[go: up one dir, main page]

CN116640035A - 一种利用钯纳米团簇催化加氢合成醇类化合物的方法 - Google Patents

一种利用钯纳米团簇催化加氢合成醇类化合物的方法 Download PDF

Info

Publication number
CN116640035A
CN116640035A CN202310585203.0A CN202310585203A CN116640035A CN 116640035 A CN116640035 A CN 116640035A CN 202310585203 A CN202310585203 A CN 202310585203A CN 116640035 A CN116640035 A CN 116640035A
Authority
CN
China
Prior art keywords
reaction
palladium
alkyl
nmr
ethyl acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310585203.0A
Other languages
English (en)
Inventor
刘长春
郑付伟
高广琦
申志浩
周洋
李亚科
陈瑨
曹聪
代本才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry Henan Academy of Sciences Co Ltd
Henan Academy of Sciences
Original Assignee
Institute of Chemistry Henan Academy of Sciences Co Ltd
Henan Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry Henan Academy of Sciences Co Ltd, Henan Academy of Sciences filed Critical Institute of Chemistry Henan Academy of Sciences Co Ltd
Priority to CN202310585203.0A priority Critical patent/CN116640035A/zh
Publication of CN116640035A publication Critical patent/CN116640035A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/02Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/001Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by modification in a side chain
    • C07C37/002Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by modification in a side chain by transformation of a functional group, e.g. oxo, carboxyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种利用钯纳米团簇催化加氢合成醇类化合物的方法,属于有机合成领域。该方法首先合成一种新的钯纳米团簇,以酮、醛及其衍生物为底物,经催化还原加氢得到相应的醇类化合物。该方法选择性好,反应条件温和,易操作,且催化剂可重复使用,为其实现工业化生产提供了可能,因此该方法具有很好应用前景。

Description

一种利用钯纳米团簇催化加氢合成醇类化合物的方法
技术领域
本发明涉及一种用钯纳米团簇催化加氢合成醇类化合物的方法,属于有机合成领域。
背景技术
醇类化合物在有机合成领域是一类重要的有机化合物,其以羟基作为活性官能团,是合成许多重要精细化学品的中间体,广泛应用在药物、染料、农药、香料、表面活性剂、高分子材料等行业中。因此,醇类化合物的合成非常重要,人们对合成醇类化合物进行了大量研究。传统的合成方法一般使用高温高压加氢或加入硼氢化钠、氢化铝锂、乙硼烷等还原剂进行合成,但是这些方法存在一定的安全隐患,并且在反应过程中会产生大量废物,容易对环境造成污染,不符合绿色化学的发展要求。因此,研发一种操作简便、能够在环境友好且温和的状态下合成醇类化合物的方法具有重要的意义。
近年来的研究表明:把金属钯制成钯纳米团簇是提高钯催化活性的一个非常有效的途径,这是因为钯纳米团簇的比表面积大,活化中心多,有利于提高钯催化活性。
因此,开发出一种简单、高效的用钯纳米团簇催化加氢合成醇类化合物的方法具有实际应用价值。
发明内容
本发明的目的是提供一种用钯纳米团簇作为催化剂,简单、高效地合成醇类化合物的方法。
为实现本发明目的,先合成一种新的钯纳米团簇,以其作为催化剂,化合物酮、醛或其衍生物为反应底物,催化加氢得到对应的目标化合物醇。
具体通过如下步骤实现:
其中,R1,R2分别代表氢、苯基或取代苯基或烷基或环烷基或萘基或联苯基,且R1,R2不同时为氢。
取代苯基优选卤素、羟基、三氟甲基、甲氧基、C1-5烷基在苯环上单取代;烷基优选C1-10烷基;环烷基优选C3-6环烷基。
更优选:R1,R2其中之一为氢或C1-3烷基时,另一个取代基选自苯基或取代苯基或烷基或环烷基或萘基或联苯;所述取代苯基选自卤素、羟基、三氟甲基、甲氧基、C1-3烷基在苯环上单取代;所述烷基选自C1-10烷基;环烷基选自C3-6环烷基。
(1)烯丙基氯化钯二聚体[PdCl(C3H5)]2与二环己基膦氧化物在二氯甲烷中搅拌反应,反应结束后,经旋蒸,过滤得到钯前体配合物;将钯前体配合物{PdCl2[Cy2(O)H]2}溶解在H2O:二氯甲烷(DCM)(体积比=1:2)的混合溶剂中,冰浴冷却;将NaBH4溶解于甲醇溶液中,然后分批滴入反应体系中,反应结束后得到钯纳米团簇。所述的烯丙基氯化钯二聚体、二环己基膦氧化物的摩尔比为1:2.5;所述的钯前体配合物、硼氢化钠的摩尔比为1:1.5。
(2)反应瓶中加入酮、醛或其衍生物为底物,加入水溶剂及步骤(1)制得的钯纳米团簇,氢气作为氢源,常温常压下反应,反应结束后减压蒸馏除去溶剂,再经柱层析纯化得到醇类目标化合物。
本发明优点:
合成了一种新的钯纳米团簇,并使用该钯纳米团簇高效催化还原加氢合成醇类化合物,底物适应性强,选择性好,收率高,收率达87%以上,且反应条件温和,便于工业化生产,并且水做溶剂,符合绿色化学的要求,具有良好的应用前景。
具体实施方式
下面结合具体的实例对本发明作进一步的详细说明。
实施例1:钯纳米团簇的制备
向25mL反应瓶中添加烯丙基氯化钯二聚体[PdCl(C3H5)]2 366mg(1.0mmol),二环己基膦氧化物536mg(2.5mmol)和CH2Cl2(15mL),搅拌溶液5h,反应结束后,通过旋蒸除去一半溶剂,然后加入15mL正己烷,并在-20℃的冰箱中过夜。过滤后,得到黄色固体516mg(0.85mmol),即钯前体配合物,收率为85%;将钯前体配合物{PdCl2[Cy2(O)H]2}(0.3mmol,182mg)溶解在H2O:DCM(6mL:12mL)的混合溶剂中,并在冰浴中冷却至0℃。将NaBH4(18mg,0.45mmol,1.5eq)溶解于甲醇(10mL)溶液中,然后将其分批滴加至反应液中,室温下反应0.5h至反应充分。将反应液旋干、洗涤、真空下干燥后得到钯纳米团簇。
实施例2:1-苯乙醇的制备
在25ml反应瓶中加入2mmol底物苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-苯乙醇232mg(1.9mmol),收率:95%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.50(dd,J=4.0Hz,3H),2.52(s,1H),4.86-4.90(m,1H),7.29-7.32(m,1H),7.36-7.39(m,4H);13C NMR(100MHz,CDCl3)δ=25.17(s,CH3),70.34(s,CH),125.47(s,2CH),127.45(s,CH),128.51(s,2CH),145.89(s,C)。
实施例3:1-(4-甲基苯基)-1-乙醇的制备
在25ml反应瓶中加入2mmol底物4-甲基苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(4-甲基苯基)-1-乙醇261mg(1.92mmol),收率:96%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.45(dd,J=4.0Hz,3H),2.12(br,1H),2.33(s,3H),4.80-4.84(m,1H),7.14(d,J=8Hz,2H),7.24(d,J=8Hz,2H);13C NMR(100MHz,CDCl3)δ=21.14(s,CH3),25.11(s,CH3),70.22(s,CH),125.41(s,2CH),129.18(s,2CH),137.13(s,C),142.94(s,C)。
实施例4:1-(2-甲基苯基)乙醇的制备
在25ml反应瓶中加入2mmol底物邻甲基苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(2-甲基苯基)乙醇253mg(1.86mmol),收率:93%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.45(d,J=4.0Hz,3H),2.13(d,J=20.0Hz,1H),2.37(s,3H),5.11-5.15(m,1H),7.16-7.28(m,3H),7.54(d,J=8Hz,1H);13C NMR(100MHz,CDCl3)δ=18.94(s,CH3),23.95(s,CH3),66.79(s,CH),124.52(s,CH),126.39(s,CH),127.17(s,CH),130.38(s,CH),134.17(s,C),143.90(s,C)。
实施例5:1-(4-氯苯基)乙醇的制备
在25ml反应瓶中加入2mmol底物对氯苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(4-氯苯基)乙醇297mg(1.9mmol),收率:95%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.48(dd,J=8.0Hz,3H),2.12(br,1H),4.86-4.90(m,1H),7.28-7.34(m,4H);13C NMR(100MHz,CDCl3)δ=25.28(s,CH3),69.75(s,CH),126.82(s,2CH),128.61(s,2CH),133.06(s,C),144.25(s,C)。
实施例6:1-(3-氯苯基)-1-乙醇的制备
在25ml反应瓶中加入2mmol底物间氯苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(3-氯苯基)-1-乙醇294mg(1.88mmol),收率:94%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.42(dd,J=4.0Hz,3H),2.70(br,1H),4.78(br,1H),7.18-7.26(m,3H),7.32(s,1H);13C NMR(100MHz,CDCl3)δ=25.20(s,CH3),69.72(s,CH),123.58(s,CH),125.64(s,CH),127.50(s,CH),129.80(s,CH),134.31(s,C),147.88(s,C)。
实施例7:1-(2-氯苯基)-1-乙醇的制备
在25ml反应瓶中加入2mmol底物邻氯苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(2-氯苯基)-1-乙醇288mg(1.84mmol),收率:92%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.51(d,J=4.0Hz,3H),2.15(s,1H),5.39-5.33(m,1H),7.21-7.24(m,1H),7.30-7.35(m,2H),7.61(d,J=8Hz,1H);13C NMR(100MHz,CDCl3)δ=23.51(s,CH3),66.98(s,CH),126.42(s,CH),127.22(s,CH),128.41(s,CH),129.41(s,CH),131.65(s,C),143.07(s,C)。
实施例8:1-(4-溴苯基)-1-乙醇的制备
在25ml反应瓶中加入2mmol底物4-溴苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(4-溴苯基)乙醇394mg(1.96mmol),收率:98%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.46(dd,J=8.0Hz,3H),2.27(br,1H),4.84(s,1H),7.24(d,J=8.0Hz,2H),7.47(d,J=8.0Hz,2H);13CNMR(100MHz,CDCl3)δ=25.23(s,CH3),69.73(s,CH),121.14(s,C),127.18(s,2CH),131.55(s,2CH),144.79(s,C)。
实施例9:3-溴苯基甲基甲醇的制备
在25ml反应瓶中加入2mmol底物间溴苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到3-溴苯基甲基甲醇386mg(1.92mmol),收率:96%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.43(dd,J=4.0Hz,3H),2.88(s,1H),4.81(m,1H),7.19-7.28(m,2H),7.34-7.40(m,1H),7.51(d,J=2.0Hz,H);13C NMR(100MHz,CDCl3)δ=25.22(s,CH3),69.63(s,CH),122.57(s,C),124.08(s,CH),128.58(s,CH),130.11(s,CH),130.42(s,CH),148.15(s,C)。
实施例10:1-(2-溴苯基)乙醇的制备
在25ml反应瓶中加入2mmol底物邻溴苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(2-溴苯基)乙醇374mg(1.86mmol),收率:93%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.44(d,J=4.0Hz,3H),2.47(s,1H),5.19-5.21(m,1H),7.10(t,J=4.0Hz,1H),7.32(t,J=4.0Hz,1H),7.49(d,J=8.0Hz,1H),7.55(d,J=4Hz,1H);13C NMR(100MHz,CDCl3)δ=23.60(s,CH3),66.17(s,CH),121.70(s,C),126.70(s,CH),127.88(s,CH),128.78(s,CH),132.65(s,CH),144.65(s,C)。
实施例11:1-(4-氟苯基)-1-乙醇的制备
在25ml反应瓶中加入2mmol底物4-氟苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(4-氟苯基)乙醇266mg(1.9mmol),收率:95%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.45(d,J=4.0Hz,3H),2.56(m,1H),4.84-4.85(m,1H),7.02(d,J=4.0Hz,2H),7.30-7.33(m,2H);13CNMR(100MHz,CDCl3)δ=25.24(s,CH3),69.68(s,CH),115.21(d,JCF=17.0Hz,2CH),127.07(d,JCF=7.0Hz,2CH),141.54(d,JCF=2.0Hz,C),162.07(d,JCF=97.0Hz,C)。
实施例12:1-(3-氟苯基)-1-乙醇的制备
在25ml反应瓶中加入2mmol底物间氟苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(3-氟苯基)-1-乙醇260mg(1.86mmol),收率:93%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.41(dd,J=4.0Hz,3H),2.96(br,1H),4.78-4.81(m,1H),6.92(t,J=4.0Hz,1H),7.03-7.07(m,2H),7.24-7.28(m,1H);13C NMR(100MHz,CDCl3)δ=25.14(s,CH3),69.66(s,CH),112.31(d,JCF=17.0Hz,CH),114.13(d,JCF=17.0Hz,CH),120.99(d,JCF=2.0Hz,CH),129.95(d,JCF=7.0Hz,CH),148.56(d,JCF=10.0Hz,C),162.96(d,JCF=97.0Hz,C)。
实施例13:1-(2-氟苯基)-1-乙醇的制备
在25ml反应瓶中加入2mmol底物邻氟苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(2-氟苯基)-1-乙醇261mg(1.86mmol),收率:93%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.52(d,J=4.0Hz,3H),2.30(d,J=4.0Hz,H),5.18-5.23(m,1H),7.01-7.05(m,1H),7.15-7.18(m,H),7.24-7.28(m,1H),7.48-7.52(m,1H);13C NMR(100MHz,CDCl3)δ=24.00(s,CH3),64.49(s,CH),115.27(d,JCF=17.0Hz,CH),124.31(d,JCF=2.0Hz,CH),126.64(d,JCF=4.0Hz,CH),128.75(d,JCF=6.0Hz,CH),132.67(d,JCF=11.0Hz,C),159.97(d,JCF=100.0Hz,C)。
实施例14:4-甲氧基-α-甲基苯甲醇的制备
在25ml反应瓶中加入2mmol底物4-甲氧基苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到4-甲氧基-α-甲基苯甲醇298mg(1.96mmol),收率:98%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.44(d,J=4.0Hz,3H),2.42(br,1H),3.78(d,J=8.0Hz,3H),479(br,1H),6.86(t,J=8Hz,2H),7.26(t,J=8Hz,2H);13C NMR(100MHz,CDCl3)δ=25.05(s,CH3),55.29(s,CH3),69.85(s,CH),113.81(s,2CH),126.70(s,2CH),138.12(s,C),158.89(s,C)。
实施例15:甲氧基二甲基苄甲醇的制备
在25ml反应瓶中加入2mmol底物邻甲基苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到甲氧基二甲基苄甲醇277mg(1.82mmol),收率:91%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.53(d,J=4.0Hz,3H),2.74(br,1H),3.89(s,3H),5.12(q,J=4.0Hz,1H),6.91(d,J=8.0Hz,1H),6.99(t,J=4.0Hz,1H),7.26-7.29(m,1H),7.37(dd,J=4Hz,1H);13C NMR(100MHz,CDCl3)δ=22.89(s,CH3),55.27(s,CH3),66.52(s,CH),110.44(s,CH),120.82(s,CH),126.11(s,CH),128.31(s,CH),133.46(s,C),156.55(s,C)。
实施例16:1-(4-羟基苯)乙醇的制备
在25ml反应瓶中加入2mmol底物4-羟基苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(4-羟基苯)乙醇246mg(1.78mmol),收率:89%。核磁数据:1H NMR(400MHz,DMSO)δ=1.27(d,J=4.0Hz,3H),4.59-4.64(m,1H),4.94(d,J=4.0Hz,1H),6.69(d,J=4.0Hz,2H),7.13(d,J=8Hz,2H),9.20(s,1H);13C NMR(100MHz,DMSO)δ=26.42(s,CH3),68.25(s,CH),115.11(s,2CH),126.90(s,2CH),138.14(s,C),156.43(s,C)。
实施例17:1-(3-羟基苯基)乙醇的制备
在25ml反应瓶中加入2mmol底物间羟基苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(3-羟基苯基)乙醇51mg(1.82mmol),收率:91%。核磁数据:1H NMR(400MHz,DMSO)δ=1.28(d,J=4.0Hz,3H),4.60-4.65(m,1H),5.06(d,J=4.0Hz,1H),6.60(dd,J=4.0Hz,1H),6.73(d,J=4.0Hz,1H),6.78(s,1H),7.08(t,J=4.0Hz,1H),9.25(s,1H);13C NMR(100MHz,DMSO)δ=26.43(s,CH3),68.50(s,CH),112.62(s,CH),113.82(s,CH),116.71(s,CH),129.35(s,CH),149.49(s,C),157.62(s,C)。
实施例18:1-(1-萘)乙醇的制备
在25ml反应瓶中加入2mmol底物1-萘乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(1-萘)乙醇327mg(1.92mmol),收率:96%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.68(dd,J=4.0Hz,3H),2.21(br,1H),5.65-5.69(m,1H),7.49-7.57(m,3H),7.69(d,J=4.0Hz,1H),7.81(d,J=8.0Hz,1H),7.91(dd,J=8.0Hz,1H),8.13(d,J=8.0Hz,1H);13C NMR(100MHz,CDCl3)δ=24.38(s,CH3),67.11(s,CH),122.03(s,CH),123.21(s,CH),125.59(s,2CH),127.95(s,CH),128.93(s,CH),130.29(s,C),133.82(s,C),141.40(s,C)。
实施例19:1-[4-(三氟甲基)苯基]乙醇的制备
在25ml反应瓶中加入2mmol底物4-三氟甲基苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-[4-(三氟甲基)苯基]乙醇373mg(1.96mmol),收率:98%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.49(d,J=4.0Hz,3H),2.48(br,1H),4.92-4.95(m,1H),7.47(d,J=4.0Hz,2H),7.61(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3)δ=25.32(s,CH3),69.78(s,CH),115.21(d,JCF=17.0Hz,2CH),124.18(q,JCF=216Hz,JCF=217Hz,C),125.42(q,JCF=3Hz,JCF=3Hz,2CH),125.65(s,2CH),129.59(q,JCF=26Hz,JCF=25Hz,C),149.69(s,C)。
实施例20:1-[4-(三氟甲基)苯基]乙醇的制备
在25ml反应瓶中加入2mmol底物间三氟甲基苯乙酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-[4-(三氟甲基)苯基]乙醇357mg(1.88mmol),收率:94%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.52-1.54(m,3H),2.14(br,1H),4.90-5.00(m,1H),7.46-7.49(t,J=8.0Hz,1H),7.54-7.58t,J=8.0Hz,2H),7.67(s,1H);13C NMR(100MHz,CDCl3)δ=25.35(s,CH3),69.83(s,CH),122.20(q,JCF=3Hz,JCF=3Hz,CH),124.16(d,JCF=17.0Hz,C),124.22(q,JCF=3Hz,JCF=3Hz,CH),128.87(s,CH),128.94(s,CH),130.80(q,JCF=25Hz,JCF=26Hz,C),146.71(s,C)。
实施例21:1-(4-联联苯基)乙醇的制备
在25ml反应瓶中加入2mmol底物4-乙酰联苯和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-(4-联联苯基)乙醇377mg(1.9mmol),收率:95%。核磁数据:1H NMR(400MHz,CDCl3)δ=1.57(d,J=4.0Hz,3H),1.89(s,1H),4.97-5.01(m,1H),7.38(t,J=4.0Hz,1H),7.45-7.49(m,4H),7.61-7.63(m,4H);13C NMR(100MHz,CDCl3)δ=25.18(s,CH3),70.21(s,CH),125.88(s,2CH),127.11(s,2CH),127.30(s,3CH),128.79(s,2CH),140.49(s,C),140.88(s,C),144.83(s,C)。
实施例22:4-甲基二苯甲醇的制备
在25ml反应瓶中加入2mmol底物4-甲基二苯甲酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到4-甲基二苯甲醇380mg(1.94mmol),收率:97%。核磁数据:1H NMR(400MHz,CDCl3)δ=2.28(br,1H),2.37(s,3H),5.84(s,1H),7.18(d,J=8.0Hz,2H),7.29(d,J=8.0Hz,3H),7.36(t,J=4.0Hz,2H),7.41(d,J=8.0Hz,2H);13C NMR(100MHz,CDCl3)δ=21.15(s,CH3),76.12(s,CH),126.48(s,2CH),126.55(s,2CH),127.49(s,CH),128.49(s,2CH),129.22(s,2CH),137.32(s,C),140.96(s,C),143.96(s,C)。
实施例23:1-苯丙醇的制备
在25ml反应瓶中加入2mmol底物2-甲基乙酰苯和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-苯丙醇258mg(1.9mmol),收率:95%。核磁数据:1H NMR(400MHz,CDCl3)δ=0.94(t,J=8.0Hz,3H),1.73-1.78(m,2H),2.00(s,1H),4.60-4.63(m,1H),7.28-7.38(m,5H);13C NMR(100MHz,CDCl3)δ=10.17(s,CH3),30.19(s,CH2),76.04(s,CH),126.00(s,2CH),127.52(s,CH),128.42(s,2CH),144.65(s,C)。
实施例24:二环己基甲醇的制备
在25ml反应瓶中加入2mmol底物二环己基甲酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,气相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到二环己基甲醇342mg(1.74mmol),收率:87%。核磁数据:1H NMR(400MHz,CDCl3)δ=0.99-0.31(m,11H),1.41-1.48(m,2H),1.57-1.85(m,12H),3.06(br,1H);13C NMR(100MHz,CDCl3)δ=26.19(s,2CH2),26.51(s,2CH2),26.56(s,2CH2),27.34(s,2CH2),30.00(s,2CH2),39.86(s,2CH),80.45(s,CH)。
实施例25:1-环己基乙醇的制备
在25ml反应瓶中加入2mmol底物乙酰基环己烷和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,气相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到1-环己基乙醇236mg(1.84mmol),收率:92%。核磁数据:1H NMR(400MHz,CDCl3)δ=0.93-1.06(m,2H),1.13-1.22(m,7H),1.45(br,1H),1.68(d,J=8.0Hz,2H),1.76-1.79(m,2H),1.86(d,J=12.0Hz,1H),3.53-3.58(m,1H);13C NMR(100MHz,CDCl3)δ=23.39(s,CH3),26.14(s,CH2),26.24(s,CH2),26.52(s,CH2),28.37(s,CH2),28.71(s,CH),45.13(s,CH),80.45(s,CH)。
实施例26:2-庚醇的制备
在25ml反应瓶中加入2mmol底物2-庚酮和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,气相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到2-庚醇211mg(1.82mmol),收率:91%。核磁数据:1H NMR(400MHz,CDCl3)δ=0.90(t,J=8.0Hz,3H),1.8(d,J=4.0Hz,3H),1.30-1.46(m,9H),1.61(s,2H),3.77-3.81(m,1H);13C NMR(100MHz,CDCl3)δ=14.01(s,CH3),22.62(s,CH2),23.43(s,CH2),25.44(s,CH2),31.85(s,CH2),39.32(s,CH3),68.14(s,CH)。
实施例27:4-甲氧基苄醇的制备
在25ml反应瓶中加入2mmol底物4-甲氧基苯甲醛和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到4-甲氧基苄醇273mg(1.98mmol),收率:99%。核磁数据:1H NMR(400MHz,CDCl3)δ=2.29(s,1H),3.81(s,3H),4.59(s,2H),6.90(d,J=8Hz,2H),7.28(d,J=4Hz,2H);13C NMR(100MHz,CDCl3)δ=55.31(s,CH3),64.88(s,CH),113.92(s,2CH),128.67(s,2CH),133.17(s,C),159.13(s,C)。
实施例28:4-(三氟甲基)苄醇的制备
在25ml反应瓶中加入2mmol底物4-三氟甲基苯甲醛和10ml溶剂水,1mg本发明制备的钯纳米团簇;搅拌下通入适量的H2,反应15h左右,液相检测反应进程,反应完全后用乙酸乙酯萃取,有机相用无水硫酸镁干燥,减压蒸馏除去溶剂乙酸乙酯,通过柱层析纯化得到4-(三氟甲基)苄醇335mg(1.9mmol),收率:95%。核磁数据:1H NMR(400MHz,CDCl3)δ=2.82(s,1H),4.71(s,2H),7.44(d,J=8.0Hz,2H),7.60(d,J=4.0Hz,2H);13C NMR(100MHz,CDCl3)δ=64.28(s,CH2),124.16(q,JCF=217Hz,JCF=216Hz,C),125.41(q,JCF=3Hz,JCF=3Hz,2CH),126.81(s,2CH),129.72(q,JCF=25Hz,JCF=26Hz,C),144.66(s,C)。

Claims (3)

1.一种合成醇类化合物的方法,其特征在于,其通过如下方法实现:
其中,R1,R2分别代表氢、苯基或取代苯基或烷基或环烷基或萘基或联苯基,且R1,R2不同时为氢;所述取代苯基选自卤素、羟基、三氟甲基、甲氧基、C1-5烷基在苯环上单取代;所述烷基选自C1-10烷基;环烷基选自C3-6环烷基;
(1)烯丙基氯化钯二聚体[PdCl(C3H5)]2与二环己基膦氧化物在二氯甲烷中搅拌反应,反应结束后,经旋蒸,过滤得到钯前体配合物{PdCl2[Cy2(O)H]2};将钯前体配合物{PdCl2[Cy2(O)H]2}溶解在H2O:DCM的混合溶剂中,冰浴冷却;将NaBH4溶解于甲醇溶液中,然后分批滴入反应体系中,反应结束后得到钯纳米团簇;
(2)反应瓶中加入酮、醛或其衍生物为底物,加入水溶剂及步骤(1)制得的钯纳米团簇,氢气作为氢源,常温常压下反应,反应结束后,减压蒸馏除去溶剂,再经柱层析纯化得到目标醇类化合物。
2.根据权利要求1所述的合成醇类化合物的方法,其特征在于,所述的烯丙基氯化钯二聚体、二环己基膦氧化物的摩尔比为1:2.5;所述的钯前体配合物、硼氢化钠的摩尔比为1:1.5。
3.根据权利要求1或2所述的合成醇类化合物的方法,其特征在于,R1,R2其中之一为氢或C1-3烷基时,另一个取代基选自苯基或取代苯基或烷基或环烷基或萘基或联苯;所述取代苯基选自卤素、羟基、三氟甲基、甲氧基、C1-3烷基在苯环上单取代;所述烷基选自C1-10烷基;环烷基选自C3-6环烷基。
CN202310585203.0A 2023-05-23 2023-05-23 一种利用钯纳米团簇催化加氢合成醇类化合物的方法 Pending CN116640035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310585203.0A CN116640035A (zh) 2023-05-23 2023-05-23 一种利用钯纳米团簇催化加氢合成醇类化合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310585203.0A CN116640035A (zh) 2023-05-23 2023-05-23 一种利用钯纳米团簇催化加氢合成醇类化合物的方法

Publications (1)

Publication Number Publication Date
CN116640035A true CN116640035A (zh) 2023-08-25

Family

ID=87619594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310585203.0A Pending CN116640035A (zh) 2023-05-23 2023-05-23 一种利用钯纳米团簇催化加氢合成醇类化合物的方法

Country Status (1)

Country Link
CN (1) CN116640035A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160196A (zh) * 2021-12-24 2022-03-11 兰州大学 一种钯团簇催化剂的制备方法及其应用
CN114849753A (zh) * 2022-04-26 2022-08-05 中国科学技术大学 一种钯金属团簇催化剂的制备方法及应用
CN115518635A (zh) * 2022-10-19 2022-12-27 中国科学院大连化学物理研究所 一种负载型钯纳米簇催化剂的制备及其在5-羟甲基糠醛加氢中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160196A (zh) * 2021-12-24 2022-03-11 兰州大学 一种钯团簇催化剂的制备方法及其应用
CN114849753A (zh) * 2022-04-26 2022-08-05 中国科学技术大学 一种钯金属团簇催化剂的制备方法及应用
CN115518635A (zh) * 2022-10-19 2022-12-27 中国科学院大连化学物理研究所 一种负载型钯纳米簇催化剂的制备及其在5-羟甲基糠醛加氢中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISRAEL CANO 等: "Characterization of secondary phosphine oxide ligands on the surface of iridium nanoparticles", 《PHYS.CHEM.CHEM.PHYS》, vol. 19, 31 December 2017 (2017-12-31), pages 1 *
刘俊强 等: "钯纳米催化剂的合成及其在温和条件下 对芳香族肟、酮和醛的催化还原", 《河南师范大学学报》, vol. 48, no. 4, 31 July 2020 (2020-07-31), pages 67 - 71 *

Similar Documents

Publication Publication Date Title
CN110404587B (zh) 一种负载型团簇催化剂及其制备和应用
JP5345270B2 (ja) 接触水素化法
CN106902880B (zh) 4,6-二甲基-2-巯基嘧啶一价铜配合物在催化酮或醛氢转移反应制备醇中的应用
CN110483223B (zh) 吡啶钯高效催化制备二芳基酮化合物的方法
CN112047797B (zh) 一种制备α-烷基取代酮类化合物的方法
CN102951981A (zh) 一种酮类化合物的不对称氢化方法
EP1308435B1 (en) Process for producing optically active amino alcohols
CN106905125A (zh) 一种钴催化的酮α‑烷基化合成酮类衍生物的方法
CN116640035A (zh) 一种利用钯纳米团簇催化加氢合成醇类化合物的方法
CN110002961B (zh) 一种去外消旋化合成手性醇的方法
CN103214344B (zh) 炔烃转化生成醇的方法
CN110590859A (zh) 一种锰络合物、制备方法及其应用
CN114588929B (zh) 一种负载型铜纳米团簇催化剂及其在aha偶联反应中的应用
CN113548965B (zh) 一种1,4烯炔类化合物的制备方法
CN105481715B (zh) 一种樟脑席夫碱及其制备方法和应用
CN114644663A (zh) 一种手性三齿氮氮膦配体及其在酮的不对称氢化反应中的应用
JPH11335385A (ja) 遷移金属錯体および該錯体を用いた光学活性アルコールの製造方法
CN111217694B (zh) 一种选择性还原α,β-不饱和羰基化合物中碳碳双键的方法
CN115745808B (zh) 一种催化亚胺类化合物还原制备仲胺类化合物的方法
CN113105299B (zh) 一种在水相中合成伯醇的方法
CN115403494B (zh) 一种温和条件下氧引发烯烃双功能化合成β-羟基砜衍生物的方法
CN115322081B (zh) 一种烷基烯基酮的合成方法
JP2002030048A (ja) 光学活性α−メチル−ビス−3,5−(トリフルオロメチル)ベンジルアミンの製造方法
CN110256365A (zh) 二氯二茂钛催化制备苯二氮卓衍生物的方法
CN113636904B (zh) 水溶性维生素e参与的共轭二炔类化合物的绿色制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination