000010410 layer Substances 0.000 claims description 695
- 239000011241 protective layer Substances 0.000 claims description 139
- 230000007480 spreading Effects 0.000 claims description 24
- 238000003892 spreading Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- 238000002955 isolation Methods 0.000 claims description 18
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910052681 coesite Inorganic materials 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 229910052682 stishovite Inorganic materials 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 description 31
- 230000008569 process Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 5
- 238000002310 reflectometry Methods 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910016570 AlCu Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/814—Bodies having reflecting means, e.g. semiconductor Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域Technical field
本发明涉及半导体器件技术领域,尤其涉及一种倒装发光二极管芯片及其制备方法。The present invention relates to the technical field of semiconductor devices, and in particular to a flip-chip light-emitting diode chip and a preparation method thereof.
背景技术Background technique
倒装发光二极管芯片以背面出光、散热能力强、焊接性好、推力大、可靠性强等优点被广泛应用,最开始人们用布拉格反射层做为反射镜使得倒装发光二极管可以背面出光,近些年,人们开始在布拉格反射层上增加高反射率金属与布拉格反射层配合形成全反射镜,从而提升布拉格反射层的反射率,最终提升倒装发光二极管芯片外量子效率。Flip-chip LED chips are widely used for their advantages of emitting light from the back, strong heat dissipation, good weldability, large thrust, and strong reliability. At first, people used the Bragg reflective layer as a reflector to enable flip-chip LEDs to emit light from the back. Recently, In recent years, people have begun to add high-reflectivity metals to the Bragg reflective layer to cooperate with the Bragg reflective layer to form a total reflection mirror, thereby improving the reflectivity of the Bragg reflective layer and ultimately improving the external quantum efficiency of the flip-chip light-emitting diode chip.
置于布拉格反射层之上的金属不仅有配合布拉格反射层形成全反射镜的效果,还需要给布拉格反射层下面的若干电极传输电流,使得电流可以扩散到整个LED芯片,但是现有的LED芯片,当电流注入到布拉格反射层之上的金属时,大部分电流会经过反射金属垂直流入电流注入口下方的电极层,而非横向传输至整个LED芯片的电极层。这样便会造成电流扩散不均匀,导致LED芯片工作电压高,且LED芯片在大电流下使用时,热量主要集中在电流注入口下方的LED芯片区域,使LED芯片存在烧毁风险;导致LED芯片无法长时间在大电流下使用。The metal placed on the Bragg reflective layer not only cooperates with the Bragg reflective layer to form a total reflection mirror, but also needs to transmit current to several electrodes under the Bragg reflective layer so that the current can spread to the entire LED chip. However, existing LED chips , when current is injected into the metal above the Bragg reflective layer, most of the current will flow vertically through the reflective metal into the electrode layer below the current injection port, instead of being transmitted laterally to the electrode layer of the entire LED chip. This will cause uneven current diffusion, resulting in a high operating voltage of the LED chip. When the LED chip is used under high current, the heat is mainly concentrated in the LED chip area below the current injection port, putting the LED chip at risk of burning; causing the LED chip to fail. Used under high current for a long time.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供了一种倒装发光二极管芯片及其制备方法。In order to solve the above technical problems, the present invention provides a flip-chip light-emitting diode chip and a preparation method thereof.
本发明采用以下技术方案:一种倒装发光二极管芯片,包括衬底及依次层叠在所述衬底上的外延层、电流阻挡层、电流扩展层、电极层、布拉格反射层、连接层、第一绝缘保护层、金属保护层、第二绝缘保护层、焊盘层;The present invention adopts the following technical solution: a flip-chip light-emitting diode chip, including a substrate and an epitaxial layer, a current blocking layer, a current spreading layer, an electrode layer, a Bragg reflective layer, a connection layer and a third layer that are sequentially stacked on the substrate. an insulating protective layer, a metal protective layer, a second insulating protective layer, and a pad layer;
所述连接层包括结构相同的多个P型连接层和多个N型连接层,所述P型连接层包括依次层叠的高反射金属层、防护金属层及电流传输层,所述高反射金属层为Al层或Ag层,所述防护金属层为Ti层、Pt层、Ni层、Cr层、Pb层中的一种或多种层叠组成;The connection layer includes a plurality of P-type connection layers and a plurality of N-type connection layers with the same structure. The P-type connection layer includes a highly reflective metal layer, a protective metal layer and a current transmission layer stacked in sequence. The highly reflective metal layer The layer is an Al layer or an Ag layer, and the protective metal layer is composed of one or more stacks of a Ti layer, a Pt layer, a Ni layer, a Cr layer, and a Pb layer;
所述电流传输层包括依次层叠的至少两个传输子层,所述传输子层由3-5组周期性层叠的TiW层和Au层组成,不同所述传输子层中TiW层厚度占Au层厚度的比例介于10%-40%,且沿芯片生长方向的不同所述传输子层中TiW层厚度占Au层厚度的比例呈线性增加;The current transmission layer includes at least two transmission sub-layers stacked in sequence. The transmission sub-layer is composed of 3-5 groups of periodically stacked TiW layers and Au layers. The thickness of the TiW layer in the different transmission sub-layers accounts for the Au layer. The thickness ratio is between 10% and 40%, and the ratio of the TiW layer thickness to the Au layer thickness in the transmission sublayer increases linearly along the chip growth direction;
所述P型连接层边缘到所述N型连接层边缘的距离介于20μm-40μm。The distance from the edge of the P-type connection layer to the edge of the N-type connection layer is between 20 μm and 40 μm.
本发明一实施例的倒装发光二极管芯片,高反射金属层可以与布拉格反射层配合形成全反射,保证反射率,防护金属层可以保护高反射金属层不发生迁移、不被氧化;电流传输层具有多个由周期性层叠的TiW层和Au层组成的传输子层,且沿芯片生长方向的不同传输子层中TiW层厚度占Au层厚度的比例呈线性增加,使电流注入到连接层时先横向传输,再垂直传输,使得LED芯片电流均匀扩散,且可以增大LED芯片可使用的最大电流;而且若P型连接层边缘到N型连接层边缘的距离小于20μm,在LED芯片通电的情况下,P型连接层边缘与N型连接层边缘之间极易发生电迁移造成LED芯片短路,如果距离太大,则P型连接层和N型连接层整体面积较小,影响连接层与布拉格反射层形成的全反射效果,因此P型连接层边缘到N型连接层边缘的距离适中能够保证LED芯片稳定工作且具有良好的发光效果。In the flip-chip light-emitting diode chip according to an embodiment of the present invention, the highly reflective metal layer can cooperate with the Bragg reflective layer to form total reflection to ensure reflectivity. The protective metal layer can protect the highly reflective metal layer from migration and oxidation; the current transmission layer There are multiple transmission sublayers composed of periodically stacked TiW layers and Au layers, and the ratio of the thickness of the TiW layer to the thickness of the Au layer in different transmission sublayers along the chip growth direction increases linearly, so that when current is injected into the connection layer Transmit laterally first, then vertically, so that the LED chip current spreads evenly, and can increase the maximum current that the LED chip can use; and if the distance from the edge of the P-type connection layer to the edge of the N-type connection layer is less than 20μm, when the LED chip is powered on Under such circumstances, electromigration can easily occur between the edge of the P-type connection layer and the edge of the N-type connection layer, causing a short circuit in the LED chip. If the distance is too large, the overall area of the P-type connection layer and the N-type connection layer will be smaller, affecting the connection layer and The total reflection effect formed by the Bragg reflective layer, so the moderate distance from the edge of the P-type connection layer to the edge of the N-type connection layer can ensure that the LED chip works stably and has a good luminous effect.
进一步的,所述外延层包括依次层叠在所述衬底上的N型半导体层、有源发光层、P型半导体层,所述N型半导体层四周设置有隔离槽,所述布拉格反射层、第一绝缘保护层及第二绝缘保护层均延伸覆盖在所述隔离槽上。Further, the epitaxial layer includes an N-type semiconductor layer, an active light-emitting layer, and a P-type semiconductor layer sequentially stacked on the substrate. Isolation grooves are provided around the N-type semiconductor layer, and the Bragg reflective layer, Both the first insulating protective layer and the second insulating protective layer extend to cover the isolation trench.
进一步的,所述电流阻挡层为多个直径介于20μm-50μm的SiO2圆盘或Al2O3圆盘,且均置于所述P型半导体层上。Further, the current blocking layer is a plurality of SiO 2 disks or Al 2 O 3 disks with a diameter ranging from 20 μm to 50 μm, and they are all placed on the P-type semiconductor layer.
进一步的,所述电流扩展层将所述电流阻挡层覆盖并延伸至所述P型半导体层上,且所述电流扩展层边缘到所述P型半导体层边缘的距离介于3μm-10μm。Further, the current spreading layer covers and extends the current blocking layer to the P-type semiconductor layer, and the distance from the edge of the current spreading layer to the edge of the P-type semiconductor layer is between 3 μm and 10 μm.
进一步的,所述电极层包括多个P型电极层和多个N型电极层,所述P型电极层和所述N型电极层均为直径介于10μm-30μm的金属圆盘,所述P型电极层位于所述电流扩展层上,并与所述电流阻挡层同圆心;所述P型电极层边缘到所述电流阻挡层边缘的距离介于5μm-15μm;所述N型电极层位于所述N型半导体层上,并与所述N型半导体层形成电性连接,所述N型电极层的边缘到所述P型半导体层边缘的距离介于7μm-10μm。Further, the electrode layer includes a plurality of P-type electrode layers and a plurality of N-type electrode layers, and the P-type electrode layer and the N-type electrode layer are metal disks with a diameter between 10 μm and 30 μm, and the The P-type electrode layer is located on the current spreading layer and is concentric with the current blocking layer; the distance from the edge of the P-type electrode layer to the edge of the current blocking layer is between 5 μm and 15 μm; the N-type electrode layer It is located on the N-type semiconductor layer and forms an electrical connection with the N-type semiconductor layer. The distance from the edge of the N-type electrode layer to the edge of the P-type semiconductor layer is between 7 μm and 10 μm.
进一步的,所述布拉格反射层为20-40组周期性层叠的TiO2层和SiO2层组成,所述布拉格反射层设置有多个第一通孔,所述连接层透过所述第一通孔与所述电极层连接,所述第一通孔边缘到所述电极层边缘距离介于2μm-10μm。Further, the Bragg reflective layer is composed of 20-40 groups of periodically stacked TiO 2 layers and SiO 2 layers. The Bragg reflective layer is provided with a plurality of first through holes, and the connection layer penetrates the first through holes. The through hole is connected to the electrode layer, and the distance from the edge of the first through hole to the edge of the electrode layer is between 2 μm and 10 μm.
进一步的,所述第一绝缘保护层及所述第二绝缘保护层均为SiO2层、Al2O3层或SiN层,所述第一绝缘保护层和所述第二绝缘保护层上均设有将其贯穿的第二通孔,所述焊盘层透过所述第二通孔与所述连接层电性连接,所述第二通孔边缘到所述连接层边缘距离介于10μm-15μm。Further, the first insulating protective layer and the second insulating protective layer are both SiO 2 layers, Al 2 O 3 layers or SiN layers, and both the first insulating protective layer and the second insulating protective layer are A second through hole is provided to penetrate it. The pad layer is electrically connected to the connection layer through the second through hole. The distance from the edge of the second through hole to the edge of the connection layer is between 10 μm. -15μm.
进一步的,所述焊盘层置于所述第二绝缘保护层之上,其包括P型焊盘层和N型焊盘层,所述P型焊盘层边缘到所述N型焊盘层边缘距离介于200μm-300μm。Further, the pad layer is placed on the second insulating protective layer, which includes a P-type pad layer and an N-type pad layer, and the edge of the P-type pad layer to the N-type pad layer The edge distance is between 200μm-300μm.
进一步的,所述金属保护层包括P型金属保护层、N型金属保护层及防顶针层,所述P型金属保护层置于所述P型焊盘层一侧的所述N型连接层之上的所述第一绝缘保护层与所述第二绝缘保护层之间,且所述P型金属保护层在所述衬底上的投影的宽度大于所述N型连接层在所述衬底上的投影的宽度,所述P型金属保护层在所述衬底上的投影边缘到所述N型连接层在所述衬底上的投影边缘距离介于5μm-15μm;Further, the metal protective layer includes a P-type metal protective layer, an N-type metal protective layer and an anti-ejector layer, and the P-type metal protective layer is placed on the N-type connection layer on one side of the P-type pad layer. between the first insulating protective layer and the second insulating protective layer, and the width of the projection of the P-type metal protective layer on the substrate is greater than the width of the N-type connection layer on the substrate. The width of the projection on the substrate, the distance from the projected edge of the P-type metal protective layer on the substrate to the projected edge of the N-type connection layer on the substrate is between 5 μm and 15 μm;
所述N型金属保护层置于所述N型焊盘层一侧的所述P型连接层之上的所述第一绝缘保护层与所述第二绝缘保护层之间,且所述N型金属保护层在所述衬底上的投影的宽度大于所述P型连接层在所述衬底上的投影的宽度,所述N型金属保护层在所述衬底上的投影边缘到所述P型连接层在所述衬底上的投影边缘距离介于5μm-15μm;The N-type metal protective layer is placed between the first insulating protective layer and the second insulating protective layer on the P-type connection layer on one side of the N-type pad layer, and the N-type metal protective layer The width of the projection of the N-type metal protective layer on the substrate is greater than the width of the projection of the P-type connection layer on the substrate, and the projection edge of the N-type metal protective layer on the substrate reaches the The projected edge distance of the P-type connection layer on the substrate is between 5 μm and 15 μm;
所述防顶针层置于所述倒装发光二极管芯片中心的所述第一绝缘保护层及所述第二绝缘保护层之间,所述防顶针层为直径介于50μm-100μm的圆盘。The anti-ejector layer is placed between the first insulating protective layer and the second insulating protective layer in the center of the flip-chip LED chip, and the anti-ejector layer is a disc with a diameter between 50 μm and 100 μm.
相应的,本发明还提供了一种倒装发光二极管芯片的制备方法,用于制备如上所述的倒装发光二极管芯片,所述方法包括:Correspondingly, the present invention also provides a method for preparing a flip-chip light-emitting diode chip, which is used to prepare the flip-chip light-emitting diode chip as described above. The method includes:
提供一衬底;provide a substrate;
在所述衬底上沉积外延层,所述外延层包括N型半导体层、有源发光层、P型半导体层;Deposit an epitaxial layer on the substrate, the epitaxial layer including an N-type semiconductor layer, an active light-emitting layer, and a P-type semiconductor layer;
在所述N型半导体层上制备隔离槽;Prepare isolation trenches on the N-type semiconductor layer;
在所述P型半导体层上沉积电流阻挡层,所述电流阻挡层延伸至所述N型半导体层上并将所述隔离槽覆盖;Deposit a current blocking layer on the P-type semiconductor layer, the current blocking layer extends to the N-type semiconductor layer and covers the isolation trench;
在所述电流阻挡层上沉积电流扩展层;depositing a current spreading layer on the current blocking layer;
在所述电流扩展层及所述N型半导体层上沉积电极层,所述电极层包括位于所述电流扩展层上的P型电极层和位于所述N型半导体层上的N型电极层;Deposit an electrode layer on the current spreading layer and the N-type semiconductor layer, the electrode layer including a P-type electrode layer located on the current spreading layer and an N-type electrode layer located on the N-type semiconductor layer;
在所述电极层上沉积布拉格反射层;depositing a Bragg reflective layer on the electrode layer;
在所述布拉格反射层上沉积连接层,所述连接层包括与所述P型电极层电性连接的P型连接层和与所述N型电极层电性连接的N型连接层;Deposit a connection layer on the Bragg reflective layer, the connection layer including a P-type connection layer electrically connected to the P-type electrode layer and an N-type connection layer electrically connected to the N-type electrode layer;
在所述连接层上沉积第一绝缘保护层;depositing a first insulating protective layer on the connection layer;
在所述第一绝缘保护层上沉积金属保护层;depositing a metal protective layer on the first insulating protective layer;
在所述金属保护层上沉积第二绝缘保护层;depositing a second insulating protective layer on the metal protective layer;
在所述第二绝缘保护层上沉积焊盘层,所述焊盘层包括与所述P型连接层电性连接的P型焊盘和与所述N型连接层电性连接的N型焊盘。A pad layer is deposited on the second insulating protective layer. The pad layer includes a P-type pad electrically connected to the P-type connection layer and an N-type pad electrically connected to the N-type connection layer. plate.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments or prior art will be briefly introduced below. Obviously, the drawings in the following description are only illustrative of the present invention. For some embodiments, for those of ordinary skill in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为本发明第一实施例的倒装发光二极管芯片的俯面结构示意图;Figure 1 is a schematic top view of the flip-chip light-emitting diode chip according to the first embodiment of the present invention;
图2为本发明第一实施例的倒装发光二极管芯片沿图1中AA线的截面示意图;Figure 2 is a schematic cross-sectional view of the flip-chip light-emitting diode chip along line AA in Figure 1 according to the first embodiment of the present invention;
图3为本发明第一实施例的倒装发光二极管芯片沿图1中BB线的截面示意图;Figure 3 is a schematic cross-sectional view of the flip-chip light-emitting diode chip along line BB in Figure 1 according to the first embodiment of the present invention;
图4为本发明第二实施例的倒装发光二极管芯片的制备方法的流程图。FIG. 4 is a flow chart of a method for manufacturing a flip-chip light-emitting diode chip according to the second embodiment of the present invention.
附图标记说明:Explanation of reference symbols:
10、衬底;11、外延层;111、N型半导体层;112、有源发光层;113、P型半导体层;114、隔离槽;12、电流阻挡层;13、电流扩展层;14、电极层;141、P型电极层;142、N型电极层;15、布拉格反射层;151、第一通孔;152、P型布拉格通孔;153、N型布拉格通孔;16、连接层;161、P型连接层;162、N型连接层;163、高反射金属层;164、防护金属层;165、电流传输层;166、传输子层;1661、第一子层;1662、第二子层;17、第一绝缘保护层;18、金属保护层;181、P型金属保护层;182、N型金属保护层;183、防顶针层;19、第二绝缘保护层;191、第二通孔;192、P型绝缘保护层通孔、193、N型绝缘保护层通孔;20、焊盘层;201、P型焊盘层;202、N型焊盘层。10. Substrate; 11. Epitaxial layer; 111. N-type semiconductor layer; 112. Active light-emitting layer; 113. P-type semiconductor layer; 114. Isolation trench; 12. Current blocking layer; 13. Current expansion layer; 14. Electrode layer; 141. P-type electrode layer; 142. N-type electrode layer; 15. Bragg reflective layer; 151. First through hole; 152. P-type Bragg via hole; 153. N-type Bragg via hole; 16. Connection layer ; 161. P-type connection layer; 162. N-type connection layer; 163. High-reflective metal layer; 164. Protective metal layer; 165. Current transmission layer; 166. Transmission sub-layer; 1661. First sub-layer; 1662. Chapter Two sub-layers; 17. First insulating protective layer; 18. Metal protective layer; 181. P-type metal protective layer; 182. N-type metal protective layer; 183. Anti-ejector layer; 19. Second insulating protective layer; 191. Second through hole; 192, P-type insulating protective layer through hole, 193, N-type insulating protective layer through hole; 20, pad layer; 201, P-type pad layer; 202, N-type pad layer.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明的实施例,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals throughout represent the same or similar elements or elements with the same or similar functions. The embodiments described below with reference to the drawings are exemplary and are intended to explain the embodiments of the present invention and are not to be construed as limitations of the present invention.
在本发明实施例的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the embodiments of the present invention, it should be understood that the terms "length", "width", "upper", "lower", "front", "back", "left", "right", "vertical" ", "horizontal", "top", "bottom", "inner", "outer", etc. indicate the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, and are only for convenience and simplicity in describing the embodiments of the present invention. The description does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore is not to be construed as a limitation of the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms “first” and “second” are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present invention, "plurality" means two or more than two, unless otherwise explicitly and specifically limited.
在本发明实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。In the embodiments of the present invention, unless otherwise expressly stipulated and limited, the terms "installation", "connection", "connection", "fixing" and other terms should be understood in a broad sense. For example, it can be a fixed connection or a removable connection. Disassembly and connection, or integration; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the embodiments of the present invention can be understood according to specific circumstances.
实施例1Example 1
参照图1至图3,本发明第一实施例,一种倒装发光二极管芯片,包括衬底10及依次层叠在衬底10上的外延层11、电流阻挡层12、电流扩展层13、电极层14、布拉格反射层15、连接层16、第一绝缘保护层17、金属保护层18、第二绝缘保护层19、焊盘层20;Referring to Figures 1 to 3, a first embodiment of the present invention, a flip-chip light-emitting diode chip, includes a substrate 10 and an epitaxial layer 11, a current blocking layer 12, a current spreading layer 13, and electrodes sequentially stacked on the substrate 10 Layer 14, Bragg reflective layer 15, connection layer 16, first insulating protective layer 17, metal protective layer 18, second insulating protective layer 19, pad layer 20;
连接层16包括结构相同的多个P型连接层161和多个N型连接层162,P型连接层161由依次层叠的高反射金属层163、防护金属层164及电流传输层165组成,高反射金属层163为Al层或Ag层,防护金属层164为Ti层、Pt层、Ni层、Cr层、Pb层中的一种或多种层叠组成;The connection layer 16 includes a plurality of P-type connection layers 161 and a plurality of N-type connection layers 162 with the same structure. The P-type connection layer 161 is composed of a highly reflective metal layer 163, a protective metal layer 164 and a current transmission layer 165 stacked in sequence. The reflective metal layer 163 is an Al layer or an Ag layer, and the protective metal layer 164 is a stack of one or more of a Ti layer, a Pt layer, a Ni layer, a Cr layer, and a Pb layer;
电流传输层165包括依次层叠的至少两个传输子层166,传输子层166由3-5组周期性层叠的TiW层和Au层组成,不同传输子层166中TiW层厚度占Au层厚度的比例介于10%-40%,且沿芯片生长方向的不同传输子层166中TiW层厚度占Au层厚度的比例呈线性增加;The current transmission layer 165 includes at least two transmission sub-layers 166 stacked in sequence. The transmission sub-layer 166 is composed of 3-5 groups of periodically stacked TiW layers and Au layers. The thickness of the TiW layer in different transmission sub-layers 166 accounts for 50% of the thickness of the Au layer. The ratio is between 10% and 40%, and the ratio of the thickness of the TiW layer to the thickness of the Au layer in different transmission sublayers 166 along the chip growth direction increases linearly;
P型连接层161边缘到N型连接层162边缘的距离e介于20μm-40μm。The distance e from the edge of the P-type connection layer 161 to the edge of the N-type connection layer 162 is between 20 μm and 40 μm.
本实施例中,高反射金属层163为Ag层,防护金属层164为Ti层;电流传输层165包括依次层叠的两个传输子层166,分为第一子层1661和第二子层1662,两个传输子层166均由3组周期性层叠的TiW层和Au层组成,第一子层1661中每层TiW层厚度为每层Au层厚度的10%,第二子层1662中每层TiW层厚度为每层Au层厚度的20%;具体实施时,电流传输层165可以包括依次层叠的四个传输子层166,其中,第三个传输子层166中每层TiW层厚度为每层Au层厚度的30%,第四个传输子层166中每层TiW层厚度为每层Au层厚度的40%,不限于此;P型连接层161边缘到N型连接层162边缘的距离e为30μm。In this embodiment, the highly reflective metal layer 163 is an Ag layer, and the protective metal layer 164 is a Ti layer; the current transmission layer 165 includes two transmission sub-layers 166 stacked in sequence, divided into a first sub-layer 1661 and a second sub-layer 1662 , both transmission sublayers 166 are composed of three groups of periodically stacked TiW layers and Au layers. The thickness of each TiW layer in the first sublayer 1661 is 10% of the thickness of each Au layer, and each layer in the second sublayer 1662 is The thickness of the TiW layer is 20% of the thickness of each Au layer; during specific implementation, the current transmission layer 165 may include four transmission sub-layers 166 stacked in sequence, wherein the thickness of each TiW layer in the third transmission sub-layer 166 is 30% of the thickness of each Au layer, and the thickness of each TiW layer in the fourth transmission sublayer 166 is 40% of the thickness of each Au layer, not limited to this; the edge of the P-type connection layer 161 to the edge of the N-type connection layer 162 The distance e is 30 μm.
本发明一实施例的倒装发光二极管芯片,高反射金属层163可以与布拉格反射层15配合形成全反射,保证反射率,防护金属层164可以保护高反射金属层163不发生迁移、不被氧化;电流传输层165具有多个由周期性层叠的TiW层和Au层组成的传输子层166,且沿芯片生长方向的不同传输子层166中TiW层厚度占Au层厚度的比例呈线性增加,使电流注入到连接层16时先横向传输,再垂直传输,使得LED芯片电流均匀扩散,且可以增大LED芯片可使用的最大电流;而且若P型连接层161边缘到N型连接层162边缘的距离小于20μm,在LED芯片通电的情况下,P型连接层161边缘与N型连接层162边缘之间极易发生电迁移造成LED芯片短路,如果距离太大,则P型连接层161和N型连接层162整体面积较小,影响连接层16与布拉格反射层15形成的全反射效果,因此P型连接层161边缘到N型连接层162边缘的距离适中能够保证LED芯片稳定工作且具有良好的发光效果。In the flip-chip LED chip according to an embodiment of the present invention, the highly reflective metal layer 163 can cooperate with the Bragg reflective layer 15 to form total reflection to ensure reflectivity. The protective metal layer 164 can protect the highly reflective metal layer 163 from migration and oxidation. ; The current transmission layer 165 has a plurality of transmission sub-layers 166 composed of periodically stacked TiW layers and Au layers, and the ratio of the thickness of the TiW layer to the thickness of the Au layer in different transmission sub-layers 166 along the chip growth direction increases linearly, When the current is injected into the connection layer 16, it is first transmitted horizontally and then vertically, so that the LED chip current spreads evenly, and the maximum current that can be used by the LED chip can be increased; and if the edge of the P-type connection layer 161 to the edge of the N-type connection layer 162 The distance is less than 20 μm. When the LED chip is powered on, electromigration easily occurs between the edge of the P-type connection layer 161 and the edge of the N-type connection layer 162, causing the LED chip to short circuit. If the distance is too large, the P-type connection layer 161 and the The overall area of the N-type connection layer 162 is small, which affects the total reflection effect formed by the connection layer 16 and the Bragg reflection layer 15. Therefore, a moderate distance from the edge of the P-type connection layer 161 to the edge of the N-type connection layer 162 can ensure that the LED chip operates stably and has Good luminous effect.
外延层11包括依次层叠在衬底10上的N型半导体层111、有源发光层112、P型半导体层113,N型半导体层111四周设置有隔离槽114,布拉格反射层15、第一绝缘保护层17及第二绝缘保护层19均延伸覆盖在隔离槽114上,可有效防止外界水汽氧化外延层11。The epitaxial layer 11 includes an N-type semiconductor layer 111, an active light-emitting layer 112, and a P-type semiconductor layer 113 that are sequentially stacked on the substrate 10. The N-type semiconductor layer 111 is surrounded by an isolation trench 114, a Bragg reflective layer 15, and a first insulating layer. The protective layer 17 and the second insulating protective layer 19 both extend and cover the isolation trench 114, which can effectively prevent external water vapor from oxidizing the epitaxial layer 11.
电流阻挡层12为多个直径介于20μm-50μm的SiO2圆盘或Al2O3圆盘,且均置于P型半导体层113上;电流阻挡层12的直径若小于20μm,会导致LED芯片抗ESD能力变差,直径越大ESD能力越好,但大于50μm会引起LED芯片工作电压的急剧上升;本实施例中,电流阻挡层12为多个直径为35μm的SiO2圆盘,其数量根据芯片大小而定。The current blocking layer 12 is a plurality of SiO 2 disks or Al 2 O 3 disks with a diameter between 20 μm and 50 μm, and they are all placed on the P-type semiconductor layer 113; if the diameter of the current blocking layer 12 is less than 20 μm, the LED The anti-ESD ability of the chip becomes worse. The larger the diameter, the better the ESD ability. However, if it is larger than 50 μm, it will cause the operating voltage of the LED chip to rise sharply. In this embodiment, the current blocking layer 12 is a plurality of SiO 2 disks with a diameter of 35 μm. Quantity depends on chip size.
电流扩展层13将电流阻挡层12覆盖并延伸至P型半导体层113上,且电流扩展层13边缘到P型半导体层113边缘的距离a介于3μm-10μm;电流扩展层13边缘距P型半导体层113边缘距离若小于3μm ,则极易造成电流扩展层13与P型半导体层113侧壁接触,造成LED芯片在反向电流下导通,造成LED芯片失效,距离过大则会造成电流扩展层13面积过小,电流扩展困难,造成LED芯片工作电压偏高;本实施例中,电流扩展层13边缘到P型半导体层113边缘的距离a为6μm,且电流扩展层13面积为P型半导体层113面积的50%-98%,具体实施时,电流扩展层13面积为P型半导体层113面积的70%。The current spreading layer 13 covers and extends the current blocking layer 12 to the P-type semiconductor layer 113, and the distance a from the edge of the current spreading layer 13 to the edge of the P-type semiconductor layer 113 is between 3 μm and 10 μm; the distance a from the edge of the current spreading layer 13 to the P-type semiconductor layer 113 is If the edge distance of the semiconductor layer 113 is less than 3 μm, it will easily cause the current expansion layer 13 to contact the side walls of the P-type semiconductor layer 113, causing the LED chip to conduct under reverse current, causing the LED chip to fail. If the distance is too large, a current will occur. If the area of the expansion layer 13 is too small, it is difficult to expand the current, resulting in a high operating voltage of the LED chip. In this embodiment, the distance a from the edge of the current expansion layer 13 to the edge of the P-type semiconductor layer 113 is 6 μm, and the area of the current expansion layer 13 is P 50%-98% of the area of the P-type semiconductor layer 113. In specific implementation, the area of the current spreading layer 13 is 70% of the area of the P-type semiconductor layer 113.
电极层14包括多个P型电极层141和多个N型电极层142,P型电极层141和N型电极层142均为直径介于10μm-30μm的金属圆盘,P型电极层141位于电流扩展层13上,并与电流阻挡层12同圆心;P型电极层141边缘到电流阻挡层12边缘的距离b介于5μm-15μm;N型电极层142位于N型半导体层111上,并与N型半导体层111形成电性连接,N型电极层142的边缘到P型半导体层113边缘的距离c介于7μm-10μm;P型电极层141和N型电极层142的直径太小会引起LED芯片工作电压升高,太大会引起亮度下降,介于10μm-30μm,可以平衡工作电压和亮度;设置P型电极层141边缘到电流阻挡层12边缘的距离是为了增强LED芯片抗静电击穿能力,距离越大效果越好,但是距离大于15μm会引起LED芯片工作电压急剧升高;N型电极层142的边缘到P型半导体层113边缘的距离设置是为了避免LED芯片在通电情况下N型电极的金属想P型半导体迁移,造成LED芯片短路失效;本实施例中,P型电极层141的数量与电流阻挡层12的数量相同,P型电极层141面积小于电流阻挡层12面积,电极层14的金属圆盘可以为Cr层、Ni层、Al层、AlCu层、Ti层、Pt层、Au层、Ag层、Cu层中的一种或多种组合形成,具体实施例时,电极层14的金属圆盘为Cr层;P型电极层141为直径20μm的金属圆盘,N型电极层142为直径25μm的金属圆盘,P型电极层141边缘到电流阻挡层12边缘的距离b为10μm,N型电极层142的边缘到P型半导体层113边缘的距离c为9μm。The electrode layer 14 includes a plurality of P-type electrode layers 141 and a plurality of N-type electrode layers 142. The P-type electrode layers 141 and the N-type electrode layers 142 are both metal disks with a diameter between 10 μm and 30 μm. The P-type electrode layer 141 is located on on the current spreading layer 13 and concentric with the current blocking layer 12; the distance b from the edge of the P-type electrode layer 141 to the edge of the current blocking layer 12 is between 5 μm and 15 μm; the N-type electrode layer 142 is located on the N-type semiconductor layer 111, and It is electrically connected to the N-type semiconductor layer 111, and the distance c from the edge of the N-type electrode layer 142 to the edge of the P-type semiconductor layer 113 is between 7 μm and 10 μm; the diameters of the P-type electrode layer 141 and the N-type electrode layer 142 are too small. It causes the working voltage of the LED chip to increase. If it is too large, it will cause the brightness to decrease. It is between 10μm-30μm, which can balance the working voltage and brightness; the distance from the edge of the P-type electrode layer 141 to the edge of the current blocking layer 12 is set to enhance the resistance of the LED chip to electrostatic shock. Penetration ability, the larger the distance, the better the effect, but the distance greater than 15 μm will cause the operating voltage of the LED chip to rise sharply; the distance from the edge of the N-type electrode layer 142 to the edge of the P-type semiconductor layer 113 is set to prevent the LED chip from The metal of the N-type electrode migrates to the P-type semiconductor, causing short-circuit failure of the LED chip. In this embodiment, the number of P-type electrode layers 141 is the same as the number of current blocking layers 12, and the area of P-type electrode layer 141 is smaller than the area of current blocking layer 12. , the metal disk of the electrode layer 14 can be formed from one or more combinations of Cr layer, Ni layer, Al layer, AlCu layer, Ti layer, Pt layer, Au layer, Ag layer, and Cu layer. In specific embodiments, , the metal disk of the electrode layer 14 is a Cr layer; the P-type electrode layer 141 is a metal disk with a diameter of 20 μm, and the N-type electrode layer 142 is a metal disk with a diameter of 25 μm. The edge of the P-type electrode layer 141 is from the edge of the current blocking layer 12 The distance b is 10 μm, and the distance c from the edge of the N-type electrode layer 142 to the edge of the P-type semiconductor layer 113 is 9 μm.
布拉格反射层15为20-40组周期性层叠的TiO2层和SiO2层组成,布拉格反射层15设置有多个第一通孔151,连接层16透过第一通孔151与电极层14连接,第一通孔151边缘距电极层14边缘距离d介于2μm-10μm;第一通孔151直径要小于电极层14直径,避免连接层16无法全部覆盖第一通孔151内的电极层14,有效提升LED芯的片可靠性;本实施例中,布拉格反射层15为28组周期性层叠的TiO2层和SiO2层组成,第一通孔151投影为4μm-20μm的圆形,且与电极层14投影为同心圆,置于P型电极层141之上的第一通孔151为P型布拉格通孔152,置于N型电极层142之上的为N型布拉格通孔153,具体实施时,第一通孔151投影为15μm的圆形;第一通孔151边缘到电极层14边缘距离d为5μm。The Bragg reflective layer 15 is composed of 20-40 groups of periodically stacked TiO 2 layers and SiO 2 layers. The Bragg reflective layer 15 is provided with a plurality of first through holes 151 , and the connection layer 16 passes through the first through holes 151 and the electrode layer 14 For connection, the distance d between the edge of the first through hole 151 and the edge of the electrode layer 14 is between 2 μm and 10 μm; the diameter of the first through hole 151 should be smaller than the diameter of the electrode layer 14 to avoid that the connection layer 16 cannot completely cover the electrode layer in the first through hole 151 14. Effectively improve the chip reliability of the LED chip; in this embodiment, the Bragg reflective layer 15 is composed of 28 groups of periodically stacked TiO 2 layers and SiO 2 layers, and the first through hole 151 is projected into a circle of 4 μm-20 μm. And projected as a concentric circle with the electrode layer 14, the first through hole 151 placed on the P-type electrode layer 141 is a P-type Bragg via 152, and the first through hole 151 placed on the N-type electrode layer 142 is an N-type Bragg via 153. , during specific implementation, the first through hole 151 is projected into a circle of 15 μm; the distance d from the edge of the first through hole 151 to the edge of the electrode layer 14 is 5 μm.
第一绝缘保护层17及第二绝缘保护层19均为SiO2层、Al2O3层或SiN层,第一绝缘保护层17和第二绝缘保护层19上均设有将其贯穿的第二通孔191,焊盘层20透过第二通孔191与连接层16电性连接,第二通孔191边缘到连接层16边缘距离f介于10μm-15μm;焊盘层20置于第二绝缘保护层19之上,其包括P型焊盘层201和N型焊盘层202,P型焊盘层201边缘到N型焊盘层202边缘距离h介于200μm-300μm。The first insulating protective layer 17 and the second insulating protective layer 19 are both SiO 2 layers, Al 2 O 3 layers or SiN layers. The first insulating protective layer 17 and the second insulating protective layer 19 are both provided with a third insulating protective layer penetrating them. Two through holes 191, the pad layer 20 is electrically connected to the connection layer 16 through the second through hole 191, the distance f from the edge of the second through hole 191 to the edge of the connection layer 16 is between 10 μm and 15 μm; the pad layer 20 is placed on the third through hole 191. On the second insulating protective layer 19, it includes a P-type pad layer 201 and an N-type pad layer 202. The distance h from the edge of the P-type pad layer 201 to the edge of the N-type pad layer 202 is between 200 μm and 300 μm.
第二通孔191边缘到连接层16边缘距离的设置可防止焊盘层20通过第二通孔191与连接层16边缘连接时,焊盘层20在连接层16边缘形成空洞,最终造成LED芯片可靠性降低;置于P型连接层161之上的第二通孔191为P型绝缘保护层通孔192,置于N型连接层162之上的第二通孔191为N型绝缘保护层通孔193;P型焊盘层201边缘到N型焊盘层202边缘距离是为了避免后续封装过程中,置于P型焊盘层201上的焊盘和置于N型焊盘层202上的焊盘,在回流过程中连接在一起,造成LED芯片短路失效,此距离必须大于200μm,越大效果越好,但是太大相应的会造成P型焊盘层201和N型焊盘层202的面积过大,同样会造成P型焊盘层201和N型焊盘层202结合力减小的问题,故本发明将最大距离设置为300μm;本实施例中,第一绝缘保护层17及第二绝缘保护层19均为SiO2层,P型焊盘层201通过P型绝缘保护层通孔192与P型连接层161形成电性连接,N型焊盘层202通过N型绝缘保护层通孔193与N型连接层162形成电性连接;第二通孔191边缘到连接层16边缘距离f为10μm,P型焊盘层201边缘到N型焊盘层202边缘距离h为200μm;焊盘层20可以为Al层、Ti层、Pt层、Ni层、Au层、Sn层、AuSn层中的一种或多种组成,具体实施时,焊盘层20为Au层。The setting of the distance from the edge of the second through hole 191 to the edge of the connection layer 16 can prevent the pad layer 20 from forming a void at the edge of the connection layer 16 when the pad layer 20 is connected to the edge of the connection layer 16 through the second through hole 191 , eventually causing the LED chip Reliability is reduced; the second through hole 191 placed on the P-type connection layer 161 is a P-type insulating protective layer through hole 192, and the second through hole 191 placed on the N-type connecting layer 162 is an N-type insulating protective layer. Through hole 193; the distance from the edge of the P-type pad layer 201 to the edge of the N-type pad layer 202 is to avoid the pads placed on the P-type pad layer 201 and the pads placed on the N-type pad layer 202 during the subsequent packaging process. The pads are connected together during the reflow process, causing short circuit failure of the LED chip. This distance must be greater than 200 μm. The larger the better the effect, but if it is too large, it will cause the P-type pad layer 201 and the N-type pad layer 202 If the area is too large, it will also cause the problem of reduced bonding force between the P-type pad layer 201 and the N-type pad layer 202. Therefore, the present invention sets the maximum distance to 300 μm; in this embodiment, the first insulating protective layer 17 and The second insulating protective layer 19 is both a SiO 2 layer. The P-type pad layer 201 is electrically connected to the P-type connecting layer 161 through the P-type insulating protective layer through hole 192. The N-type pad layer 202 passes through the N-type insulating protective layer. The through hole 193 forms an electrical connection with the N-type connection layer 162; the distance f from the edge of the second through hole 191 to the edge of the connection layer 16 is 10 μm, and the distance h from the edge of the P-type pad layer 201 to the edge of the N-type pad layer 202 is 200 μm; The pad layer 20 may be composed of one or more of an Al layer, a Ti layer, a Pt layer, a Ni layer, an Au layer, a Sn layer, and an AuSn layer. In specific implementation, the pad layer 20 is an Au layer.
金属保护层18包括P型金属保护层181、N型金属保护层182及防顶针层183,P型金属保护层181置于P型焊盘层201一侧的N型连接层162之上的第一绝缘保护层17与第二绝缘保护层19之间,且P型金属保护层181在衬底10上的投影的宽度大于N型连接层162在衬底10上的投影的宽度,P型金属保护层181在衬底10上的投影边缘到N型连接层162在衬底10上的投影边缘距离g1介于5μm-15μm;N型金属保护层182置于N型焊盘层202一侧的P型连接层161之上的第一绝缘保护层17与第二绝缘保护层19之间,且N型金属保护层182在衬底10上的投影的宽度大于P型连接层161在衬底10上的投影的宽度,N型金属保护层182在衬底10上的投影边缘到P型连接层161在衬底10上的投影边缘距离g2介于5μm-15μm;防顶针层183置于倒装发光二极管芯片中心的第一绝缘保护层17及第二绝缘保护层19之间,防顶针层183为直径介于50μm-100μm的圆盘。The metal protective layer 18 includes a P-type metal protective layer 181, an N-type metal protective layer 182 and an anti-ejector layer 183. The P-type metal protective layer 181 is placed on the N-type connection layer 162 on one side of the P-type pad layer 201. Between an insulating protective layer 17 and the second insulating protective layer 19, and the width of the projection of the P-type metal protective layer 181 on the substrate 10 is greater than the width of the projection of the N-type connection layer 162 on the substrate 10, the P-type metal The distance g1 from the projected edge of the protective layer 181 on the substrate 10 to the projected edge of the N-type connection layer 162 on the substrate 10 is between 5 μm and 15 μm; the N-type metal protective layer 182 is placed on one side of the N-type pad layer 202 between the first insulating protective layer 17 and the second insulating protective layer 19 above the P-type connection layer 161 , and the projected width of the N-type metal protective layer 182 on the substrate 10 is larger than that of the P-type connection layer 161 on the substrate 10 The width of the projection on the substrate 10, the distance g2 from the projected edge of the N-type metal protective layer 182 on the substrate 10 to the projected edge of the P-type connection layer 161 on the substrate 10 is between 5 μm and 15 μm; the anti-ejector layer 183 is placed on the flip chip Between the first insulating protective layer 17 and the second insulating protective layer 19 in the center of the LED chip, the anti-ejector layer 183 is a disk with a diameter between 50 μm and 100 μm.
P型金属保护层181在衬底10上的投影边缘到N型连接层162在衬底10上的投影边缘距离的设置是为了保证P型金属保护层181在衬底10上的投影完全覆盖这部分的N型连接层162;N型金属保护层182在衬底10上的投影边缘到P型连接层161在衬底10上的投影边缘距离的设置是为了保证N型金属保护层182在衬底10上的投影完全覆盖这部分的P型连接层161;防顶针层183可防止对LED芯片分选过程中,分选顶针顶伤LED芯片,设置50μm-100μm的直径为顶针的寻找精度,避免顶针顶偏,没有顶到设置的防顶针层183的圆盘;本实施例中,金属保护层18可以为Al层、Cr层、Ni层、Sb层、Be层等惰性金属中的一种或多种组合,具体实施时,金属保护层18为Ni层;P型金属保护层181投影边缘到N型连接层162投影边缘距离g1为12μm,N型金属保护层182投影边缘到P型连接层161投影边缘距离g2为12μm,防顶针层183为直径为75μm的圆盘。The distance from the projected edge of the P-type metal protective layer 181 on the substrate 10 to the projected edge of the N-type connection layer 162 on the substrate 10 is set to ensure that the projection of the P-type metal protective layer 181 on the substrate 10 completely covers this area. Part of the N-type connection layer 162; the distance from the projected edge of the N-type metal protective layer 182 on the substrate 10 to the projected edge of the P-type connection layer 161 on the substrate 10 is to ensure that the N-type metal protective layer 182 is on the substrate. The projection on the bottom 10 completely covers this part of the P-type connection layer 161; the anti-ejector layer 183 can prevent the sorting ejector pin from damaging the LED chip during the LED chip sorting process. The diameter of 50 μm-100 μm is set as the search accuracy of the ejector pin. To prevent the ejector pin from deflecting and not touching the disc of the anti-ejector pin layer 183; in this embodiment, the metal protective layer 18 can be one of inert metals such as Al layer, Cr layer, Ni layer, Sb layer, Be layer, etc. Or multiple combinations. During specific implementation, the metal protective layer 18 is a Ni layer; the distance g1 from the projected edge of the P-type metal protective layer 181 to the projected edge of the N-type connection layer 162 is 12 μm, and the projected edge of the N-type metal protective layer 182 to the P-type connection The projected edge distance g2 of layer 161 is 12 μm, and the anti-ejector layer 183 is a disk with a diameter of 75 μm.
实施例2Example 2
参照图4,相应的,本发明还提供了一种倒装发光二极管芯片的制备方法,用于制备如上所述的倒装发光二极管芯片,方法包括:Referring to Figure 4, correspondingly, the present invention also provides a method for preparing a flip-chip light-emitting diode chip, which is used to prepare the flip-chip light-emitting diode chip as described above. The method includes:
S1:提供一衬底10;衬底10为透光材料,可以为GaN层或AlN层或Al2O3层;本实施例中,衬底10为GaN层。S1: Provide a substrate 10; the substrate 10 is a light-transmitting material, which can be a GaN layer, an AlN layer, or an Al 2 O 3 layer; in this embodiment, the substrate 10 is a GaN layer.
S2:在衬底10上沉积外延层11,外延层11包括N型半导体层111、有源发光层112、P型半导体层113;本实施例中,利用MOCVD(金属有机化学气相沉积)工艺依次生长N型半导体层111、有源发光层112、P型半导体层113。S2: Deposit an epitaxial layer 11 on the substrate 10. The epitaxial layer 11 includes an N-type semiconductor layer 111, an active light-emitting layer 112, and a P-type semiconductor layer 113. In this embodiment, the MOCVD (Metal Organic Chemical Vapor Deposition) process is used in sequence. The N-type semiconductor layer 111, the active light-emitting layer 112, and the P-type semiconductor layer 113 are grown.
S3:在N型半导体层111上制备隔离槽114;具体的,在P型半导体层113上涂布光刻胶,然后曝光、显影去除掉部分光刻胶,暴露出LED芯片四周和内部的部分P型半导体层113,然后利用电感耦合等离子体刻蚀工艺去除掉暴露出的P型半导体层113和这部分P型半导体层113下面的有源发光层112,暴露出N型半导体层111,然后去除剩余光刻胶,得到LED芯片的P型半导体层113、有源发光层112、N型半导体层111;然后在N型半导体层111和P型半导体层113表面涂布光刻胶,再曝光、显影去除掉部分光刻胶,暴露出LED芯片四周的部分N型半导体层111、然后利用电感耦合等离子体刻蚀去除掉暴露出的N型半导体层111,暴露出衬底10,形成隔离槽114,然后去除剩余光刻胶。S3: Prepare the isolation trench 114 on the N-type semiconductor layer 111; specifically, apply photoresist on the P-type semiconductor layer 113, and then expose and develop to remove part of the photoresist, exposing the surrounding and internal parts of the LED chip. P-type semiconductor layer 113, and then use an inductively coupled plasma etching process to remove the exposed P-type semiconductor layer 113 and the active light-emitting layer 112 under this part of P-type semiconductor layer 113, exposing the N-type semiconductor layer 111, and then Remove the remaining photoresist to obtain the P-type semiconductor layer 113, active light-emitting layer 112, and N-type semiconductor layer 111 of the LED chip; then apply photoresist on the surfaces of the N-type semiconductor layer 111 and the P-type semiconductor layer 113, and then expose . Develop to remove part of the photoresist, exposing part of the N-type semiconductor layer 111 around the LED chip. Then use inductively coupled plasma etching to remove the exposed N-type semiconductor layer 111, expose the substrate 10, and form an isolation trench. 114, and then remove the remaining photoresist.
S4:在P型半导体层113上沉积电流阻挡层12,电流阻挡层12延伸至N型半导体层111上并将隔离槽114覆盖;具体的,利用PECVD(等离子体增强化学气相沉积)工艺在所述P型半导体层113、N型半导体层111、隔离槽114表面沉积SiO2,然后在SiO2表面涂布光刻胶,然后曝光、显影去除掉部分光刻胶,暴露出部分SiO2,然后利用BOE腐蚀液腐蚀掉暴露出的SiO2,然后去除光刻胶,形成电流阻挡层12,电流阻挡层12直径为35μm的圆盘结构。S4: Deposit the current blocking layer 12 on the P-type semiconductor layer 113. The current blocking layer 12 extends to the N-type semiconductor layer 111 and covers the isolation trench 114; specifically, a PECVD (Plasma Enhanced Chemical Vapor Deposition) process is used to deposit the current blocking layer 12 on the N-type semiconductor layer 111. SiO 2 is deposited on the surface of the P-type semiconductor layer 113, the N-type semiconductor layer 111, and the isolation trench 114, and then photoresist is coated on the SiO 2 surface , and then exposed and developed to remove part of the photoresist, exposing part of SiO 2 , and then The exposed SiO 2 is etched away using BOE etching solution, and then the photoresist is removed to form a current blocking layer 12 with a disc structure having a diameter of 35 μm.
S5:在电流阻挡层12上沉积电流扩展层13;具体的,然后利用Sputter(磁控溅射)工艺在P型半导体层113、N型半导体层111、隔离槽114、电流阻挡层12表面沉积ITO(氧化铟锡),然后在ITO表面涂布光刻胶,然后曝光、显影去除掉部分光刻胶,暴露出部分ITO,然后利用FeCl3和HCl的混合液腐蚀掉暴露出的ITO,然后去除光刻胶,形成电流扩展层13;电流扩展层13边缘与P型半导体层113边缘距离等于6μm。S5: Deposit the current expansion layer 13 on the current blocking layer 12; specifically, use the Sputter (magnetron sputtering) process to deposit on the surface of the P-type semiconductor layer 113, the N-type semiconductor layer 111, the isolation trench 114, and the current blocking layer 12. ITO (indium tin oxide), then apply photoresist on the surface of ITO, then expose and develop to remove part of the photoresist, exposing part of the ITO, and then use a mixture of FeCl 3 and HCl to corrode the exposed ITO, and then The photoresist is removed to form the current spreading layer 13; the distance between the edge of the current spreading layer 13 and the edge of the P-type semiconductor layer 113 is equal to 6 μm.
S6:在电流扩展层13及所述N型半导体层111上沉积电极层14,电极层14包括位于电流扩展层13上的P型电极层141和位于N型半导体层111上的N型电极层142;具体的,在隔离槽114、N型半导体层111及电流扩展层13表面涂布负性光刻胶,然后曝光、显影去除部分光刻胶,暴露出部分N型半导体层111和部分电流扩展层13,然后利用电子束蒸镀工艺蒸镀Cr/Al/Ti/Pt/Ni/Au金属,然后利用蓝膜剥离技术去掉剩余光刻胶上的金属,然后去除剩余光刻胶,得到P型电极层141和N型电极层142;P型电极层141直径为20μm,N型电极层142直径为25μm,P型电极层141边缘距离电流阻挡层12边缘距离等于10μm,N型电极层142边缘距离P型半导体层113边缘距离等于9μm。S6: Deposit an electrode layer 14 on the current spreading layer 13 and the N-type semiconductor layer 111. The electrode layer 14 includes a P-type electrode layer 141 located on the current spreading layer 13 and an N-type electrode layer located on the N-type semiconductor layer 111. 142; Specifically, a negative photoresist is coated on the surface of the isolation trench 114, the N-type semiconductor layer 111 and the current expansion layer 13, and then exposed and developed to remove part of the photoresist, exposing part of the N-type semiconductor layer 111 and part of the current. Expansion layer 13, and then use electron beam evaporation process to evaporate Cr/Al/Ti/Pt/Ni/Au metal, then use blue film stripping technology to remove the metal on the remaining photoresist, and then remove the remaining photoresist to obtain P Type electrode layer 141 and N-type electrode layer 142; P-type electrode layer 141 has a diameter of 20 μm, N-type electrode layer 142 has a diameter of 25 μm, the distance between the edge of P-type electrode layer 141 and the edge of current blocking layer 12 is equal to 10 μm, and N-type electrode layer 142 The edge distance from the P-type semiconductor layer 113 is equal to 9 μm.
S7:在电极层14上沉积布拉格反射层15;具体的,在隔离槽114、N型半导体层111及电流扩展层13和电极层14表面利用电子束蒸镀技术依次周期性层叠28组SiO2和TiO2层形成布拉格反射层15,然后在布拉格反射层15表面涂布光刻胶,然后曝光、显影去除掉部分光刻胶,然后利用电感耦合等离子体刻蚀工艺去除掉暴露出的布拉格反射层15,然后去除剩余光刻胶,形成P型布拉格通孔152和N型布拉格通孔153;P型布拉格通孔152或N型布拉格通孔153边缘距离电极层14边缘距离等于5μm。S7: Deposit the Bragg reflective layer 15 on the electrode layer 14; specifically, use electron beam evaporation technology to periodically stack 28 groups of SiO 2 on the surface of the isolation trench 114, the N-type semiconductor layer 111, the current spreading layer 13 and the electrode layer 14. and TiO 2 layer to form a Bragg reflective layer 15, then apply photoresist on the surface of the Bragg reflective layer 15, then expose and develop to remove part of the photoresist, and then use an inductively coupled plasma etching process to remove the exposed Bragg reflection layer 15, and then remove the remaining photoresist to form a P-type Bragg via 152 and an N-type Bragg via 153; the distance between the edge of the P-type Bragg via 152 or the N-type Bragg via 153 and the edge of the electrode layer 14 is equal to 5 μm.
S8:在布拉格反射层15上沉积连接层16,连接层16包括与P型电极层141电性连接的P型连接层161和与N型电极层142电性连接的N型连接层162;具体的,在布拉格反射层15表面涂布负性光刻胶,然后曝光、显影去除掉部分光刻胶,然后利用电子束蒸镀技术依次蒸镀连接层16的高反射金属层163、防护金属层164、电流传输层165,电流传输层165包括第一子层1661和第二子层1662;高反射金属层163为金属Ag层、防护金属层164为Ti层,第一子层1661为3组TiW层与Au层的周期性叠层,其中TiW层的厚度为Au层的10%;第二子层1662为3组TiW层和Au层的叠层,其中TiW层的厚度为Au层的20%;P型连接层161边缘到N型连接层162边缘距离等于30μm。S8: Deposit the connection layer 16 on the Bragg reflective layer 15. The connection layer 16 includes a P-type connection layer 161 electrically connected to the P-type electrode layer 141 and an N-type connection layer 162 electrically connected to the N-type electrode layer 142; specifically , apply negative photoresist on the surface of the Bragg reflective layer 15, then expose and develop to remove part of the photoresist, and then use electron beam evaporation technology to sequentially evaporate the highly reflective metal layer 163 and the protective metal layer of the connection layer 16 164. Current transmission layer 165. The current transmission layer 165 includes a first sub-layer 1661 and a second sub-layer 1662; the highly reflective metal layer 163 is a metal Ag layer, the protective metal layer 164 is a Ti layer, and the first sub-layer 1661 is composed of three groups. A periodic stack of TiW layers and Au layers, where the thickness of the TiW layer is 10% of the Au layer; the second sub-layer 1662 is a stack of three groups of TiW layers and Au layers, where the thickness of the TiW layer is 20% of the Au layer %; the distance from the edge of the P-type connection layer 161 to the edge of the N-type connection layer 162 is equal to 30 μm.
S9:在连接层16上沉积第一绝缘保护层17;具体的,利用PECVD工艺在连接层16及连接层16未覆盖的布拉格反射层15表面沉积SiO2,形成第一绝缘保护层17。S9: Deposit the first insulating protective layer 17 on the connecting layer 16; specifically, use the PECVD process to deposit SiO2 on the surface of the connecting layer 16 and the Bragg reflective layer 15 not covered by the connecting layer 16 to form the first insulating protective layer 17.
S10:在第一绝缘保护层17上沉积金属保护层18;具体的,在第一绝缘保护层17表面涂布负性光刻胶,然后曝光、显影去除掉部分光刻胶,然后利用电子束蒸镀工艺蒸镀Ni层,然后利用蓝膜剥离工艺去除掉剩余光刻胶上的金属,然后去除剩余光刻胶,得到金属保护层18,包括P型金属保护层181、N型金属保护层182及防顶针层183,P型金属保护层181边缘到N型连接层162距离等于12μm,N型金属保护层182边缘到P型连接层161距离等于12μm。S10: Deposit the metal protective layer 18 on the first insulating protective layer 17; specifically, apply negative photoresist on the surface of the first insulating protective layer 17, then expose and develop to remove part of the photoresist, and then use electron beams The evaporation process evaporates the Ni layer, and then uses the blue film stripping process to remove the metal on the remaining photoresist, and then removes the remaining photoresist to obtain a metal protective layer 18, including a P-type metal protective layer 181 and an N-type metal protective layer. 182 and the anti-ejector layer 183, the distance from the edge of the P-type metal protective layer 181 to the N-type connection layer 162 is equal to 12 μm, and the distance from the edge of the N-type metal protective layer 182 to the P-type connection layer 161 is equal to 12 μm.
S11:在金属保护层18上沉积第二绝缘保护层19;具体的,在金属保护层18及未被金属保护层18覆盖的第一绝缘保护层17表面利用PECVD工艺沉积SiO2,得到第二绝缘保护层19,然后在第二绝缘保护层19表面涂布光刻胶,然后去除部分光刻胶,暴露出部分第二绝缘保护层19,然后利用电感耦合等离子体刻蚀工艺去除掉暴露出的第二绝缘保护层19及其下面的第一绝缘保护层17形成P型绝缘保护层通孔192和N型绝缘保护层通孔193,P型绝缘保护层通孔192或N型绝缘保护层通孔193边缘到连接层16边缘距离等于10μm。S11: Deposit the second insulating protective layer 19 on the metal protective layer 18; specifically, use the PECVD process to deposit SiO2 on the surface of the metal protective layer 18 and the first insulating protective layer 17 not covered by the metal protective layer 18 to obtain the second The insulating protective layer 19 is then coated with photoresist on the surface of the second insulating protective layer 19, and then part of the photoresist is removed to expose part of the second insulating protective layer 19, and then an inductively coupled plasma etching process is used to remove the exposed parts. The second insulating protective layer 19 and the first insulating protective layer 17 below form P-type insulating protective layer through holes 192 and N-type insulating protective layer through holes 193, P-type insulating protective layer through holes 192 or N-type insulating protective layer The distance from the edge of the through hole 193 to the edge of the connection layer 16 is equal to 10 μm.
S12:在第二绝缘保护层19上沉积焊盘层20,焊盘层20包括与P型连接层161电性连接的P型焊盘和与N型连接层162电性连接的N型焊盘;具体的,在第二绝缘保护层19及P型绝缘保护层通孔192和N型绝缘保护层通孔193表面涂布负性光刻胶,然后曝光、显影去除掉部分光刻胶,然后蒸镀Au层,然后利用蓝膜剥离工艺去除掉剩余光刻胶上面的金属,然后去除光刻胶,得到P型焊盘层201和N型焊盘层202,P型焊盘层201边缘到N型焊盘层202边缘距离等于200μm。S12: Deposit the pad layer 20 on the second insulating protective layer 19. The pad layer 20 includes a P-type pad electrically connected to the P-type connection layer 161 and an N-type pad electrically connected to the N-type connection layer 162. ; Specifically, a negative photoresist is coated on the surface of the second insulating protective layer 19 and the P-type insulating protective layer through hole 192 and the N-type insulating protective layer through hole 193, and then exposed and developed to remove part of the photoresist, and then The Au layer is evaporated, and then the metal on the remaining photoresist is removed using a blue film stripping process, and then the photoresist is removed to obtain the P-type pad layer 201 and the N-type pad layer 202. The edge of the P-type pad layer 201 is The edge distance of the N-type pad layer 202 is equal to 200 μm.
本发明一实施例的倒装发光二极管芯片的制备方法,高反射金属层163可以与布拉格反射层15配合形成全反射,保证反射率,防护金属层164可以保护高反射金属层163不发生迁移、不被氧化;电流传输层165具有多个由周期性层叠的TiW层和Au层组成的传输子层166,且沿芯片生长方向的不同传输子层166中TiW层厚度占Au层厚度的比例呈线性增加,使电流注入到连接层16时先横向传输,再垂直传输,使得LED芯片电流均匀扩散,且可以增大LED芯片可使用的最大电流;而且若P型连接层161边缘到N型连接层162边缘的距离小于20μm,在LED芯片通电的情况下,P型连接层161边缘与N型连接层162边缘之间极易发生电迁移造成LED芯片短路,如果距离太大,则P型连接层161和N型连接层162整体面积较小,影响连接层16与布拉格反射层15形成的全反射效果,因此P型连接层161边缘到N型连接层162边缘的距离适中能够保证LED芯片稳定工作且具有良好的发光效果。In the preparation method of a flip-chip light-emitting diode chip according to an embodiment of the present invention, the highly reflective metal layer 163 can cooperate with the Bragg reflective layer 15 to form total reflection to ensure reflectivity. The protective metal layer 164 can protect the highly reflective metal layer 163 from migration. Not oxidized; the current transmission layer 165 has a plurality of transmission sub-layers 166 composed of periodically stacked TiW layers and Au layers, and the ratio of the thickness of the TiW layer to the thickness of the Au layer in different transmission sub-layers 166 along the chip growth direction is Linearly increases, so that when the current is injected into the connection layer 16, it is first transmitted horizontally and then vertically, so that the LED chip current spreads evenly, and the maximum current that can be used by the LED chip can be increased; and if the edge of the P-type connection layer 161 is connected to the N-type The distance between the edges of the layer 162 is less than 20 μm. When the LED chip is powered on, electromigration easily occurs between the edge of the P-type connection layer 161 and the edge of the N-type connection layer 162, causing a short circuit in the LED chip. If the distance is too large, the P-type connection will The overall area of layer 161 and N-type connection layer 162 is small, which affects the total reflection effect formed by connection layer 16 and Bragg reflection layer 15. Therefore, a moderate distance from the edge of P-type connection layer 161 to the edge of N-type connection layer 162 can ensure the stability of the LED chip. Works and has a good glow effect.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment," "some embodiments," "an example," "specific examples," or "some examples" or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
在不出现冲突的前提下,本领域技术人员可以将上述附加技术特征自由组合以及叠加使用。On the premise that no conflict occurs, those skilled in the art can freely combine and superimpose the above additional technical features.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310920711.XA CN116646435B (en) | 2023-07-26 | 2023-07-26 | Flip-chip light-emitting diode chip and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310920711.XA CN116646435B (en) | 2023-07-26 | 2023-07-26 | Flip-chip light-emitting diode chip and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116646435A CN116646435A (en) | 2023-08-25 |
CN116646435B true CN116646435B (en) | 2023-09-19 |
Family
ID=87625054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310920711.XA Active CN116646435B (en) | 2023-07-26 | 2023-07-26 | Flip-chip light-emitting diode chip and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116646435B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393680B (en) * | 2023-12-12 | 2024-04-12 | 江西兆驰半导体有限公司 | A flip-chip light-emitting diode chip and its preparation method |
CN117712245A (en) * | 2024-02-05 | 2024-03-15 | 江西兆驰半导体有限公司 | A flip-chip LED chip and its preparation method |
CN118825156B (en) * | 2024-09-18 | 2024-12-06 | 江西兆驰半导体有限公司 | A method for preparing an inverted light emitting diode and an inverted light emitting diode |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672268A (en) * | 2002-07-22 | 2005-09-21 | 克里公司 | Light emitting diode comprising barrier layer/sublayer and method for its manufacture |
JP2010027643A (en) * | 2008-07-15 | 2010-02-04 | Sharp Corp | Nitride semiconductor light emitting element and fabrication process therefor |
CN103636009A (en) * | 2011-08-02 | 2014-03-12 | 东芝技术中心有限公司 | Non-reactive barrier metal for eutectic bonding process |
CN104538480A (en) * | 2015-01-04 | 2015-04-22 | 中国电子科技集团公司第四十四研究所 | Integrated structure for inversely installing high-speed InGaAs photoelectric detector chip and manufacturing method |
CN105810787A (en) * | 2014-12-30 | 2016-07-27 | 晶能光电(江西)有限公司 | LED chip and preparation method thereof |
CN107819060A (en) * | 2013-11-27 | 2018-03-20 | 晶元光电股份有限公司 | Semiconductor light emitting element |
JP2018049962A (en) * | 2016-09-23 | 2018-03-29 | 泰谷光電科技股▲ふん▼有限公司 | Electrode construction of light emission diode |
CN109244197A (en) * | 2018-08-29 | 2019-01-18 | 武汉大学 | A kind of inverted structure light-emitting diode chip for backlight unit and preparation method thereof |
CN110098300A (en) * | 2019-05-31 | 2019-08-06 | 大连德豪光电科技有限公司 | Upside-down mounting LED chip and upside-down mounting LED chip production method |
CN110718613A (en) * | 2019-08-28 | 2020-01-21 | 华灿光电(苏州)有限公司 | Light-emitting diode chip and method of making the same |
WO2021233273A1 (en) * | 2020-05-21 | 2021-11-25 | 华灿光电(浙江)有限公司 | Light-emitting diode flip chip and manufacturing method therefor |
CN114709307A (en) * | 2022-03-16 | 2022-07-05 | 江西兆驰半导体有限公司 | A flip-chip light-emitting diode chip and preparation method thereof |
CN114975718A (en) * | 2022-04-29 | 2022-08-30 | 佛山市国星半导体技术有限公司 | A kind of high stability flip-chip LED chip and preparation method thereof |
CN115064628A (en) * | 2022-08-17 | 2022-09-16 | 泉州三安半导体科技有限公司 | Flip-chip light emitting diode and light emitting device |
CN115579438A (en) * | 2022-12-09 | 2023-01-06 | 江西兆驰半导体有限公司 | LED chip with inverted silver mirror and preparation method thereof |
-
2023
- 2023-07-26 CN CN202310920711.XA patent/CN116646435B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672268A (en) * | 2002-07-22 | 2005-09-21 | 克里公司 | Light emitting diode comprising barrier layer/sublayer and method for its manufacture |
JP2010027643A (en) * | 2008-07-15 | 2010-02-04 | Sharp Corp | Nitride semiconductor light emitting element and fabrication process therefor |
CN103636009A (en) * | 2011-08-02 | 2014-03-12 | 东芝技术中心有限公司 | Non-reactive barrier metal for eutectic bonding process |
CN107819060A (en) * | 2013-11-27 | 2018-03-20 | 晶元光电股份有限公司 | Semiconductor light emitting element |
CN105810787A (en) * | 2014-12-30 | 2016-07-27 | 晶能光电(江西)有限公司 | LED chip and preparation method thereof |
CN104538480A (en) * | 2015-01-04 | 2015-04-22 | 中国电子科技集团公司第四十四研究所 | Integrated structure for inversely installing high-speed InGaAs photoelectric detector chip and manufacturing method |
JP2018049962A (en) * | 2016-09-23 | 2018-03-29 | 泰谷光電科技股▲ふん▼有限公司 | Electrode construction of light emission diode |
CN109244197A (en) * | 2018-08-29 | 2019-01-18 | 武汉大学 | A kind of inverted structure light-emitting diode chip for backlight unit and preparation method thereof |
CN110098300A (en) * | 2019-05-31 | 2019-08-06 | 大连德豪光电科技有限公司 | Upside-down mounting LED chip and upside-down mounting LED chip production method |
CN110718613A (en) * | 2019-08-28 | 2020-01-21 | 华灿光电(苏州)有限公司 | Light-emitting diode chip and method of making the same |
WO2021233273A1 (en) * | 2020-05-21 | 2021-11-25 | 华灿光电(浙江)有限公司 | Light-emitting diode flip chip and manufacturing method therefor |
CN114709307A (en) * | 2022-03-16 | 2022-07-05 | 江西兆驰半导体有限公司 | A flip-chip light-emitting diode chip and preparation method thereof |
CN114975718A (en) * | 2022-04-29 | 2022-08-30 | 佛山市国星半导体技术有限公司 | A kind of high stability flip-chip LED chip and preparation method thereof |
CN115064628A (en) * | 2022-08-17 | 2022-09-16 | 泉州三安半导体科技有限公司 | Flip-chip light emitting diode and light emitting device |
CN115579438A (en) * | 2022-12-09 | 2023-01-06 | 江西兆驰半导体有限公司 | LED chip with inverted silver mirror and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
LED芯片DBR反射镜优化设计;吕家将;郑晨居;;半导体光电(第06期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN116646435A (en) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116646435B (en) | Flip-chip light-emitting diode chip and preparation method thereof | |
JP5915504B2 (en) | Semiconductor light emitting device | |
JP5929714B2 (en) | Semiconductor light emitting device | |
CN113302758B (en) | High-voltage inverted light-emitting diode chip and preparation method thereof | |
CN113410359B (en) | A light-emitting diode chip, light-emitting device and display device | |
JP2018113442A (en) | Light-emitting element having current interruption layer | |
CN105576110B (en) | High-efficiency light-emitting device | |
CN111416027B (en) | A flip-chip high-voltage light-emitting diode and light-emitting device | |
CN117253954A (en) | Ultraviolet light-emitting diode and light-emitting device | |
CN111769190A (en) | Flip-chip light-emitting diode chip and method of making the same | |
CN116581225B (en) | Flip-chip light-emitting diode chip and preparation method thereof | |
CN113903836A (en) | Flip-chip light emitting diode and light emitting device | |
CN114864777A (en) | LED chip and preparation method thereof | |
WO2024245437A1 (en) | Led package structure | |
CN115911239A (en) | A light-emitting element and its preparation method | |
US20230077302A1 (en) | Flip-chip light-emitting device | |
WO2023060752A1 (en) | Led chip and preparation method therefor | |
CN113644180B (en) | Flip LED chip and preparation method thereof | |
JP6252123B2 (en) | Method for manufacturing light emitting device | |
CN113659048B (en) | Flip-chip light emitting diode and preparation method thereof | |
CN214176057U (en) | LED chip | |
CN115440864A (en) | Light emitting diode with improved light emitting uniformity and preparation method thereof | |
WO2024044952A1 (en) | Light-emitting diode and light-emitting apparatus | |
CN117133838A (en) | High-voltage flip-chip LED chip and method of manufacturing high-voltage flip-chip LED chip | |
CN113594330A (en) | LED and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |