CN116230515A - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN116230515A CN116230515A CN202310181951.2A CN202310181951A CN116230515A CN 116230515 A CN116230515 A CN 116230515A CN 202310181951 A CN202310181951 A CN 202310181951A CN 116230515 A CN116230515 A CN 116230515A
- Authority
- CN
- China
- Prior art keywords
- region
- body region
- epitaxial layer
- dielectric layer
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000004020 conductor Substances 0.000 claims abstract description 74
- 210000000746 body region Anatomy 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims description 20
- 238000005468 ion implantation Methods 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims 2
- 238000011084 recovery Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 163
- 239000000758 substrate Substances 0.000 description 17
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 16
- 229920005591 polysilicon Polymers 0.000 description 16
- 239000011229 interlayer Substances 0.000 description 14
- 238000000206 photolithography Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000005137 deposition process Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- -1 HfSiN Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004200 TaSiN Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/252—Source or drain electrodes for field-effect devices for vertical or pseudo-vertical devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本申请涉及半导体技术领域,特别涉及一种半导体器件及其制造方法。The present application relates to the field of semiconductor technology, in particular to a semiconductor device and a manufacturing method thereof.
背景技术Background technique
半导体器件例如为金属氧化物半导体场效应晶体管(MOSFET),如图1所示,半导体器件10包括:半导体衬底11,位于半导体衬底11第一表面的外延层12(N-epi)以及位于在半导体衬底11的第二表面的金属层23。外延层12内有沟槽(trench)12a。沟槽12a中具有第一导体15和第二导体16,第一导体15位于沟槽的下半部分,第二导体16位于沟槽的上半部分,第一导体15和第二导体16之间具有第二介质层17。第一导体15与外延层12由第一介质层13隔离,第二导体16与外延层12之间由第三介质层14隔离。The semiconductor device is, for example, a Metal Oxide Semiconductor Field Effect Transistor (MOSFET). As shown in FIG. The
外延层12内具有与沟槽12a相邻的体区18(Pwell),体区18为第二导电类型,体区18内部上方为第二导电类型的重掺杂区19(P+)。第二导体16与体区18由第三介质层14隔离。体区18上方为第一导电类型的重掺杂源区20,在源区20与重掺杂区19内具有导电通道21。导电通道21的底部位于重掺杂区19内。The
其中,重掺杂区19(P+)、体区18(Pwell)以及外延层12(N-epi)形成体二极管,从体区18向外延层12的载流子大注入会导致在反向恢复过程中,具有很大的关断时间和关断损耗。Among them, the heavily doped region 19 (P+), the body region 18 (Pwell) and the epitaxial layer 12 (N-epi) form a body diode, and the large injection of carriers from the
发明内容Contents of the invention
鉴于上述问题,本申请的目的在于提供一种半导体器件及其制造方法,将导电通道延伸至体区内部,从而降低反向恢复电荷,减小关断时间和关断损耗。In view of the above problems, the purpose of this application is to provide a semiconductor device and its manufacturing method, which extends the conductive channel to the inside of the body region, thereby reducing the reverse recovery charge, reducing the turn-off time and turn-off loss.
本申请第一方面提供一种半导体结构的制备方法,包括:The first aspect of the present application provides a method for preparing a semiconductor structure, including:
提供外延层;providing an epitaxial layer;
形成栅介质层以及栅极导体,所述栅极导体和所述外延层经由所述栅介质层隔离;forming a gate dielectric layer and a gate conductor, the gate conductor and the epitaxial layer are separated by the gate dielectric layer;
形成位于所述外延层内部的体区;forming a body region within the epitaxial layer;
形成位于所述体区内部的接触区和源区;以及forming a contact region and a source region inside the body region; and
形成贯穿所述源区以及所述接触区,到达所述体区的导电通道;forming a conductive path through the source region and the contact region to the body region;
其中,所述导电通道的底部位于所述体区内部,侧壁与所述接触区以及所述源区接触。Wherein, the bottom of the conductive channel is located inside the body region, and the sidewall is in contact with the contact region and the source region.
本申请第二方面提供一种沟槽型MOSFET,其中,包括:The second aspect of the present application provides a trench MOSFET, which includes:
第一掺杂类型的外延层;an epitaxial layer of a first doping type;
栅介质层以及栅极导体,所述栅极导体和所述外延层经由所述栅介质层隔离;a gate dielectric layer and a gate conductor, the gate conductor and the epitaxial layer are separated by the gate dielectric layer;
位于所述外延层内部,并且与所述沟槽相邻的体区;a body region located within the epitaxial layer and adjacent to the trench;
位于所述体区内部的接触区和源区;以及a contact region and a source region located inside the body region; and
贯穿所述源区以及所述接触区,到达所述体区的导电通道;a conductive path through the source region and the contact region to the body region;
其中,所述导电通道的底部位于所述体区内部,侧壁与所述接触区以及所述源区接触。Wherein, the bottom of the conductive channel is located inside the body region, and the sidewall is in contact with the contact region and the source region.
附图说明Description of drawings
通过以下参照附图对本申请实施例的描述,本申请的上述以及其他目的、特征和优点将更为清楚:Through the following description of the embodiments of the application with reference to the accompanying drawings, the above and other purposes, features and advantages of the application will be more clear:
图1示出了半导体器件的截面图;Figure 1 shows a cross-sectional view of a semiconductor device;
图2示出了根据本申请第一实施例的半导体器件的截面图;2 shows a cross-sectional view of a semiconductor device according to a first embodiment of the present application;
图3a至图3i示出了本申请第一实施例的半导体器件的制造方法的各阶段截面图;3a to 3i show cross-sectional views of various stages of the manufacturing method of the semiconductor device according to the first embodiment of the present application;
图4示出了根据本申请第二实施例的半导体器件的截面图。FIG. 4 shows a cross-sectional view of a semiconductor device according to a second embodiment of the present application.
具体实施方式Detailed ways
以下在各个附图中,相同的元件采用类似的附图标记表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。In the following figures, the same elements are denoted by similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale. Also, some well-known parts may not be shown. For the sake of simplicity, the semiconductor structure obtained after several steps can be described in one figure.
在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一区域“下面”或“下方”。When describing the structure of a device, when a layer or a region is referred to as being "on" or "over" another layer or another region, it may refer to being directly on another layer or another region, or between it and Other layers or regions are also included between another layer and another region. Also, if the device is turned over, the layer, one region, will be "below" or "beneath" the other layer, or region.
如果为了描述直接位于另一层、另一区域上面的情形,本文将采用“直接在……上面”或“在……上面并与之邻接”的表述方式。If it is to describe the situation directly on another layer or another area, the expression "directly on" or "on and adjacent to" will be used herein.
除非在下文中特别指出,半导体器件的各个部分可以由本领域的技术人员公知的材料构成。半导体材料例如包括III-V族半导体,如砷化镓(GaAs)、氮化镓(GaN)等,IV-IV族半导体,如碳化硅(SiC)等,II-VI族化合物半导体,如硫化镉(CdS)、碲化镉(CdTe)等,以及IV族半导体,如硅(Si)、锗(Ge)等。栅极导体可以由能够导电的各种材料形成,例如金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅极导体或者是其他导电材料,例如为TaC、TiN、TaSiN、HfSiN、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、W、和各种导电材料的组合。栅介质层可以由SiO2或介电常数大于SiO2的材料构成,例如包括氧化物、氮化物、氮氧化物、硅酸盐、铝酸盐、钛酸盐。并且,栅介质层不仅可以由本领域的技术人员公知的材料形成,也可以采用将来开发的用于栅介质层的材料。Unless otherwise specified below, various parts of the semiconductor device may be composed of materials known to those skilled in the art. Semiconductor materials include, for example, III-V semiconductors, such as gallium arsenide (GaAs), gallium nitride (GaN), etc., IV-IV semiconductors, such as silicon carbide (SiC), etc., II-VI compound semiconductors, such as cadmium sulfide (CdS), cadmium telluride (CdTe), etc., and Group IV semiconductors, such as silicon (Si), germanium (Ge), etc. The gate conductor can be formed of various materials capable of conducting electricity, such as a metal layer, a doped polysilicon layer, or a stacked gate conductor including a metal layer and a doped polysilicon layer, or other conductive materials, such as TaC, TiN, TaSiN , HfSiN, TiSiN, TiCN, TaAlC, TiAlN, TaN, PtSix, Ni 3 Si, Pt, Ru, W, and combinations of various conductive materials. The gate dielectric layer may be made of SiO 2 or a material with a dielectric constant greater than SiO 2 , such as oxide, nitride, oxynitride, silicate, aluminate, titanate. Moreover, the gate dielectric layer may not only be formed of materials known to those skilled in the art, but also materials developed for the gate dielectric layer in the future may be used.
本申请中,第一掺杂类型是N型和P型中的一种,第二掺杂类型是N型和P型中的另一种。在半导体层中注入N型掺杂剂,例如P、As,可以形成N型半导体层。在半导体层中掺入P型掺杂剂,例如B,可以形成P型半导体层。In the present application, the first doping type is one of N-type and P-type, and the second doping type is the other one of N-type and P-type. Implanting N-type dopants, such as P and As, into the semiconductor layer can form the N-type semiconductor layer. Doping a P-type dopant, such as B, into the semiconductor layer can form a P-type semiconductor layer.
图2示为本申请第一实施例的半导体器件的截面图,如图2所示,本实施例中,半导体器件为沟槽MOSFET(沟槽金属氧化物半导体场效应晶体管)。FIG. 2 is a cross-sectional view of a semiconductor device according to a first embodiment of the present application. As shown in FIG. 2 , in this embodiment, the semiconductor device is a trench MOSFET (trench metal oxide semiconductor field effect transistor).
半导体器件100包括衬底101和位于其上的外延层111,衬底101为第一掺杂类型,于一实施例中为N型重掺杂。外延层111位于衬底101的第一表面上,外延层111相对于衬底101是轻掺杂。在衬底101的第二表面上形成漏极电极124。The
半导体器件100包括从外延层111的上表面延伸进入其内部的沟槽112;位于沟槽112内部的介质层和电极导体;位于外延层111并与沟槽112相邻的体区119,其中体区119为第二掺杂类型。沟槽112从外延层111的上表面延伸至其内部,终止于外延层111中。The
沟槽112内的介质层包括第一介质层1131、第二介质层1132以及第三介质层1133。电极导体包括第一导体115和第二导体118。第一介质层1131覆盖沟槽112下部的内表面,第一导体115位于第一介质层1131围绕沟槽下部形成的空腔内。第一导体115与外延层111由第一介质层1131隔离。第二介质层1132覆盖第一导体115和第一介质层1131的上表面以及沟槽112中部的内表面。第三介质层1133覆盖沟槽上部的内表面,第二导体118与第一导体115之间经由第二介质层1132隔离,且第二导体118与外延层111之间经由第三介质层1133隔离。The dielectric layers in the
在本实施例中,第一导体115为屏蔽导体,第二导体118为栅极导体,第三介质层1133为栅介质层,第二介质层1132将屏蔽导体和栅极导体隔离。In this embodiment, the
半导体器件100包括在体区119中形成的第一掺杂类型的源区121;在体区119中形成的第二掺杂类型的接触区120;在源区121和栅极导体118上方形成的层间介质层122;在紧邻源区121处形成穿透层间介质层122、源区121以及接触区120到达体区119的导电通道125;在层间介质层122上方形成的源极电极123,源极电极123经由导电通道125连接至体区119。其中,层间介质层122可以是具有一定厚度的氧化物层,例如,氧化硅。The
本实施例中,导电通道125的侧壁与接触区120以及源区121接触,底部位于掺杂浓度较低的体区119内。本实施例中,将导电通道125延伸至体区119内部,相当于体二极管的P区浓度降低,P区向N区(N型外延层111)中的载流子(空穴)注入水平降低,在其反向恢复过程中,即N区(N型外延层111)中存储的载流子数量减少,从而反向恢复电荷(Qrr)降低,进一步地减小二极管的管短时间和关断损耗。此外,电流变化速率(di/dt)降低,进一步减小VDS尖峰应力。In this embodiment, the sidewall of the
图3a至图3i示出了本申请第一实施例的半导体器件的制造方法的各阶段截面图。3a to 3i show cross-sectional views of various stages of the manufacturing method of the semiconductor device according to the first embodiment of the present application.
如图3a所示,在衬底101上形成外延层111,并且在外延层111中形成沟槽112。As shown in FIG. 3 a , an
该步骤中,在半导体衬底101上形成外延层111,衬底101作为器件的漏区,具有第一掺杂类型。在一实施例中,衬底101的材料可以为掺杂成N型的单晶硅衬底。通过光刻以及刻蚀工艺在外延层111中形成沟槽112。In this step, an
如图3b所示,在沟槽112中依次形成第一介质层1131和多晶硅层1141。As shown in FIG. 3 b , a
于一实施例中,通过热氧化或化学气相沉积的方式,在沟槽112的内部以及外延层111的上表面形成第一介质层1131,即第一介质层1131覆盖沟槽112的底部,侧壁,以及外延层111的上表面。于一实施例中,第一介质层1131可以由氧化物或者氮化物组成,例如,氧化硅或者氮化硅。热氧化包括水热氧化HTO或选择性反应氧化SRO(Selective ReactiveOxidation),化学气相沉积CVD包括低压化学气相沉积LPCVD或次大气压化学气相沉积SACVD。In one embodiment, the
通过低压化学气相沉积的方式,在沟槽112的内部以及外延层111的上方的第一介质层1131的表面形成多晶硅层1141。第一介质层1131将多晶硅层1141与外延层111隔离。A
如图3c所示,对第一介质层1131和多晶硅层1141进行回蚀刻。As shown in FIG. 3c, the
该步骤中,对多晶硅层1141进行化学机械研磨,然后回刻蚀多晶硅层1141,使得外延层111上方的第一介质层1131的表面以及沟槽112上部的多晶硅层1141去除,剩余的多晶硅层1141部分成为第一导体115。于一实施例中,回刻蚀可采用干法刻蚀。In this step, the
采用刻蚀工艺,刻蚀第一介质层1131,去除位于外延层111上表面以及沟槽112上部的第一介质层1131,使得第一介质层1131位于沟槽112侧壁与第一导体115之间,并且第一介质层1131未覆盖第一导体115的顶部。第一介质层1131的表面低于第一导体115的表面;于一实施例中,该刻蚀工艺可以是湿法刻蚀,用以在较为平整的膜面上刻出绒面,从而增加光程,减少光的反射,湿法刻蚀可用稀释的HF或BOE(Buffered-Oxide-Etch,缓冲氧化物刻蚀液)等。Using an etching process, etch the
如图3d所示,形成第二介质层1132。As shown in FIG. 3d, a
通过等离子体增强化学气相沉积方法,分别在沟槽112内的第一导体115和第一介质层1131的顶部形成共形的第二介质层。第二介质层覆盖第一导体115和第一介质层1131的顶部、沟槽112上部的侧壁以及外延层111的上表面。第二介质层可以由氧化物或者氮化物组成,例如,氧化硅或者氮化硅。A conformal second dielectric layer is formed on top of the
采用化学机械研磨工艺去除外延层111上表面的第二介质层,然后采用BOE(Buffered-Oxide-Etch,缓冲氧化物刻蚀液)溶液回刻蚀沟槽112内的第二介质层,使得在沟槽112内的第一导体115和第一介质层1131的顶部保留一定厚度的第二介质层1132。The second dielectric layer on the upper surface of the
如图3e所示,形成第三介质层1133以及多晶硅层1142。As shown in FIG. 3e, a
该步骤中,例如采用热氧化技术,形成位于第二介质层1132和第二介质层1132上的沟槽侧壁以及外延层111的上表面的氧化层,该氧化层为栅介质层1133,沟槽112侧壁被栅介质层1133覆盖。热氧化技术一般为硅与含有氧化物质的气体,例如水汽和氧气,在高温下进行化学反应,而在硅片表面产生一层致密的二氧化硅(SiO2)薄膜。In this step, for example, a thermal oxidation technique is used to form an oxide layer located on the
采用低压化学气相沉积的方式,在覆盖有栅介质层1133的沟槽112中填充多晶硅层1142,多晶硅层1142包括位于沟槽112的第一部分1142a和位于外延层111上方的第二部分1142b。The
如图3f所示,形成第二导体118。As shown in Figure 3f, a
该步骤中,采用回刻蚀或化学机械平面化,去除多晶硅层1142位于外延层111上方的第二部分1142b,使得多晶硅层1142的上端终止于沟槽的开口处,并且多晶硅层1142的上表面与外延层111的上表面齐平,形成第二导体118。In this step, the
第二介质层1132使得第一导体115以及第二导体118彼此绝缘,并且第二介质层1132具有一定的质量和厚度支持可能存在于第一导体115以及第二导体118之间的电势差。The
如图3g所示,在外延层111邻近沟槽112的区域中形成体区119接触区120以及源区121。As shown in FIG. 3 g , a
采用光刻工艺以及第一次离子注入,形成第二掺杂类型的体区119。具体地,例如采用沉积工艺在外延层111以及第二导体118上方形成第一掩膜,采用光刻工艺在第一掩膜上形成第一开口,然后经由第一掩膜上的第一开口进行第一次离子注入。在一实施例中,第一掩膜可以为光致抗蚀剂掩膜,在形成体区119后,去除第一掩膜。The
通过控制第一掩膜上第一开口的宽度,控制体区119的横向尺寸,本实施例中,体区119与沟槽112相邻,由第三介质层1133与第二导体118之间隔离。通过控制离子注入的参数,例如注入能量和剂量,可以达到所需要的深度和获得所需的掺杂浓度,本实施例中,体区119的深度不超过第二导体118在沟槽112中的延伸深度。By controlling the width of the first opening on the first mask, the lateral dimension of the
采用光刻工艺以及第二次离子注入,在体区119中形成第二掺杂类型的接触区120。具体地,例如采用沉积工艺在外延层111以及第二导体118上方形成第二掩膜,对第二掩膜进行光刻,在第二掩膜上形成第二开口,然后经由第二掩膜上的第二开口进行第二次离子注入。在一实施例中,第二掩膜可以为光致抗蚀剂掩膜,在形成接触区120后,去除第二掩膜。A
通过控制第二掩膜上第二开口的宽度以及位置,控制接触区120的横向尺寸,本实施例中,接触区120的宽度小于体区119的宽度,与沟槽112之间具有一定的距离。通过控制离子注入的参数,例如注入能量和剂量,可以达到所需要的深度和获得所需的掺杂浓度,其中,接触区120的深度不超过体区119的深度,接触区120的掺杂浓度大于体区119的掺杂浓度。By controlling the width and position of the second opening on the second mask, the lateral size of the
采用光刻工艺以及第三次离子注入,在体区119中形成第一掺杂类型的源区121。具体地,例如采用沉积工艺在外延层111以及第二导体118上方形成第三掩膜,采用光刻工艺在第三掩膜上形成第三开口,然后经由第三掩膜上的第三开口进行第三次离子注入。在一实施例中,第三掩膜可以为光致抗蚀剂掩膜,在形成源区121后,去除第三掩膜。A
通过控制第三掩膜上第三开口的宽度,控制源区121的横向尺寸,本实施例中,源区121的宽度与体区119的宽度相等,源区121与沟槽112相邻,由第三介质层1133与第二导体118之间隔离。通过控制离子注入的参数,例如注入能量和剂量,可以达到所需要的深度和获得所需的掺杂浓度,其中,源区121的深度不超过接触区120的深度。By controlling the width of the third opening on the third mask, the lateral size of the
如图3h所示,形成位于源区121上方的层间介质层122。As shown in FIG. 3 h , an
通过沉积工艺,形成位于源区121上方的层间介质层122,进一步进行化学机械平面化,以获得平整的表面。层间介质层122覆盖源区121和第二导体118的顶部表面,第三介质层1133位于外延层111上方的部分可以在形成源区121后以刻蚀的方式去除,也可以不去除,与层间介质层122共形,位于源区121的上方。Through a deposition process, an
如图3i所示,形成导电通道125。As shown in Fig. 3i,
在层间介质层122上方形成第四掩膜,对所述第四掩膜进行光刻,在所述第二掩膜上形成第四开口;经由所述第四开口对层间介质层以及外延层进行刻蚀,形成穿透层间介质层122、源区121以及接触区120,到达体区119的接触孔125a。在接触孔125a内填充导电材料,形成导电通道125。其中,导电通道125的底部位于体区119内部,导电通道125的侧壁与接触区120接触。Form a fourth mask above the
接着,通过沉积工艺,在层间介质层122上方形成源极电极123,以及通过沉积工艺,在衬底101的第二表面上形成漏极电极124,得到如图2所示的半导体器件100。源极电极123经由导电通道125连接至体区119。Next, a
本申请中,源极电极123、第二导体(栅极导体)118、第一导体(屏蔽导体)114、以及漏极电极124可以分别由导电材料形成,于一实施例中,可以是铝合金或铜之类的金属材料。In the present application, the
本申请提供的半导体器件及其制造方法,在形成体区119以及源区121的同时形成接触区120,在形成接触孔之后不需要进行离子注入形成接触区120,相对于形成接触孔之后经由接触孔进行离子注入形成接触区120,本申请中的方法可以将导电通道延伸至体区,不需要增加工艺步骤,即可有效降低二极管的的反向恢复电荷。In the semiconductor device and its manufacturing method provided by the present application, the
进一步地,形成接触区120的掩膜版可以沿用原工艺形成接触孔的掩膜版,不需要额外设计以及制作掩膜版,不会增加额外的成本。Further, the mask for forming the
图4示出了本申请第二实施例的半导体器件的结构示意图,如图4所示,半导体器件200包括衬底201和位于其上的外延层211,衬底201为第一掺杂类型,于一实施例中为N型重掺杂。外延层211位于衬底201的第一表面上,外延层211相对于衬底201是轻掺杂。在衬底201的第二表面上形成漏极电极224。FIG. 4 shows a schematic structural diagram of a semiconductor device according to the second embodiment of the present application. As shown in FIG. 4, the
半导体器件200包括栅极导体218以及栅介质层2133,栅极导体218位于外延层211上方,栅介质层2133位于栅极导体218和外延层211之间,将栅极导体218和外延层211隔离。The
半导体器件200包括在外延层211内形成的第二掺杂类型的体区219,在体区219中形成的第二掺杂类型的接触区220、在体区219中形成的第一掺杂类型的源区221、在源区221和栅极导体218上方形成的层间介质层222;在紧邻源区221处形成穿透层间介质层222、源区221以及接触区220到达体区219的导电通道225;在层间介质层222上方形成的源极电极223,源极电极223经由导电通道225连接至体区219。The
其中,本实施例中,形成体区、源区、漏区以及导电通道的方法与第一实施例相同,本实施例在此不再赘述。Wherein, in this embodiment, the method for forming the body region, the source region, the drain region, and the conductive channel is the same as that of the first embodiment, and will not be repeated in this embodiment.
值得注意的是,本申请中,半导体器件还可以为SiC MOSFET。It should be noted that in this application, the semiconductor device may also be a SiC MOSFET.
依照本申请的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。Embodiments according to the present application are described above, which do not describe all details in detail, nor do they limit the invention to the specific embodiments described. Obviously many modifications and variations are possible in light of the above description. This description selects and specifically describes these embodiments in order to better explain the principles and practical applications of the present application, so that those skilled in the art can make good use of the present application and its modifications based on the present application. This application is to be limited only by the claims, along with their full scope and equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310181951.2A CN116230515A (en) | 2023-02-20 | 2023-02-20 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310181951.2A CN116230515A (en) | 2023-02-20 | 2023-02-20 | Semiconductor device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116230515A true CN116230515A (en) | 2023-06-06 |
Family
ID=86585407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310181951.2A Pending CN116230515A (en) | 2023-02-20 | 2023-02-20 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116230515A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100123188A1 (en) * | 2008-11-14 | 2010-05-20 | Prasad Venkatraman | Semiconductor device having trench shield electrode structure |
CN101719495A (en) * | 2008-09-30 | 2010-06-02 | 英飞凌科技奥地利有限公司 | Semiconductor device and manufacturing method thereof |
JP2013008716A (en) * | 2011-06-22 | 2013-01-10 | Shindengen Electric Mfg Co Ltd | Semiconductor device and manufacturing method of the same |
US20200303507A1 (en) * | 2018-05-08 | 2020-09-24 | Ipower Semiconductor | Shielded trench devices |
US11469313B2 (en) * | 2020-01-16 | 2022-10-11 | Ipower Semiconductor | Self-aligned trench MOSFET and IGBT structures and methods of fabrication |
-
2023
- 2023-02-20 CN CN202310181951.2A patent/CN116230515A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101719495A (en) * | 2008-09-30 | 2010-06-02 | 英飞凌科技奥地利有限公司 | Semiconductor device and manufacturing method thereof |
US20100123188A1 (en) * | 2008-11-14 | 2010-05-20 | Prasad Venkatraman | Semiconductor device having trench shield electrode structure |
JP2013008716A (en) * | 2011-06-22 | 2013-01-10 | Shindengen Electric Mfg Co Ltd | Semiconductor device and manufacturing method of the same |
US20200303507A1 (en) * | 2018-05-08 | 2020-09-24 | Ipower Semiconductor | Shielded trench devices |
US11469313B2 (en) * | 2020-01-16 | 2022-10-11 | Ipower Semiconductor | Self-aligned trench MOSFET and IGBT structures and methods of fabrication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107871787A (en) | A method of manufacturing trench MOSFET | |
US11424344B2 (en) | Trench MOSFET and method for manufacturing the same | |
CN111129152B (en) | Trench MOSFET structure and manufacturing method | |
TWI761800B (en) | Trench type MOSFET device manufacturing method | |
US12176432B2 (en) | Trench-type MOSFET and method for manufacturing the same | |
US11563106B2 (en) | Formation method of isolation feature of semiconductor device structure | |
US20230207685A1 (en) | Split-gate mosfet and manufacturing method thereof | |
CN110993690A (en) | Trench type MOSFET device and manufacturing method thereof | |
US9608060B2 (en) | Isolation structure for semiconductor device | |
CN111834463A (en) | Shielded gate trench MOSFET and preparation method thereof, and electronic device | |
CN111933529A (en) | Manufacturing method and structure of trench type MOSFET | |
CN103779222A (en) | MOSFET manufacturing method | |
CN116631858A (en) | Gate structure of trench MOSFET and manufacturing method thereof, trench MOSFET | |
US20230207684A1 (en) | Split-gate mosfet and manufacturing method thereof | |
US20220037522A1 (en) | Trench mosfet and method for manufacturing the same | |
CN113206148B (en) | Trench MOSFET and manufacturing method thereof | |
CN105489498A (en) | Super-junction semiconductor device and manufacturing method thereof | |
US20240355925A1 (en) | Gate-source structure and manufacturing method thereof, and asymmetric trench mosfet and manufacturing method thereof | |
US20240105792A1 (en) | Trench mosfet and manufacturing method therefor | |
US20240128370A1 (en) | Method for manufacturing trench mosfet | |
CN114068706A (en) | Semiconductor structure and method of forming the same | |
CN116230515A (en) | Semiconductor device and manufacturing method thereof | |
CN116092943B (en) | A kind of air gap isolation structure of trench type MOSFET and its manufacturing method | |
US20250048673A1 (en) | Trench mosfet and manufacturing method thereof | |
CN115966463B (en) | Air gap isolation structure of trench MOSFET and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |