[go: up one dir, main page]

CN116230515A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
CN116230515A
CN116230515A CN202310181951.2A CN202310181951A CN116230515A CN 116230515 A CN116230515 A CN 116230515A CN 202310181951 A CN202310181951 A CN 202310181951A CN 116230515 A CN116230515 A CN 116230515A
Authority
CN
China
Prior art keywords
region
body region
epitaxial layer
dielectric layer
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310181951.2A
Other languages
Chinese (zh)
Inventor
王加坤
罗佳敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Xinmai Semiconductor Technology Co ltd
Original Assignee
Hangzhou Xinmai Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Xinmai Semiconductor Technology Co ltd filed Critical Hangzhou Xinmai Semiconductor Technology Co ltd
Priority to CN202310181951.2A priority Critical patent/CN116230515A/en
Publication of CN116230515A publication Critical patent/CN116230515A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/025Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/63Vertical IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/252Source or drain electrodes for field-effect devices for vertical or pseudo-vertical devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The application discloses a semiconductor device and a manufacturing method thereof, wherein the manufacturing method comprises the following steps: providing an epitaxial layer; forming a gate dielectric layer and a gate conductor, wherein the gate conductor and the epitaxial layer are isolated through the gate dielectric layer; forming a body region inside the epitaxial layer; forming a contact region and a source region inside the body region; and forming a conductive path through the source region and the contact region to the body region; the bottom of the conductive channel is positioned in the body region, and the side wall is in contact with the contact region and the source region. The present application extends the conductive via into the body region, thereby reducing reverse recovery charge.

Description

一种半导体器件及其制造方法A kind of semiconductor device and its manufacturing method

技术领域technical field

本申请涉及半导体技术领域,特别涉及一种半导体器件及其制造方法。The present application relates to the field of semiconductor technology, in particular to a semiconductor device and a manufacturing method thereof.

背景技术Background technique

半导体器件例如为金属氧化物半导体场效应晶体管(MOSFET),如图1所示,半导体器件10包括:半导体衬底11,位于半导体衬底11第一表面的外延层12(N-epi)以及位于在半导体衬底11的第二表面的金属层23。外延层12内有沟槽(trench)12a。沟槽12a中具有第一导体15和第二导体16,第一导体15位于沟槽的下半部分,第二导体16位于沟槽的上半部分,第一导体15和第二导体16之间具有第二介质层17。第一导体15与外延层12由第一介质层13隔离,第二导体16与外延层12之间由第三介质层14隔离。The semiconductor device is, for example, a Metal Oxide Semiconductor Field Effect Transistor (MOSFET). As shown in FIG. The metal layer 23 on the second surface of the semiconductor substrate 11 . A trench 12a is formed in the epitaxial layer 12 . There is a first conductor 15 and a second conductor 16 in the trench 12a, the first conductor 15 is located in the lower half of the trench, the second conductor 16 is located in the upper half of the trench, between the first conductor 15 and the second conductor 16 It has a second dielectric layer 17 . The first conductor 15 is isolated from the epitaxial layer 12 by the first dielectric layer 13 , and the second conductor 16 is isolated from the epitaxial layer 12 by the third dielectric layer 14 .

外延层12内具有与沟槽12a相邻的体区18(Pwell),体区18为第二导电类型,体区18内部上方为第二导电类型的重掺杂区19(P+)。第二导体16与体区18由第三介质层14隔离。体区18上方为第一导电类型的重掺杂源区20,在源区20与重掺杂区19内具有导电通道21。导电通道21的底部位于重掺杂区19内。The epitaxial layer 12 has a body region 18 (Pwell) adjacent to the trench 12a. The body region 18 is of the second conductivity type, and above the body region 18 is a heavily doped region 19 (P+) of the second conductivity type. The second conductor 16 is isolated from the body region 18 by the third dielectric layer 14 . Above the body region 18 is a heavily doped source region 20 of the first conductivity type, and a conductive channel 21 is formed in the source region 20 and the heavily doped region 19 . The bottom of the conductive channel 21 is located in the heavily doped region 19 .

其中,重掺杂区19(P+)、体区18(Pwell)以及外延层12(N-epi)形成体二极管,从体区18向外延层12的载流子大注入会导致在反向恢复过程中,具有很大的关断时间和关断损耗。Among them, the heavily doped region 19 (P+), the body region 18 (Pwell) and the epitaxial layer 12 (N-epi) form a body diode, and the large injection of carriers from the body region 18 to the epitaxial layer 12 will lead to reverse recovery In the process, there is a large turn-off time and turn-off loss.

发明内容Contents of the invention

鉴于上述问题,本申请的目的在于提供一种半导体器件及其制造方法,将导电通道延伸至体区内部,从而降低反向恢复电荷,减小关断时间和关断损耗。In view of the above problems, the purpose of this application is to provide a semiconductor device and its manufacturing method, which extends the conductive channel to the inside of the body region, thereby reducing the reverse recovery charge, reducing the turn-off time and turn-off loss.

本申请第一方面提供一种半导体结构的制备方法,包括:The first aspect of the present application provides a method for preparing a semiconductor structure, including:

提供外延层;providing an epitaxial layer;

形成栅介质层以及栅极导体,所述栅极导体和所述外延层经由所述栅介质层隔离;forming a gate dielectric layer and a gate conductor, the gate conductor and the epitaxial layer are separated by the gate dielectric layer;

形成位于所述外延层内部的体区;forming a body region within the epitaxial layer;

形成位于所述体区内部的接触区和源区;以及forming a contact region and a source region inside the body region; and

形成贯穿所述源区以及所述接触区,到达所述体区的导电通道;forming a conductive path through the source region and the contact region to the body region;

其中,所述导电通道的底部位于所述体区内部,侧壁与所述接触区以及所述源区接触。Wherein, the bottom of the conductive channel is located inside the body region, and the sidewall is in contact with the contact region and the source region.

本申请第二方面提供一种沟槽型MOSFET,其中,包括:The second aspect of the present application provides a trench MOSFET, which includes:

第一掺杂类型的外延层;an epitaxial layer of a first doping type;

栅介质层以及栅极导体,所述栅极导体和所述外延层经由所述栅介质层隔离;a gate dielectric layer and a gate conductor, the gate conductor and the epitaxial layer are separated by the gate dielectric layer;

位于所述外延层内部,并且与所述沟槽相邻的体区;a body region located within the epitaxial layer and adjacent to the trench;

位于所述体区内部的接触区和源区;以及a contact region and a source region located inside the body region; and

贯穿所述源区以及所述接触区,到达所述体区的导电通道;a conductive path through the source region and the contact region to the body region;

其中,所述导电通道的底部位于所述体区内部,侧壁与所述接触区以及所述源区接触。Wherein, the bottom of the conductive channel is located inside the body region, and the sidewall is in contact with the contact region and the source region.

附图说明Description of drawings

通过以下参照附图对本申请实施例的描述,本申请的上述以及其他目的、特征和优点将更为清楚:Through the following description of the embodiments of the application with reference to the accompanying drawings, the above and other purposes, features and advantages of the application will be more clear:

图1示出了半导体器件的截面图;Figure 1 shows a cross-sectional view of a semiconductor device;

图2示出了根据本申请第一实施例的半导体器件的截面图;2 shows a cross-sectional view of a semiconductor device according to a first embodiment of the present application;

图3a至图3i示出了本申请第一实施例的半导体器件的制造方法的各阶段截面图;3a to 3i show cross-sectional views of various stages of the manufacturing method of the semiconductor device according to the first embodiment of the present application;

图4示出了根据本申请第二实施例的半导体器件的截面图。FIG. 4 shows a cross-sectional view of a semiconductor device according to a second embodiment of the present application.

具体实施方式Detailed ways

以下在各个附图中,相同的元件采用类似的附图标记表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的半导体结构。In the following figures, the same elements are denoted by similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale. Also, some well-known parts may not be shown. For the sake of simplicity, the semiconductor structure obtained after several steps can be described in one figure.

在描述器件的结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将器件翻转,该一层、一个区域将位于另一层、另一区域“下面”或“下方”。When describing the structure of a device, when a layer or a region is referred to as being "on" or "over" another layer or another region, it may refer to being directly on another layer or another region, or between it and Other layers or regions are also included between another layer and another region. Also, if the device is turned over, the layer, one region, will be "below" or "beneath" the other layer, or region.

如果为了描述直接位于另一层、另一区域上面的情形,本文将采用“直接在……上面”或“在……上面并与之邻接”的表述方式。If it is to describe the situation directly on another layer or another area, the expression "directly on" or "on and adjacent to" will be used herein.

除非在下文中特别指出,半导体器件的各个部分可以由本领域的技术人员公知的材料构成。半导体材料例如包括III-V族半导体,如砷化镓(GaAs)、氮化镓(GaN)等,IV-IV族半导体,如碳化硅(SiC)等,II-VI族化合物半导体,如硫化镉(CdS)、碲化镉(CdTe)等,以及IV族半导体,如硅(Si)、锗(Ge)等。栅极导体可以由能够导电的各种材料形成,例如金属层、掺杂多晶硅层、或包括金属层和掺杂多晶硅层的叠层栅极导体或者是其他导电材料,例如为TaC、TiN、TaSiN、HfSiN、TiSiN、TiCN、TaAlC、TiAlN、TaN、PtSix、Ni3Si、Pt、Ru、W、和各种导电材料的组合。栅介质层可以由SiO2或介电常数大于SiO2的材料构成,例如包括氧化物、氮化物、氮氧化物、硅酸盐、铝酸盐、钛酸盐。并且,栅介质层不仅可以由本领域的技术人员公知的材料形成,也可以采用将来开发的用于栅介质层的材料。Unless otherwise specified below, various parts of the semiconductor device may be composed of materials known to those skilled in the art. Semiconductor materials include, for example, III-V semiconductors, such as gallium arsenide (GaAs), gallium nitride (GaN), etc., IV-IV semiconductors, such as silicon carbide (SiC), etc., II-VI compound semiconductors, such as cadmium sulfide (CdS), cadmium telluride (CdTe), etc., and Group IV semiconductors, such as silicon (Si), germanium (Ge), etc. The gate conductor can be formed of various materials capable of conducting electricity, such as a metal layer, a doped polysilicon layer, or a stacked gate conductor including a metal layer and a doped polysilicon layer, or other conductive materials, such as TaC, TiN, TaSiN , HfSiN, TiSiN, TiCN, TaAlC, TiAlN, TaN, PtSix, Ni 3 Si, Pt, Ru, W, and combinations of various conductive materials. The gate dielectric layer may be made of SiO 2 or a material with a dielectric constant greater than SiO 2 , such as oxide, nitride, oxynitride, silicate, aluminate, titanate. Moreover, the gate dielectric layer may not only be formed of materials known to those skilled in the art, but also materials developed for the gate dielectric layer in the future may be used.

本申请中,第一掺杂类型是N型和P型中的一种,第二掺杂类型是N型和P型中的另一种。在半导体层中注入N型掺杂剂,例如P、As,可以形成N型半导体层。在半导体层中掺入P型掺杂剂,例如B,可以形成P型半导体层。In the present application, the first doping type is one of N-type and P-type, and the second doping type is the other one of N-type and P-type. Implanting N-type dopants, such as P and As, into the semiconductor layer can form the N-type semiconductor layer. Doping a P-type dopant, such as B, into the semiconductor layer can form a P-type semiconductor layer.

图2示为本申请第一实施例的半导体器件的截面图,如图2所示,本实施例中,半导体器件为沟槽MOSFET(沟槽金属氧化物半导体场效应晶体管)。FIG. 2 is a cross-sectional view of a semiconductor device according to a first embodiment of the present application. As shown in FIG. 2 , in this embodiment, the semiconductor device is a trench MOSFET (trench metal oxide semiconductor field effect transistor).

半导体器件100包括衬底101和位于其上的外延层111,衬底101为第一掺杂类型,于一实施例中为N型重掺杂。外延层111位于衬底101的第一表面上,外延层111相对于衬底101是轻掺杂。在衬底101的第二表面上形成漏极电极124。The semiconductor device 100 includes a substrate 101 and an epitaxial layer 111 thereon. The substrate 101 is of a first doping type, which is N-type heavily doped in one embodiment. The epitaxial layer 111 is located on the first surface of the substrate 101 , and the epitaxial layer 111 is lightly doped relative to the substrate 101 . A drain electrode 124 is formed on the second surface of the substrate 101 .

半导体器件100包括从外延层111的上表面延伸进入其内部的沟槽112;位于沟槽112内部的介质层和电极导体;位于外延层111并与沟槽112相邻的体区119,其中体区119为第二掺杂类型。沟槽112从外延层111的上表面延伸至其内部,终止于外延层111中。The semiconductor device 100 includes a trench 112 extending from the upper surface of the epitaxial layer 111 into its interior; a dielectric layer and an electrode conductor located inside the trench 112; a body region 119 located at the epitaxial layer 111 and adjacent to the trench 112, wherein the body Region 119 is of the second doping type. The trench 112 extends from the upper surface of the epitaxial layer 111 to the inside thereof, terminating in the epitaxial layer 111 .

沟槽112内的介质层包括第一介质层1131、第二介质层1132以及第三介质层1133。电极导体包括第一导体115和第二导体118。第一介质层1131覆盖沟槽112下部的内表面,第一导体115位于第一介质层1131围绕沟槽下部形成的空腔内。第一导体115与外延层111由第一介质层1131隔离。第二介质层1132覆盖第一导体115和第一介质层1131的上表面以及沟槽112中部的内表面。第三介质层1133覆盖沟槽上部的内表面,第二导体118与第一导体115之间经由第二介质层1132隔离,且第二导体118与外延层111之间经由第三介质层1133隔离。The dielectric layers in the trench 112 include a first dielectric layer 1131 , a second dielectric layer 1132 and a third dielectric layer 1133 . The electrode conductors include a first conductor 115 and a second conductor 118 . The first dielectric layer 1131 covers the inner surface of the lower part of the trench 112 , and the first conductor 115 is located in a cavity formed by the first dielectric layer 1131 around the lower part of the trench. The first conductor 115 is isolated from the epitaxial layer 111 by the first dielectric layer 1131 . The second dielectric layer 1132 covers the upper surfaces of the first conductor 115 and the first dielectric layer 1131 and the inner surface of the middle part of the trench 112 . The third dielectric layer 1133 covers the upper inner surface of the trench, the second conductor 118 is isolated from the first conductor 115 by the second dielectric layer 1132 , and the second conductor 118 is isolated from the epitaxial layer 111 by the third dielectric layer 1133 .

在本实施例中,第一导体115为屏蔽导体,第二导体118为栅极导体,第三介质层1133为栅介质层,第二介质层1132将屏蔽导体和栅极导体隔离。In this embodiment, the first conductor 115 is a shield conductor, the second conductor 118 is a gate conductor, the third dielectric layer 1133 is a gate dielectric layer, and the second dielectric layer 1132 isolates the shield conductor and the gate conductor.

半导体器件100包括在体区119中形成的第一掺杂类型的源区121;在体区119中形成的第二掺杂类型的接触区120;在源区121和栅极导体118上方形成的层间介质层122;在紧邻源区121处形成穿透层间介质层122、源区121以及接触区120到达体区119的导电通道125;在层间介质层122上方形成的源极电极123,源极电极123经由导电通道125连接至体区119。其中,层间介质层122可以是具有一定厚度的氧化物层,例如,氧化硅。The semiconductor device 100 includes a source region 121 of a first doping type formed in the body region 119; a contact region 120 of a second doping type formed in the body region 119; a contact region 120 formed over the source region 121 and the gate conductor 118 The interlayer dielectric layer 122; the conductive channel 125 penetrating the interlayer dielectric layer 122, the source region 121 and the contact region 120 to the body region 119 is formed adjacent to the source region 121; the source electrode 123 formed above the interlayer dielectric layer 122 , the source electrode 123 is connected to the body region 119 via the conductive via 125 . Wherein, the interlayer dielectric layer 122 may be an oxide layer with a certain thickness, for example, silicon oxide.

本实施例中,导电通道125的侧壁与接触区120以及源区121接触,底部位于掺杂浓度较低的体区119内。本实施例中,将导电通道125延伸至体区119内部,相当于体二极管的P区浓度降低,P区向N区(N型外延层111)中的载流子(空穴)注入水平降低,在其反向恢复过程中,即N区(N型外延层111)中存储的载流子数量减少,从而反向恢复电荷(Qrr)降低,进一步地减小二极管的管短时间和关断损耗。此外,电流变化速率(di/dt)降低,进一步减小VDS尖峰应力。In this embodiment, the sidewall of the conductive channel 125 is in contact with the contact region 120 and the source region 121 , and the bottom is located in the body region 119 with a lower doping concentration. In this embodiment, extending the conductive channel 125 to the inside of the body region 119 is equivalent to reducing the concentration of the P region of the body diode, and reducing the injection level of carriers (holes) from the P region to the N region (N-type epitaxial layer 111). , in its reverse recovery process, that is, the number of carriers stored in the N region (N-type epitaxial layer 111) is reduced, thereby reducing the reverse recovery charge (Qrr), further reducing the short-time and turn-off time of the diode loss. In addition, the rate of change of current (di/dt) is reduced, further reducing VDS peak stress.

图3a至图3i示出了本申请第一实施例的半导体器件的制造方法的各阶段截面图。3a to 3i show cross-sectional views of various stages of the manufacturing method of the semiconductor device according to the first embodiment of the present application.

如图3a所示,在衬底101上形成外延层111,并且在外延层111中形成沟槽112。As shown in FIG. 3 a , an epitaxial layer 111 is formed on a substrate 101 , and a trench 112 is formed in the epitaxial layer 111 .

该步骤中,在半导体衬底101上形成外延层111,衬底101作为器件的漏区,具有第一掺杂类型。在一实施例中,衬底101的材料可以为掺杂成N型的单晶硅衬底。通过光刻以及刻蚀工艺在外延层111中形成沟槽112。In this step, an epitaxial layer 111 is formed on a semiconductor substrate 101, and the substrate 101 is used as a drain region of the device and has a first doping type. In an embodiment, the material of the substrate 101 may be a single crystal silicon substrate doped to N-type. Trenches 112 are formed in the epitaxial layer 111 by photolithography and etching processes.

如图3b所示,在沟槽112中依次形成第一介质层1131和多晶硅层1141。As shown in FIG. 3 b , a first dielectric layer 1131 and a polysilicon layer 1141 are sequentially formed in the trench 112 .

于一实施例中,通过热氧化或化学气相沉积的方式,在沟槽112的内部以及外延层111的上表面形成第一介质层1131,即第一介质层1131覆盖沟槽112的底部,侧壁,以及外延层111的上表面。于一实施例中,第一介质层1131可以由氧化物或者氮化物组成,例如,氧化硅或者氮化硅。热氧化包括水热氧化HTO或选择性反应氧化SRO(Selective ReactiveOxidation),化学气相沉积CVD包括低压化学气相沉积LPCVD或次大气压化学气相沉积SACVD。In one embodiment, the first dielectric layer 1131 is formed inside the trench 112 and on the upper surface of the epitaxial layer 111 by means of thermal oxidation or chemical vapor deposition, that is, the first dielectric layer 1131 covers the bottom of the trench 112 and the sides wall, and the upper surface of the epitaxial layer 111. In an embodiment, the first dielectric layer 1131 may be composed of oxide or nitride, for example, silicon oxide or silicon nitride. Thermal oxidation includes hydrothermal oxidation HTO or selective reactive oxidation SRO (Selective ReactiveOxidation), chemical vapor deposition CVD includes low pressure chemical vapor deposition LPCVD or subatmospheric pressure chemical vapor deposition SACVD.

通过低压化学气相沉积的方式,在沟槽112的内部以及外延层111的上方的第一介质层1131的表面形成多晶硅层1141。第一介质层1131将多晶硅层1141与外延层111隔离。A polysilicon layer 1141 is formed inside the trench 112 and on the surface of the first dielectric layer 1131 above the epitaxial layer 111 by means of low pressure chemical vapor deposition. The first dielectric layer 1131 isolates the polysilicon layer 1141 from the epitaxial layer 111 .

如图3c所示,对第一介质层1131和多晶硅层1141进行回蚀刻。As shown in FIG. 3c, the first dielectric layer 1131 and the polysilicon layer 1141 are etched back.

该步骤中,对多晶硅层1141进行化学机械研磨,然后回刻蚀多晶硅层1141,使得外延层111上方的第一介质层1131的表面以及沟槽112上部的多晶硅层1141去除,剩余的多晶硅层1141部分成为第一导体115。于一实施例中,回刻蚀可采用干法刻蚀。In this step, the polysilicon layer 1141 is chemically mechanically polished, and then the polysilicon layer 1141 is etched back, so that the surface of the first dielectric layer 1131 above the epitaxial layer 111 and the polysilicon layer 1141 on the upper part of the trench 112 are removed, and the remaining polysilicon layer 1141 Part becomes the first conductor 115 . In one embodiment, dry etching may be used for etching back.

采用刻蚀工艺,刻蚀第一介质层1131,去除位于外延层111上表面以及沟槽112上部的第一介质层1131,使得第一介质层1131位于沟槽112侧壁与第一导体115之间,并且第一介质层1131未覆盖第一导体115的顶部。第一介质层1131的表面低于第一导体115的表面;于一实施例中,该刻蚀工艺可以是湿法刻蚀,用以在较为平整的膜面上刻出绒面,从而增加光程,减少光的反射,湿法刻蚀可用稀释的HF或BOE(Buffered-Oxide-Etch,缓冲氧化物刻蚀液)等。Using an etching process, etch the first dielectric layer 1131 to remove the first dielectric layer 1131 located on the upper surface of the epitaxial layer 111 and the upper part of the trench 112, so that the first dielectric layer 1131 is located between the side wall of the trench 112 and the first conductor 115 space, and the first dielectric layer 1131 does not cover the top of the first conductor 115 . The surface of the first dielectric layer 1131 is lower than that of the first conductor 115; process, reduce light reflection, wet etching can use diluted HF or BOE (Buffered-Oxide-Etch, buffered oxide etching solution), etc.

如图3d所示,形成第二介质层1132。As shown in FIG. 3d, a second dielectric layer 1132 is formed.

通过等离子体增强化学气相沉积方法,分别在沟槽112内的第一导体115和第一介质层1131的顶部形成共形的第二介质层。第二介质层覆盖第一导体115和第一介质层1131的顶部、沟槽112上部的侧壁以及外延层111的上表面。第二介质层可以由氧化物或者氮化物组成,例如,氧化硅或者氮化硅。A conformal second dielectric layer is formed on top of the first conductor 115 and the first dielectric layer 1131 in the trench 112 respectively by plasma enhanced chemical vapor deposition. The second dielectric layer covers the tops of the first conductor 115 and the first dielectric layer 1131 , the upper sidewall of the trench 112 and the upper surface of the epitaxial layer 111 . The second dielectric layer may be composed of oxide or nitride, for example, silicon oxide or silicon nitride.

采用化学机械研磨工艺去除外延层111上表面的第二介质层,然后采用BOE(Buffered-Oxide-Etch,缓冲氧化物刻蚀液)溶液回刻蚀沟槽112内的第二介质层,使得在沟槽112内的第一导体115和第一介质层1131的顶部保留一定厚度的第二介质层1132。The second dielectric layer on the upper surface of the epitaxial layer 111 is removed by a chemical mechanical polishing process, and then the second dielectric layer in the trench 112 is etched back with a BOE (Buffered-Oxide-Etch) solution, so that the A certain thickness of the second dielectric layer 1132 remains on top of the first conductor 115 and the first dielectric layer 1131 in the trench 112 .

如图3e所示,形成第三介质层1133以及多晶硅层1142。As shown in FIG. 3e, a third dielectric layer 1133 and a polysilicon layer 1142 are formed.

该步骤中,例如采用热氧化技术,形成位于第二介质层1132和第二介质层1132上的沟槽侧壁以及外延层111的上表面的氧化层,该氧化层为栅介质层1133,沟槽112侧壁被栅介质层1133覆盖。热氧化技术一般为硅与含有氧化物质的气体,例如水汽和氧气,在高温下进行化学反应,而在硅片表面产生一层致密的二氧化硅(SiO2)薄膜。In this step, for example, a thermal oxidation technique is used to form an oxide layer located on the second dielectric layer 1132, the side walls of the trench on the second dielectric layer 1132 and the upper surface of the epitaxial layer 111. The oxide layer is the gate dielectric layer 1133, and the trench The sidewall of the groove 112 is covered by the gate dielectric layer 1133 . The thermal oxidation technology generally involves a chemical reaction between silicon and a gas containing oxidizing substances, such as water vapor and oxygen, at high temperature to form a dense silicon dioxide (SiO 2 ) film on the surface of the silicon wafer.

采用低压化学气相沉积的方式,在覆盖有栅介质层1133的沟槽112中填充多晶硅层1142,多晶硅层1142包括位于沟槽112的第一部分1142a和位于外延层111上方的第二部分1142b。The polysilicon layer 1142 is filled in the trench 112 covered with the gate dielectric layer 1133 by means of low pressure chemical vapor deposition. The polysilicon layer 1142 includes a first portion 1142 a located in the trench 112 and a second portion 1142 b located above the epitaxial layer 111 .

如图3f所示,形成第二导体118。As shown in Figure 3f, a second conductor 118 is formed.

该步骤中,采用回刻蚀或化学机械平面化,去除多晶硅层1142位于外延层111上方的第二部分1142b,使得多晶硅层1142的上端终止于沟槽的开口处,并且多晶硅层1142的上表面与外延层111的上表面齐平,形成第二导体118。In this step, the second portion 1142b of the polysilicon layer 1142 above the epitaxial layer 111 is removed by etching back or chemical mechanical planarization, so that the upper end of the polysilicon layer 1142 terminates at the opening of the trench, and the upper surface of the polysilicon layer 1142 Level with the upper surface of the epitaxial layer 111 , a second conductor 118 is formed.

第二介质层1132使得第一导体115以及第二导体118彼此绝缘,并且第二介质层1132具有一定的质量和厚度支持可能存在于第一导体115以及第二导体118之间的电势差。The second dielectric layer 1132 insulates the first conductor 115 and the second conductor 118 from each other, and the second dielectric layer 1132 has a certain mass and thickness to support potential differences that may exist between the first conductor 115 and the second conductor 118 .

如图3g所示,在外延层111邻近沟槽112的区域中形成体区119接触区120以及源区121。As shown in FIG. 3 g , a body region 119 , a contact region 120 and a source region 121 are formed in a region of the epitaxial layer 111 adjacent to the trench 112 .

采用光刻工艺以及第一次离子注入,形成第二掺杂类型的体区119。具体地,例如采用沉积工艺在外延层111以及第二导体118上方形成第一掩膜,采用光刻工艺在第一掩膜上形成第一开口,然后经由第一掩膜上的第一开口进行第一次离子注入。在一实施例中,第一掩膜可以为光致抗蚀剂掩膜,在形成体区119后,去除第一掩膜。The body region 119 of the second doping type is formed by photolithography and the first ion implantation. Specifically, for example, a deposition process is used to form a first mask over the epitaxial layer 111 and the second conductor 118, a photolithography process is used to form a first opening on the first mask, and then the first opening is formed through the first mask. The first ion implantation. In an embodiment, the first mask may be a photoresist mask, and after the body region 119 is formed, the first mask is removed.

通过控制第一掩膜上第一开口的宽度,控制体区119的横向尺寸,本实施例中,体区119与沟槽112相邻,由第三介质层1133与第二导体118之间隔离。通过控制离子注入的参数,例如注入能量和剂量,可以达到所需要的深度和获得所需的掺杂浓度,本实施例中,体区119的深度不超过第二导体118在沟槽112中的延伸深度。By controlling the width of the first opening on the first mask, the lateral dimension of the body region 119 is controlled. In this embodiment, the body region 119 is adjacent to the trench 112 and is isolated from the second conductor 118 by the third dielectric layer 1133 . By controlling the parameters of ion implantation, such as implantation energy and dose, the required depth and doping concentration can be achieved. In this embodiment, the depth of the body region 119 does not exceed the depth of the second conductor 118 in the trench 112. Extension depth.

采用光刻工艺以及第二次离子注入,在体区119中形成第二掺杂类型的接触区120。具体地,例如采用沉积工艺在外延层111以及第二导体118上方形成第二掩膜,对第二掩膜进行光刻,在第二掩膜上形成第二开口,然后经由第二掩膜上的第二开口进行第二次离子注入。在一实施例中,第二掩膜可以为光致抗蚀剂掩膜,在形成接触区120后,去除第二掩膜。A contact region 120 of the second doping type is formed in the body region 119 by using a photolithography process and a second ion implantation. Specifically, for example, a deposition process is used to form a second mask over the epitaxial layer 111 and the second conductor 118, and photolithography is performed on the second mask to form a second opening on the second mask, and then through the second mask The second opening for the second ion implantation. In an embodiment, the second mask may be a photoresist mask, and after the contact region 120 is formed, the second mask is removed.

通过控制第二掩膜上第二开口的宽度以及位置,控制接触区120的横向尺寸,本实施例中,接触区120的宽度小于体区119的宽度,与沟槽112之间具有一定的距离。通过控制离子注入的参数,例如注入能量和剂量,可以达到所需要的深度和获得所需的掺杂浓度,其中,接触区120的深度不超过体区119的深度,接触区120的掺杂浓度大于体区119的掺杂浓度。By controlling the width and position of the second opening on the second mask, the lateral size of the contact region 120 is controlled. In this embodiment, the width of the contact region 120 is smaller than the width of the body region 119 and has a certain distance from the trench 112 . By controlling the parameters of ion implantation, such as implantation energy and dose, the required depth and the required doping concentration can be achieved, wherein the depth of the contact region 120 does not exceed the depth of the body region 119, and the doping concentration of the contact region 120 greater than the doping concentration of the body region 119 .

采用光刻工艺以及第三次离子注入,在体区119中形成第一掺杂类型的源区121。具体地,例如采用沉积工艺在外延层111以及第二导体118上方形成第三掩膜,采用光刻工艺在第三掩膜上形成第三开口,然后经由第三掩膜上的第三开口进行第三次离子注入。在一实施例中,第三掩膜可以为光致抗蚀剂掩膜,在形成源区121后,去除第三掩膜。A source region 121 of the first doping type is formed in the body region 119 by photolithography and the third ion implantation. Specifically, for example, a deposition process is used to form a third mask over the epitaxial layer 111 and the second conductor 118, a photolithography process is used to form a third opening on the third mask, and then the process is performed through the third opening on the third mask. The third ion implantation. In an embodiment, the third mask may be a photoresist mask, and after the source region 121 is formed, the third mask is removed.

通过控制第三掩膜上第三开口的宽度,控制源区121的横向尺寸,本实施例中,源区121的宽度与体区119的宽度相等,源区121与沟槽112相邻,由第三介质层1133与第二导体118之间隔离。通过控制离子注入的参数,例如注入能量和剂量,可以达到所需要的深度和获得所需的掺杂浓度,其中,源区121的深度不超过接触区120的深度。By controlling the width of the third opening on the third mask, the lateral size of the source region 121 is controlled. In this embodiment, the width of the source region 121 is equal to the width of the body region 119, and the source region 121 is adjacent to the trench 112. The third dielectric layer 1133 is isolated from the second conductor 118 . By controlling the parameters of ion implantation, such as implantation energy and dose, the desired depth and doping concentration can be achieved, wherein the depth of the source region 121 does not exceed the depth of the contact region 120 .

如图3h所示,形成位于源区121上方的层间介质层122。As shown in FIG. 3 h , an interlayer dielectric layer 122 located above the source region 121 is formed.

通过沉积工艺,形成位于源区121上方的层间介质层122,进一步进行化学机械平面化,以获得平整的表面。层间介质层122覆盖源区121和第二导体118的顶部表面,第三介质层1133位于外延层111上方的部分可以在形成源区121后以刻蚀的方式去除,也可以不去除,与层间介质层122共形,位于源区121的上方。Through a deposition process, an interlayer dielectric layer 122 located above the source region 121 is formed, and chemical mechanical planarization is further performed to obtain a flat surface. The interlayer dielectric layer 122 covers the source region 121 and the top surface of the second conductor 118, and the part of the third dielectric layer 1133 above the epitaxial layer 111 may be removed by etching after the source region 121 is formed, or may not be removed. The interlayer dielectric layer 122 is conformal and located above the source region 121 .

如图3i所示,形成导电通道125。As shown in Fig. 3i, conductive vias 125 are formed.

在层间介质层122上方形成第四掩膜,对所述第四掩膜进行光刻,在所述第二掩膜上形成第四开口;经由所述第四开口对层间介质层以及外延层进行刻蚀,形成穿透层间介质层122、源区121以及接触区120,到达体区119的接触孔125a。在接触孔125a内填充导电材料,形成导电通道125。其中,导电通道125的底部位于体区119内部,导电通道125的侧壁与接触区120接触。Form a fourth mask above the interlayer dielectric layer 122, perform photolithography on the fourth mask, and form a fourth opening on the second mask; through the fourth opening, the interlayer dielectric layer and the epitaxial Layer is etched to form a contact hole 125 a penetrating through the interlayer dielectric layer 122 , the source region 121 and the contact region 120 and reaching the body region 119 . A conductive material is filled in the contact hole 125 a to form a conductive channel 125 . Wherein, the bottom of the conductive channel 125 is located inside the body region 119 , and the sidewall of the conductive channel 125 is in contact with the contact region 120 .

接着,通过沉积工艺,在层间介质层122上方形成源极电极123,以及通过沉积工艺,在衬底101的第二表面上形成漏极电极124,得到如图2所示的半导体器件100。源极电极123经由导电通道125连接至体区119。Next, a source electrode 123 is formed on the interlayer dielectric layer 122 through a deposition process, and a drain electrode 124 is formed on the second surface of the substrate 101 through a deposition process, and the semiconductor device 100 shown in FIG. 2 is obtained. The source electrode 123 is connected to the body region 119 via a conductive via 125 .

本申请中,源极电极123、第二导体(栅极导体)118、第一导体(屏蔽导体)114、以及漏极电极124可以分别由导电材料形成,于一实施例中,可以是铝合金或铜之类的金属材料。In the present application, the source electrode 123, the second conductor (gate conductor) 118, the first conductor (shielding conductor) 114, and the drain electrode 124 can be formed of conductive materials, in one embodiment, aluminum alloy or metal materials such as copper.

本申请提供的半导体器件及其制造方法,在形成体区119以及源区121的同时形成接触区120,在形成接触孔之后不需要进行离子注入形成接触区120,相对于形成接触孔之后经由接触孔进行离子注入形成接触区120,本申请中的方法可以将导电通道延伸至体区,不需要增加工艺步骤,即可有效降低二极管的的反向恢复电荷。In the semiconductor device and its manufacturing method provided by the present application, the contact region 120 is formed at the same time as the body region 119 and the source region 121 are formed. After the contact hole is formed, ion implantation is not required to form the contact region 120 . The contact region 120 is formed by performing ion implantation in the hole. The method in this application can extend the conductive channel to the body region, and can effectively reduce the reverse recovery charge of the diode without adding process steps.

进一步地,形成接触区120的掩膜版可以沿用原工艺形成接触孔的掩膜版,不需要额外设计以及制作掩膜版,不会增加额外的成本。Further, the mask for forming the contact region 120 can follow the original process for forming the mask for the contact hole, without additional design and fabrication of the mask, and no additional cost will be added.

图4示出了本申请第二实施例的半导体器件的结构示意图,如图4所示,半导体器件200包括衬底201和位于其上的外延层211,衬底201为第一掺杂类型,于一实施例中为N型重掺杂。外延层211位于衬底201的第一表面上,外延层211相对于衬底201是轻掺杂。在衬底201的第二表面上形成漏极电极224。FIG. 4 shows a schematic structural diagram of a semiconductor device according to the second embodiment of the present application. As shown in FIG. 4, the semiconductor device 200 includes a substrate 201 and an epitaxial layer 211 thereon, and the substrate 201 is of the first doping type, In one embodiment, it is N-type heavily doped. The epitaxial layer 211 is located on the first surface of the substrate 201 , and the epitaxial layer 211 is lightly doped relative to the substrate 201 . A drain electrode 224 is formed on the second surface of the substrate 201 .

半导体器件200包括栅极导体218以及栅介质层2133,栅极导体218位于外延层211上方,栅介质层2133位于栅极导体218和外延层211之间,将栅极导体218和外延层211隔离。The semiconductor device 200 includes a gate conductor 218 and a gate dielectric layer 2133, the gate conductor 218 is located above the epitaxial layer 211, and the gate dielectric layer 2133 is located between the gate conductor 218 and the epitaxial layer 211 to isolate the gate conductor 218 from the epitaxial layer 211 .

半导体器件200包括在外延层211内形成的第二掺杂类型的体区219,在体区219中形成的第二掺杂类型的接触区220、在体区219中形成的第一掺杂类型的源区221、在源区221和栅极导体218上方形成的层间介质层222;在紧邻源区221处形成穿透层间介质层222、源区221以及接触区220到达体区219的导电通道225;在层间介质层222上方形成的源极电极223,源极电极223经由导电通道225连接至体区219。The semiconductor device 200 includes a body region 219 of the second doping type formed in the epitaxial layer 211, a contact region 220 of the second doping type formed in the body region 219, a contact region 220 of the first doping type formed in the body region 219 The source region 221, the interlayer dielectric layer 222 formed above the source region 221 and the gate conductor 218; The conductive channel 225 ; the source electrode 223 formed on the interlayer dielectric layer 222 , the source electrode 223 is connected to the body region 219 through the conductive channel 225 .

其中,本实施例中,形成体区、源区、漏区以及导电通道的方法与第一实施例相同,本实施例在此不再赘述。Wherein, in this embodiment, the method for forming the body region, the source region, the drain region, and the conductive channel is the same as that of the first embodiment, and will not be repeated in this embodiment.

值得注意的是,本申请中,半导体器件还可以为SiC MOSFET。It should be noted that in this application, the semiconductor device may also be a SiC MOSFET.

依照本申请的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。Embodiments according to the present application are described above, which do not describe all details in detail, nor do they limit the invention to the specific embodiments described. Obviously many modifications and variations are possible in light of the above description. This description selects and specifically describes these embodiments in order to better explain the principles and practical applications of the present application, so that those skilled in the art can make good use of the present application and its modifications based on the present application. This application is to be limited only by the claims, along with their full scope and equivalents.

Claims (10)

1. A method of fabricating a semiconductor structure, comprising:
providing an epitaxial layer;
forming a gate dielectric layer and a gate conductor, wherein the gate conductor and the epitaxial layer are isolated through the gate dielectric layer;
forming a body region inside the epitaxial layer;
forming a contact region and a source region inside the body region; and
forming a conductive channel through the source region and the contact region to the body region;
the bottom of the conductive channel is positioned in the body region, and the side wall is in contact with the contact region and the source region.
2. The method of claim 1, wherein forming the contact region comprises:
forming a second mask over the epitaxial layer and the gate conductor;
photoetching the second mask, and forming a second opening on the second mask;
and performing ion implantation on the body region through the second opening of the second mask to form the contact region.
3. The method of claim 2, wherein the width of the contact region is smaller than the width of the body region by controlling the width and position of the second opening.
4. The method of claim 2, wherein the doping concentration of the contact region is greater than the doping concentration of the body region by controlling parameters of ion implantation such that the depth of the contact region does not exceed the depth of the body region.
5. The method of claim 2, wherein forming the conductive via comprises:
forming a fourth mask over the epitaxial layer and the gate conductor;
photoetching the fourth mask, and forming a fourth opening on the second mask;
etching the epitaxial layer through the fourth opening to form a contact hole penetrating through the source region and the contact region and reaching the body region; and
and filling conductive materials in the contact holes to form the conductive channels.
6. The method of claim 5, wherein forming the second opening on the second mask and forming the second opening on the fourth mask uses the same reticle.
7. A trench MOSFET, comprising:
an epitaxial layer of a first doping type;
the grid electrode conductor is isolated from the epitaxial layer through the grid dielectric layer;
a body region located inside the epitaxial layer and adjacent to the trench;
a contact region and a source region located inside the body region; and
a conductive path through the source region and the contact region to the body region;
the bottom of the conductive channel is positioned in the body region, and the side wall is in contact with the contact region and the source region.
8. The trench MOSFET of claim 9, wherein a width of the contact region is less than a width of the body region.
9. The trench MOSFET of claim 9, wherein a depth of the contact region does not exceed a depth of the body region, a doping concentration of the contact region being greater than a doping concentration of the body region.
10. The trench MOSFET of claim 9, wherein the gate dielectric layer is over the epitaxial layer, and the gate conductor is over the gate dielectric layer and isolated from the epitaxial layer by the gate dielectric layer.
CN202310181951.2A 2023-02-20 2023-02-20 Semiconductor device and manufacturing method thereof Pending CN116230515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310181951.2A CN116230515A (en) 2023-02-20 2023-02-20 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310181951.2A CN116230515A (en) 2023-02-20 2023-02-20 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN116230515A true CN116230515A (en) 2023-06-06

Family

ID=86585407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310181951.2A Pending CN116230515A (en) 2023-02-20 2023-02-20 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN116230515A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100123188A1 (en) * 2008-11-14 2010-05-20 Prasad Venkatraman Semiconductor device having trench shield electrode structure
CN101719495A (en) * 2008-09-30 2010-06-02 英飞凌科技奥地利有限公司 Semiconductor device and manufacturing method thereof
JP2013008716A (en) * 2011-06-22 2013-01-10 Shindengen Electric Mfg Co Ltd Semiconductor device and manufacturing method of the same
US20200303507A1 (en) * 2018-05-08 2020-09-24 Ipower Semiconductor Shielded trench devices
US11469313B2 (en) * 2020-01-16 2022-10-11 Ipower Semiconductor Self-aligned trench MOSFET and IGBT structures and methods of fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719495A (en) * 2008-09-30 2010-06-02 英飞凌科技奥地利有限公司 Semiconductor device and manufacturing method thereof
US20100123188A1 (en) * 2008-11-14 2010-05-20 Prasad Venkatraman Semiconductor device having trench shield electrode structure
JP2013008716A (en) * 2011-06-22 2013-01-10 Shindengen Electric Mfg Co Ltd Semiconductor device and manufacturing method of the same
US20200303507A1 (en) * 2018-05-08 2020-09-24 Ipower Semiconductor Shielded trench devices
US11469313B2 (en) * 2020-01-16 2022-10-11 Ipower Semiconductor Self-aligned trench MOSFET and IGBT structures and methods of fabrication

Similar Documents

Publication Publication Date Title
CN107871787A (en) A method of manufacturing trench MOSFET
US11424344B2 (en) Trench MOSFET and method for manufacturing the same
CN111129152B (en) Trench MOSFET structure and manufacturing method
TWI761800B (en) Trench type MOSFET device manufacturing method
US12176432B2 (en) Trench-type MOSFET and method for manufacturing the same
US11563106B2 (en) Formation method of isolation feature of semiconductor device structure
US20230207685A1 (en) Split-gate mosfet and manufacturing method thereof
CN110993690A (en) Trench type MOSFET device and manufacturing method thereof
US9608060B2 (en) Isolation structure for semiconductor device
CN111834463A (en) Shielded gate trench MOSFET and preparation method thereof, and electronic device
CN111933529A (en) Manufacturing method and structure of trench type MOSFET
CN103779222A (en) MOSFET manufacturing method
CN116631858A (en) Gate structure of trench MOSFET and manufacturing method thereof, trench MOSFET
US20230207684A1 (en) Split-gate mosfet and manufacturing method thereof
US20220037522A1 (en) Trench mosfet and method for manufacturing the same
CN113206148B (en) Trench MOSFET and manufacturing method thereof
CN105489498A (en) Super-junction semiconductor device and manufacturing method thereof
US20240355925A1 (en) Gate-source structure and manufacturing method thereof, and asymmetric trench mosfet and manufacturing method thereof
US20240105792A1 (en) Trench mosfet and manufacturing method therefor
US20240128370A1 (en) Method for manufacturing trench mosfet
CN114068706A (en) Semiconductor structure and method of forming the same
CN116230515A (en) Semiconductor device and manufacturing method thereof
CN116092943B (en) A kind of air gap isolation structure of trench type MOSFET and its manufacturing method
US20250048673A1 (en) Trench mosfet and manufacturing method thereof
CN115966463B (en) Air gap isolation structure of trench MOSFET and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination