[go: up one dir, main page]

CN116444251A - 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法 - Google Patents

一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法 Download PDF

Info

Publication number
CN116444251A
CN116444251A CN202310353194.2A CN202310353194A CN116444251A CN 116444251 A CN116444251 A CN 116444251A CN 202310353194 A CN202310353194 A CN 202310353194A CN 116444251 A CN116444251 A CN 116444251A
Authority
CN
China
Prior art keywords
slurry
aluminum ash
secondary aluminum
foaming
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310353194.2A
Other languages
English (en)
Other versions
CN116444251B (zh
Inventor
张笑妍
李雯昊
张深根
杨君洁
李卓然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202310353194.2A priority Critical patent/CN116444251B/zh
Publication of CN116444251A publication Critical patent/CN116444251A/zh
Application granted granted Critical
Publication of CN116444251B publication Critical patent/CN116444251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/1305Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1355Incineration residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/16Lean materials, e.g. grog, quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/24Manufacture of porcelain or white ware
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于无机非金属材料技术领域,尤其涉及一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法。所述方法包括:将水、二次铝灰或二次铝灰和陶瓷粉体混合球磨,得到分散均匀的浆料;将所述浆料水浴加热,以使所述二次铝灰中的含Al活性成分充分水解,静置一段时间后加入疏水改性剂、粘结剂和消泡剂,进行机械搅拌发泡;将发泡后的浆料注模、脱模获得坯体,干燥、烧结得到多级孔陶瓷。本发明实现了危险固废二次铝灰的资源化利用,并且可与其它硅铝基固废协同利用,生成的坯体具有轻质高强、均匀连通孔结构的特点,所得多级孔陶瓷综合性能优异,具有低成本、工艺简单、可调控性强、无需高昂设备、易于工业化生产的特点。

Description

一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法
技术领域
本发明属于无机非金属材料技术领域,尤其涉及一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法。
背景技术
铝灰是指铝工业生产过程中产生废渣,其主要成分包括金属Al、AlN、Al2O3、SiO2、CaO、MgO等。随着我国铝工业生产规模的不断扩大,铝灰的产量也不断增加。铝灰分为一次铝灰和二次铝灰,二次铝灰为一次铝灰提取金属铝后的废弃物,其主要成分包括金属铝(5-20wt.%)、氧化铝(30-60wt.%)、AlN(10-30wt.%)和一些盐类(5-15wt.%)等。目前,二次铝灰的处理主要包括堆存、填埋和资源化利用等途径,但普遍存在处置率低、占用土地资源、危害空气及地下水等一系列环境问题,亟需一种绿色资源化利用方式以改善环境,同时为新产品开发提供有效途径。
目前,无害处理后的二次铝灰可用来制备水泥、陶瓷、耐火材料、聚合氯化铝、发泡保温砖、普通建筑砖、人造石砖等产品。多孔陶瓷因具有体积密度低、比表面积高、导热系数低、耐高温、耐腐蚀等特点,在催化过滤、生物支架、保温隔热、轻质结构部件等方面具有广泛的应用。宏孔具有优异的通透性,但是会使材料的脆性大,强度低。微孔可以增加材料的比表面积,使得在吸附,催化领域得到应用。多级孔陶瓷因其整合了多种孔结构带来的优势,实现了同等体积功能最大化,成为了多孔陶瓷发展趋势。目前常用方法需对二次铝灰进行除盐除氮预处理,防止AlN和Al等活性成分发生水解反应。
中国专利CN109704722A公开了一种用铝灰制备泡沫陶瓷浆料的方法,以铝灰为主要原料,通过添加辅助原料、增塑剂、粘结剂、流变剂、分散剂等,制备出的泡沫陶瓷浆料具有良好的稳定性和触变性,操作简单方便,工艺流程环保无污染,适合于有机泡沫体浸渍法制备泡沫陶瓷,其成型方式为将有机泡沫体浸渍到浆料中,经挤压干燥后成型,最后经高温脱除模板制得陶瓷。但是该方法侧重无气泡浆料制备,泡沫陶瓷孔结构理论上来自于有机泡沫模板,无制备陶瓷的实施例,缺乏实际的论证。
中国专利CN109970456A公开了一种铝灰渣回收及再利用方法,通过对铝灰渣进行辊压研磨,并通过磁选的方法分离出铁杂质和金属铝,得到二次铝灰,对二次铝灰进行水洗后添加一定比例的高岭土、膨润土及滑石混合得到湿磨化浆料,进一步添加稳定剂和表面活性剂制备浆料,从而得到泡沫陶瓷。但是该发明成孔方式为有机模板法,且需要水洗除氟等复杂步骤,成本较高。
中国专利CN113735611A公开了一种铝灰渣高温自发泡制备低收缩多孔陶瓷的方法,以二次铝灰渣为主要原料,对其进行喷雾造粒、干压成型、高温烧结最终得到低收缩多孔陶瓷材料。该工艺过程简便易行,免去复杂的除盐除氮过程,利用其高温膨胀抵消了烧结产生的收缩。其成孔方式仅依靠高温下的含Al活性成分发生氧化反应产生气体,坯体为干压成型密实件。相较本专利,该方法所得孔结构单一,制备的多孔陶瓷体积密度较高,且难以制备高气孔率产品。其干压成型方式要求模具形状较为单一,难以制备复杂精细的坯体,同时单向加压使得压力分布不均匀易导致样品发生收缩开裂。
中国专利CN113563102A公开了一种含铝灰渣水基浆料原位固化成型制备多孔陶瓷的方法,通过在铝灰渣或铝灰渣和陶瓷粉体的混合物中,加入分散剂、粘结剂、烧结助剂和水,混合均匀得到固液混合相浆料,然后加热固化、脱模、干燥烧结得到多孔陶瓷。其成孔机理是利用含Al活性成分水解产生气体,另外含Al活性成分在高温烧结中产生化学反应生成气体作为成孔源。
发明内容
针对上述技术问题,本发明提供一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法。该方法通过引入疏水改性剂,经过机械搅拌工艺进行发泡获得微米级孔结构,进一步结合二次铝灰中的含Al活性成分的常温水解过程产生氢氧化铝溶胶增强坯体,同时产生气体获得孔壁开孔结构,进一步烧结发生高温氧化反应得到多级孔陶瓷。
本发明采用的技术方案为:
一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,所述方法包括:
将水、二次铝灰或二次铝灰和陶瓷粉体混合球磨,得到分散均匀的浆料;
将所述浆料水浴加热,通过控制水浴的温度以及水浴时间以使所述二次铝灰中的含Al活性成分部分水解,静置一段时间后加入疏水改性剂、粘结剂和消泡剂,进行机械搅拌发泡;
将发泡后的浆料注模、脱模获得坯体,干燥、烧结得到多级孔陶瓷。
进一步地,在所述球磨和所述水浴加热的过程中,部分所述含Al活性成分发生水解反应,生成氢氧化铝溶胶和气体;
生成的所述氢氧化铝溶胶通过凝胶反应促进稳定泡沫的形成并增加坯体强度;
通过加入所述疏水改性剂、粘结剂和消泡剂,结合机械搅拌进行发泡获得微米级宏孔;
生成的所述气体使得坯体在干燥过程中形成微孔,且在所述球磨和所述水浴加热的过程中未水解的含Al活性成分在所述烧结过程中发生高温氧化反应形成微孔。
其中疏水改性剂使未水解的粉体表面性质由亲水性变为部分疏水性,使其能够形成稳定泡沫。粘结剂主要用来增加粉体之间的粘结性,进而增强坯体的强度,消泡剂用来消除多余的泡沫,使得泡沫达到可以注模的程度。通过机械搅拌方式引入空气,添加粘结剂可以包裹气体形成稳定泡沫从而有助于伴随的常温水解反应形成开孔结构。
进一步地,制得的所述多级孔陶瓷的气孔率为20%-99%、烧结收缩率为-10%-10%、抗压强度为0.1-100MPa;
在所述机械搅拌过程中,搅拌的速度为1000-2000rpm,搅拌时间为10-120min;
机械搅拌发泡得到的所述微米级宏孔的孔径为50-500μm,水解气体或高温氧化反应对应产生的微孔的孔径为0.01-50μm。
进一步地,所述二次铝灰的平均粒径为0.1-30μm;
二次铝灰中的所述含Al活性成分包括:单质铝、氮化铝AlN、碳化铝Al4C3、磷化铝AlP中的一种或几种。
二次铝灰中,各种含Al活性成分的质量百分比分别为:单质铝5-20wt.%、氮化铝AlN 10-30wt.%、碳化铝Al4C3小于5wt.%、磷化铝AlP小于5wt.%;
具体地,在所述球磨和所述水浴加热的过程中,上述含Al活性成分发生水解反应,单质铝对应生成氢氧化铝溶胶和氢气,AlN对应生成氢氧化铝溶胶和氨气,Al4C3对应生成氢氧化铝溶胶和CH4,AlP对应生成氢氧化铝溶胶和PH3;相应的反应式为:
2Al(s)+4H2O(l)→2AlOOH(amorphous)+3H2(g);
AlN(s)+2H2O(l)→AlOOH(amorphous)+NH3(g);
Al4C3(s)+12H2O(l)→4Al(OH)3(s)+3CH4(g);
AlP(s)+3H2O(l)→Al(OH)3(s)+PH3(g)。
进一步地,所述浆料中固相含量为5-80wt.%;所述浆料中的固体为二次铝灰或二次铝灰和陶瓷粉体的混合物,二次铝灰占浆料中的固体总质量的10-100wt.%,余量为陶瓷粉体。
进一步地,所述陶瓷粉体为无机非金属材料粉体,包括纯陶瓷粉体和/或无机非金属固废粉体;所述纯陶瓷粉体包括氧化铝、石英粉体、高岭土、粘土、莫来石粉体,所述无机非金属固废粉体包括粉煤灰、煤矸石、尾矿、冶金渣、垃圾焚烧灰渣或废玻璃中的一种或几种。
进一步地,所述水浴加热过程中水浴温度为30-95℃,加热时间为5min-48h;
所述静置的过程为室温静置,时间为5min-14d。
进一步地,所述疏水改性剂为十二烷基硫酸钠、椰油酰胺基甜菜碱、脂肪酸、氧化聚乙烯、丙酸、乙酸、丁酸、戊酸、十二烷基磺酸钠、十二烷基苯磺酸钠、α-烯基磺酸钠、十六烷基三甲基氯化铵、十六烷基三甲基溴化铵、己胺、吐温20、吐温40、吐温80、没食子酸丙酯、没食子酸辛酯中的一种或几种,所述疏水改性剂的添加量占浆料中固体总质量的0.01wt.%-10.00wt.%;
进一步地,所述粘结剂为聚乙烯醇、聚乙烯醇缩丁醛、羧甲基纤维素钠、硅溶胶、硬脂酸、甘油、聚丙烯、磷酸铝(Lithopix P15)中的一种或几种,所述粘结剂加入量占浆料中固体总质量的0.01-10.00wt.%。
所述消泡剂为烷基聚烯化乙二醇醚(Contraspum K 1012)、聚二甲基硅氧烷、乙醇、脂肪酸酯、聚醚改性硅、二甲基硅油中的一种或几种,所述消泡剂加入量占浆料中固体总质量的0.01-10.00wt.%。
进一步地,所述烧结的过程中烧结温度为800-1900℃,保温5min-24h;通过控制变量改变单一烧结参数进行了实验,实验表明如果超出该范围,比如烧结温度过高或者过低,则得到的产品会出现完全致密化或者未烧成陶瓷。
本发明有益技术效果:
(1)本发明提供的方法通过机械搅拌工艺结合疏水改性剂、粘结剂、消泡剂获得微米级宏孔结构(50-500μm);然后利用含Al活性成分水解过程产生气体获得孔壁开孔结构(0.01-50μm微孔),孔壁开孔结构是指宏孔内壁的孔结构;进一步利用烧结发生高温氧化反应产生获得孔壁中孔结构(0.01-50μm微孔),成型方式主要依赖自然干燥。其中,孔壁中孔结构是指宏孔周围或者内壁的微孔结构。
(2)本发明提供的方法充分利用了二次铝灰的含Al活性成分特点,利用其水解生成氢氧化铝溶胶及气体的特性,其中生成的氢氧化铝溶胶能够将原料成分中的陶瓷颗粒固定其中,覆盖在陶瓷颗粒表面,形成凝胶进而增加坯体强度;水解过程产生的气体能够用于使坯体在干燥过程中形成孔壁开孔结构(0.01-50μm微孔);最终制得综合性能优异的多级孔陶瓷。
(3)通过本发明方法制备获得的多级孔陶瓷产品具有轻质高强、均匀连通孔结构的特点,所得多级孔陶瓷综合性能优异,具有低成本、工艺简单、可调控性强、无需高昂设备、易于工业化生产的特点;有望用作隔热材料、过滤材料、催化剂载体以及轻质结构件等。
(4)本发明实现了危险固废二次铝灰的资源化利用,并且可与其它硅铝基固废协同利用,为固废的循环利用提供了一种新的思路,并且能够协同处理多种固体废弃物,有利于固废的高值化利用。
(5)与中国专利CN109704722A相比,本发明提供的方法通过控制水浴的温度及时间使得部分含铝活性成分发生水解,生成的氢氧化铝溶胶可以相互交联,进一步注模干燥成型,水解过程及高温烧结过程含铝活性成分均发生反应形成气孔。
(6)与中国专利CN113563102A相比,本发明提供的方法在发泡成型过程中,机械搅拌发泡为坯体孔结构主要来源,而非含铝活性成分的水解生成气体。由于机械搅拌发泡、注模、脱模成型过程时间较短,搅拌所得坯体的孔洞已经形成,而常温水解反应伴随以上阶段缓慢进行,只能起到在坯体孔壁上形成开孔结构的作用,而非采用水浴加热加速水解生成气孔。本发明更适宜制备高气孔率、开孔结构多级孔陶瓷,且生产周期较短。
附图说明
图1为本发明实施例中一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法的流程图。
图2为本发明实施例1中所得素坯(干燥后坯体)断口SEM图。
图3为本发明实施例1中所得多级孔陶瓷断口SEM图。
图4为本发明实施例1中所得多级孔陶瓷XRD图。
具体实施方式
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。
以下结合附图1-4和具体实施例对本发明作进一步的详细说明:
实施例1
本实施例提供一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,如图1所示,所述方法包括:
(1)将平均粒径为5μm的二次铝灰、水混合一起进行球磨搅拌,得到分散均匀的浆料;浆料中固相含量为30wt.%;
(2)将球磨好的浆料放在水浴锅里加热水解,水解温度为70℃,保温3h,水浴后将浆料室温静置24h;
(3)将静置后的浆料加入疏水改性剂椰油酰胺基甜菜碱、粘结剂聚乙烯醇和消泡剂乙醇,之后用搅拌机进行机械搅拌;
所述疏水改性剂的添加量占浆料中固体总质量的10.00wt.%;所述粘结剂加入量占浆料中固体总质量的0.05wt.%;所述消泡剂加入量占浆料中固体总质量的1.00wt.%;所述机械搅拌的转速为2000rpm,搅拌30min;
(4)将搅拌好的泡沫浆料注入模具中,脱模得到坯体,将坯体静置、干燥得到干燥的坯体,干燥后坯体断口SEM图如图2所示;
(5)将干燥的坯体在高温下烧结,在1400℃保温1h烧结得到具有孔分布均匀的多级孔陶瓷,其气孔率为90%,烧结收缩率为11.8%,抗压强度为10MPa;机械搅拌发泡所得宏孔平均孔径为150μm,水解气体或高温氧化反应对应产生的微孔平均孔径为25μm,本实施例中多级孔陶瓷断口SEM图如图3所示;XRD图如图4所示。
实施例2
本实施例提供一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,所述方法包括:
(1)将平均粒径为10μm的二次铝灰、氧化铝、和水混合一起进行球磨搅拌,得到分散均匀的浆料;浆料中固相含量为80wt.%,其中二次铝灰占浆料中的固体总质量的10wt.%;
(2)将球磨好的浆料放在水浴锅里加热水解,水解温度为90℃,保温6h,水浴后将浆料室温静置14d;
(3)将静置后的浆料加入疏水改性剂戊酸、粘结剂聚乙烯醇缩丁醛和消泡剂Contraspum K 1012,之后用搅拌机进行机械搅拌;
所述疏水改性剂的添加量占浆料中固体总质量的0.05wt.%;所述粘结剂加入量占浆料中固体总质量的10.00wt.%;所述消泡剂加入量占浆料中固体总质量的2wt.%;所述机械搅拌的转速为1500rpm,搅拌40min;
(4)将搅拌好的泡沫浆料注入模具中,脱模得到坯体,将坯体静置、干燥得到干燥的坯体;
(5)将干燥的坯体在高温下烧结,在1600℃保温5min烧结得到具有孔分布均匀的多级孔陶瓷,其气孔率为50%,烧结收缩率为-10%,抗压强度为75MPa;机械搅拌发泡所得宏孔平均孔径为80μm,水解气体或高温氧化反应对应产生的微孔平均孔径为0.01μm。
实施例3
本实施例提供一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,所述方法包括:
(1)将平均粒径为30μm的二次铝灰、煤矸石、和水混合一起进行球磨搅拌,得到分散均匀的浆料;浆料中固相含量为5wt.%,其中二次铝灰占浆料中的固体总质量的80wt.%;
(2)将球磨好的浆料放在水浴锅里加热水解,水解温度为95℃,保温5min,水浴后将浆料室温静置5min;
(3)将静置后的浆料加入疏水改性剂α-烯基磺酸钠、粘结剂硅溶胶和消泡剂二甲基硅油,之后用搅拌机进行机械搅拌;
所述疏水改性剂的添加量占浆料中固体总质量的5.00wt.%;所述粘结剂加入量占浆料中固体总质量的0.01wt.%;所述消泡剂加入量占浆料中固体总质量的10.00wt.%;所述机械搅拌的转速为1000rpm,搅拌10min;
(4)将搅拌好的泡沫浆料注入模具中,脱模得到坯体,将坯体静置、干燥得到干燥的坯体;
(5)将干燥的坯体在高温下烧结,在1200℃保温3h烧结得到具有孔分布均匀的多级孔陶瓷,其气孔率为60%,烧结收缩率为10%,抗压强度为40MPa;机械搅拌发泡所得宏孔平均孔径为500μm,水解气体或高温氧化反应对应产生的微孔平均孔径为50μm。
实施例4
本实施例提供一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,所述方法包括:
(1)将平均粒径为0.1μm的二次铝灰、废玻璃、和水混合一起进行球磨搅拌,得到分散均匀的浆料;浆料中固相含量为60wt.%,其中二次铝灰占浆料中的固体总质量的20wt.%;
(2)将球磨好的浆料放在水浴锅里加热水解,水解温度为30℃,保温48h,水浴后将浆料室温静置7h;
(3)将静置后的浆料加入疏水改性剂十二烷基磺酸钠、粘结剂Lithopix P15和消泡剂脂肪酸酯,之后用搅拌机进行机械搅拌;
所述疏水改性剂的添加量占浆料中固体总质量的9.50wt.%;所述粘结剂加入量占浆料中固体总质量的0.05wt.%;所述消泡剂加入量占浆料中固体总质量的0.50wt.%;所述机械搅拌的转速为1600rpm,搅拌50min;
(4)将搅拌好的泡沫浆料注入模具中,脱模得到坯体,将坯体静置、干燥得到干燥的坯体;
(5)将干燥的坯体在高温下烧结,在800℃保温6h烧结得到具有孔分布均匀的多级孔陶瓷,其气孔率为99%,烧结收缩率为-6%,抗压强度为0.5MPa;机械搅拌发泡所得宏孔平均孔径为200μm,水解气体或高温氧化反应对应产生的微孔平均孔径为3μm。
实施例5
本实施例提供一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,所述方法包括:
(1)将平均粒径为1μm的二次铝灰、冶金渣、和水混合一起进行球磨搅拌,得到分散均匀的浆料;浆料中固相含量为70wt.%,其中二次铝灰占浆料中的固体总质量的15wt.%;
(2)将球磨好的浆料放在水浴锅里加热水解,水解温度为85℃,保温5h,水浴后将浆料室温静置10h;
(3)将静置后的浆料加入疏水改性剂吐温20、粘结剂硬脂酸和消泡剂聚醚改性硅,之后用搅拌机进行机械搅拌;
所述疏水改性剂的添加量占浆料中固体总质量的6.50wt.%;所述粘结剂加入量占浆料中固体总质量的8.50wt.%;所述消泡剂加入量占浆料中固体总质量的0.01wt.%;所述机械搅拌的转速为1500rpm,搅拌120min;
(4)将搅拌好的泡沫浆料注入模具中,脱模得到坯体,将坯体静置、干燥得到干燥的坯体;
(5)将干燥的坯体在高温下烧结,在1900℃保温10h烧结得到具有孔分布均匀的多级孔陶瓷,其气孔率为20%,烧结收缩率为-8%,抗压强度为100MPa;机械搅拌发泡所得宏孔平均孔径为50μm,水解气体或高温氧化反应对应产生的微孔平均孔径为0.5μm。
实施例6
本实施例提供一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,所述方法包括:
(1)将平均粒径为2μm的二次铝灰、粘土、和水混合一起进行球磨搅拌,得到分散均匀的浆料;浆料中固相含量为40wt.%,其中二次铝灰占浆料中的固体总质量的60wt.%;
(2)将球磨好的浆料放在水浴锅里加热水解,水解温度为40℃,保温1h,水浴后将浆料室温静置9d;
(3)将静置后的浆料加入疏水改性剂没食子酸丙酯、粘结剂甘油和消泡剂聚醚改性聚硅氧烷,之后用搅拌机进行机械搅拌;
所述疏水改性剂的添加量占浆料中固体总质量的0.01wt.%;所述粘结剂加入量占浆料中固体总质量的3.00wt.%;所述消泡剂加入量占浆料中固体总质量的5.00wt.%;所述机械搅拌的转速为1400rpm,搅拌65min;
(4)将搅拌好的泡沫浆料注入模具中,脱模得到坯体,将坯体静置、干燥得到干燥的坯体;
(5)将干燥的坯体在高温下烧结,在1300℃保温24h烧结得到具有孔分布均匀的多级孔陶瓷,其气孔率为53%,烧结收缩率为3.5%,抗压强度为52MPa;机械搅拌发泡所得宏孔平均孔径为97μm,水解气体或高温氧化反应对应产生的微孔平均孔径为25μm。
本发明对浆料固相含量对产品的影响进行研究,分别设置浆料中二次铝灰的含量为20wt.%、30wt.%、40wt.%、50wt.%,其他参数同实施例1,所得结果如表1所示。由于二次铝灰添加量的升高,生成的氢氧化铝溶胶增多,由于氢氧化铝的互相交联使得粘度增加,包裹气孔尺寸减小从而宏孔尺寸减少。由于粘度增加使得微孔尺寸减小,但是随着固相含量增加,含铝活性成分增加,微孔尺寸又呈现增大的趋势。产品的烧结线收缩率和开气孔率减小,抗压强度增大。
表1.不同固相含量对产品性能的影响
本发明对搅拌过程中粘结剂的添加量进行研究,分别设置粘结剂的含量为占浆料中固体总质量的0.01wt.%、1.00wt.%、5wt.%、10wt.%,其他参数同实施例1,所得结果如表2所示。由于粘结剂能够增加浆料的粘度,使得包裹的气泡尺寸减小,由此形成的宏孔和微孔尺寸呈减小趋势,粘结剂的增加使得坯体的抗压强度增加,烧结线收缩率减小。
表2.不同粘结剂的含量对产品性能的影响
本发明对水浴温度进行研究,分别设置水浴温度为30℃、60℃、90℃,其他参数同实施例1,所得结果如下表3所示。由于水浴温度的升高使得浆料中含铝活性成分水解加快,浆料中氢氧化铝的含量增加,氢氧化铝交联效果使得粘度增加,包裹气体尺寸减小,使得产生的宏孔尺寸减小,剩余的含铝活性成分减小,使得微孔成减小趋势。剩余含铝活性组分的减少使得高温反应物质减少,使得烧结线收缩率增加,开气孔率减小,抗压强度增加。
表3.不同水浴温度对产品性能的影响
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明,任何本领域技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,所述方法包括:
将水、二次铝灰或二次铝灰和陶瓷粉体混合球磨,得到分散均匀的浆料;
将所述浆料水浴加热,通过控制水浴的温度以及水浴时间以使所述二次铝灰中的含Al活性成分部分水解,静置一段时间后加入疏水改性剂、粘结剂和消泡剂,进行机械搅拌发泡;
将发泡后的浆料注模、脱模获得坯体,干燥、烧结得到多级孔陶瓷。
2.根据权利要求1所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,在所述球磨和所述水浴加热的过程中,部分所述含Al活性成分发生水解反应,生成氢氧化铝溶胶和气体;
生成的所述氢氧化铝溶胶通过凝胶反应促进稳定泡沫的形成并增加坯体强度;
通过加入所述疏水改性剂、粘结剂和消泡剂,结合机械搅拌进行发泡获得微米级宏孔;
生成的所述气体使得坯体在干燥过程中形成微孔,且在所述球磨和所述水浴加热的过程中未水解的含Al活性成分在所述烧结过程中发生高温氧化反应形成微孔。
3.根据权利要求2所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,制得的所述多级孔陶瓷的气孔率为20%-99%、烧结收缩率为-10%-10%、抗压强度为0.1-100MPa。
4.根据权利要求1所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,在所述机械搅拌过程中,搅拌的速度为1000-2000rpm,搅拌时间为10-120min;
机械搅拌发泡得到的所述微米级宏孔的孔径为50-500μm,水解气体或高温氧化反应过程产生的所述微孔的孔径为0.01-50μm。
5.根据权利要求1所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,所述二次铝灰的平均粒径为0.1-30μm;二次铝灰中的所述含Al活性成分包括:单质铝、氮化铝AlN、碳化铝Al4C3、磷化铝AlP中的一种或几种。
6.根据权利要求1所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,所述浆料中固相含量为5-80wt.%;所述浆料中的固体为二次铝灰或二次铝灰和陶瓷粉体的混合物,二次铝灰占浆料中的固体总质量的10-100wt.%,余量为陶瓷粉体;
所述陶瓷粉体为无机非金属材料粉体,包括纯陶瓷粉体和/或无机非金属固废粉体;所述纯陶瓷粉体包括氧化铝、石英粉体、高岭土、粘土、莫来石粉体中的一种或几种,所述无机非金属固废粉体包括粉煤灰、煤矸石、尾矿、冶金渣、垃圾焚烧灰渣或废玻璃中的一种或几种。
7.根据权利要求1所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,所述水浴加热过程中水浴温度为30-95℃,加热时间为5min-48h;
所述静置的过程为室温静置,时间为5min-14d。
8.根据权利要求1所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,所述疏水改性剂为十二烷基硫酸钠、椰油酰胺基甜菜碱、脂肪酸、氧化聚乙烯、丙酸、乙酸、丁酸、戊酸、十二烷基磺酸钠、十二烷基苯磺酸钠、α-烯基磺酸钠、十六烷基三甲基氯化铵、十六烷基三甲基溴化铵、己胺、吐温20、吐温40、吐温80、没食子酸丙酯、没食子酸辛酯中的一种或几种,所述疏水改性剂的添加量占浆料中固体总质量的0.01wt.%-10.00wt.%。
9.根据权利要求1所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,所述粘结剂为聚乙烯醇、聚乙烯醇缩丁醛、羧甲基纤维素钠、硅溶胶、硬脂酸、甘油、聚丙烯、磷酸铝、中的一种或几种,所述粘结剂加入量占浆料中固体总质量的0.01-10.00wt.%;
所述消泡剂为烷基聚烯化乙二醇醚、聚二甲基硅氧烷、乙醇、脂肪酸酯、聚醚改性硅、二甲基硅油中的一种或几种,所述消泡剂加入量占浆料中固体总质量的0.01-10.00wt.%。
10.根据权利要求1所述一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法,其特征在于,所述烧结的过程中烧结温度为800-1900℃,保温5min-24h。
CN202310353194.2A 2023-04-04 2023-04-04 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法 Active CN116444251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310353194.2A CN116444251B (zh) 2023-04-04 2023-04-04 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310353194.2A CN116444251B (zh) 2023-04-04 2023-04-04 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法

Publications (2)

Publication Number Publication Date
CN116444251A true CN116444251A (zh) 2023-07-18
CN116444251B CN116444251B (zh) 2025-02-11

Family

ID=87126451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310353194.2A Active CN116444251B (zh) 2023-04-04 2023-04-04 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法

Country Status (1)

Country Link
CN (1) CN116444251B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164269A (zh) * 2023-08-14 2023-12-05 华新水泥股份有限公司 一种基于二次铝灰的碳化增强材料及利用其制备的碳化加气混凝土
CN119039021A (zh) * 2024-08-23 2024-11-29 江苏瑞复达高温新材料股份有限公司 一种铝工业用低膨胀结构陶瓷及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010056771A (ko) * 1999-12-16 2001-07-04 박재구 포말법에 의한 다공질 세라믹스의 제조방법
CN103910520A (zh) * 2013-09-27 2014-07-09 郑州大学 一种氧化铝多孔陶瓷的制备方法
CN106316456A (zh) * 2016-08-12 2017-01-11 中国科学院上海硅酸盐研究所 一种疏水絮凝制备泡沫陶瓷的方法
CN106673703A (zh) * 2016-11-29 2017-05-17 清华大学 一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法
CN107010964A (zh) * 2017-05-18 2017-08-04 清华大学 一种增强超轻泡沫陶瓷坯体强度的方法
CN108484006A (zh) * 2018-03-09 2018-09-04 清华大学 一种与气凝胶媲美的多级孔氧化铝泡沫陶瓷的制备方法
CN113173802A (zh) * 2021-06-16 2021-07-27 江苏东台超凡创新新材料科技有限公司 一种利用二次铝灰制备多孔莫来石砖的方法
CN113563102A (zh) * 2021-08-23 2021-10-29 北京科技大学 一种含铝灰渣水基浆料原位固化成型制备多孔陶瓷的方法
CN113735611A (zh) * 2021-09-26 2021-12-03 北京科技大学 一种铝灰渣高温自发泡制备低收缩多孔陶瓷的方法
CN115028367A (zh) * 2022-05-25 2022-09-09 北京科技大学 一种二次铝灰渣制备泡沫微晶玻璃的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010056771A (ko) * 1999-12-16 2001-07-04 박재구 포말법에 의한 다공질 세라믹스의 제조방법
CN103910520A (zh) * 2013-09-27 2014-07-09 郑州大学 一种氧化铝多孔陶瓷的制备方法
CN106316456A (zh) * 2016-08-12 2017-01-11 中国科学院上海硅酸盐研究所 一种疏水絮凝制备泡沫陶瓷的方法
CN106673703A (zh) * 2016-11-29 2017-05-17 清华大学 一种轻质高强氧化锆增强氧化铝多孔陶瓷的制备方法
CN107010964A (zh) * 2017-05-18 2017-08-04 清华大学 一种增强超轻泡沫陶瓷坯体强度的方法
CN108484006A (zh) * 2018-03-09 2018-09-04 清华大学 一种与气凝胶媲美的多级孔氧化铝泡沫陶瓷的制备方法
CN113173802A (zh) * 2021-06-16 2021-07-27 江苏东台超凡创新新材料科技有限公司 一种利用二次铝灰制备多孔莫来石砖的方法
CN113563102A (zh) * 2021-08-23 2021-10-29 北京科技大学 一种含铝灰渣水基浆料原位固化成型制备多孔陶瓷的方法
CN113735611A (zh) * 2021-09-26 2021-12-03 北京科技大学 一种铝灰渣高温自发泡制备低收缩多孔陶瓷的方法
CN115028367A (zh) * 2022-05-25 2022-09-09 北京科技大学 一种二次铝灰渣制备泡沫微晶玻璃的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164269A (zh) * 2023-08-14 2023-12-05 华新水泥股份有限公司 一种基于二次铝灰的碳化增强材料及利用其制备的碳化加气混凝土
CN119039021A (zh) * 2024-08-23 2024-11-29 江苏瑞复达高温新材料股份有限公司 一种铝工业用低膨胀结构陶瓷及其制备方法

Also Published As

Publication number Publication date
CN116444251B (zh) 2025-02-11

Similar Documents

Publication Publication Date Title
Zhu et al. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al 2 O 3
Yuan et al. Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process
CN113563102B (zh) 一种含铝灰渣水基浆料原位固化成型制备多孔陶瓷的方法
CN101492276B (zh) 一种粘土类多孔材料及其制备方法
CN116444251A (zh) 一种二次铝灰水基浆料发泡制备多级孔陶瓷的方法
CN104003753B (zh) 一种超轻分级阵列孔泡沫材料的制备方法
Du et al. Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics
CN107200597B (zh) 一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法
CN112334429A (zh) 使用可持续材料的颗粒稳定的泡沫
Yang et al. Fabrication of porous Al 2 O 3 ceramics by rapid gelation and mechanical foaming
CN106830989A (zh) 一种泡沫注凝成形‑低温烧结制备铁尾矿多孔陶瓷的方法
EP0344284A1 (en) POROUS CERAMIC FORMS, COMPOSITIONS FOR THEIR PREPARATION AND PROCESS FOR PRODUCING THE SAME.
Huang et al. Porous ceramic membranes from coal fly ash with addition of various pore-forming agents for oil-in-water emulsion separation
CN108467258A (zh) 一种利用粉煤灰制备的贯通气孔多孔陶瓷及其制备方法
Dong et al. Fabrication of porous SiC/calcium hexaluminate composites
CN104529461A (zh) 一种碳化硅泡沫陶瓷及其制备方法
Fan et al. Preparation and microstructure evolution of novel ultra-low thermal conductivity calcium silicate-based ceramic foams
Liu et al. Ultralight and mechanically robust SiC foams with interconnected cellular architecture
CN108558361A (zh) 用粉煤灰、电石渣制备的气孔率可调多孔陶瓷及制备方法
CN105565812A (zh) 一种Sialon结合SiC多孔材料的制备方法
CN108083811B (zh) 一种双梯度多孔陶瓷材料及其制备方法
CN113582699B (zh) 一种低粘度、高固含量的陶瓷浆料及其制备方法
Deng et al. Fabrication of porous ceramics by direct foaming
CN115028367A (zh) 一种二次铝灰渣制备泡沫微晶玻璃的方法
CN102976758A (zh) 一种大孔互联SiC陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant