CN116631858A - Gate structure of trench MOSFET and manufacturing method thereof, trench MOSFET - Google Patents
Gate structure of trench MOSFET and manufacturing method thereof, trench MOSFET Download PDFInfo
- Publication number
- CN116631858A CN116631858A CN202310660491.1A CN202310660491A CN116631858A CN 116631858 A CN116631858 A CN 116631858A CN 202310660491 A CN202310660491 A CN 202310660491A CN 116631858 A CN116631858 A CN 116631858A
- Authority
- CN
- China
- Prior art keywords
- insulating layer
- gate
- trench
- layer
- upper edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 230000007704 transition Effects 0.000 claims abstract description 11
- 238000005530 etching Methods 0.000 claims description 28
- 210000000746 body region Anatomy 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- 239000011810 insulating material Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 2
- 230000005684 electric field Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 184
- 239000004065 semiconductor Substances 0.000 description 15
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 13
- 229920005591 polysilicon Polymers 0.000 description 13
- 238000005468 ion implantation Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000005137 deposition process Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000001039 wet etching Methods 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 5
- 230000002028 premature Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- -1 HfSiN Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910004200 TaSiN Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域technical field
本申请涉及半导体技术领域,特别涉及一种沟槽型MOSFET的栅结构及其制造方法、沟槽型MOSFET。The present application relates to the field of semiconductor technology, in particular to a gate structure of a trench MOSFET, a manufacturing method thereof, and a trench MOSFET.
背景技术Background technique
沟槽型MOSFET(Metal Oxide Semiconductor Field Effect Transistor,金属氧化物半导体场效应晶体管)器件具有输入阻抗高,驱动电流小,开关速度快,高温特性好等优点被广泛应用于电力电子领域。Trench MOSFET (Metal Oxide Semiconductor Field Effect Transistor, Metal Oxide Semiconductor Field Effect Transistor) devices have high input impedance, low drive current, fast switching speed, good high temperature characteristics, etc., and are widely used in the field of power electronics.
一般的沟槽型MOSFET器件的制造方法中,控制栅的制作方法包括对沟槽中的氧化层进行回蚀刻以形成凹槽;在凹槽中沉积多晶硅;对多晶硅进行回蚀刻以形成控制栅。这种制造方法中,形成的控制栅的的侧壁与底壁之间的夹角为直角,因此会导致该区域的电场强度高,对栅氧危害性较高,可能会导致提前击穿。In a general manufacturing method of a trench type MOSFET device, the manufacturing method of the control gate includes etching back the oxide layer in the trench to form a groove; depositing polysilicon in the groove; and etching back the polysilicon to form a control gate. In this manufacturing method, the angle between the side wall and the bottom wall of the formed control gate is a right angle, so the electric field intensity in this region is high, which is highly harmful to the gate oxide and may cause premature breakdown.
发明内容Contents of the invention
鉴于上述问题,本申请的目的在于提供一种沟槽型MOSFET的栅结构及其制造方法、沟槽型MOSFET,对控制栅的形成步骤进行改进,以获得底部和侧壁夹角为钝角的控制栅,从而降低控制栅底部电场强度,减小栅极电介质被提前击穿的几率,从而保护栅极电介质。In view of the above problems, the purpose of this application is to provide a trench MOSFET gate structure and its manufacturing method, trench MOSFET, and improve the formation steps of the control gate, so as to obtain the control gate with an obtuse angle between the bottom and the side wall. Gate, thereby reducing the electric field intensity at the bottom of the control gate, reducing the probability of premature breakdown of the gate dielectric, thereby protecting the gate dielectric.
本申请提供一种沟槽型MOSFET的栅结构制造方法,包括:The present application provides a method for manufacturing a trench MOSFET gate structure, including:
在外延层中形成沟槽;forming trenches in the epitaxial layer;
在所述沟槽的下部形成屏蔽栅和第一绝缘层,所述第一绝缘层将所述屏蔽栅与所述外延层彼此隔离;forming a shielding gate and a first insulating layer at the lower part of the trench, the first insulating layer isolating the shielding gate and the epitaxial layer from each other;
在所述屏蔽栅的顶部形成具有突出的上边缘第二绝缘层;forming a second insulating layer with a protruding upper edge on the top of the shielding grid;
在所述沟槽的上部分形成控制栅和栅极电介质,所述栅极电介质将所述控制栅与所述外延层彼此隔离,所述第二绝缘层位于所述控制栅和所述屏蔽栅之间,A control gate and a gate dielectric are formed on the upper portion of the trench, the gate dielectric isolates the control gate from the epitaxial layer from each other, and the second insulating layer is located between the control gate and the shield gate. between,
其中,所述第二绝缘层突出的上边缘使得所述控制栅的侧壁与底壁之间形成与所述上边缘相对应的过渡曲面。Wherein, the protruding upper edge of the second insulating layer makes a transition curved surface corresponding to the upper edge formed between the side wall and the bottom wall of the control gate.
附图说明Description of drawings
通过以下参照附图对本申请实施例的描述,本申请的上述以及其他目的、特征和优点将更为清楚:Through the following description of the embodiments of the application with reference to the accompanying drawings, the above and other purposes, features and advantages of the application will be more clear:
图1示出了沟槽型MOSFET的截面图;Figure 1 shows a cross-sectional view of a trench MOSFET;
图2示出了本申请实施例的沟槽型MOSFET的截面图;Fig. 2 shows the sectional view of the trench MOSFET of the embodiment of the present application;
图3a至图3f示出了本申请实施例的沟槽型MOSFET器件的制造方法的各阶段截面图。Fig. 3a to Fig. 3f show the cross-sectional views of various stages of the manufacturing method of the trench MOSFET device according to the embodiment of the present application.
具体实施方式Detailed ways
以下在各个附图中,相同的元件采用类似的附图标记表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。In the following figures, the same elements are denoted by similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale. Also, some well-known parts may not be shown. For the sake of simplicity, the semiconductor structure obtained after several steps can be described in one figure.
在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一区域“下面”或“下方”。When describing the structure of a device, when a layer or a region is referred to as being "on" or "over" another layer or another region, it may refer to being directly on another layer or another region, or between it and Other layers or regions are also included between another layer and another region. Also, if the device is turned over, the layer, one region, will be "below" or "beneath" the other layer, or region.
如果为了描述直接位于另一层、另一区域上面的情形,本文将采用“直接在……上面”或“在……上面并与之邻接”的表述方式。If it is to describe the situation directly on another layer or another area, the expression "directly on" or "on and adjacent to" will be used herein.
除非在下文中特别指出,半导体器件的各个部分可以由本领域的技术人员公知的材料构成。半导体材料例如包括III-V族半导体,如砷化镓(GaAs)、氮化镓(GaN)等,IV-IV族半导体,如碳化硅(SiC)等,II-VI族化合物半导体,如硫化镉(CdS)、碲化镉(CdTe)等,以及IV族半导体,如硅(Si)、锗(Ge)等。栅极导体可以由能够导电的各种材料形成,例如金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅极导体或者是其他导电材料,例如为TaC、TiN、TaSiN、HfSiN、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、W、和各种导电材料的组合。栅极电介质可以由SiO2或介电常数大于SiO2的材料构成,例如包括氧化物、氮化物、氮氧化物、硅酸盐、铝酸盐、钛酸盐。并且,栅极电介质不仅可以由本领域的技术人员公知的材料形成,也可以采用将来开发的用于栅极电介质的材料。Unless otherwise specified below, various parts of the semiconductor device may be composed of materials known to those skilled in the art. Semiconductor materials include, for example, III-V semiconductors, such as gallium arsenide (GaAs), gallium nitride (GaN), etc., IV-IV semiconductors, such as silicon carbide (SiC), etc., II-VI compound semiconductors, such as cadmium sulfide (CdS), cadmium telluride (CdTe), etc., and Group IV semiconductors, such as silicon (Si), germanium (Ge), etc. The gate conductor can be formed of various materials capable of conducting electricity, such as a metal layer, a doped polysilicon layer, or a stacked gate conductor including a metal layer and a doped polysilicon layer, or other conductive materials, such as TaC, TiN, TaSiN , HfSiN, TiSiN, TiCN, TaAlC, TiAlN, TaN, PtSix, Ni 3 Si, Pt, Ru, W, and combinations of various conductive materials. The gate dielectric can be composed of SiO 2 or a material with a dielectric constant greater than SiO 2 , including, for example, oxides, nitrides, oxynitrides, silicates, aluminates, titanates. Also, the gate dielectric may not only be formed of materials known to those skilled in the art, but also materials for gate dielectrics developed in the future may be used.
图2示出了本申请第一实施例的沟槽型MOSFET的截面图。本申请中,第一掺杂类型是N型和P型中的一种,第二掺杂类型是N型和P型中的另一种。在半导体层中注入N型掺杂剂,例如P、As,可以形成N型半导体层。在半导体层中掺入P型掺杂剂,例如B,可以形成P型半导体层。FIG. 2 shows a cross-sectional view of the trench MOSFET of the first embodiment of the present application. In the present application, the first doping type is one of N-type and P-type, and the second doping type is the other one of N-type and P-type. Implanting N-type dopants, such as P and As, into the semiconductor layer can form the N-type semiconductor layer. Doping a P-type dopant, such as B, into the semiconductor layer can form a P-type semiconductor layer.
沟槽型MOSFET 100包括衬底101和位于其上的外延层111,衬底101为第一掺杂类型,于一实施例中为N型重掺杂。外延层111位于衬底101的第一表面上,外延层111相对于衬底101是轻掺杂。The trench MOSFET 100 includes a substrate 101 and an epitaxial layer 111 thereon. The substrate 101 is of a first doping type, which is N-type heavily doped in one embodiment. The epitaxial layer 111 is located on the first surface of the substrate 101 , and the epitaxial layer 111 is lightly doped relative to the substrate 101 .
沟槽型MOSFET 100包括从外延层111的上表面延伸进入其内部的栅结构,栅结构包括位于外延层111中的沟槽112,沟槽112从外延层111的上表面延伸至其内部,终止于外延层111中;位于沟槽112内部的介质层和电极导体,其中,沟槽112内的介质层包括第一绝缘层1131、栅极电介质1132、第二绝缘层1133。电极导体包括屏蔽栅115和控制栅116。第一绝缘层1131和屏蔽栅115位于沟槽112的下部,第一绝缘层1131将屏蔽栅115与外延层111彼此隔离;第二绝缘层1133位于屏蔽栅115的顶部,第二绝缘层1133具有突出的上边缘;栅极电介质1132和控制栅116位于沟槽112的上部,栅极电介质1132将控制栅116与外延层111彼此隔离,第二绝缘层1133位于控制栅116和屏蔽栅115之间,其中,第二绝缘层1133突出的上边缘使得控制栅116的侧壁与底壁之间形成与上边缘相对应的过渡曲面。The trench MOSFET 100 includes a gate structure extending from the upper surface of the epitaxial layer 111 into its interior, the gate structure includes a trench 112 in the epitaxial layer 111, the trench 112 extends from the upper surface of the epitaxial layer 111 to its interior, and terminates In the epitaxial layer 111 : the dielectric layer and the electrode conductor inside the trench 112 , wherein the dielectric layer in the trench 112 includes a first insulating layer 1131 , a gate dielectric 1132 , and a second insulating layer 1133 . The electrode conductors include a shield grid 115 and a control grid 116 . The first insulating layer 1131 and the shielding grid 115 are located at the bottom of the trench 112, and the first insulating layer 1131 isolates the shielding grid 115 from the epitaxial layer 111; the second insulating layer 1133 is located on the top of the shielding grid 115, and the second insulating layer 1133 has Protruding upper edge; the gate dielectric 1132 and the control gate 116 are located on the upper part of the trench 112, the gate dielectric 1132 isolates the control gate 116 and the epitaxial layer 111 from each other, and the second insulating layer 1133 is located between the control gate 116 and the shielding gate 115 , wherein, the protruding upper edge of the second insulating layer 1133 makes a transition curved surface corresponding to the upper edge formed between the sidewall and the bottom wall of the control gate 116 .
沟槽型MOSFET 100还包括位于外延层111并与沟槽112相邻的体区118,其中体区118为第二掺杂类型。在体区118中形成有第一掺杂类型的源区120;在体区118中形成第二掺杂类型的接触区119;在源区120和栅极导体116上方形成的第三绝缘层1134;在紧邻源区120处形成穿透第三绝缘层1134以及源区120到达接触区119的导电通道121;在第三绝缘层1134上方形成的源极电极122,源极电极122经由导电通道121连接至接触区119。Trench MOSFET 100 further includes a body region 118 located on epitaxial layer 111 and adjacent to trench 112 , wherein body region 118 is of the second doping type. A source region 120 of a first doping type is formed in the body region 118; a contact region 119 of a second doping type is formed in the body region 118; a third insulating layer 1134 is formed over the source region 120 and the gate conductor 116 ; Form a conductive channel 121 that penetrates the third insulating layer 1134 and the source region 120 reaches the contact area 119 adjacent to the source region 120; a source electrode 122 is formed above the third insulating layer 1134, and the source electrode 122 passes through the conductive channel 121 Connect to contact area 119 .
本实施例中,完整的层间介质层包括第二绝缘层1133和部分栅极电介质层1132两部分,为方便描述,以下将栅极电介质层1132位于控制栅116和屏蔽栅115之间的部分称为栅极电介质1132b,位于沟槽112上部侧壁的部分称为栅极电介质1132a。本申请中,通过对第二绝缘层1133的形成步骤进行改进,从而获得栅极电介质1132b的底壁与侧壁连接处的过渡曲面为钝角的沟槽型MOSFET,即获得侧壁与底壁之间的夹角为钝角的控制栅,从而降低控制栅底部电场强度,减小栅极电介质被提前击穿的几率,从而保护栅极电介质。In this embodiment, the complete interlayer dielectric layer includes two parts, the second insulating layer 1133 and a part of the gate dielectric layer 1132. For the convenience of description, the part of the gate dielectric layer 1132 located between the control grid 116 and the shielding grid 115 will be hereinafter referred to as The portion located on the upper sidewall of the trench 112 is called the gate dielectric 1132b. In the present application, by improving the formation steps of the second insulating layer 1133, a trench MOSFET with an obtuse angle transition surface at the junction between the bottom wall and the side wall of the gate dielectric 1132b is obtained, that is, the gap between the side wall and the bottom wall is obtained. The included angle between the control gates is an obtuse angle, thereby reducing the electric field intensity at the bottom of the control gate, reducing the probability of premature breakdown of the gate dielectric, thereby protecting the gate dielectric.
图3a至图3f示出了本申请第一实施例的沟槽型MOSFET器件的制造方法的各阶段截面图。以下将结合图3a至图3f对本申请实施例提供的沟槽型MOSFET器件的制备方法进行说明。3a to 3f show cross-sectional views at various stages of the manufacturing method of the trench MOSFET device according to the first embodiment of the present application. The manufacturing method of the trench MOSFET device provided by the embodiment of the present application will be described below with reference to FIG. 3a to FIG. 3f.
图3a示出了本申请第一实施例中沟槽型MOSFET器件的制造起始阶段,形成沟槽112、第一绝缘层1131和屏蔽栅115之后的截面图;如图3a所示,在衬底101上形成外延层111,并且在外延层111中形成沟槽112,并在沟槽112中依次形成第一绝缘层1131、屏蔽栅115和第二绝缘层1133。Fig. 3 a shows the initial stage of manufacture of the trench type MOSFET device in the first embodiment of the present application, the cross-sectional view after forming the trench 112, the first insulating layer 1131 and the shield gate 115; as shown in Fig. 3 a, the substrate An epitaxial layer 111 is formed on the bottom 101 , and a trench 112 is formed in the epitaxial layer 111 , and a first insulating layer 1131 , a shielding gate 115 and a second insulating layer 1133 are sequentially formed in the trench 112 .
该步骤中,在半导体衬底101的第一表面形成外延层111,衬底101具有第一掺杂类型。在一实施例中,衬底101的材料可以为N型的单晶硅衬底。In this step, an epitaxial layer 111 is formed on the first surface of the semiconductor substrate 101, and the substrate 101 has a first doping type. In an embodiment, the material of the substrate 101 may be an N-type single crystal silicon substrate.
在外延层111的上表面形成图案化的第一掩膜PR1,并经由第一掩膜PR1在外延层111中形成沟槽112。A patterned first mask PR1 is formed on the upper surface of the epitaxial layer 111 , and a trench 112 is formed in the epitaxial layer 111 through the first mask PR1 .
该步骤中,例如采用沉积工艺形成第一掩膜PR1,采用光刻形成图案化的第一掩膜PR1,然后经由图案化的第一掩膜PR1对外延层111进行刻蚀,以在外延层111中形成沟槽112。于一实施例中,刻蚀可以采用干法刻蚀,例如离子铣刻蚀、等离子刻蚀、反应离子刻蚀、激光烧蚀,或者使用湿法刻蚀。在一实施例中,第一掩膜PR1可以为光致抗蚀剂掩膜,在形成沟槽112后,去除第一掩膜PR1。In this step, for example, a deposition process is used to form the first mask PR1, a patterned first mask PR1 is formed by photolithography, and then the epitaxial layer 111 is etched through the patterned first mask PR1, so that the epitaxial layer 111 Trenches 112 are formed in 111 . In one embodiment, etching can be performed by dry etching, such as ion milling, plasma etching, reactive ion etching, laser ablation, or wet etching. In an embodiment, the first mask PR1 may be a photoresist mask, and after the trench 112 is formed, the first mask PR1 is removed.
进一步地,在沟槽112中形成第一绝缘层1131。Further, a first insulating layer 1131 is formed in the trench 112 .
于一实施例中,通过热氧化或化学气相沉积的方式,在沟槽112的内部以及外延层111的上表面形成第一绝缘层1131,即第一绝缘层1131覆盖沟槽112的底部、侧壁,以及外延层111的上表面,第一绝缘层1131围绕沟槽112的侧壁形成空腔。In one embodiment, the first insulating layer 1131 is formed inside the trench 112 and on the upper surface of the epitaxial layer 111 by means of thermal oxidation or chemical vapor deposition, that is, the first insulating layer 1131 covers the bottom and sides of the trench 112 walls, and the upper surface of the epitaxial layer 111 , the first insulating layer 1131 forms a cavity around the sidewalls of the trench 112 .
于一实施例中,第一绝缘层1131可以由氧化物或者氮化物组成,例如,氧化硅或者氮化硅。热氧化包括水热氧化HTO或选择性反应氧化SRO(Selective ReactiveOxidation),化学气相沉积CVD包括低压化学气相沉积LPCVD或次大气压化学气相沉积SACVD。In one embodiment, the first insulating layer 1131 may be composed of oxide or nitride, for example, silicon oxide or silicon nitride. Thermal oxidation includes hydrothermal oxidation HTO or selective reactive oxidation SRO (Selective ReactiveOxidation), chemical vapor deposition CVD includes low pressure chemical vapor deposition LPCVD or subatmospheric pressure chemical vapor deposition SACVD.
进一步地,在第一绝缘层1131围绕形成的空腔中填充多晶硅层,并对多晶硅层进行回蚀刻,形成屏蔽栅115。Further, the cavity formed around the first insulating layer 1131 is filled with a polysilicon layer, and the polysilicon layer is etched back to form the shielding gate 115 .
该步骤中,采用回刻蚀,去除位于外延层111上方以及位于沟槽112上部的多晶硅层,使得多晶硅层的上端终止于沟槽112的中部,剩余的多晶硅层形成屏蔽栅115。第一绝缘层1131将屏蔽栅115与外延层111隔离。于一实施例中,回刻蚀可采用干法刻蚀。In this step, etch back is used to remove the polysilicon layer above the epitaxial layer 111 and above the trench 112 , so that the upper end of the polysilicon layer terminates at the middle of the trench 112 , and the remaining polysilicon layer forms the shield gate 115 . The first insulating layer 1131 isolates the shielding gate 115 from the epitaxial layer 111 . In one embodiment, dry etching may be used for etching back.
在其他实施例中,还可以采用化学机械平面化工艺去除多晶硅层位于外延层111上方的部分,然后对沟槽112中的多晶硅层进行回蚀刻,使得多晶硅层的上端终止于沟槽112的中部,形成屏蔽栅115。In other embodiments, the part of the polysilicon layer above the epitaxial layer 111 may also be removed by chemical mechanical planarization, and then the polysilicon layer in the trench 112 is etched back, so that the upper end of the polysilicon layer terminates at the middle of the trench 112 , forming a shield grid 115 .
进一步地,对第一绝缘层1131进行回蚀刻。在该步骤中,采用刻蚀工艺,去除位于外延层111上表面以及沟槽112上部的第一绝缘层1131,使得第一绝缘层1131位于沟槽112侧壁与屏蔽栅115之间,并且第一绝缘层1131未覆盖屏蔽栅115的顶部。第一绝缘层1131的表面不低于屏蔽栅115的表面;于一实施例中,该刻蚀工艺可以是湿法刻蚀,用以在较为平整的膜面上刻出绒面,从而增加光程,减少光的反射,湿法刻蚀可用稀释的HF或BOE(Buffered-Oxide-Etch,缓冲氧化物刻蚀液)等。Further, the first insulating layer 1131 is etched back. In this step, an etching process is used to remove the first insulating layer 1131 located on the upper surface of the epitaxial layer 111 and the upper part of the trench 112, so that the first insulating layer 1131 is located between the sidewall of the trench 112 and the shielding gate 115, and the second An insulating layer 1131 does not cover the top of the shielding grid 115 . The surface of the first insulating layer 1131 is not lower than the surface of the shielding grid 115; process, reduce light reflection, wet etching can use diluted HF or BOE (Buffered-Oxide-Etch, buffered oxide etching solution), etc.
进一步地,在沟槽中第一绝缘层1131的上表面和屏蔽栅115的上表面形成第二绝缘层1133。Further, a second insulating layer 1133 is formed on the upper surface of the first insulating layer 1131 and the upper surface of the shielding gate 115 in the trench.
该步骤中,采用沉积工艺沉积绝缘材料并对绝缘材料进行回蚀刻,以形成具有一定厚度第二绝缘层1133,其中,第二绝缘层1133覆盖第一绝缘层1131的上表面和屏蔽栅115的上表面,第一绝缘层1131与第二绝缘层1133共同包围屏蔽栅115。In this step, the insulating material is deposited by a deposition process and etched back on the insulating material to form a second insulating layer 1133 with a certain thickness, wherein the second insulating layer 1133 covers the upper surface of the first insulating layer 1131 and the shielding gate 115 On the upper surface, the first insulating layer 1131 and the second insulating layer 1133 jointly surround the shielding grid 115 .
本实施例中,第二绝缘层1133例如为氧化硅层,第二绝缘层1133将后续形成的控制栅116与屏蔽栅115进行隔离。In this embodiment, the second insulating layer 1133 is, for example, a silicon oxide layer, and the second insulating layer 1133 isolates the subsequently formed control gate 116 from the shielding gate 115 .
本实施例中,由于第二绝缘层1133在后续步骤中会被回蚀刻,因此图3a中所示的第二绝缘层1133的厚度相较于常规器件中的第二绝缘层厚度较大。In this embodiment, since the second insulating layer 1133 will be etched back in subsequent steps, the thickness of the second insulating layer 1133 shown in FIG. 3 a is larger than that of the conventional device.
如图3b所示,在第二绝缘层1133的上表面、沟槽112的上部侧壁以及外延层111的上表面形成牺牲层114。As shown in FIG. 3 b , a sacrificial layer 114 is formed on the upper surface of the second insulating layer 1133 , the upper sidewall of the trench 112 and the upper surface of the epitaxial layer 111 .
在该步骤中,采用沉积工艺形成牺牲层114,其中,牺牲层114覆盖第二绝缘层1133的上表面、沟槽112的上部侧壁以及外延层111的上表面。In this step, the sacrificial layer 114 is formed by a deposition process, wherein the sacrificial layer 114 covers the upper surface of the second insulating layer 1133 , the upper sidewall of the trench 112 and the upper surface of the epitaxial layer 111 .
本实施例中,牺牲层114例如为氮化硅层。在其他实施例中,牺牲层114的材料还可以是其他不与第二绝缘层1133刻蚀剂发生反应的材料。In this embodiment, the sacrificial layer 114 is, for example, a silicon nitride layer. In other embodiments, the material of the sacrificial layer 114 may also be other materials that do not react with the etchant of the second insulating layer 1133 .
如图3c所示,去除外延层111上表面和部分第二绝缘层1133的上表面的牺牲层114。As shown in FIG. 3 c , the sacrificial layer 114 on the upper surface of the epitaxial layer 111 and part of the upper surface of the second insulating layer 1133 is removed.
在该步骤中,采用蚀刻工艺去除外延层111上表面的牺牲层114以及部分第二绝缘层1133的上表面的牺牲层114,仅保留沟槽112侧壁的牺牲层114。剩余的牺牲层114下端与第二绝缘层1133的表面接触。或者说,牺牲层114围绕沟槽112上部侧壁和第二绝缘层1133上表面形成了空腔,去除空腔底部的牺牲层114。In this step, the sacrificial layer 114 on the upper surface of the epitaxial layer 111 and part of the sacrificial layer 114 on the upper surface of the second insulating layer 1133 are removed by etching, leaving only the sacrificial layer 114 on the sidewall of the trench 112 . The lower end of the remaining sacrificial layer 114 is in contact with the surface of the second insulating layer 1133 . In other words, the sacrificial layer 114 forms a cavity around the upper sidewall of the trench 112 and the upper surface of the second insulating layer 1133 , and the sacrificial layer 114 at the bottom of the cavity is removed.
本实施例中,蚀刻工艺例如为干法刻蚀。In this embodiment, the etching process is, for example, dry etching.
如图3d所示,将牺牲层114作为掩膜对第二绝缘层1133进行回蚀刻。As shown in FIG. 3 d , the second insulating layer 1133 is etched back using the sacrificial layer 114 as a mask.
在该步骤中,牺牲层114作为掩膜,采用刻蚀工艺对沟槽1112中暴露的第二绝缘层1133的表面进行刻蚀,以形成凹槽,凹槽位于第二绝缘层1133中。其中,在对第二绝缘层1133进行刻蚀时,同时进行横向刻蚀和纵向刻蚀。In this step, the sacrificial layer 114 is used as a mask, and the surface of the second insulating layer 1133 exposed in the trench 1112 is etched by an etching process to form a groove, and the groove is located in the second insulating layer 1133 . Wherein, when the second insulating layer 1133 is etched, lateral etching and vertical etching are simultaneously performed.
在本实施例中,刻蚀工艺例如为湿法刻蚀。采用湿法刻蚀对第二绝缘层1133的表面进行刻蚀,刻蚀后的第二绝缘层1133靠近沟槽112侧壁处具有突出的上边缘,第二绝缘层1133中心处的上表面与突出的上边缘之间的夹角为钝角。湿法刻蚀可用稀释的BOE溶液(Buffered-Oxide-Etch,缓冲氧化物刻蚀液,)等。In this embodiment, the etching process is, for example, wet etching. The surface of the second insulating layer 1133 is etched by wet etching, the etched second insulating layer 1133 has a protruding upper edge near the side wall of the trench 112, and the upper surface at the center of the second insulating layer 1133 is in contact with The angle between the projecting upper edges is obtuse. For wet etching, dilute BOE solution (Buffered-Oxide-Etch, buffered oxide etching solution, etc.) can be used.
在其他实施例中,刻蚀工艺还可以是干法刻蚀。In other embodiments, the etching process may also be dry etching.
本实施例中,对第二绝缘层1133的表面进行刻蚀的过程中,横向刻蚀速率与纵向刻蚀速率的比值为1:1到3:1,本领域的技术人员可以根据具体的实施例进行刻蚀速率的调节设置。In this embodiment, during the process of etching the surface of the second insulating layer 1133, the ratio of the lateral etching rate to the vertical etching rate is 1:1 to 3:1, and those skilled in the art can For example, adjust the setting of the etching rate.
通过控制刻蚀的时间以控制刻蚀进程,使得刻蚀后的第二绝缘层1133具有突出的上边缘,第二绝缘层1133中心处的凹槽未与沟槽112侧壁连通。进一步地,第二绝缘层1133的突出的上边缘上表面处的厚度大于后续步骤中形成的栅极电介质在沟槽侧壁厚度。By controlling the etching time to control the etching process, the etched second insulating layer 1133 has a protruding upper edge, and the groove at the center of the second insulating layer 1133 is not connected to the sidewall of the trench 112 . Further, the thickness of the upper surface of the protruding upper edge of the second insulating layer 1133 is greater than the thickness of the gate dielectric formed in subsequent steps on the sidewall of the trench.
本实施例中,通过控制第二绝缘层1133凹槽角落处的角度,可以控制后续步骤中形成的控制栅的侧壁和底壁之间的夹角度数。In this embodiment, by controlling the angle at the corner of the groove of the second insulating layer 1133 , the included angle between the side wall and the bottom wall of the control gate formed in subsequent steps can be controlled.
如图3e所示,去除牺牲层114,并在沟槽112上部形成栅极电介质1132。As shown in FIG. 3 e , the sacrificial layer 114 is removed, and a gate dielectric 1132 is formed on the trench 112 .
在该步骤中,采用沉积工艺形成栅极电介质1132,其中,栅极电介质1132覆盖第二绝缘层1133的上表面、沟槽112的上部侧壁以及外延层的上表面,栅极电介质1132围绕沟槽112的上部侧壁和第二绝缘层1133的上表面形成空腔。In this step, the gate dielectric 1132 is formed by a deposition process, wherein the gate dielectric 1132 covers the upper surface of the second insulating layer 1133, the upper sidewall of the trench 112 and the upper surface of the epitaxial layer, and the gate dielectric 1132 surrounds the trench. The upper sidewall of the groove 112 and the upper surface of the second insulating layer 1133 form a cavity.
参考图3e,第一距离L1例如为第二绝缘层1133被刻蚀后形成的突出的上边缘上表面处的厚度;第二距离L2例如为栅极电介质1132在沟槽112侧壁的厚度。本实施例中,第一距离L1大于第二距离L2。进一步地,由于第一距离L1大于第二距离L2,因此栅极电介质1132位于侧壁与底壁之间的夹角的部分,会出现向空腔处凸起的部分,如图3e中虚线框中所示。Referring to FIG. 3 e , the first distance L1 is, for example, the thickness at the upper surface of the protruding upper edge formed after the second insulating layer 1133 is etched; the second distance L2 is, for example, the thickness of the gate dielectric 1132 on the sidewall of the trench 112 . In this embodiment, the first distance L1 is greater than the second distance L2. Further, since the first distance L1 is greater than the second distance L2, the portion of the gate dielectric 1132 located at the angle between the side wall and the bottom wall will protrude toward the cavity, as shown in the dotted line box in FIG. 3e shown in .
在该实施例中,第一距离L1大于第二距离L2,一方面可以降低控制栅底部角落处的栅极电介质1132的击穿几率,另一方面更利于形成钝角的过渡曲面。In this embodiment, the first distance L1 is greater than the second distance L2. On the one hand, it can reduce the breakdown probability of the gate dielectric 1132 at the bottom corner of the control gate, and on the other hand, it is more conducive to forming an obtuse transition surface.
本实施例中,栅极电介质1132位于侧壁与底壁之间的夹角向空腔处凸起的部分,进一步地增加了后续形成的控制栅116侧壁与底壁之间的夹角处与沟槽侧壁之间的距离,从而进一步降低了控制栅116底部的电场强度,防止提前击穿,并对栅极电介质1132起到保护作用。In this embodiment, the gate dielectric 1132 is located at the part of the angle between the side wall and the bottom wall that protrudes toward the cavity, which further increases the angle between the side wall and the bottom wall of the control gate 116 formed later. The distance between the sidewall of the trench and the trench further reduces the electric field intensity at the bottom of the control gate 116 , prevents premature breakdown, and protects the gate dielectric 1132 .
本实施例中,栅极电介质1132例如为氧化硅层,栅极电介质1132将后续形成的控制栅116与外延层111进行隔离。In this embodiment, the gate dielectric 1132 is, for example, a silicon oxide layer, and the gate dielectric 1132 isolates the subsequently formed control gate 116 from the epitaxial layer 111 .
本实施例中,栅极电介质1132为共形层,因此栅极电介质1132的侧壁与底壁之间的夹角保留了第二绝缘层1133的侧壁与底壁之间的夹角处的形状,从而栅极电介质1132的侧壁与底壁之间的夹角也是钝角。后续步骤中,控制栅116沉积于栅极电介质1132围绕沟槽112的上部侧壁和第二绝缘层1133上表面形成的空腔中,因此控制栅116的侧壁与底壁之间的夹角也为钝角。In this embodiment, the gate dielectric 1132 is a conformal layer, so the angle between the sidewall and the bottom wall of the gate dielectric 1132 retains the angle between the sidewall and the bottom wall of the second insulating layer 1133. shape, so that the angle between the sidewall and the bottom wall of the gate dielectric 1132 is also an obtuse angle. In subsequent steps, the control gate 116 is deposited in the cavity formed by the gate dielectric 1132 around the upper sidewall of the trench 112 and the upper surface of the second insulating layer 1133, so the angle between the sidewall and the bottom wall of the control gate 116 Also an obtuse angle.
本实施例中,通过控制对第二绝缘层1133的表面进行刻蚀的速度,使得控制栅116的侧壁与底壁之间的夹角的角度例如为125°左右。进一步地,第二绝缘层1133的侧壁与底壁之间的夹角、栅极电介质1132的侧壁与底壁之间的夹角的角度例如也是125°左右。In this embodiment, by controlling the etching speed of the surface of the second insulating layer 1133 , the angle between the sidewall and the bottom wall of the control gate 116 is, for example, about 125°. Further, the included angle between the sidewall and the bottom wall of the second insulating layer 1133 and the included angle between the sidewall and the bottom wall of the gate dielectric 1132 are, for example, about 125°.
本实施例中,栅极电介质1132包括两部分,一部分栅极电介质1132a位于沟槽112的上部侧壁,用于隔离控制栅116和外延层111,另一部分栅极电介质1132b位于第二绝缘层1133上表面,后续将用于隔离屏蔽栅115和控制栅116,因此采用不同的附图标记对不同区域的栅极电介质1132进行区分。在该实施例中,第二绝缘层1133和栅极电介质1132b共同组成层间介质层,层间介质层用于隔离屏蔽栅115和控制栅116。In this embodiment, the gate dielectric 1132 includes two parts, one part of the gate dielectric 1132a is located on the upper sidewall of the trench 112 for isolating the control gate 116 and the epitaxial layer 111, and the other part of the gate dielectric 1132b is located on the second insulating layer 1133 The upper surface will be used to isolate the shielding grid 115 and the control grid 116 later, so different reference numerals are used to distinguish the gate dielectric 1132 in different regions. In this embodiment, the second insulating layer 1133 and the gate dielectric 1132 b jointly form an interlayer dielectric layer, and the interlayer dielectric layer is used to isolate the shielding gate 115 and the control gate 116 .
如图3f所示,在沟槽112中形成控制栅116,在外延层111中形成体区118和源区120,在外延层111上表面形成第三绝缘层1134,形成贯穿第三绝缘层1134并到达接触区119的导电通道121,以及在第三绝缘层1134表面形成源极电极122。As shown in FIG. 3f, the control gate 116 is formed in the trench 112, the body region 118 and the source region 120 are formed in the epitaxial layer 111, the third insulating layer 1134 is formed on the upper surface of the epitaxial layer 111, and the third insulating layer 1134 is formed. And reach the conductive channel 121 of the contact region 119 , and form the source electrode 122 on the surface of the third insulating layer 1134 .
在该步骤中,采用沉积工艺在栅极电介质1132围绕沟槽112的上部侧壁和第二绝缘层1133的上表面形成的空腔中沉积多晶硅层,以形成控制栅116。In this step, a polysilicon layer is deposited in the cavity formed by the gate dielectric 1132 around the upper sidewall of the trench 112 and the upper surface of the second insulating layer 1133 by a deposition process to form the control gate 116 .
进一步地,通过离子注入工艺在外延层111的上部中注入不同的离子,以形成体区118和源区120。本实施例中,体区118为第二掺杂类型,其中第二掺杂类型与第一掺杂类型相反。采用光致抗蚀剂掩膜定义体区118的区域,并且在光致抗蚀剂掩膜定义的区域内进行第一次离子注入,形成在外延层111邻近沟槽112中的体区118,形成体区118之后去除光致抗蚀剂掩膜。采用光致抗蚀剂掩膜定义源区120的区域,并且在光致抗蚀剂掩膜定义的区域内进行第二次离子注入,在体区118中形成第一掺杂类型的源区120。通过控制离子注入的参数,例如注入能量和剂量,可以达到所需要的深度和获得所需的掺杂浓度,体区118的深度不超过控制栅116在沟槽112中的延伸深度。体区118和源区120分别与沟槽112相邻接,由栅极电介质1132将控制栅116与体区118和源区120隔离。Further, different ions are implanted into the upper portion of the epitaxial layer 111 by an ion implantation process to form the body region 118 and the source region 120 . In this embodiment, the body region 118 is of the second doping type, wherein the second doping type is opposite to the first doping type. A photoresist mask is used to define the region of the body region 118, and the first ion implantation is performed in the region defined by the photoresist mask to form the body region 118 in the epitaxial layer 111 adjacent to the trench 112, The photoresist mask is removed after the body regions 118 are formed. A region of the source region 120 is defined by a photoresist mask, and a second ion implantation is performed in the region defined by the photoresist mask to form a source region 120 of the first doping type in the body region 118 . By controlling the ion implantation parameters, such as implantation energy and dose, the desired depth and doping concentration can be achieved. The depth of the body region 118 does not exceed the extension depth of the control gate 116 in the trench 112 . The body region 118 and the source region 120 are respectively adjacent to the trench 112 , and the control gate 116 is isolated from the body region 118 and the source region 120 by the gate dielectric 1132 .
进一步地,在外延层111上表面以及控制栅116上表面形成第三绝缘层1134。Further, a third insulating layer 1134 is formed on the upper surface of the epitaxial layer 111 and the upper surface of the control gate 116 .
该步骤中,通过沉积工艺,形成位于外延层111上表面以及控制栅116上表面的第三绝缘层1134,进一步进行化学机械平面化,以获得平整的表面。第三绝缘层1134覆盖外延层111和控制栅116的顶部表面。In this step, the third insulating layer 1134 located on the upper surface of the epitaxial layer 111 and the upper surface of the control gate 116 is formed through a deposition process, and chemical mechanical planarization is further performed to obtain a flat surface. The third insulating layer 1134 covers top surfaces of the epitaxial layer 111 and the control gate 116 .
本实施例中,第三绝缘层1134例如为硼磷硅玻璃。In this embodiment, the third insulating layer 1134 is, for example, borophosphosilicate glass.
进一步地,形成贯穿第三绝缘层1134和源区120,延伸至体区118内部的接触孔。Further, a contact hole extending through the third insulating layer 1134 and the source region 120 and extending to the inside of the body region 118 is formed.
该步骤中,例如采用沉积工艺在第三绝缘层1134上形成第二掩膜PR2,采用光刻形成图案化的第二掩膜PR2,然后经由图案化的第二掩膜PR2对源区120以及体区118进行刻蚀,以形成接触孔,接触孔从第三绝缘层1134的上表面向着衬底101的方向延伸,贯穿第三绝缘层1134以及源区120,停止于体区118的内部。于一实施例中,刻蚀可以采用干法刻蚀,例如离子铣刻蚀、等离子刻蚀、反应离子刻蚀、激光烧蚀,或者使用湿法刻蚀。在一实施例中,第二掩膜PR2可以为光致抗蚀剂掩膜,在形成接触孔后,去除第二掩膜PR2。In this step, for example, a deposition process is used to form a second mask PR2 on the third insulating layer 1134, a patterned second mask PR2 is formed by photolithography, and then the source region 120 and The body region 118 is etched to form a contact hole. The contact hole extends from the upper surface of the third insulating layer 1134 toward the substrate 101 , passes through the third insulating layer 1134 and the source region 120 , and stops inside the body region 118 . In one embodiment, etching can be performed by dry etching, such as ion milling, plasma etching, reactive ion etching, laser ablation, or wet etching. In an embodiment, the second mask PR2 may be a photoresist mask, and the second mask PR2 is removed after the contact hole is formed.
进一步地,在体区118中形成第二掺杂类型的接触区119。Further, a contact region 119 of the second doping type is formed in the body region 118 .
该步骤中,经由接触孔对体区118进行单次离子注入,在体区118中形成第二掺杂类型的接触区119。In this step, a single ion implantation is performed on the body region 118 through the contact hole, and a contact region 119 of the second doping type is formed in the body region 118 .
本实施例中,由于接触孔延伸至体区118内部,在经由接触孔进行离子注入形成接触区119的过程中,能够直接将离子注入至体区118,相较于从源区120上表面进行离子注入,本实施例缩短了离子注入的时间。In this embodiment, since the contact hole extends into the body region 118, in the process of forming the contact region 119 by performing ion implantation through the contact hole, ions can be directly implanted into the body region 118, compared with the process of performing ion implantation from the upper surface of the source region 120. For ion implantation, this embodiment shortens the time for ion implantation.
进一步地,形成导电通道121和源极电极122。Further, a conductive channel 121 and a source electrode 122 are formed.
该步骤中,通过淀积工艺形成金属层,金属层覆盖第三绝缘层1134,并且填充接触孔,与接触区119接触。本实施例中,金属层填充于接触孔内的部分形成导电通道120,金属层位于第三绝缘层1134上表面的部分形成源极电极122。导电通道120延伸至接触区119。In this step, a metal layer is formed by a deposition process, and the metal layer covers the third insulating layer 1134 and fills the contact hole to be in contact with the contact region 119 . In this embodiment, the portion of the metal layer filled in the contact hole forms the conductive channel 120 , and the portion of the metal layer located on the upper surface of the third insulating layer 1134 forms the source electrode 122 . The conductive channel 120 extends to the contact area 119 .
本申请中,通过对第二绝缘层的形成步骤进行改进,使得第二绝缘层与栅极电介质连接处的角落角度为钝角,从而使得控制栅的的侧壁与底壁之间的夹角也为钝角,降低了控制栅底部电场强度,防止提前击穿,并对栅极电介质起到保护作用。In the present application, by improving the step of forming the second insulating layer, the corner angle at the connection between the second insulating layer and the gate dielectric is an obtuse angle, so that the angle between the side wall and the bottom wall of the control gate is also The obtuse angle reduces the electric field intensity at the bottom of the control gate, prevents premature breakdown, and protects the gate dielectric.
依照本申请的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。Embodiments according to the present application are described above, which do not describe all details in detail, nor do they limit the invention to the specific embodiments described. This description selects and specifically describes these embodiments in order to better explain the principles and practical applications of the present application, so that those skilled in the art can make good use of the present application and its modifications based on the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310660491.1A CN116631858A (en) | 2023-06-06 | 2023-06-06 | Gate structure of trench MOSFET and manufacturing method thereof, trench MOSFET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310660491.1A CN116631858A (en) | 2023-06-06 | 2023-06-06 | Gate structure of trench MOSFET and manufacturing method thereof, trench MOSFET |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116631858A true CN116631858A (en) | 2023-08-22 |
Family
ID=87602431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310660491.1A Pending CN116631858A (en) | 2023-06-06 | 2023-06-06 | Gate structure of trench MOSFET and manufacturing method thereof, trench MOSFET |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116631858A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117727620A (en) * | 2024-02-06 | 2024-03-19 | 深圳市顾邦半导体科技有限公司 | Preparation method of shielded gate power device and shielded gate power device |
-
2023
- 2023-06-06 CN CN202310660491.1A patent/CN116631858A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117727620A (en) * | 2024-02-06 | 2024-03-19 | 深圳市顾邦半导体科技有限公司 | Preparation method of shielded gate power device and shielded gate power device |
CN117727620B (en) * | 2024-02-06 | 2024-04-12 | 深圳市顾邦半导体科技有限公司 | Preparation method of shielded gate power device and shielded gate power device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10686058B2 (en) | Method for manufacturing trench MOSFET | |
CN104241384B (en) | The manufacture method of lateral double-diffused metal-oxide-semiconductor transistor | |
US11424344B2 (en) | Trench MOSFET and method for manufacturing the same | |
CN111129152B (en) | Trench MOSFET structure and manufacturing method | |
CN111933529B (en) | Manufacturing method and structure of trench type MOSFET | |
TWI761800B (en) | Trench type MOSFET device manufacturing method | |
US20230207685A1 (en) | Split-gate mosfet and manufacturing method thereof | |
CN110993690A (en) | Trench type MOSFET device and manufacturing method thereof | |
US20230335621A1 (en) | Method for manufacturing trench-type mosfet | |
CN116631858A (en) | Gate structure of trench MOSFET and manufacturing method thereof, trench MOSFET | |
CN113206148B (en) | Trench MOSFET and manufacturing method thereof | |
US20240355925A1 (en) | Gate-source structure and manufacturing method thereof, and asymmetric trench mosfet and manufacturing method thereof | |
US20240128370A1 (en) | Method for manufacturing trench mosfet | |
TWI773605B (en) | Method for manufacturing trench mosfet | |
US20230207684A1 (en) | Split-gate mosfet and manufacturing method thereof | |
CN104008974A (en) | Semiconductor device and method for manufacturing the same | |
CN115424939A (en) | Groove type MOSFET and preparation method thereof | |
CN111710608B (en) | Trench MOSFET and method of manufacturing the same | |
CN116092943B (en) | A kind of air gap isolation structure of trench type MOSFET and its manufacturing method | |
CN115966463B (en) | Air gap isolation structure of trench MOSFET and manufacturing method thereof | |
US20250048673A1 (en) | Trench mosfet and manufacturing method thereof | |
CN222356845U (en) | Power semiconductor device | |
CN222356844U (en) | Power semiconductor device | |
CN116230515A (en) | Semiconductor device and manufacturing method thereof | |
CN115172150A (en) | Groove type MOSFET and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |