[go: up one dir, main page]

CN116414212B - Core particle and control method for core particle - Google Patents

Core particle and control method for core particle Download PDF

Info

Publication number
CN116414212B
CN116414212B CN202310397447.6A CN202310397447A CN116414212B CN 116414212 B CN116414212 B CN 116414212B CN 202310397447 A CN202310397447 A CN 202310397447A CN 116414212 B CN116414212 B CN 116414212B
Authority
CN
China
Prior art keywords
module
message
data
sub
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310397447.6A
Other languages
Chinese (zh)
Other versions
CN116414212A (en
Inventor
陈佰儒
刘勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hygon Information Technology Co Ltd
Original Assignee
Hygon Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hygon Information Technology Co Ltd filed Critical Hygon Information Technology Co Ltd
Priority to CN202310397447.6A priority Critical patent/CN116414212B/en
Publication of CN116414212A publication Critical patent/CN116414212A/en
Application granted granted Critical
Publication of CN116414212B publication Critical patent/CN116414212B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3237Power saving characterised by the action undertaken by disabling clock generation or distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Communication Control (AREA)

Abstract

本公开涉及一种芯粒及芯粒的控制方法。该芯粒包括物理层功能模块和第一物理层接口模块,物理层功能模块包括发送状态机子模块、数据报文发送子模块和控制报文发送子模块。数据报文发送子模块配置为提供第一数据报文,控制报文发送子模块配置为提供第一状态进入报文,发送状态机子模块配置为控制物理层功能模块由向第一物理层接口模块提供第一数据报文切换为向第一物理层接口模块提供第一状态进入报文,使第一物理层接口模块由通过物理链路向另一芯粒提供第一数据报文切换为通过物理链路向另一芯粒提供第一状态进入报文,以及控制第一物理层接口模块由工作状态进入低功耗状态。该芯片不需要使用额外的管脚来控制第一物理层接口模块进入低功耗状态。

The present disclosure relates to a core particle and a method for controlling the core particle. The core particle includes a physical layer function module and a first physical layer interface module. The physical layer function module includes a sending state machine sub-module, a data message sending sub-module and a control message sending sub-module. The data message sending sub-module is configured to provide the first data message, the control message sending sub-module is configured to provide the first state entry message, and the sending state machine sub-module is configured to control the physical layer function module to the first physical layer interface module Providing the first data message is switched to providing the first state entry message to the first physical layer interface module, so that the first physical layer interface module switches from providing the first data message to another core through the physical link to providing the first data message through the physical link. The link provides a first state entry message to another core particle, and controls the first physical layer interface module to enter a low power consumption state from a working state. The chip does not require the use of additional pins to control the first physical layer interface module into a low-power state.

Description

芯粒以及芯粒的控制方法Core particles and core particle control methods

技术领域Technical field

本公开的实施例涉及一种芯粒以及芯粒的控制方法。Embodiments of the present disclosure relate to a core particle and a method for controlling the core particle.

背景技术Background technique

Chiplet也称“芯粒”或“小芯片”。芯粒技术是将一个功能丰富且面积较大的芯片硅片(die)拆分成多个芯粒。这些预先生产好的、能实现特定功能的芯粒组合在一起,通过先进封装的形式(比如3D封装)被集成封装在一起即可组成一个系统芯片。Chiplet is also called "core particle" or "small chip". Chip technology is to split a feature-rich and large-area chip die into multiple chips. These pre-produced core chips that can achieve specific functions are combined and integrated and packaged through advanced packaging (such as 3D packaging) to form a system chip.

芯粒之间高速互联,是芯粒技术落地的关键技术。芯片设计公司在设计芯粒之间的互联接口时,需要考虑提高数据吞吐量,降低延迟和码率,同时,需要降低芯片互联的整体功耗。High-speed interconnection between core particles is a key technology for the implementation of core particle technology. When designing the interconnection interface between chips, chip design companies need to consider improving data throughput, reducing latency and bit rate, and at the same time, they need to reduce the overall power consumption of the chip interconnection.

发明内容Contents of the invention

本公开至少一个实施例提供一种芯粒,包括物理层功能模块和第一物理层接口模块,第一物理层接口模块用于与另一芯粒的第二物理层接口模块通过物理链路电连接,所述物理层功能模块包括发送状态机子模块、数据报文发送子模块和控制报文发送子模块,所述数据报文发送子模块配置为向所述第一物理层接口模块提供第一数据报文,所述控制报文发送子模块配置为向所述第一物理层接口模块提供第一状态进入报文,所述发送状态机子模块配置为:接收第一控制信号;响应于所述第一控制信号由第二模式切换为第一模式,控制所述物理层功能模块由向所述第一物理层接口模块提供所述第一数据报文切换为向所述第一物理层接口模块提供第一状态进入报文,使得所述第一物理层接口模块由通过所述物理链路向所述另一芯粒提供所述第一数据报文切换为通过所述物理链路向所述另一芯粒提供所述第一状态进入报文;以及在所述第一物理层接口模块向所述另一芯粒提供所述第一状态进入报文之后,控制所述第一物理层接口模块由工作状态进入低功耗状态,所述第一状态进入报文用于通知所述另一芯粒进入所述低功耗状态,所述第一物理层接口模块在所述低功耗状态的功耗小于在所述工作状态的功耗。At least one embodiment of the present disclosure provides a core chip, including a physical layer functional module and a first physical layer interface module. The first physical layer interface module is used to electrically communicate with a second physical layer interface module of another core chip through a physical link. connection, the physical layer function module includes a sending state machine sub-module, a data message sending sub-module and a control message sending sub-module, the data message sending sub-module is configured to provide the first physical layer interface module with the first data message, the control message sending sub-module is configured to provide a first state entry message to the first physical layer interface module, and the sending state machine sub-module is configured to: receive the first control signal; respond to the The first control signal switches from the second mode to the first mode, controlling the physical layer function module to switch from providing the first data message to the first physical layer interface module to providing the first data packet to the first physical layer interface module. Providing a first state entry message causes the first physical layer interface module to switch from providing the first data message to the other core through the physical link to providing the first data message to the other core through the physical link. Another core particle provides the first state entry message; and after the first physical layer interface module provides the first state entry message to the other core particle, control the first physical layer interface The module enters the low power consumption state from the working state. The first state entry message is used to notify the other core to enter the low power consumption state. The first physical layer interface module is in the low power consumption state. The power consumption is less than the power consumption in the working state.

例如,在本公开一实施例提供的芯粒中,所述第一物理层接口模块包括发送子模块,所述发送子模块与所述发送状态机子模块电连接,所述发送状态机子模块配置为响应于所述第一控制信号的第一模式,控制所述发送子模块由所述工作状态进入所述低功耗状态。For example, in the core chip provided by an embodiment of the present disclosure, the first physical layer interface module includes a sending sub-module, the sending sub-module is electrically connected to the sending state machine sub-module, and the sending state machine sub-module is configured as In response to the first mode of the first control signal, the sending sub-module is controlled to enter the low power consumption state from the working state.

例如,在本公开一实施例提供的芯粒中,控制报文发送子模块还配置为向所述发送子模块提供唤醒报文和退出报文,所述发送状态机子模块还配置为:响应于所述第一控制信号由所述第一模式切换为所述第二模式,控制所述发送子模块退出所述低功耗状态并且进入所述工作状态;控制所述控制报文发送子模块向所述发送子模块提供所述唤醒报文,使得所述发送子模块向所述另一芯粒提供所述唤醒报文,以通知所述第二物理层接口模块进入工作状态;控制所述控制报文发送子模块向所述发送子模块提供状态退出报文,使得所述发送子模块向另一芯粒提供所述状态退出报文,以通知所述另一芯粒下一个时钟周期恢复所述第一数据报文的接收。For example, in the core provided by an embodiment of the present disclosure, the control message sending sub-module is further configured to provide a wake-up message and an exit message to the sending sub-module, and the sending state machine sub-module is further configured to: respond to The first control signal switches from the first mode to the second mode, controls the sending sub-module to exit the low power consumption state and enters the working state; controls the control message sending sub-module to The sending sub-module provides the wake-up message, so that the sending sub-module provides the wake-up message to the other core particle to notify the second physical layer interface module to enter the working state; control the control The message sending sub-module provides the status exit message to the sending sub-module, so that the sending sub-module provides the status exit message to another core particle to notify the other core particle to resume the next clock cycle. Describes the reception of the first data message.

例如,在本公开一实施例提供的芯粒中,发送状态机子模块还配置为:向所述发送子模块提供第三控制信号,以使所述发送子模块由所述工作状态进入所述低功耗状态,响应于所述第三控制信号为第一控制模式,所述发送子模块处于所述工作状态,响应于所述第三控制信号为第二控制模式,所述发送子模块处于所述低功耗状态。For example, in the core chip provided by an embodiment of the present disclosure, the sending state machine sub-module is further configured to: provide a third control signal to the sending sub-module, so that the sending sub-module enters the low state from the working state. In the power consumption state, in response to the third control signal being in the first control mode, the sending sub-module is in the working state, in response to the third control signal being in the second control mode, the sending sub-module is in the Describe the low power state.

例如,在本公开一实施例提供的芯粒中,所述第二控制模式使得所述发送子模块中的至少部分电路结构关闭,使得所述发送子模块处于所述低功耗状态,所述第一控制模式使得所述至少部分电路结构开启,使得所述发送子模块处于所述工作状态。For example, in the core chip provided by an embodiment of the present disclosure, the second control mode causes at least part of the circuit structure in the sending sub-module to be turned off, so that the sending sub-module is in the low power consumption state, and the The first control mode enables the at least part of the circuit structure to be turned on, so that the sending sub-module is in the working state.

例如,在本公开一实施例提供的芯粒中,所述发送子模块包括用于传输所述数据报文的多条数据发送通道、锁相环、时钟相位控制单元和时钟开关单元,所述多条数据发送通道每条包括数据驱动缓冲器和并串转换单元,所述并串转换单元与所述数据驱动缓冲器连接,所述并串转换单元配置为将并行数据转换为串行数据,以向所述数据驱动缓冲器提供所述串行数据,每个数据驱动缓冲器与所述物理链路连接。所述锁相环与所述时钟相位控制单元连接,所述时钟开关单元与所述时钟相位控制单元连接,并且与所述并串转换单元连接,所述锁相环配置为产生时钟信号,所述时钟相位控制单元配置为控制所述时钟信号的相位,并且在对所述时钟信号的相位控制之后,向所述时钟开关单元提供所述时钟信号,所述时钟开关单元配置为向所述并串转换单元提供所述时钟信号,所述至少部分电路结构包括:所述多条数据发送通道中的至少一条数据发送通道中的数据驱动缓冲器和所述时钟开关单元。For example, in the core chip provided by an embodiment of the present disclosure, the sending sub-module includes multiple data sending channels for transmitting the data message, a phase-locked loop, a clock phase control unit and a clock switch unit. Each of the multiple data transmission channels includes a data drive buffer and a parallel-to-serial conversion unit, the parallel-to-serial conversion unit is connected to the data drive buffer, and the parallel-to-serial conversion unit is configured to convert parallel data into serial data, The serial data is provided to the data drive buffers, each data drive buffer being connected to the physical link. The phase-locked loop is connected to the clock phase control unit, the clock switch unit is connected to the clock phase control unit, and is connected to the parallel-to-serial conversion unit, and the phase-locked loop is configured to generate a clock signal, so The clock phase control unit is configured to control the phase of the clock signal, and after the phase control of the clock signal, provides the clock signal to the clock switch unit, the clock switch unit is configured to provide the clock signal to the parallel The serial conversion unit provides the clock signal, and the at least part of the circuit structure includes: a data driving buffer in at least one data transmission channel among the plurality of data transmission channels and the clock switch unit.

例如,在本公开一实施例提供的芯粒中,所述发送子模块在所述低功耗状态下所述多条数据发送通道中的目标发送通道中的数据驱动缓冲器为开启状态,所述发送状态机子模块配置为通过所述目标发送通道中的数据驱动缓冲器向所述另一芯粒提供所述唤醒报文;或者所述发送子模块还包括边带信号通路,所述发送状态机子模块配置为通过所述边带信号通路向所述另一芯粒提供所述唤醒报文。For example, in the core provided by an embodiment of the present disclosure, the data driving buffer in the target transmission channel among the multiple data transmission channels of the transmission sub-module is in the open state in the low power consumption state, so The sending state machine sub-module is configured to provide the wake-up message to the other core through a data-driven buffer in the target sending channel; or the sending sub-module further includes a sideband signal path, and the sending state The machine sub-module is configured to provide the wake-up message to the other core chip through the sideband signal path.

例如,在本公开一实施例提供的芯粒中,物理层功能模块还包括选择器,所述选择器包括第一输入端、第二输入端、第三输入端和输出端,所述数据报文发送子模块与所述第一输入端连接,所述控制报文发送子模块与所述第二输入端连接,所述输出端与所述物理层接口模块连接,所述发送状态机子模块还配置为向所述第三输入端提供第二控制信号,所述选择器配置为:根据所述第二控制信号选择所述输出端向所述第一物理层接口模块提供所述数据报文发送子模块提供的数据报文或者所述控制报文发送子模块提供的控制报文。For example, in the core particle provided by an embodiment of the present disclosure, the physical layer functional module further includes a selector, the selector includes a first input terminal, a second input terminal, a third input terminal and an output terminal, and the datagram The message sending sub-module is connected to the first input terminal, the control message sending sub-module is connected to the second input terminal, the output terminal is connected to the physical layer interface module, and the sending state machine sub-module further The selector is configured to provide a second control signal to the third input terminal, and the selector is configured to select the output terminal to provide the data message transmission to the first physical layer interface module according to the second control signal. The data message or the control message provided by the sub-module sends the control message provided by the sub-module.

例如,在本公开一实施例提供的芯粒中,发送状态机子模块还配置为:For example, in the core particle provided by an embodiment of the present disclosure, the sending state machine submodule is also configured as:

响应于所述第一控制信号的第一模式,向所述数据报文发送子模块提供报文停止接收信号;所述数据报文发送子模块配置为:响应于所述报文停止接收信号,停止接收所述第一数据报文。In response to the first mode of the first control signal, a message stop receiving signal is provided to the data message sending sub-module; the data message sending sub-module is configured to: in response to the message stopping receiving signal, Stop receiving the first data message.

例如,在本公开一实施例提供的芯粒中,还包括:数据总线模块,配置为向所述物理层功能模块提供所述第一数据报文和所述第一控制信号。For example, the core provided by an embodiment of the present disclosure further includes: a data bus module configured to provide the first data message and the first control signal to the physical layer functional module.

例如,在本公开一实施例提供的芯粒中,数据总线模块还配置为:对无效数据的个数进行计数;以及响应于所述无效数据的个数大于第一预设阈值,触发所述第一控制信号切换为所述第一模式。For example, in the core chip provided by an embodiment of the present disclosure, the data bus module is further configured to: count the number of invalid data; and in response to the number of invalid data being greater than the first preset threshold, trigger the The first control signal switches to the first mode.

例如,在本公开一实施例提供的芯粒中,数据总线模块包括数据缓存器,用于存储向所述物理层功能模块提供的所述第一数据报文,所述数据总线模块还配置为:对数据缓存器中的有效数据的个数进行计数;以及响应于所述有效数据的个数达到第二预设阈值,触发所述第一控制信号切换为所述第二模式,以向所述物理层接口模块提供所述第一数据报文。For example, in the core provided by an embodiment of the present disclosure, the data bus module includes a data buffer for storing the first data message provided to the physical layer function module, and the data bus module is further configured to : Counting the number of valid data in the data buffer; and in response to the number of valid data reaching the second preset threshold, triggering the first control signal to switch to the second mode to provide the required The physical layer interface module provides the first data message.

例如,在本公开一实施例提供的芯粒中,物理层功能模块还包括接收状态机子模块、数据报文接收子模块和控制报文接收子模块,所述第一物理层接口模块还配置为:接收来自所述另一芯粒提供的通信报文,并且将所述通信报文提供给所述数据报文接收子模块和所述控制报文接收子模块,所述数据报文接收子模块配置为:接收所述通信报文,所述控制报文接收子模块配置为:接收所述通信报文,并且响应于所述通信报文为第二状态进入报文,向所述接收状态机子模块提供所述第二状态进入报文,所述接收状态机模块配置为:响应于所述第二状态进入报文,控制所述数据报文接收子模块停止接收第二数据报文,并且控制所述第一物理层接口模块由工作状态切换为低功耗状态。For example, in the core provided by an embodiment of the present disclosure, the physical layer function module also includes a receiving state machine sub-module, a data message receiving sub-module and a control message receiving sub-module, and the first physical layer interface module is also configured as : Receive the communication message provided from the other core particle, and provide the communication message to the data message receiving sub-module and the control message receiving sub-module, the data message receiving sub-module Configured to: receive the communication message, the control message receiving sub-module is configured to: receive the communication message, and in response to the communication message being a second state entry message, to the receiving state machine sub-module The module provides the second state entry message, and the receiving state machine module is configured to: in response to the second state entry message, control the data message receiving sub-module to stop receiving the second data message, and control The first physical layer interface module switches from a working state to a low power consumption state.

例如,在本公开一实施例提供的芯粒中,还包括:响应于所述通信报文为所述第二数据报文,所述数据报文接收子模块向所述数据总线模块提供所述第二数据报文。For example, in the core particle provided by an embodiment of the present disclosure, it further includes: in response to the communication message being the second data message, the data message receiving sub-module provides the data bus module with the The second data message.

例如,在本公开一实施例提供的芯粒中,所述第一物理层接口模块包括接收子模块,所述接收子模块与所述接收状态机子模块连接,所述接收状态机子模块配置为:控制所述接收子模块由所述工作状态切换为所述低功耗状态。For example, in the core provided by an embodiment of the present disclosure, the first physical layer interface module includes a receiving sub-module, the receiving sub-module is connected to the receiving state machine sub-module, and the receiving state machine sub-module is configured as: Control the receiving sub-module to switch from the working state to the low power consumption state.

例如,在本公开一实施例提供的芯粒中,接收状态机子模块还配置为:向所述接收子模块提供第四控制信号,以使所述接收子模块由所述工作状态进入所述低功耗状态,响应于所述第四控制信号为第一控制模式,所述接收子模块处于所述工作状态,响应于所述第四控制信号为第二控制模式,所述接收子模块处于所述低功耗状态。For example, in the core chip provided by an embodiment of the present disclosure, the receiving state machine sub-module is further configured to: provide a fourth control signal to the receiving sub-module, so that the receiving sub-module enters the low state from the working state. In the power consumption state, in response to the fourth control signal being in the first control mode, the receiving sub-module is in the working state, in response to the fourth control signal being in the second control mode, the receiving sub-module is in the Describe the low power state.

例如,在本公开一实施例提供的芯粒中,第二控制模式使得所述接收子模块中的至少部分电路结构关闭,使得所述接收子模块处于所述低功耗状态,所述第一控制模式使得所述至少部分电路结构开启,使得所述接收子模块处于所述工作状态。For example, in the core provided by an embodiment of the present disclosure, the second control mode causes at least part of the circuit structure in the receiving sub-module to be turned off, so that the receiving sub-module is in the low power consumption state, and the first The control mode enables at least part of the circuit structure to be turned on, so that the receiving sub-module is in the working state.

例如,在本公开一实施例提供的芯粒中,接收子模块包括用于传输所述数据报文的多条数据接收通道、时钟相位控制单元和时钟开关单元,所述多条数据接收通道每条包括数据接收缓冲器和串并转换单元,每个数据接收缓冲器与所述物理链路连接,所述串并转换单元与所述数据接收缓冲器连接,所述串并转换单元配置为接收所述数据接收缓冲器提供的串行数据,并且将串行数据转换为并行数据,所述时钟开关单元与所述时钟相位控制单元连接,并且与所述串并转换单元连接,所述时钟相位控制单元配置为接收时钟信号,控制所述时钟信号的相位,并且在对所述时钟信号的相位控制之后,向所述时钟开关单元提供所述时钟信号,所述时钟开关单元配置为向所述串并转换单元提供所述时钟信号,所述至少部分电路结构包括:所述多条数据接收通道中的至少一条数据接收通道中的数据接收缓冲器和所述时钟开关单元。For example, in the core chip provided by an embodiment of the present disclosure, the receiving sub-module includes multiple data receiving channels for transmitting the data message, a clock phase control unit and a clock switch unit. Each of the multiple data receiving channels is The strip includes a data receiving buffer and a serial-to-parallel conversion unit, each data receiving buffer is connected to the physical link, the serial-to-parallel conversion unit is connected to the data receiving buffer, and the serial-to-parallel conversion unit is configured to receive The data receives serial data provided by the buffer and converts the serial data into parallel data. The clock switch unit is connected to the clock phase control unit and to the serial-to-parallel conversion unit. The clock phase The control unit is configured to receive a clock signal, control the phase of the clock signal, and after controlling the phase of the clock signal, provide the clock signal to the clock switch unit, the clock switch unit is configured to provide the clock signal to the clock switch unit. The serial-to-parallel conversion unit provides the clock signal, and the at least part of the circuit structure includes: a data receiving buffer in at least one data receiving channel among the plurality of data receiving channels and the clock switch unit.

例如,在本公开一实施例提供的芯粒中,控制报文接收子模块还配置为:响应于所述通信报文为所述唤醒报文,向所述接收状态机子模块发送所述唤醒报文,所述接收状态机子模块配置为:响应于接收到所述唤醒报文,将所述第四控制信号切换为所述第一控制模式,以控制所述接收子模块进入所述工作状态;所述控制报文接收子模块还配置为:响应于所述通信报文为所述状态退出报文,向所述接收状态机子模块提供所述退出报文,所述接收状态机子模块还配置为:响应于所述状态退出报文,控制所述数据报文接收子模块开始接收所述第二数据报文。For example, in the core provided by an embodiment of the present disclosure, the control message receiving sub-module is further configured to: in response to the communication message being the wake-up message, send the wake-up message to the receiving state machine sub-module. Text, the receiving state machine sub-module is configured to: in response to receiving the wake-up message, switch the fourth control signal to the first control mode to control the receiving sub-module to enter the working state; The control message receiving sub-module is further configured to: in response to the communication message being the status exit message, provide the exit message to the receiving state machine sub-module, and the receiving state machine sub-module is further configured to : In response to the status exit message, control the data message receiving sub-module to start receiving the second data message.

本公开至少一个实施例提供了一种芯粒的控制方法,芯粒包括物理层功能模块和第一物理层接口模块,所述第一物理层接口模块用于与另一芯粒的第二物理层接口模块通过物理链路电连接,所述方法包括:响应于所述第一控制信号的第一模式,控制所述物理层功能模块由向所述第一物理层接口模块提供所述第一数据报文切换为向所述第一物理层接口模块提供第一状态进入报文,使得所述第一物理层接口模块由通过所述物理链路向所述另一芯粒提供所述第一数据报文切换为通过所述物理链路向所述另一芯粒提供所述第一状态进入报文,以及在所述第一物理层接口模块向所述另一芯粒提供所述第一状态进入报文之后,控制所述第一物理层接口模块由工作状态进入低功耗状态,所述第一状态进入报文用于通知所述另一芯粒进入所述低功耗状态,所述第一物理层接口模块在所述低功耗状态的功耗小于在所述工作状态的功耗。At least one embodiment of the present disclosure provides a control method for a core particle. The core particle includes a physical layer functional module and a first physical layer interface module. The first physical layer interface module is used to communicate with a second physical layer of another core particle. The layer interface module is electrically connected through a physical link, and the method includes: in response to a first pattern of the first control signal, controlling the physical layer function module by providing the first physical layer interface module with the first The data message switching is to provide the first state entry message to the first physical layer interface module, so that the first physical layer interface module provides the first state entry message to the other core through the physical link. The data message switching is to provide the first state entry message to the other core particle through the physical link, and provide the first state entry message to the other core particle in the first physical layer interface module. After the state entry message, the first physical layer interface module is controlled to enter the low power consumption state from the working state. The first state entry message is used to notify the other core chip to enter the low power consumption state, so The power consumption of the first physical layer interface module in the low power consumption state is less than the power consumption in the working state.

附图说明Description of the drawings

为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。In order to more clearly illustrate the technical solutions of the embodiments of the present disclosure, the drawings of the embodiments will be briefly introduced below. Obviously, the drawings in the following description only relate to some embodiments of the present disclosure and do not limit the present disclosure. .

图1A示出了一种门控时钟的电路结构的示意图;Figure 1A shows a schematic diagram of the circuit structure of a gated clock;

图1B示出了一种门控时钟的时序图;Figure 1B shows a timing diagram of a gated clock;

图1C示出了一种进入和退出L1状态的流程图;Figure 1C shows a flow chart for entering and exiting the L1 state;

图2示出了本公开至少一实施例提供的一种芯粒快速进入低功耗状态的架构图;Figure 2 shows an architectural diagram of a chip that quickly enters a low power consumption state provided by at least one embodiment of the present disclosure;

图3示出了本公开至少一个实施例提供的物理层接口模块的部分内部电路结构的示意图;Figure 3 shows a schematic diagram of part of the internal circuit structure of the physical layer interface module provided by at least one embodiment of the present disclosure;

图4A示出了本公开至少一个实施例提供的一种数据总线模块产生txFastPM_Entry信号的示意性电路图;Figure 4A shows a schematic circuit diagram of a data bus module generating a txFastPM_Entry signal provided by at least one embodiment of the present disclosure;

图4B示出了本公开至少一个实施例提供的一种数据总线模块产生txFastPM_Exit信号的示意性电路图;Figure 4B shows a schematic circuit diagram of a data bus module generating a txFastPM_Exit signal provided by at least one embodiment of the present disclosure;

图4C示出了本公开至少一个实施例提供的芯粒在接收和发送两个传输方向独立控制的示意图;Figure 4C shows a schematic diagram of independent control of the core particle in the two transmission directions of receiving and sending provided by at least one embodiment of the present disclosure;

图5示出了本公开至少一个实施例提供的一种物理层编码模块PCS或者适配层的框图;Figure 5 shows a block diagram of a physical layer coding module PCS or adaptation layer provided by at least one embodiment of the present disclosure;

图6A示出了本公开至少一个实施例提供的一种发送子模块的状态机的示意图;Figure 6A shows a schematic diagram of a state machine of a sending submodule provided by at least one embodiment of the present disclosure;

图6B示出了本公开至少一个实施例提供的一种接收子模块的状态机的示意图Figure 6B shows a schematic diagram of a state machine of a receiving submodule provided by at least one embodiment of the present disclosure.

图7A示出了本公开至少一个实施例提供的一种发送端和接收端快速进入低功耗状态的方法流程图;Figure 7A shows a flow chart of a method for a transmitter and a receiver to quickly enter a low power consumption state provided by at least one embodiment of the present disclosure;

图7B示出了本公开至少一个实施例提供的一种发送端快速进入低功耗状态的时序图;Figure 7B shows a timing diagram for a sending end to quickly enter a low power consumption state provided by at least one embodiment of the present disclosure;

图7C示出了本公开至少一个实施例提供的一种接收端快速进入低功耗状态的时序图;Figure 7C shows a timing diagram for a receiving end to quickly enter a low power consumption state provided by at least one embodiment of the present disclosure;

图8A示出了本公开至少一个实施例提供的一种发送端和接收端快速退出低功耗状态的方法流程图;Figure 8A shows a flow chart of a method for a sending end and a receiving end to quickly exit a low power consumption state provided by at least one embodiment of the present disclosure;

图8B示出了本公开至少一个实施例提供的一种发送端快速退出低功耗状态的时序图;Figure 8B shows a timing diagram for a sending end to quickly exit a low power consumption state provided by at least one embodiment of the present disclosure;

图8C示出了本公开至少一个实施例提供的一种接收端快速退出低功耗状态的时序图;Figure 8C shows a timing diagram for a receiving end to quickly exit a low power consumption state provided by at least one embodiment of the present disclosure;

图9A示出了本公开至少一个实施例提供的一种发送状态机的状态跳转的流程图;以及Figure 9A shows a flow chart of a state jump of a sending state machine provided by at least one embodiment of the present disclosure; and

图9B示出了本公开至少一个实施例提供的一种接收状态机的状态跳转的流程图。FIG. 9B shows a flow chart of state transition of a receiving state machine provided by at least one embodiment of the present disclosure.

具体实施方式Detailed ways

为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present disclosure more clear, the technical solutions of the embodiments of the present disclosure will be clearly and completely described below in conjunction with the drawings of the embodiments of the present disclosure. Obviously, the described embodiments are some, but not all, of the embodiments of the present disclosure. Based on the described embodiments of the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present disclosure.

除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。Unless otherwise defined, technical terms or scientific terms used in this disclosure shall have the usual meaning understood by a person with ordinary skill in the art to which this disclosure belongs. "First", "second" and similar words used in this disclosure do not indicate any order, quantity or importance, but are only used to distinguish different components. Likewise, similar words such as "a", "an" or "the" do not indicate a quantitative limitation but rather indicate the presence of at least one. Words such as "include" or "comprising" mean that the elements or things appearing before the word include the elements or things listed after the word and their equivalents, without excluding other elements or things. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up", "down", "left", "right", etc. are only used to express relative positional relationships. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.

UCIe标准定义了封装内芯粒或小芯片之间的互连技术规范,以打造开放的芯粒生态系统。UcIe标准的物理层规定了两种不同的物理层接口模块(Physical layer,PHY),分别为高级封装使用64条通道(lane)和普通封装使用16通道(lane)。UcIe的PHY的并行通道数目较多,如果一直处于工作模式功耗较大。当系统需要传输的数据较少时,可以让PHY进入低功耗模式,从而降低系统功耗。The UCIe standard defines interconnection technical specifications between dies or chiplets within a package to create an open die ecosystem. The physical layer of the Ucle standard specifies two different physical layer interface modules (Physical layer, PHY), which use 64 lanes (lane) for advanced packaging and 16 lanes (lane) for ordinary packaging. Ucle's PHY has a large number of parallel channels and consumes more power if it is always in working mode. When the system needs to transmit less data, the PHY can be put into low-power mode to reduce system power consumption.

UCIe中定义了3种功耗管理方法,分别为门控时钟管理、L1功耗管理和L2功耗管理。Three power management methods are defined in UCIe, namely gated clock management, L1 power management and L2 power management.

图1A示出了一种门控时钟的电路结构的示意图。图1B示出了一种门控时钟的时序图。下面结合图1A和图1B说明门控时钟管理。FIG. 1A shows a schematic diagram of the circuit structure of a gated clock. Figure 1B shows a timing diagram of a gated clock. The following describes gated clock management with reference to Figures 1A and 1B.

如图1A所示,左侧为发送端,右侧为接收端。As shown in Figure 1A, the left side is the sending end and the right side is the receiving end.

门控时钟方案使用一个有效(Valid)信号来表示数据有效或者无效。The gated clock scheme uses a valid (Valid) signal to indicate whether the data is valid or invalid.

当发送端没有有效数据需要发送时,将有效信号置为0,发送端可以根据有效信号将发送端的时钟关闭,同时发送给接收端的时钟也关闭,从而节省发送端的功耗。When the sender has no valid data to send, the valid signal is set to 0. The sender can turn off the clock of the sender according to the valid signal, and the clock sent to the receiver is also turned off, thereby saving the power consumption of the sender.

接收端在接收到有效信号,使用有效信号来将接收时钟打开或者关闭。当有效信号为0时,将接收端的时钟关闭,从而节省接收端的功耗。When the receiving end receives a valid signal, it uses the valid signal to turn the receiving clock on or off. When the valid signal is 0, the clock of the receiving end is turned off, thereby saving the power consumption of the receiving end.

发送端的数据来自物理层编码子层模块(Physical coding sublayer,PCS),PCS提供给PHY的数据会先经过一个缓存101,然后经过一个并串转换器102,并串转换器102将并行数据转换为串行数据,然后经过数据驱动缓冲器(buffer)103将数据发送到物理链路上。The data at the transmitter comes from the Physical Coding Sublayer (PCS) module. The data provided by the PCS to the PHY will first pass through a cache 101, and then pass through a parallel-to-serial converter 102. The parallel-to-serial converter 102 converts the parallel data into The serial data is then sent to the physical link through a data driver buffer (buffer) 103.

发送端的时钟由锁相环(Phase Locked Loop,PLL)104产生,PLL 104输出的时钟由有效信号控制时钟开关控制电路(Clock gater)105。当有效信号为1时时钟开关控制电路105输出时钟。当有效信号为0时时钟开关控制电路105输出为0。经过时钟开关控制电路105的时钟会经过时钟相位控制器106控制发送时钟的相位。相位控制输出的时钟给缓存101和并串转换器102使用。同时时钟相位控制器106输出的时钟会经过时钟驱动缓冲器107发送到物理链路上。The clock at the sending end is generated by a phase locked loop (Phase Locked Loop, PLL) 104, and the clock output by the PLL 104 is controlled by a valid signal to a clock switch control circuit (Clock gater) 105. The clock switch control circuit 105 outputs a clock when the valid signal is 1. When the valid signal is 0, the output of the clock switch control circuit 105 is 0. The clock passing through the clock switch control circuit 105 will pass through the clock phase controller 106 to control the phase of the sending clock. The clock output by the phase control is used by the cache 101 and the parallel-to-serial converter 102 . At the same time, the clock output by the clock phase controller 106 will be sent to the physical link through the clock driving buffer 107.

发送端的有效信号来自PCS,有效信号为1表示发送给PHY的数据是有效的。有效信号为=0表示发送给PHY的数据是无效的,此时PHY可以将发送端的时钟关闭。The valid signal at the sending end comes from the PCS. The valid signal is 1, which means the data sent to the PHY is valid. A valid signal of =0 indicates that the data sent to the PHY is invalid. At this time, the PHY can turn off the clock of the sending end.

在接收端,根据收到的有效信号判断是否有效数据接收。当有效信号为1时,将时钟开关控制电路116的输出时钟打开,时钟开关控制电路116将输出的时钟给接收端数字电路中的寄存器(Digital Flip-Flop,DFF)。从而能够正常接收数据。当有效信号为0时,时钟开关控制电路116输出为0,无有效数据接收。At the receiving end, it is judged whether valid data is received based on the valid signal received. When the valid signal is 1, the output clock of the clock switch control circuit 116 is turned on, and the clock switch control circuit 116 supplies the output clock to the register (Digital Flip-Flop, DFF) in the receiving end digital circuit. So that the data can be received normally. When the valid signal is 0, the output of the clock switch control circuit 116 is 0, and no valid data is received.

如图1B所示,时钟的上升沿和下降沿都会收发数据。对于一个字节(byte)的数据,定义有效信号为高电平持续2个时钟周期,低电平持续2个时钟周期,表示有有效数据发送。当有效信号持续低电平8个时钟周期,表示无有效数据发送此时可以将时钟关闭。As shown in Figure 1B, data is sent and received on both the rising and falling edges of the clock. For a byte of data, the valid signal is defined as a high level lasting for 2 clock cycles and a low level lasting for 2 clock cycles, indicating that valid data is sent. When the valid signal remains low for 8 clock cycles, it means that no valid data is sent and the clock can be turned off.

当有效信号拉高后表示数据和时钟恢复,需要正常接收数据。When the valid signal is pulled high, it means that the data and clock have recovered, and data needs to be received normally.

门控时钟管理,在传输过程中无有效效数据传输时,门控时钟可以快速关闭PHY的时钟以节省功耗。门控时钟管理通过将PHY时钟关闭来达到节省功耗的效果,进入退出的时间约为0.5纳秒,但省功耗效果最差,且需要额外的有效管脚(Valid PAD)。Gated clock management: When there is no valid data transmission during the transmission process, the gated clock can quickly shut down the PHY clock to save power consumption. Gating clock management achieves the effect of saving power consumption by turning off the PHY clock. The entry and exit time is about 0.5 nanoseconds, but the power saving effect is the worst and requires additional valid pins (Valid PAD).

门控时钟管理需要额外一根管脚(PAD)告诉对方数据是否有效。高性能芯片的PAD往往是有限的,增加PAD可能导致芯片的面积需要增大。同时增加额外的PAD本身也会增加功耗。门控时钟管理可以通过将部分逻辑的时钟关闭,从而达到降低功耗的效果。但仅仅关闭时钟降低的功耗值有限。门控时钟需要保持数据通道,时钟通道和Valid通道一直是开启状态。PHY中模拟电路一直处于开启状态,功耗仍然很大。Gated clock management requires an additional pin (PAD) to tell the other party whether the data is valid. The PAD of high-performance chips is often limited, and increasing PAD may lead to an increase in the area of the chip. At the same time, adding additional PAD itself will also increase power consumption. Gating clock management can reduce power consumption by turning off the clock of some logic. But the power consumption reduction of just turning off the clock is limited. The gated clock needs to keep the data channel, clock channel and Valid channel always open. The analog circuitry in the PHY is always on and the power consumption is still very high.

L1功耗管理是在链路在接收和发送两个方向长时间都没有有效数据传输的情况下,可以进入L1状态,L1功耗管理是在链路在接收和发送两个方向长时间都没有有效数据传输的情况下,可以进入L2状态。L1状态和L2状态是UCIe的两种低功耗状态,这两种状态都是由物理编码子层(PCS)或UCIe中定义的适配层(Adapter Layer)来控制PHY进入低功耗状态。区别在于L1状态下PHY睡眠程度较浅,退出L1状态后PHY会进入重新训练状态。L2状态下PHY睡眠程度较深,退出L2后PHY会进入复位状态。L1 power management allows the link to enter the L1 state when there is no valid data transmission in both the receiving and sending directions for a long time. L1 power management is used when the link has no valid data transmission in both the receiving and sending directions for a long time. In the case of valid data transmission, the L2 state can be entered. The L1 state and the L2 state are two low-power states of UCIe. Both states are controlled by the physical coding sublayer (PCS) or the adaptation layer (Adapter Layer) defined in UCIe to control the PHY to enter the low-power state. The difference is that the PHY sleeps shallowly in the L1 state, and the PHY will enter the retraining state after exiting the L1 state. In the L2 state, the PHY sleeps deeply. After exiting L2, the PHY will enter the reset state.

L1功耗管理和L2功耗管理的进入和退出流程是类似的,在本公开中以进入和退出L1状态为例来说明L1功耗管理。由于L2功耗管理与L1功耗管理类似,本公开不再赘述。The entry and exit processes of L1 power management and L2 power management are similar. In this disclosure, entering and exiting the L1 state are taken as an example to illustrate the L1 power management. Since L2 power consumption management is similar to L1 power consumption management, details will not be described in this disclosure.

图1C示出了一种进入和退出L1状态的流程图。Figure 1C shows a flow chart for entering and exiting the L1 state.

如图1C所示,进入状态的方法包括步骤S201~S206。As shown in Figure 1C, the method of entering the state includes steps S201 to S206.

步骤S201:发送端DIE0的适配层向物理层发送Lp_state_req=L1。Lp_state_req为适配层向物理层发起状态变更请求,L1表示控制物理层进入L1状态。Step S201: The adaptation layer of the sending end DIE0 sends Lp_state_req=L1 to the physical layer. Lp_state_req is the adaptation layer that initiates a state change request to the physical layer, and L1 indicates that the physical layer is controlled to enter the L1 state.

步骤S202:发送端DIE0的物理层通过边带信号(SB_MSG)发送进入L1状态的请求消息L1.Req给接收端DIE1。Step S202: The physical layer of the sending end DIE0 sends the request message L1.Req to enter the L1 state to the receiving end DIE1 through the sideband signal (SB_MSG).

步骤S203:接收端DIE1的适配层响应发送端DIE0的请求消息L1.Req,控制接收端DIE1的物理层Lp_state_req=L1。Step S203: The adaptation layer of the receiving end DIE1 responds to the request message L1.Req of the sending end DIE0 and controls the physical layer Lp_state_req=L1 of the receiving end DIE1.

步骤S204:接收端DIE1的物理层给发送端DIE0返回反馈信号L1.Rsp,同时接收端DIE1的物理层也给发送端DIE0发送请求消息L1.Req.Step S204: The physical layer of the receiving end DIE1 returns the feedback signal L1.Rsp to the sending end DIE0. At the same time, the physical layer of the receiving end DIE1 also sends the request message L1.Req to the sending end DIE0.

步骤S205:发送端DIE0的物理层收到接收端DIE1的反馈信号L1.Rsp后使得Pl_state_sts=PM以进入PM状态,同时发送反馈信号L1.Rsp给接收端DIE1。PM状态指代L1状态或者L2状态,若Pl_state_req=L1,则PM状态指代L1状态;若Pl_state_req=L2,则PM状态指代L2状态。例如,发送端DIE0的物理层向适配层发送状态指示信号Pl_state_sts=PM,使得发送端DIE0进入PM状态。Step S205: After receiving the feedback signal L1.Rsp from the receiving end DIE1, the physical layer of the sending end DIE0 sets Pl_state_sts=PM to enter the PM state, and simultaneously sends the feedback signal L1.Rsp to the receiving end DIE1. The PM state refers to the L1 state or the L2 state. If Pl_state_req=L1, the PM state refers to the L1 state; if Pl_state_req=L2, the PM state refers to the L2 state. For example, the physical layer of the sending end DIE0 sends the state indication signal Pl_state_sts=PM to the adaptation layer, so that the sending end DIE0 enters the PM state.

步骤S206:接收端DIE1的物理层收到发送端DIE0的反馈信号L1.Rsp后进入PM状态。Step S206: The physical layer of the receiving end DIE1 enters the PM state after receiving the feedback signal L1.Rsp of the transmitting end DIE0.

如图1C所示,退出低功耗状态的方法包括步骤S301~S306。As shown in Figure 1C, the method of exiting the low power consumption state includes steps S301 to S306.

步骤S301:发送端DIE0的适配层控制物理层Lp_state_req=Active,Active表示控制物理层进入工作状态,以控制物理层退出L1状态。Step S301: The adaptation layer of the sending end DIE0 controls the physical layer Lp_state_req=Active. Active means controlling the physical layer to enter the working state to control the physical layer to exit the L1 state.

步骤S302:发送端DIE0的物理层通过边带信号给接收端DIE1发送进入工作状态的请求消息Active.Req。Step S302: The physical layer of the sending end DIE0 sends the request message Active.Req to enter the working state to the receiving end DIE1 through the sideband signal.

步骤S303:接收端DIE1的物理层收到Active.Req后给发送端DIE0发送Active.Rsp消息,并通知适配层重新做链路训练。例如,发送端DIE0的物理层向适配层发送状态指示信号Pl_state_sts=Retrain,使得适配层重新做链路训练。Step S303: After receiving the Active.Req, the physical layer of the receiving end DIE1 sends an Active.Rsp message to the sending end DIE0, and notifies the adaptation layer to re-do the link training. For example, the physical layer of the sending end DIE0 sends the status indication signal Pl_state_sts=Retrain to the adaptation layer, so that the adaptation layer re-does link training.

步骤S304:接收端DIE1的适配层控制物理层Lp_state_req=Active,控制退出L1状态。接收端DIE1物理层给发送端DIE0发送Active.Req消息。Step S304: The adaptation layer of the receiving end DIE1 controls the physical layer Lp_state_req=Active and controls exiting the L1 state. The physical layer of the receiving end DIE1 sends an Active.Req message to the sending end DIE0.

步骤S305:发送端DIE0的物理层收到Active.Req后返回Active.Rsp。等待训练结束后进入工作状态。Step S305: The physical layer of the sending end DIE0 returns Active.Rsp after receiving Active.Req. Wait for the training to be completed before entering the working state.

步骤S306:接收端DIE1的物理层收到Active.Rsp后,等待训练接收后进入工作状态。Step S306: After receiving Active.Rsp, the physical layer of the receiving end DIE1 waits for training reception and then enters the working state.

L1功耗管理可以将PHY的锁相环关闭,从而节省更多的功耗。L1状态退出时PHY需要重新训练,因此退出的时间较长为微妙或者毫秒级别。L2功耗管理可以将整个PHY关闭,为最省功耗的状态,但是L2状态退出时需要重新进入复位状态,恢复到工作状态所需要的时间也最长。L1 power management can turn off the PHY phase-locked loop to save more power consumption. The PHY needs to be retrained when the L1 state exits, so the exit time is longer at the microsecond or millisecond level. L2 power management can shut down the entire PHY, which is the most power-saving state. However, when exiting the L2 state, it needs to re-enter the reset state, and it takes the longest time to return to the working state.

无论是L1功耗管理还是L2功耗管理,整个链路都要断开,重新连接时需要对PHY重新做训练,退出的时间很长。一旦进入L1状态或者L2状态,PHY的收发将完全停止。PLL的模拟电路,PLL等都会关闭。如果要恢复数据传输,将需要重新对PHY做训练。并且,L1功耗管理和L2功耗管理使用了边带信号来传输额外的控制信号,需要额外的PAD,需要消耗额外的功耗。Sideband signal需要SB_Clock和SB_Message两根信号,以及额外发送和接收电路,需要额外的功耗消耗。Whether it is L1 power management or L2 power management, the entire link must be disconnected. When reconnecting, the PHY needs to be retrained, and the exit time is very long. Once entering the L1 state or L2 state, the PHY's transmission and reception will completely stop. The analog circuit of the PLL, PLL, etc. will be turned off. If data transmission is to be resumed, the PHY will need to be retrained. Moreover, L1 power management and L2 power management use sideband signals to transmit additional control signals, requiring additional PADs and consuming additional power. The Sideband signal requires two signals, SB_Clock and SB_Message, as well as additional sending and receiving circuits, which require additional power consumption.

本公开提出了一种芯粒,该芯粒不需要使用额外的管脚,便能够使得芯粒快速进入退出低功耗模式(例如,进入退出时间为仅为若干个时钟周期)。本公开的一些实施例还能够关闭PHY的输出时钟以及模拟收发电路,有效降低数字收发逻辑功耗以及PHY的功耗。The present disclosure proposes a chip that can quickly enter and exit a low-power consumption mode without using additional pins (for example, the entry and exit time is only a few clock cycles). Some embodiments of the present disclosure can also turn off the output clock of the PHY and the analog transceiver circuit, effectively reducing the power consumption of the digital transceiver logic and the power consumption of the PHY.

本公开至少一个实施例提供一种芯粒。该芯粒,包括物理层功能模块和第一物理层接口模块,第一物理层接口模块用于与另一芯粒的第二物理层接口模块通过物理链路电连接,物理层功能模块包括发送状态机子模块、数据报文发送子模块和控制报文发送子模块,数据报文发送子模块配置为向第一物理层接口模块提供第一数据报文,控制报文发送子模块配置为向第一物理层接口模块提供第一状态进入报文,发送状态机子模块配置为:接收第一控制信号;响应于第一控制信号的第一模式,控制物理层功能模块由向第一物理层接口模块提供第一数据报文切换为向第一物理层接口模块提供第一状态进入报文,使得第一物理层接口模块由通过物理链路向另一芯粒提供第一数据报文切换为通过物理链路向另一芯粒提供第一状态进入报文,以及在第一物理层接口模块向另一芯粒提供第一状态进入报文之后,控制第一物理层接口模块由工作状态进入低功耗状态,第一状态进入报文用于通知另一芯粒进入低功耗状态,第一物理层接口模块在低功耗状态的功耗小于在工作状态的功耗。该芯粒通过发送状态机子模块控制物理链路传输状态进入报文,使得物理链路不仅能够传输数据报文还能够传输状态进入报文,从而不需要增加额外的管脚,便能够使得芯粒快速进入退出低功耗模式。At least one embodiment of the present disclosure provides a core particle. The core particle includes a physical layer functional module and a first physical layer interface module. The first physical layer interface module is used to electrically connect with the second physical layer interface module of another core particle through a physical link. The physical layer functional module includes a transmitter State machine sub-module, data message sending sub-module and control message sending sub-module, the data message sending sub-module is configured to provide the first data message to the first physical layer interface module, and the control message sending sub-module is configured to provide the first data message to the first physical layer interface module. A physical layer interface module provides a first state entry message, and the sending state machine submodule is configured to: receive a first control signal; in response to the first mode of the first control signal, control the physical layer function module to pass to the first physical layer interface module Providing the first data message is switched to providing the first state entry message to the first physical layer interface module, so that the first physical layer interface module switches from providing the first data message to another core through the physical link to providing the first data message through the physical link. The link provides the first state entry message to another core particle, and after the first physical layer interface module provides the first state entry message to the other core particle, controls the first physical layer interface module to enter the low power state from the working state. consumption state, the first state entry message is used to notify another chip to enter the low power consumption state, and the power consumption of the first physical layer interface module in the low power consumption state is less than the power consumption in the working state. The core particle controls the physical link to transmit status entry messages by sending the state machine sub-module, so that the physical link can transmit not only data messages but also status entry messages, so that the core particle can be made without adding additional pins. Quickly enter and exit low-power mode.

图2示出了本公开至少一实施例提供的一种芯粒快速进入低功耗状态的架构图。下面结合图2来说明本公开至少一个实施例提供的一种芯粒的示例。Figure 2 shows an architectural diagram of a chip that quickly enters a low power consumption state provided by at least one embodiment of the present disclosure. An example of a core particle provided by at least one embodiment of the present disclosure will be described below with reference to FIG. 2 .

如图2所示,在架构中包括芯粒DIE0。芯粒DIE0包括物理层功能模块PCA0和物理层接口模块PHY0。物理层接口模块PHY0用于与另一芯粒DIE1的物理层接口模块PHY1通过物理链路电连接。物理层接口模块PHY0为第一物理层接口模块的示例,物理层接口模块PHY1为第二物理层接口模块的示例。As shown in Figure 2, the core particle DIE0 is included in the architecture. The core particle DIE0 includes the physical layer function module PCA0 and the physical layer interface module PHY0. The physical layer interface module PHY0 is used to electrically connect with the physical layer interface module PHY1 of another chip DIE1 through a physical link. The physical layer interface module PHY0 is an example of the first physical layer interface module, and the physical layer interface module PHY1 is an example of the second physical layer interface module.

例如,物理层功能模块PCA0可以是物理层编码子模块,也可以是适配层。适配层用于在多个协议之间进行选择和仲裁。物理层编码子模块用于控制物理层接口模块收发数据。物理层接口模块负责与电气特性相关的信号传输技术。物理链路可以是有线链路,也可以是无线链路(例如,光纤等),本公开的实施例对物理链路的形式不做具体限定。For example, the physical layer function module PCA0 may be a physical layer coding submodule or an adaptation layer. The adaptation layer is used to select and arbitrate between multiple protocols. The physical layer coding submodule is used to control the physical layer interface module to send and receive data. The physical layer interface module is responsible for signal transmission technology related to electrical characteristics. The physical link may be a wired link or a wireless link (for example, optical fiber, etc.). The embodiments of the present disclosure do not specifically limit the form of the physical link.

物理层功能模块PCA0包括发送状态机子模块210、数据报文发送子模块220和控制报文发送子模块230。The physical layer function module PCA0 includes a sending state machine sub-module 210, a data message sending sub-module 220 and a control message sending sub-module 230.

数据报文发送子模块220配置为向物理层接口模块PHY0提供数据报文txData。数据报文txData为第一数据报文的示例。控制报文发送子模块230配置为向物理层接口模块PHY0提供第一状态进入报文。第一状态进入报文用于通知另一芯粒DIE1进入低功耗状态。第一状态进入报文例如为图2中的FPMEntry报文。The data message sending sub-module 220 is configured to provide the data message txData to the physical layer interface module PHY0. The data message txData is an example of the first data message. The control message sending sub-module 230 is configured to provide the first state entry message to the physical layer interface module PHY0. The first state entry message is used to notify another chip DIE1 to enter a low power consumption state. The first state entry message is, for example, the FPMEntry message in Figure 2.

发送状态机子模块210配置为:接收控制信号txLowPower(控制信号txLowPower为第一控制信号的示例);响应于控制信号txLowPower由第二模式切换为第一模式,控制物理层功能模块PCA0由向物理层接口模块PHY0提供第一数据报文切换为向物理层接口模块PHY0提供第一状态进入报文(例如,FPMEntry报文),使得物理层接口模块PHY0由通过物理链路向另一芯粒DIE1提供数据报文txData切换为通过物理链路向另一芯粒DIE1提供第一状态进入报文,以及在物理层接口模块PHY0向另一芯粒DIE1提供第一状态进入报文之后,控制物理层接口模块PHY0由工作状态进入低功耗状态,物理层接口模块PHY0在低功耗状态的功耗小于在工作状态的功耗。The sending state machine sub-module 210 is configured to: receive the control signal txLowPower (the control signal txLowPower is an example of the first control signal); in response to the control signal txLowPower switching from the second mode to the first mode, control the physical layer function module PCA0 from to the physical layer The interface module PHY0 provides the first data message and switches to providing the first state entry message (for example, FPMEntry message) to the physical layer interface module PHY0, so that the physical layer interface module PHY0 provides it to another core chip DIE1 through the physical link. The data message txData is switched to provide the first state entry message to the other core DIE1 through the physical link, and after the physical layer interface module PHY0 provides the first state entry message to the other core DIE1, the physical layer interface is controlled. The module PHY0 enters the low power consumption state from the working state, and the power consumption of the physical layer interface module PHY0 in the low power consumption state is less than the power consumption in the working state.

例如,控制信号txLowPower可以包括一个或者多个电平信号。例如,控制信号txLowPower包括1个电平信号,若该电平信号为第一电平(例如,高电平),则控制信号txLowPower为第一模式,若该电平信号为第二电平(例如,低电平),则控制信号txLowPower为第二模式。又例如,控制信号txLowPower包括多个电平信号,多个电平信号的不同组合方式分别代表不同的模式。例如,2个电平信号均为高电平,表示控制信号txLowPower为第一模式,2个电平信号均为低电平,表示控制信号txLowPower为第二模式,2个电平信号一个为高电平一个为低电平,表示控制信号txLowPower为第三模式。本公开对第一控制信号以及第一控制信号的模式不做限定。For example, the control signal txLowPower may include one or more level signals. For example, the control signal txLowPower includes a level signal. If the level signal is a first level (for example, high level), the control signal txLowPower is a first mode. If the level signal is a second level (for example, high level) For example, low level), the control signal txLowPower is in the second mode. For another example, the control signal txLowPower includes multiple level signals, and different combinations of the multiple level signals represent different modes. For example, if two level signals are both high level, it means that the control signal txLowPower is in the first mode. If both level signals are low level, it means that the control signal txLowPower is in the second mode. One of the two level signals is high. Level one is low level, indicating that the control signal txLowPower is in the third mode. This disclosure does not limit the first control signal and the mode of the first control signal.

在下文中以控制信号txLowPower为高电平作为第一模式,以控制信号txLowPower为低电平作为第二模式。In the following, the control signal txLowPower is at a high level as the first mode, and the control signal txLowPower is at a low level as the second mode.

例如,响应于控制信号txLowPower由低电平切换为高电平,发送状态机子模块210控制物理层功能模块PCA0由向物理层接口模块PHY0提供第一数据报文切换为向物理层接口模块PHY0提供第一状态进入报文。即,若控制信号txLowPower为低电平,则发送状态机子模块210控制物理层功能模块PCA0向物理层接口模块PHY0提供第一数据报文;若控制信号txLowPower为高电平,则发送状态机子模块210控制物理层功能模块PCA0向物理层接口模块PHY0提供第一状态进入报文。For example, in response to the control signal txLowPower switching from low level to high level, the sending state machine sub-module 210 controls the physical layer function module PCA0 to switch from providing the first data message to the physical layer interface module PHY0 to providing the first data message to the physical layer interface module PHY0. The first state enters the message. That is, if the control signal txLowPower is low level, the sending state machine sub-module 210 controls the physical layer function module PCA0 to provide the first data message to the physical layer interface module PHY0; if the control signal txLowPower is high level, the sending state machine sub-module 210 210 controls the physical layer function module PCA0 to provide the first state entry message to the physical layer interface module PHY0.

物理接口模块PHY0通过物理链路向另一芯粒DIE1提供从物理层功能模块PCA0接收到的报文。例如,物理层功能模块PCA0向物理接口模块PHY0提供数据报文txData,则物理接口模块PHY0通过物理链路向另一芯粒DIE1提供该数据报文txData;若物理层功能模块PCA0向物理接口模块PHY0提供第一状态进入报文,则物理接口模块PHY0通过物理链路向另一芯粒DIE1提供该第一状态进入报文。The physical interface module PHY0 provides the message received from the physical layer function module PCA0 to another core chip DIE1 through a physical link. For example, the physical layer function module PCA0 provides the data message txData to the physical interface module PHY0, then the physical interface module PHY0 provides the data message txData to another core chip DIE1 through the physical link; if the physical layer function module PCA0 provides the data message txData to the physical interface module PHY0 provides the first state entry message, and the physical interface module PHY0 provides the first state entry message to another chip DIE1 through the physical link.

物理层功能模块PCA0由向物理层接口模块PHY0提供数据报文txData切换为向物理层接口模块PHY0提供第一状态进入报文,使得物理层接口模块PHY0由通过物理链路向另一芯粒DIE1提供数据报文txData切换为通过物理链路向所述另一芯粒DIE1提供第一状态进入报文。The physical layer function module PCA0 switches from providing the data message txData to the physical layer interface module PHY0 to providing the first state entry message to the physical layer interface module PHY0, so that the physical layer interface module PHY0 switches from providing the data message txData to the other core chip DIE1 through the physical link. Providing the data message txData is switched to providing the first state entry message to the other core particle DIE1 through the physical link.

在物理层接口模块PHY0向另一芯粒DIE1提供第一状态进入报文之后,控制物理层接口模块PHY0由工作状态进入低功耗状态。物理层接口模块PHY0在低功耗状态的功耗小于在工作状态的功耗。After the physical layer interface module PHY0 provides the first state entry message to the other die DIE1, the physical layer interface module PHY0 is controlled to enter the low power consumption state from the working state. The power consumption of the physical layer interface module PHY0 in the low power consumption state is less than the power consumption in the working state.

例如,物理层接口模块PHY0包括发送子模块TX0。发送子模块TX0用于数据报文的发送。发送子模块TX0与发送状态机子模块210电连接,发送状态机子模块210配置为响应于第一控制信号的第一模式,控制发送子模块TX0由工作状态进入低功耗状态。即,物理层接口模块PHY0进入低功耗状态包括发送子模块TX0进入低功耗状态。For example, the physical layer interface module PHY0 includes a sending sub-module TX0. The sending sub-module TX0 is used for sending data messages. The transmitting sub-module TX0 is electrically connected to the transmitting state machine sub-module 210. The transmitting state machine sub-module 210 is configured to respond to the first mode of the first control signal and control the transmitting sub-module TX0 to enter the low power consumption state from the working state. That is, the physical layer interface module PHY0 entering the low power consumption state includes the sending sub-module TX0 entering the low power consumption state.

在本公开的实施例中,芯粒通过发送状态机子模块响应于控制信号,控制物理层功能模块既利用物理链路传输数据报文也利用物理链路传输第一状态进入报文,从而该芯粒不需要增加额外的管脚,便能够使得芯粒快速进入退出低功耗模式。In the embodiment of the present disclosure, the core particle responds to the control signal by sending the state machine sub-module, and controls the physical layer function module to use the physical link to transmit the data message and the physical link to transmit the first state entry message, so that the core particle The chip can quickly enter and exit low-power consumption mode without adding additional pins.

如图2所示,在本公开的一些实施例中,物理层功能模块PCA0还可以包括选择器,选择器包括第一输入端(例如,输入端D0)、第二输入端(例如,输入端D1)、第三输入端(例如,输入端S)和输出端(例如,输入端P)。As shown in Figure 2, in some embodiments of the present disclosure, the physical layer function module PCA0 may also include a selector. The selector includes a first input terminal (for example, input terminal D0), a second input terminal (for example, input terminal D0 D1), a third input terminal (for example, input terminal S) and an output terminal (for example, input terminal P).

数据报文发送子模块220与输入端D0连接,控制报文发送子模块230与输入端D1连接,输出端P与物理层接口模块PHY0连接,The data message sending sub-module 220 is connected to the input terminal D0, the control message sending sub-module 230 is connected to the input terminal D1, and the output terminal P is connected to the physical layer interface module PHY0.

发送状态机子模块210还配置为向输入端S提供第二控制信号,第二控制信号例如为图2所示的控制信号txFastPM_Sel。The sending state machine sub-module 210 is further configured to provide a second control signal to the input terminal S. The second control signal is, for example, the control signal txFastPM_Sel shown in FIG. 2 .

选择器240配置为根据控制信号txFastPM_Sel选择输出端P向物理层接口模块PHY0提供数据报文发送子模块220提供的报文或者控制报文发送子模块230提供的控制报文。The selector 240 is configured to select the output terminal P to provide the message provided by the data message sending sub-module 220 or the control message provided by the control message sending sub-module 230 to the physical layer interface module PHY0 according to the control signal txFastPM_Sel.

控制报文发送子模块230提供的控制报文不仅可以包括上文描述的第一状态进入报文,还可以包括状态退出报文、唤醒报文等。关于退出报文或者唤醒报文请参考下文的描述。The control messages provided by the control message sending sub-module 230 may not only include the first state entry message described above, but may also include state exit messages, wake-up messages, etc. For exit messages or wake-up messages, please refer to the description below.

例如,若控制信号txLowPower为低电平,则发送状态机子模块210输出的控制信号txFastPM_Sel为低电平,选择器240的输入端S接收到低电平信号,选择输入端D0的信号输出,即经由输出端P向物理层接口模块PHY0提供数据报文txData;若控制信号txLowPower为高电平,则发送状态机子模块210输出的控制信号txFastPM_Sel为高电平,选择器240的输入端S接收到高电平信号,选择输入端D1的信号输出,即经由输出端P向物理层接口模块PHY0提供第一状态进入报文。For example, if the control signal txLowPower is low level, the control signal txFastPM_Sel output by the sending state machine sub-module 210 is low level, the input terminal S of the selector 240 receives the low level signal, and the signal output of the input terminal D0 is selected, that is, The data message txData is provided to the physical layer interface module PHY0 via the output terminal P; if the control signal txLowPower is high level, the control signal txFastPM_Sel output by the sending state machine sub-module 210 is high level, and the input terminal S of the selector 240 receives The high-level signal selects the signal output of the input terminal D1, that is, provides the first state entry message to the physical layer interface module PHY0 via the output terminal P.

通过选择器控制物理层功能模块PCA0由向物理层接口模块PHY0提供数据报文或者控制报文,使得物理层功能模块PCA0的逻辑简单易于实现。但是,本公开对控制物理层功能模块PCA0由向物理层接口模块PHY0提供数据报文或者控制报文的方法不做限定,本领域技术人员可以使用其他的方法控制物理层功能模块PCA0由向物理层接口模块PHY0提供数据报文或者控制报文The physical layer function module PCA0 is controlled by the selector to provide data messages or control messages to the physical layer interface module PHY0, making the logic of the physical layer function module PCA0 simple and easy to implement. However, this disclosure does not limit the method of controlling the physical layer function module PCA0 to provide data messages or control messages to the physical layer interface module PHY0. Those skilled in the art can use other methods to control the physical layer function module PCA0 to provide the physical layer interface module PHY0 with data messages or control messages. The layer interface module PHY0 provides data packets or control packets

在本公开的一些实施例中,控制报文发送子模块230还配置为向发送子模块TX0提供唤醒报文和状态退出报文。In some embodiments of the present disclosure, the control message sending sub-module 230 is also configured to provide a wake-up message and a status exit message to the sending sub-module TX0.

发送状态机子模块210还配置为响应于第一控制信号(例如,控制信号txLowPower)由第一模式切换为第二模式,控制发送子模块TX0退出低功耗状态并且进入工作状态;控制控制报文发送子模块230向发送子模块TX0提供唤醒报文,使得发送子模块向另一芯粒DIE1提供唤醒报文,以通知物理层接口模块PHY1进入工作状态;控制控制报文发送子模块230向发送子模块TX0提供状态退出报文,使得发送子模块TX0向另一芯粒DIE1提供状态退出报文,以通知另一芯粒DIE1下一个时钟周期恢复第一数据报文的接收。The sending state machine sub-module 210 is also configured to switch from the first mode to the second mode in response to the first control signal (for example, the control signal txLowPower), and control the sending sub-module TX0 to exit the low power consumption state and enter the working state; control the control message The sending sub-module 230 provides a wake-up message to the sending sub-module TX0, so that the sending sub-module provides a wake-up message to another core chip DIE1 to notify the physical layer interface module PHY1 to enter the working state; the control control message sending sub-module 230 controls the sending sub-module 230 to send a wake-up message to the sending sub-module TX0. The sub-module TX0 provides a status exit message, so that the sending sub-module TX0 provides a status exit message to another core chip DIE1 to notify the other core chip DIE1 to resume receiving the first data message in the next clock cycle.

例如,如图2所示,唤醒报文为FPMWake报文,退出报文为FPMExit报文。FPMWake报文和FPMExit报文例如均由发送状态机子模块210提供给控制报文发送子模块230,从而由控制报文发送子模块230向发送子模块TX0提供唤醒报文和状态退出报文。For example, as shown in Figure 2, the wake-up message is the FPMWake message and the exit message is the FPMExit message. For example, both the FPMWake message and the FPMExit message are provided by the sending state machine sub-module 210 to the control message sending sub-module 230, so that the control message sending sub-module 230 provides the wake-up message and the status exit message to the sending sub-module TX0.

通过物理链路向另一芯粒提供唤醒报文和状态退出报文使得在不增加管脚的情况下,控制另一芯粒恢复工作状态。Providing wake-up messages and status exit messages to another core through a physical link allows the other core to be controlled to resume working status without adding pins.

在本公开的一些实施例中,发送状态机子模块210还配置为响应于第一控制信号的第一模式,向数据报文发送子模块220提供报文停止接收信号Tx_stop;数据报文发送子模块220配置为响应于报文停止接收信号Tx_stop,停止接收第一数据报文。In some embodiments of the present disclosure, the sending state machine sub-module 210 is further configured to provide a message stop receiving signal Tx_stop to the data message sending sub-module 220 in response to the first mode of the first control signal; the data message sending sub-module 220 is configured to stop receiving the first data message in response to the message stop receiving signal Tx_stop.

在本公开的一些实施例中,发送状态机子模块210还配置为向发送子模块TX0提供第三控制信号,以使发送子模块TX0由工作状态进入低功耗状态。响应于第三控制信号为第一控制模式,发送子模块TX0处于工作状态,响应于第三控制信号为第二控制模式,发送子模块TX0处于低功耗状态。In some embodiments of the present disclosure, the transmitting state machine sub-module 210 is further configured to provide a third control signal to the transmitting sub-module TX0, so that the transmitting sub-module TX0 enters the low power consumption state from the working state. In response to the third control signal being in the first control mode, the sending sub-module TX0 is in the working state. In response to the third control signal being in the second control mode, the sending sub-module TX0 is in the low power consumption state.

如图2所示,第三控制信号例如为控制信号TX_LP。例如,控制信号TX_LP为低电平为第一控制模式,控制信号TX_LP为高电平为第二控制模式。与第一控制信号类似,本公开对第三控制信号的第一控制模式和第二控制模式也不做限定。As shown in FIG. 2 , the third control signal is, for example, the control signal TX_LP. For example, when the control signal TX_LP is low level, it is the first control mode, and when the control signal TX_LP is high level, it is the second control mode. Similar to the first control signal, the present disclosure does not limit the first control mode and the second control mode of the third control signal.

例如,在物理层接口模块PHY0向另一芯粒DIE1提供FPMEntry报文之后,发送状态机子模块210向物理层接口模块PHY0提供高电平的控制信号TX_LP,使得物理层接口模块PHY0的发送子模块TX0进入低功耗状态。For example, after the physical layer interface module PHY0 provides the FPMEntry message to another core die DIE1, the sending state machine sub-module 210 provides the high-level control signal TX_LP to the physical layer interface module PHY0, so that the sending sub-module of the physical layer interface module PHY0 TX0 enters a low power state.

在本公开的一些实施例中,控制信号TX_LP的第二控制模式使得发送子模块TX中的至少部分电路结构关闭,使得发送子模块TX0处于低功耗状态,第一控制模式使得至少部分电路结构开启,使得发送子模块TX0处于工作状态。In some embodiments of the present disclosure, the second control mode of the control signal TX_LP causes at least part of the circuit structure in the sending sub-module TX to be turned off, so that the sending sub-module TX0 is in a low power consumption state, and the first control mode causes at least part of the circuit structure to Turn on, so that the sending sub-module TX0 is in working state.

例如,至少部分电路结构包括时钟电路、数据通路、锁相环等。本领域技术人员可以自行设置在低功耗状态下被关闭的电路结构,本公开不做限定。For example, at least part of the circuit structure includes a clock circuit, a data path, a phase-locked loop, and the like. Those skilled in the art can set up a circuit structure that is turned off in a low power consumption state by themselves, and this disclosure does not limit it.

在本公开的一些实施例中,芯粒的物理层接口模块可以包括发送子模块和接收子模块,接收子模块用于数据报文的接收。例如,物理层接口模块PHY0包括发送子模块TX0和接收子模块RX0;物理层接口模块PHY1包括发送子模块TX1和接收子模块RX1。In some embodiments of the present disclosure, the physical layer interface module of the core particle may include a sending sub-module and a receiving sub-module, and the receiving sub-module is used for receiving data messages. For example, the physical layer interface module PHY0 includes a transmitting sub-module TX0 and a receiving sub-module RX0; the physical layer interface module PHY1 includes a transmitting sub-module TX1 and a receiving sub-module RX1.

图3示出了本公开至少一个实施例提供的物理层接口模块的部分内部电路结构的示意图。FIG. 3 shows a schematic diagram of part of the internal circuit structure of the physical layer interface module provided by at least one embodiment of the present disclosure.

例如,物理层接口模块PHY0的发送子模块TX0的部分内部电路结构如图3的左侧所示;物理层接口模块PHY1的接收子模块RX1的部分内部电路结构如图3的右侧所示。图中仅示出了物理层接口模块PHY0的发送子模块TX0与物理层接口模块PHY1的接收子模块RX1的连接关系。物理层接口模块PHY0的接收子模块RX0与物理层接口模块PHY1的接收子模块RX1的结构类似,不再赘述。物理层接口模块PHY1的发送子模块TX1与物理层接口模块PHY1的发送子模块TX0类似,不再赘述。For example, part of the internal circuit structure of the transmitting sub-module TX0 of the physical layer interface module PHY0 is shown on the left side of Figure 3; part of the internal circuit structure of the receiving sub-module RX1 of the physical layer interface module PHY1 is shown on the right side of Figure 3. The figure only shows the connection relationship between the transmitting sub-module TX0 of the physical layer interface module PHY0 and the receiving sub-module RX1 of the physical layer interface module PHY1. The receiving sub-module RX0 of the physical layer interface module PHY0 has a similar structure to the receiving sub-module RX1 of the physical layer interface module PHY1, and will not be described again. The transmitting sub-module TX1 of the physical layer interface module PHY1 is similar to the transmitting sub-module TX0 of the physical layer interface module PHY1, and will not be described again.

在本公开的一些实施例中,每个物理层接口模块有多条数据通道(Lane)。多条数据通道包括多条数据发送通道和多条数据接收通道。物理层接口模块中的发送子模块包括多条数据发送通道,接收子模块包括多条数据接收通道,从而通过多条数据发送通道和多条数据接收通道独立发送和接收数据。发送子模块除包含多个数据发送通道之外,还包含一个时钟通道,用于将发送端的发送时钟提供给接收端(例如,接收子模块RX1)。In some embodiments of the present disclosure, each physical layer interface module has multiple data lanes (Lane). Multiple data channels include multiple data sending channels and multiple data receiving channels. The sending sub-module in the physical layer interface module includes multiple data sending channels, and the receiving sub-module includes multiple data receiving channels, thereby independently sending and receiving data through multiple data sending channels and multiple data receiving channels. In addition to multiple data transmission channels, the sending sub-module also contains a clock channel for providing the sending clock of the sending end to the receiving end (for example, receiving sub-module RX1).

例如,发送子模块TX0包括用于传输数据报文的多条数据发送通道。每条数据发送通道包括数据驱动缓冲器和并串转换单元。并串转换单元与数据驱动缓冲器连接,并串转换单元配置为将并行数据转换为串行数据,以向数据驱动缓冲器提供串行数据,每个驱动缓冲器与物理链路连接。例如,数据通道0至少包括缓存0、并串转换单元0和数据驱动缓冲器DD0。其他数据通道与数据通道0类似,至少包括缓存、并串转换单元和数据驱动缓冲器。For example, the sending sub-module TX0 includes multiple data sending channels for transmitting data messages. Each data transmission channel includes a data driver buffer and a parallel-to-serial conversion unit. The parallel-to-serial conversion unit is connected to the data driver buffer, and the parallel-to-serial conversion unit is configured to convert parallel data into serial data to provide serial data to the data driver buffer, and each driver buffer is connected to a physical link. For example, data channel 0 includes at least cache 0, parallel-to-serial conversion unit 0 and data drive buffer DD0. Other data channels are similar to data channel 0, including at least cache, parallel-to-serial conversion unit and data driver buffer.

如图3所示,每条数据通道的发送数据(例如,发送数据0、发送数据1、……、发送数据n)经过缓存后经过一个并串转换将并行数据转换为串行数据。串行数据经过一个数据驱动缓冲器发送到物理信道(即,物理链路)上。接收端RX1从物理信道上接收到信号后经过一个数据接收缓冲器,提供给串并转换单元,将串行数据转换为并行数据,然后送给缓存。As shown in Figure 3, the transmission data of each data channel (for example, transmission data 0, transmission data 1, ..., transmission data n) is buffered and then undergoes a parallel-to-serial conversion to convert the parallel data into serial data. Serial data is sent to the physical channel (i.e., physical link) through a data-driven buffer. After receiving the signal from the physical channel, the receiving end RX1 passes through a data reception buffer and provides it to the serial-to-parallel conversion unit, which converts the serial data into parallel data and then sends it to the buffer.

如图3所示,发送子模块TX还包括锁相环PLL、时钟相位控制单元310和时钟开关单元320。As shown in Figure 3, the transmitting sub-module TX also includes a phase-locked loop PLL, a clock phase control unit 310 and a clock switch unit 320.

锁相环PLL与时钟相位控制单元310连接,时钟开关单元320与时钟相位控制单元310连接,并且与多个并串转换单元中的每个连接。锁相环PLL配置为产生时钟信号,时钟相位控制单元310配置为控制时钟信号的相位,并且在对时钟信号的相位控制之后,向时钟开关单元320提供时钟信号,时钟开关单元320配置为向并串转换单元提供时钟信号。The phase-locked loop PLL is connected to the clock phase control unit 310, and the clock switch unit 320 is connected to the clock phase control unit 310 and to each of the plurality of parallel-to-serial conversion units. The phase locked loop PLL is configured to generate a clock signal, the clock phase control unit 310 is configured to control the phase of the clock signal, and after the phase control of the clock signal, provides the clock signal to the clock switch unit 320, the clock switch unit 320 is configured to The serial conversion unit provides the clock signal.

至少部分电路结构包括多条数据通路中的至少一个数据驱动缓冲器和时钟开关单元320。At least part of the circuit structure includes at least one data driving buffer and clock switch unit 320 in a plurality of data paths.

在本公开的一些实施例中,如图3所示,例如发送子模块TX0接收物理层功能模块(例如,图2中的PCA0)提供的控制信号TX_LP,由物理层功能模块控制发送子模块TX0快速进入低功耗状态。由于物理层接口模块PHY0进入低功耗状态后没有有效数据发送,控制信号TX_LP控制时钟开关模块关闭时钟,同时控制信号TX_LP可以控制数据驱动缓冲器的供电开关(Power Switch)关闭。例如,数据驱动缓冲器DD0的供电开关330关闭,从而将模拟输入输出(IO)的供电给关闭,从而节省发送子模块TX0的功耗。In some embodiments of the present disclosure, as shown in Figure 3, for example, the sending sub-module TX0 receives the control signal TX_LP provided by the physical layer functional module (for example, PCA0 in Figure 2), and the physical layer functional module controls the sending sub-module TX0 Quickly enter a low power state. Since the physical layer interface module PHY0 enters the low power consumption state and no valid data is sent, the control signal TX_LP controls the clock switch module to turn off the clock. At the same time, the control signal TX_LP can control the power switch (Power Switch) of the data driver buffer to turn off. For example, the power supply switch 330 of the data drive buffer DD0 is turned off, thereby turning off the power supply of the analog input and output (IO), thereby saving the power consumption of the sending sub-module TX0.

在本公开的实施例中,当PHY0快速进入低功耗时,关闭PHY0的模拟电路供电,例如关闭数据驱动缓冲器,不需要对PHY0重新做训练。因此可以快速进入退出低功耗模式。In the embodiment of the present disclosure, when PHY0 quickly enters low power, the analog circuit power supply of PHY0 is turned off, for example, the data driver buffer is turned off, and there is no need to retrain PHY0. Therefore, you can quickly enter and exit low-power mode.

在本公开的一些实施例中,发送子模块TX0在低功耗状态下多条数据通路中的目标数据通道中的数据驱动缓冲器为开启状态。发送状态机子模块210配置为:通过目标数据通道中的数据驱动缓冲器向另一芯粒提供唤醒报文。In some embodiments of the present disclosure, the data driving buffer in the target data channel among the multiple data paths in the low power consumption state of the transmitting sub-module TX0 is in an open state. The sending state machine sub-module 210 is configured to: provide a wake-up message to another core through a data-driven buffer in the target data channel.

目标数据通道中的数据驱动缓冲器保持开启状态能够及时唤醒另一芯粒DIE1的接收端RX1。目标数据通道可以是一条数据通道也可以是多条数据通道。例如,为了能够及时唤醒另一芯粒DIE1的接收端RX1,例如保留发送子模块TX0中的一条数据通道处于打开状态,保持处于打开状态的数据通道为目标数据通道。如图3所示,数据驱动缓冲器DD0的供电开关330为打开状态。例如,供电开关330包括晶体管,晶体管低电平导通,数据驱动缓冲器DD0的晶体管的栅极输入信号0表示低电平,使得供电开关301为打开状态。数据驱动缓冲器DD0所在的数据通道0即为目标数据通道。The data driver buffer in the target data channel remains open and can wake up the receiving end RX1 of the other chip DIE1 in time. The target data channel can be one data channel or multiple data channels. For example, in order to wake up the receiving end RX1 of another chip DIE1 in time, a data channel in the sending sub-module TX0 is kept open, and the data channel kept open is the target data channel. As shown in FIG. 3 , the power supply switch 330 of the data driving buffer DD0 is in an open state. For example, the power supply switch 330 includes a transistor, and the transistor is turned on at a low level. The gate input signal 0 of the transistor of the data driving buffer DD0 indicates a low level, so that the power supply switch 301 is in an open state. Data channel 0 where the data driver buffer DD0 is located is the target data channel.

例如,在控制信号TX_LP为低电平时,物理层接口模块PHY0的发送子模块TX0中的至少部分电路结构关闭,该至少部分电路结构例如可以包括数据驱动缓冲器DD1、……数据驱动缓冲器DDn和时钟开关单元320。数据驱动缓冲器DD0和时钟驱动缓冲器保持打开状态,以能够及时唤醒另一芯粒DIE1的接收端RX1。For example, when the control signal TX_LP is low level, at least part of the circuit structure in the sending sub-module TX0 of the physical layer interface module PHY0 is turned off. The at least part of the circuit structure may include, for example, the data driving buffer DD1,... the data driving buffer DDn. and clock switch unit 320. The data drive buffer DD0 and the clock drive buffer remain open to wake up the receiving end RX1 of the other chip DIE1 in time.

在本公开的另一些实施例中,发送子模块TX0还包括边带信号通路,发送状态机子模块210配置为:通过边带信号通路向另一芯粒提供唤醒报文。该实施例可以无需保留至少一个数据通道和时钟通道处于开启状态,但是需要额外增加一个边带信号通路。In other embodiments of the present disclosure, the sending sub-module TX0 also includes a sideband signal path, and the sending state machine sub-module 210 is configured to: provide a wake-up message to another core particle through the sideband signal path. In this embodiment, it is not necessary to keep at least one data channel and clock channel in an open state, but an additional sideband signal path needs to be added.

在本公开的一些实施例中,芯粒还可以包括数据总线模块(DataFabric,DF)250。In some embodiments of the present disclosure, the core particle may also include a data bus module (DataFabric, DF) 250.

数据总线模块250配置为向物理层功能模块PCA0提供第一数据报文(例如,数据报文txData)和第一控制信号(例如,控制信号txLowPower)。The data bus module 250 is configured to provide a first data packet (eg, data packet txData) and a first control signal (eg, control signal txLowPower) to the physical layer function module PCA0.

数据总线模块250控制芯片中各个模块的数据通信,比如处理器和存储模块的数据通信。在Chiplet结构中数据总线模块250的数据需要在跨DIE之间传输。例如,当DIE0的数据总线模块250需要发送数据给DIE1时,先将数据报文发送给DIE0的物理层编码子模块PCS,PCS中的数据报文发送子模块220对数据进行处理后发送给物理层接口模块PHY0。物理层接口模块PHY0在对数据报文进行处理后发送到物理链路上。DIE1从物理层接口模块PHY1接收到数据报文后会将收到的数据报文送给DIE1的物理层编码子模块PCS,物理层编码子模块PCS中的数据报文接收模块会对数据进行处理,然后发送给自身的数据总线模块。The data bus module 250 controls data communication between various modules in the chip, such as data communication between the processor and the memory module. In the chiplet structure, the data of the data bus module 250 needs to be transmitted across DIEs. For example, when the data bus module 250 of DIE0 needs to send data to DIE1, the data message is first sent to the physical layer coding sub-module PCS of DIE0. The data message sending sub-module 220 in PCS processes the data and then sends it to the physical layer. Layer interface module PHY0. The physical layer interface module PHY0 processes the data packets and sends them to the physical link. After DIE1 receives the data message from the physical layer interface module PHY1, it will send the received data message to the physical layer coding sub-module PCS of DIE1. The data message receiving module in the physical layer coding sub-module PCS will process the data. , and then sent to its own data bus module.

在本公开的一些实施例中,数据总线模块250还配置为:对无效数据的个数进行计数;以及响应于无效数据的个数大于第一预设阈值,触发第一控制信号切换为第一模式。In some embodiments of the present disclosure, the data bus module 250 is further configured to: count the number of invalid data; and in response to the number of invalid data being greater than the first preset threshold, trigger the first control signal to switch to the first model.

无效数据的个数大于第一预设阈值表明数据总线模块250没有有效数据需要发送。当数据总线模块250没有有效数据需要发送时,控制第一控制信号切换为第一模式,向给DIE0的物理层编码子模块PCS提供第一模式的第一控制信号,控制DIE0的物理层编码子模块PCS和物理层接口模块PHY0进入发送子模块的低功耗状态。例如,第一控制信号的第一模式为控制信号txLowPower的低电平信号,在下文中将控制信号txLowPower的低电平信号称为“txFastPM_Entry信号”。产生txFastPM_Entry信号的方法可以通过统计发送无效数据的个数得到。当没有有效数据发送时,使用计数器计数无效数据的个数,当连续发送无效数据的个数超过第一预设阈值时,触发txFastPM_Entry信号。If the number of invalid data is greater than the first preset threshold, it indicates that the data bus module 250 has no valid data to send. When the data bus module 250 has no valid data to send, it controls the first control signal to switch to the first mode, provides the first control signal of the first mode to the physical layer encoding sub-module PCS of DIE0, and controls the physical layer encoding sub-module of DIE0. The module PCS and the physical layer interface module PHY0 enter the low power consumption state of the sending sub-module. For example, the first mode of the first control signal is the low-level signal of the control signal txLowPower. The low-level signal of the control signal txLowPower is referred to as the “txFastPM_Entry signal” in the following. The method of generating the txFastPM_Entry signal can be obtained by counting the number of invalid data sent. When no valid data is sent, a counter is used to count the number of invalid data. When the number of continuously sent invalid data exceeds the first preset threshold, the txFastPM_Entry signal is triggered.

图4A示出了本公开至少一个实施例提供的一种数据总线模块产生txFastPM_Entry信号的示意性电路图。FIG. 4A shows a schematic circuit diagram of a data bus module generating a txFastPM_Entry signal provided by at least one embodiment of the present disclosure.

如图4A所示,数据总线模块250至少包括计数器401、比较器402和多个选择器。As shown in Figure 4A, the data bus module 250 at least includes a counter 401, a comparator 402 and a plurality of selectors.

计数器401和多个选择器用于对无效数据进行计数。例如,若Valid_packet信号为1,则表明数据总线模块250输出有效数据;若Valid_packet信号为0,则表明数据总线模块250输出无效数据。Valid_packet信号时数据总线模块250根据是否需要传输有效数据由自身产生的信号。比较器402用于比较无效数据的个数和第一预设阈值的大小。若无效数据的个数大于第一预设阈值,则比较器402产生txFastPM_Entry信号。关于图4A中的txFastPM_Exit信号,请参考图4B的描述。Counter 401 and multiple selectors are used to count invalid data. For example, if the Valid_packet signal is 1, it indicates that the data bus module 250 outputs valid data; if the Valid_packet signal is 0, it indicates that the data bus module 250 outputs invalid data. The Valid_packet signal is a signal generated by the data bus module 250 itself according to whether it needs to transmit valid data. The comparator 402 is used to compare the number of invalid data and the size of the first preset threshold. If the number of invalid data is greater than the first preset threshold, the comparator 402 generates the txFastPM_Entry signal. Regarding the txFastPM_Exit signal in Figure 4A, please refer to the description of Figure 4B.

在本公开的一些实施例中,数据总线模块250包括数据缓存器,用于存储向物理层功能模块提供的第一数据报文,数据总线模块250还配置为对数据缓存器中的有效数据的个数进行计数;以及响应于有效数据的个数达到第二预设阈值,触发第一控制信号切换为第二模式,以向物理层接口模块提供第一数据报文。In some embodiments of the present disclosure, the data bus module 250 includes a data buffer for storing the first data message provided to the physical layer function module. The data bus module 250 is also configured to store valid data in the data buffer. The number is counted; and in response to the number of valid data reaching the second preset threshold, triggering the first control signal to switch to the second mode to provide the first data message to the physical layer interface module.

数据缓存器中有效数据的个数大于第二预设阈值表明数据总线模块250存在有效数据需要发送。当数据总线模块250存在有效数据需要发送时,控制第一控制信号切换为第二模式,向给芯粒DIE0的物理层编码子模块PCS提供第二模式的第一控制信号,控制DIE0的物理层编码子模块PCS和物理层接口模块PHY0进入发送子模块的工作状态。例如,第一控制信号的第二模式为控制信号txLowPower的高电平信号,在下文中将控制信号txLowPower的高电平信号称为“txFastPM_Exit信号”。txFastPM_Exit信号给PCS,控制PCS和PHY从低功耗状态中退出,恢复到正常的工作状态(Active)。产生txFastPM_Exit信号的方法,可以通过计数数据总线模块250的数据缓存器中的有效数据个数得到。当有效数据个数超过第二预设阈值时,触发txFastPM_Exit。If the number of valid data in the data buffer is greater than the second preset threshold, it indicates that the data bus module 250 has valid data that needs to be sent. When there is valid data that needs to be sent, the data bus module 250 controls the first control signal to switch to the second mode, provides the first control signal of the second mode to the physical layer encoding sub-module PCS of the core chip DIE0, and controls the physical layer of DIE0. The coding sub-module PCS and the physical layer interface module PHY0 enter the working state of the sending sub-module. For example, the second mode of the first control signal is a high-level signal of the control signal txLowPower. The high-level signal of the control signal txLowPower is referred to as the “txFastPM_Exit signal” in the following. The txFastPM_Exit signal is sent to the PCS to control the PCS and PHY to exit from the low power consumption state and return to the normal working state (Active). The method of generating the txFastPM_Exit signal can be obtained by counting the number of valid data in the data buffer of the data bus module 250 . When the number of valid data exceeds the second preset threshold, txFastPM_Exit is triggered.

图4B示出了本公开至少一个实施例提供的一种数据总线模块产生txFastPM_Exit信号的示意性电路图。FIG. 4B shows a schematic circuit diagram of a data bus module generating a txFastPM_Exit signal provided by at least one embodiment of the present disclosure.

如图4B所示,数据总线模块250至少包括缓存器410、比较器420、计数器430和多个选择器。As shown in FIG. 4B, the data bus module 250 at least includes a buffer 410, a comparator 420, a counter 430 and a plurality of selectors.

计数器430和多个选择器用于对缓存器中的有效数据进行计数。比较器420用于比较无效数据的个数和第二预设阈值的大小。若有效数据的个数大于第二阈值阈值,则比较器402产生txFastPM_Exit信号。The counter 430 and multiple selectors are used to count valid data in the buffer. The comparator 420 is used to compare the number of invalid data and the size of the second preset threshold. If the number of valid data is greater than the second threshold, the comparator 402 generates the txFastPM_Exit signal.

Write_Data表示写入到缓存器410的数据报文。Write_Data represents the data packet written to the buffer 410.

图4A和图4B示出的电路图仅为一种示例,本领域技术人员可以自行设计触发txFastPM_Entry信号和txFastPM_Exit信号的电路结构,本公开对数据总线模块的电路结构不做限定。The circuit diagram shown in FIG. 4A and FIG. 4B is only an example. Those skilled in the art can design the circuit structure for triggering the txFastPM_Entry signal and the txFastPM_Exit signal by themselves. This disclosure does not limit the circuit structure of the data bus module.

在本公开的一些实施例中,如图2所示,物理层功能模块PCA0还包括接收状态机子模块260、数据报文接收子模块270和控制报文接收模块280。物理层接口模块PHY0还配置为:接收来自另一芯粒DIE1提供的通信报文,并且将通信报文提供给数据报文接收子模块270和控制报文接收子模块280。数据报文接收子模块270配置为接收通信报文。控制报文接收子模块280配置为接收通信报文,并且响应于通信报文为第二状态进入报文,向接收状态机子模块提供第二状态进入报文。接收状态机子模块260配置为:响应于第二状态进入报文,控制数据报文接收子模块270停止接收第二数据报文,并且控制第一物理层接口模块PHY0由工作状态切换为低功耗状态。In some embodiments of the present disclosure, as shown in Figure 2, the physical layer function module PCA0 also includes a receiving state machine sub-module 260, a data message receiving sub-module 270 and a control message receiving module 280. The physical layer interface module PHY0 is also configured to: receive communication messages provided from another core die DIE1, and provide the communication messages to the data message receiving sub-module 270 and the control message receiving sub-module 280. The data message receiving sub-module 270 is configured to receive communication messages. The control message receiving sub-module 280 is configured to receive the communication message, and in response to the communication message being the second state entry message, provide the second state entry message to the receiving state machine sub-module. The receiving state machine sub-module 260 is configured to: in response to the second state entry message, control the data message receiving sub-module 270 to stop receiving the second data message, and control the first physical layer interface module PHY0 to switch from the working state to low power consumption. state.

在该实施例中,芯粒DIE0作为接收端,DIE1作为发送端,DIE0经由物理接口模块PHY0接收来自芯粒DIE1的通信报文。该通信报文可能是数据报文也可能是控制报文。如上文所描述的,控制报文可以是状态进入报文、唤醒报文和状态退出报文中的任一种。In this embodiment, the core particle DIE0 serves as the receiving end, and DIE1 serves as the sending end. DIE0 receives the communication message from the core particle DIE1 via the physical interface module PHY0. The communication message may be a data message or a control message. As described above, the control message may be any of a state entry message, a wake-up message, and a state exit message.

例如,芯粒DIE0的接收子模块RX0接收芯粒DIE1的发送子模块TX1提供的通信报文。For example, the receiving sub-module RX0 of the core particle DIE0 receives the communication message provided by the sending sub-module TX1 of the core particle DIE1.

第二状态进入报文是指由另一芯粒DIE1向芯粒DIE0提供的控制报文,上述第一状态进入报文是指由芯粒DIE0向另一芯粒DIE1提供的控制报文,第二状态进入报文的格式可以与上述第一状态进入报文的格式相同,或者第二状态进入报文与第一状态进入报文相同。The second state entry message refers to the control message provided by another core particle DIE1 to the core particle DIE0. The above-mentioned first state entry message refers to the control message provided by the core particle DIE0 to the other core particle DIE1. The format of the second-state entry message may be the same as the format of the above-mentioned first-state entry message, or the second-state entry message may be the same as the first-state entry message.

第二数据报文是指由另一芯粒DIE1向芯粒DIE0提供的数据报文,上述第一数据报文是指由芯粒DIE0向另一芯粒DIE1提供的数据报文。第一数据报文和第二数据报文不同,但是第一数据报文和第二数据报文的格式可以是相同的。The second data message refers to the data message provided by another core particle DIE1 to the core particle DIE0. The above-mentioned first data message refers to the data message provided by the core particle DIE0 to the other core particle DIE1. The first data packet and the second data packet are different, but the formats of the first data packet and the second data packet may be the same.

在本公开的一些实施例中,控制报文接收子模块280可以根据通信报文的报文格式判断该通信报文是数据报文还是控制报文。响应于通信报文为第二数据报文,数据报文接收子模块270向数据总线模块250提供第二数据报文。第二数据报文例如为图2中的数据报文rxData。响应于通信报文为第二状态进入报文,向接收状态机子模块260提供第二状态进入报文,使得接收状态机子模块260控制数据报文接收子模块270停止接收第二数据报文,并且控制第一物理层接口模块PHY0由工作状态切换为低功耗状态。第二状态进入报文例如为图2所示的FPMEntry’报文。In some embodiments of the present disclosure, the control message receiving sub-module 280 can determine whether the communication message is a data message or a control message according to the message format of the communication message. In response to the communication message being the second data message, the data message receiving sub-module 270 provides the second data message to the data bus module 250 . The second data packet is, for example, the data packet rxData in Figure 2 . In response to the communication message being the second state entry message, the second state entry message is provided to the receiving state machine sub-module 260, so that the receiving state machine sub-module 260 controls the data message receiving sub-module 270 to stop receiving the second data message, and Control the first physical layer interface module PHY0 to switch from a working state to a low power consumption state. The second state entry message is, for example, the FPMEntry' message shown in Figure 2.

例如,接收状态机子模块260响应于通信报文为第二状态进入报文,向数据报文接收子模块270提供报文停止接收信号Rx_stop。数据报文接收子模块270配置为响应于报文停止接收信号Rx_stop,停止接收第二数据报文。For example, in response to the communication message being the second state entry message, the receiving state machine sub-module 260 provides the message stop receiving signal Rx_stop to the data message receiving sub-module 270 . The data message receiving sub-module 270 is configured to stop receiving the second data message in response to the message stop receiving signal Rx_stop.

在本公开的一些实施例中,物理层接口模块PHY0包括接收子模块RX0,接收子模块RX0与接收状态机子模块260连接。接收状态机子模块260配置为控制接收子模块RX0由工作状态切换为低功耗状态。例如,响应于FPMEntry’报文,接收状态机子模块260控制接收子模块RX0由工作状态切换为低功耗状态。In some embodiments of the present disclosure, the physical layer interface module PHY0 includes a receiving sub-module RX0, and the receiving sub-module RX0 is connected to the receiving state machine sub-module 260. The receiving state machine sub-module 260 is configured to control the receiving sub-module RX0 to switch from the working state to the low power consumption state. For example, in response to the FPMEntry' message, the receiving state machine sub-module 260 controls the receiving sub-module RX0 to switch from the working state to the low power consumption state.

该实施例能够在接收和发送两个传输方向上独立控制接收子模块和发送子模块快速进入低功耗状态,能够在任一个方向上没有有效数据传输时,节省芯片功耗。在单方向没有有效数据传输时,控制发送端的发送子模块和接收端的接收子模块进入低功耗状态,以节省功耗,并且保持另一个方向的数据通道仍然处于工作状态(发送端的接收子模块和接收端的发送子模块仍然处于正常工作状态)。This embodiment can independently control the receiving sub-module and the transmitting sub-module in the two transmission directions of receiving and transmitting to quickly enter a low-power state, and can save chip power consumption when there is no valid data transmission in either direction. When there is no valid data transmission in one direction, the sending sub-module of the sending end and the receiving sub-module of the receiving end are controlled to enter a low-power state to save power consumption, and keep the data channel in the other direction still in working state (the receiving sub-module of the sending end and the sending sub-module of the receiving end is still in normal working condition).

图4C示出了本公开至少一个实施例提供的芯粒在接收和发送两个传输方向独立控制的示意图。FIG. 4C shows a schematic diagram of independent control of core particles in two transmission directions, receiving and transmitting, provided by at least one embodiment of the present disclosure.

图4C示出了芯粒DIE0和芯粒DIE1的结构以及各个结构的功能与前述图2相同,不再赘述。Figure 4C shows the structure of the core particle DIE0 and the core particle DIE1 and the functions of each structure are the same as those in the aforementioned Figure 2 and will not be described again.

如图4C所示,DIE0作为发送端,DIE1作为接收端。发送传输方向4000和接收传输方向4100相互独立。即,本公开的一些实施例能够对DIE0的发送子模块TX0和DIE1的接收子模块RX1单独控制,并且能够对DIE0的接收子模块RX0和DIE1的发送子模块TX1单独控制,从而实现DIE0作为发送端且DIE1作为接收端的传输方向与DIE0作为接收端且DIE1作为发送端的的传输方向的独立控制。As shown in Figure 4C, DIE0 serves as the transmitter and DIE1 serves as the receiver. The sending transmission direction 4000 and the receiving transmission direction 4100 are independent of each other. That is, some embodiments of the present disclosure can independently control the sending sub-module TX0 of DIE0 and the receiving sub-module RX1 of DIE1, and can independently control the receiving sub-module RX0 of DIE0 and the sending sub-module TX1 of DIE1, thereby realizing DIE0 as a sending sub-module. End and DIE1 as the receiving end of the transmission direction and DIE0 as the receiving end and DIE1 as the transmitting end of the independent control of the transmission direction.

在本公开的一些实施例中,接收状态机子模块260还配置为向接收子模块RX提供第四控制信号,以使接收子模块RX由工作状态进入低功耗状态。第四控制信号例如为图2中的控制信号RX_LP。控制信号RX_LP例如包括多种工作模式。例如,控制信号RX_LP为低电平为控制信号RX_LP的第一控制模式,控制信号RX_LP为高电平为控制信号RX_LP的第二控制模式。In some embodiments of the present disclosure, the receiving state machine sub-module 260 is further configured to provide a fourth control signal to the receiving sub-module RX, so that the receiving sub-module RX enters the low power consumption state from the working state. The fourth control signal is, for example, the control signal RX_LP in FIG. 2 . The control signal RX_LP includes, for example, multiple operating modes. For example, when the control signal RX_LP is low level, it is the first control mode of the control signal RX_LP, and when the control signal RX_LP is high level, it is the second control mode of the control signal RX_LP.

响应于第四控制信号为第一控制模式,接收子模块RX0处于工作状态,响应于第四控制信号为第二控制模式,接收子模块RX0处于低功耗状态。例如,接收子模块RX0响应于控制信号RX_LP为低电平,进入工作状态;接收子模块RX0响应于控制信号RX_LP为低电平,进入低功耗状态。In response to the fourth control signal being in the first control mode, the receiving sub-module RX0 is in the working state. In response to the fourth control signal being in the second control mode, the receiving sub-module RX0 is in the low power consumption state. For example, the receiving sub-module RX0 responds to the low level of the control signal RX_LP and enters the working state; the receiving sub-module RX0 responds to the low level of the control signal RX_LP and enters the low power consumption state.

在本公开的一些实施例中,第四控制信号的第二控制模式使得接收子模块中的至少部分电路结构关闭,使得接收子模块处于低功耗状态,第一控制模式使得至少部分电路结构开启,使得接收子模块处于工作状态。In some embodiments of the present disclosure, the second control mode of the fourth control signal causes at least part of the circuit structure in the receiving sub-module to be turned off, so that the receiving sub-module is in a low power consumption state, and the first control mode causes at least part of the circuit structure to turn on , so that the receiving sub-module is in working status.

例如,至少部分电路结构包括时钟电路、数据通道、锁相环等。本领域技术人员可以自行设置在低功耗状态下被关闭的电路结构,本公开不做限定。For example, at least part of the circuit structure includes a clock circuit, a data channel, a phase-locked loop, etc. Those skilled in the art can set up a circuit structure that is turned off in a low power consumption state by themselves, and this disclosure does not limit it.

物理层接口模块PHY0的接收子模块RX0的电路结构可以与物理层接口模块PHY1的接收子模块RX1的电路结构类似,下面结合图3以物理层接口模块PHY1的接收子模块RX1为例来说明接收子模块RX0的电路结构。The circuit structure of the receiving sub-module RX0 of the physical layer interface module PHY0 can be similar to the circuit structure of the receiving sub-module RX1 of the physical layer interface module PHY1. The following uses the receiving sub-module RX1 of the physical layer interface module PHY1 as an example to illustrate the reception in conjunction with Figure 3. Circuit structure of submodule RX0.

例如,接收子模块RX1包括用于传输数据报文的多条数据接收通道。多条数据接收通道每条包括数据接收缓冲器和串并转换单元。串并转换单元与数据接收缓冲器连接,串并转换单元配置为接收数据接收缓冲器提供的串行数据,将串行数据转换为并行数据。每个数据接收缓冲器与物理链路连接。例如,数据接收通道0至少包括缓存3、串并转换单元0和数据接收缓冲器DR0。其他数据接收通道与数据接收通道0类似,至少包括缓存、串并转换单元和数据接收缓冲器。For example, the receiving submodule RX1 includes multiple data receiving channels for transmitting data messages. Each of the multiple data receiving channels includes a data receiving buffer and a serial-to-parallel conversion unit. The serial-to-parallel conversion unit is connected to the data reception buffer, and the serial-to-parallel conversion unit is configured to receive serial data provided by the data reception buffer and convert the serial data into parallel data. Each data receive buffer is connected to a physical link. For example, data reception channel 0 includes at least buffer 3, serial-to-parallel conversion unit 0 and data reception buffer DR0. Other data reception channels are similar to data reception channel 0, including at least buffers, serial-to-parallel conversion units and data reception buffers.

如图3所示,每条数据接收通道的数据报文经过串并转换单元后转换为并行数据后经过一个缓存后提供至物理层编码模块PCS。As shown in Figure 3, the data packets of each data receiving channel are converted into parallel data after passing through the serial-to-parallel conversion unit, and then passed through a buffer and provided to the physical layer coding module PCS.

如图3所示,接收子模块RX1还包括多个时钟相位控制单元和多个时钟开关单元。例如,每个数据接收通道与一个时钟相位控制单元和一个时钟开关单元对应。例如,数据接收通道0与时钟相位控制单元340和时钟开关单元350对应。As shown in Figure 3, the receiving sub-module RX1 also includes multiple clock phase control units and multiple clock switch units. For example, each data receiving channel corresponds to a clock phase control unit and a clock switching unit. For example, data reception channel 0 corresponds to the clock phase control unit 340 and the clock switch unit 350.

时钟开关单元350与时钟相位控制单元340连接,并且与串并转换单元0和缓存3连接。时钟相位控制单元340配置为控制时钟信号的相位,并且在对时钟信号的相位控制之后,向时钟开关单元350提供时钟信号,时钟开关单元320配置为向串并转换单元提供时钟信号。The clock switch unit 350 is connected to the clock phase control unit 340 and is connected to the serial-to-parallel conversion unit 0 and the cache 3 . The clock phase control unit 340 is configured to control the phase of the clock signal, and after the phase control of the clock signal, provides the clock signal to the clock switch unit 350, and the clock switch unit 320 is configured to provide the clock signal to the serial-to-parallel conversion unit.

例如,接收子模块RX0的电路结构与图3中接收子模块RX1的电路结构相同,则第二控制模式使得接收子模块RX0中多条数据接收通道中的至少一条数据接收通道中的数据接收缓冲器和时钟开关单元关闭。For example, the circuit structure of the receiving sub-module RX0 is the same as the circuit structure of the receiving sub-module RX1 in Figure 3, then the second control mode causes the data receiving buffer in at least one of the multiple data receiving channels in the receiving sub-module RX0 to The controller and clock switching unit are turned off.

在本公开的一些实施例中,例如在接收子模块RX0接收控制信号RX_LP,例如控制信号RX_LP由物理层功能模块(例如,PCS)提供,使得接收子模块RX0响应于控制信号RX_LP快速进入低功耗状态。由于物理层接口模块PHY0进入低功耗状态后没有有效数据发送,控制信号RX_LP可以控制数据接收驱动缓冲器的供电开关关闭。例如,数据接收通道0的数据接收缓冲器DR0的供电开关360关闭,从而节省接收子模块RX的功耗。In some embodiments of the present disclosure, for example, the control signal RX_LP is received in the receiving sub-module RX0. For example, the control signal RX_LP is provided by a physical layer function module (for example, PCS), so that the receiving sub-module RX0 quickly enters low power in response to the control signal RX_LP. consumption status. Since the physical layer interface module PHY0 enters the low power consumption state and no valid data is sent, the control signal RX_LP can control the power supply switch of the data receiving driver buffer to turn off. For example, the power supply switch 360 of the data receiving buffer DR0 of the data receiving channel 0 is turned off, thereby saving the power consumption of the receiving sub-module RX.

在本公开的一些实施例中,芯粒DIE0中的接收子模块RX0在低功耗状态下多条数据接收通道中的目标数据接收通道中的数据接收缓冲器为开启状态。目标数据接收通道中的数据接收缓冲器保持开启状态能够及时接收另一芯粒DIE1提供的唤醒报文。目标数据接收通道可以是一条数据接收通道也可以是多条数据接收通道。例如,为了能够及时唤醒芯粒DIE0的接收端RX0,芯粒DIE0的接收端RX0保留一条数据接收通道处于打开状态,保持处于打开状态的数据通道为目标数据接收通道。In some embodiments of the present disclosure, the receiving sub-module RX0 in the core chip DIE0 has the data receiving buffer in the target data receiving channel among the multiple data receiving channels in the low power consumption state. The data reception buffer in the target data reception channel remains open and can receive the wake-up message provided by another chip DIE1 in time. The target data receiving channel can be one data receiving channel or multiple data receiving channels. For example, in order to wake up the receiving end RX0 of the core DIE0 in time, the receiving end RX0 of the core DIE0 keeps a data receiving channel open, and the data channel kept open is the target data receiving channel.

在本公开的另一些实施例中,接收子模块RX0还可以包括边带信号通路,接收状态机子模块260配置为:通过边带信号通路接收另一芯粒提供的唤醒报文。该实施例可以无需保留至少一个数据通道和时钟通道处于开启状态,但是需要额外增加一个边带信号通路。In other embodiments of the present disclosure, the receiving sub-module RX0 may also include a sideband signal path, and the receiving state machine sub-module 260 is configured to: receive a wake-up message provided by another core chip through the sideband signal path. In this embodiment, it is not necessary to keep at least one data channel and clock channel in an open state, but an additional sideband signal path needs to be added.

在本公开的另一些实施例中,控制报文接收子模块280还配置为响应于通信报文为唤醒报文,向接收状态机子模块260发送唤醒报文。唤醒报文例如为图2所示的FPMWake’报文。接收状态机子模块260配置为响应于接收到唤醒报文,将第四控制信号(例如,控制信号RX_LP)切换为第一控制模式,以控制接收子模块RX进入工作状态。控制报文接收子模块280还配置为响应于通信报文为状态退出报文,向接收状态机子模块260提供状态退出报文。状态退出报文例如为图2所示的FPMExit’报文。接收状态机子模块260还配置为响应于状态退出报文,控制数据报文接收子模块270开始接收第二数据报文。In other embodiments of the present disclosure, the control message receiving sub-module 280 is further configured to send a wake-up message to the receiving state machine sub-module 260 in response to the communication message being a wake-up message. The wake-up message is, for example, the FPMWake' message shown in Figure 2. The receiving state machine sub-module 260 is configured to, in response to receiving the wake-up message, switch the fourth control signal (for example, the control signal RX_LP) to the first control mode to control the receiving sub-module RX to enter the working state. The control message receiving sub-module 280 is further configured to provide the state exit message to the receiving state machine sub-module 260 in response to the communication message being a state exit message. The status exit message is, for example, the FPMExit’ message shown in Figure 2. The receiving state machine sub-module 260 is further configured to control the data message receiving sub-module 270 to start receiving the second data message in response to the state exit message.

例如,接收状态机子模块260响应于状态退出报文,向数据报文接收子模块发送报文接收指示信号,以通知数据报文接收子模块270准备接收第二数据报文。For example, in response to the state exit message, the receiving state machine sub-module 260 sends a message receiving indication signal to the data message receiving sub-module to notify the data message receiving sub-module 270 to prepare to receive the second data message.

图5示出了本公开至少一个实施例提供的一种物理层编码模块PCS或者适配层的框图。Figure 5 shows a block diagram of a physical layer coding module PCS or adaptation layer provided by at least one embodiment of the present disclosure.

图5所示的物理层编码模块PCS或者适配层Adapter例如应用于图2中的芯粒DIE0或者芯粒DIE1中。物理层编码模块PCS或者适配层Adapter包括数据报文收发通路以及控制报文收发通路两部分。The physical layer coding module PCS or the adaptation layer Adapter shown in Figure 5 is, for example, applied to the core particle DIE0 or the core particle DIE1 in Figure 2 . The physical layer coding module PCS or the adaptation layer Adapter includes two parts: a data message sending and receiving channel and a control message sending and receiving channel.

数据报文收发通路用于正常工作状态下向其他芯粒提供来自自身的数据总线模块的数据报文,以及从物理层接口模块PHY接收来自其他芯粒的数据报文并且向自身的数据总线模块提供该数据报文。The data message sending and receiving channel is used to provide data messages from its own data bus module to other cores under normal working conditions, and to receive data messages from other cores from the physical layer interface module PHY and send them to its own data bus module. Provide this datagram.

结合图5和图2,并且以图5示出的物理层编码模块PCS或者适配层为图2中芯粒DIE0的物理层编码模块为例说明本公开至少一个实施例提供的物理层编码模块。Combining Figure 5 and Figure 2, and taking the physical layer coding module PCS shown in Figure 5 or the physical layer coding module whose adaptation layer is the core DIE0 in Figure 2 as an example to illustrate the physical layer coding module provided by at least one embodiment of the present disclosure. .

如图5所示,在数据报文收发通路中的发送通路中,PCS接收数据总线模块提供的数据报文txData,经过数据报文发送子模块220处理(例如,进行校验、编码等处理)后送给一个选择器。在发送数据报文时选择器会选择端口D0输入,数据报文txData会提供到TXDATA信号线,经由TXDATA信号线提供给物理层接口模块PHY0的发送子模块TX0。As shown in Figure 5, in the sending path of the data message sending and receiving path, the PCS receives the data message txData provided by the data bus module and processes it through the data message sending sub-module 220 (for example, performing verification, encoding, etc.) Then send it to a selector. When sending a data message, the selector will select the port D0 input, and the data message txData will be provided to the TXDATA signal line, and provided to the sending sub-module TX0 of the physical layer interface module PHY0 via the TXDATA signal line.

如图2所示,另一个芯粒DIE1的接收通道从PHY0接收到数据报文rxData(即,DIE0提供的数据报文txData)后,经由RXDATA信号线分别送给数据报文接收子模块2100和控制报文接收子模块2200。As shown in Figure 2, after the receiving channel of another core chip DIE1 receives the data message rxData (that is, the data message txData provided by DIE0) from PHY0, it sends it to the data message receiving sub-module 2100 and 2100 respectively via the RXDATA signal line. Control message receiving sub-module 2200.

由于接收到的是正常的数据报文,所以控制报文接收子模块2200输出为0。数据报文接收子模块2100会输出处理后的数据报文rxData给数据总线模块2300。Since a normal data packet is received, the output of the control packet receiving sub-module 2200 is 0. The data message receiving sub-module 2100 will output the processed data message rxData to the data bus module 2300.

如图5所示,对于芯粒DIE0的数据报文收发通路的接收通道,从PHY1接收到数据报文rxData(即,DIE1提供的数据报文txData)后,经由RXDATA信号线分别送给数据报文接收子模块270和控制报文接收子模块280。As shown in Figure 5, for the receiving channel of the data message sending and receiving path of the core chip DIE0, after receiving the data message rxData (that is, the data message txData provided by DIE1) from PHY1, the data message is sent to the data message via the RXDATA signal line. message receiving sub-module 270 and control message receiving sub-module 280.

由于接收到的是正常的数据报文,所以控制报文接收子模块280输出为0。数据报文接收子模块27 0会输出处理后的数据报文rxData给数据总线模块250。Since a normal data packet is received, the output of the control packet receiving sub-module 280 is 0. The data message receiving sub-module 27 0 will output the processed data message rxData to the data bus module 250 .

控制报文收发通路是在PCS之间交互控制报文以快速控制进入、退出低功耗状态。The control message sending and receiving path is to exchange control messages between PCS to quickly control entering and exiting the low power consumption state.

如图5所示,在控制报文收发通路中的发送通路中,PCS从数据总线模块接收txFastPM_Entry信号,即txLowPower=1,以控制PCS快速进入低功耗模式。PCS中的发送状态机子模块210会产生Tx_Stop信号控制数据报文发送子模块220停止正常数据发送。发送状态机子模块210会控制控制报文发送子模块230发送FPMEntry控制报文。发送状态机子模块210会输出txFastPM_sel信号给选择器用于控制选择器选择D1通路以提供FPMEntry控制报文。FPMEntry控制报指示发送子模块TX将进入低功耗状态。FPMEntry控制报文最终通过TXDATA信号线和物理链路发送给另一个芯粒DIE1。As shown in Figure 5, in the transmission path of the control message transmission and reception path, the PCS receives the txFastPM_Entry signal from the data bus module, that is, txLowPower=1, to control the PCS to quickly enter the low power consumption mode. The sending state machine sub-module 210 in the PCS will generate the Tx_Stop signal to control the data message sending sub-module 220 to stop normal data sending. The sending state machine sub-module 210 controls the control message sending sub-module 230 to send the FPMEntry control message. The sending state machine sub-module 210 will output the txFastPM_sel signal to the selector to control the selector to select the D1 path to provide the FPMEntry control message. The FPMEntry control report indicates that the sending sub-module TX will enter a low power consumption state. The FPMEntry control message is finally sent to another chip DIE1 through the TXDATA signal line and physical link.

发送状态机子模块210会产生TX_LP信号,控制物理层接口模块PHY0的发送子模块TX0快速进入低功耗状态。PHY0仅仅保留发送子模块TX0中一个数据发送通道(例如,数据发送通道0)和时钟信号通道用于唤醒,关闭发送子模块TX0中其他数据发送通道并对发送时钟做门控(clock gating)。The transmitting state machine sub-module 210 generates a TX_LP signal to control the transmitting sub-module TX0 of the physical layer interface module PHY0 to quickly enter a low power consumption state. PHY0 only reserves one data transmission channel (for example, data transmission channel 0) and clock signal channel in the transmission sub-module TX0 for wake-up, closes other data transmission channels in the transmission sub-module TX0 and performs clock gating on the transmission clock.

另一个芯粒DIE1接收到的通信报文会送入芯粒DIE1的数据报文接收子模块2100和控制报文接收子模块2200。由于此时接收的是FPMEntry控制报文,控制报文接收子模块2200判断接收到的是FPMEntry报文,该报文会送给芯粒DIE1的接收状态机子模块2400,芯粒DIE1的接收状态机子模块会产生Rx_stop信号控制数据报文接收子模块2100停止接收数据报文。芯粒DIE1的接收状态机子模块2400会产生RX_LP信号控制芯粒DIE1的物理层接口模块PHY1的接收子模块RX1的电路快速进入低功耗状态。芯粒DIE1的物理层接口模块PHY1仅仅保留一条接收子模块的数据接收通道(例如,数据接收通道0)和时钟信号通道用于唤醒,关闭接收子模块的其他的数据接收通道。The communication message received by the other core particle DIE1 will be sent to the data message receiving sub-module 2100 and the control message receiving sub-module 2200 of the core particle DIE1. Since the FPMEntry control message is received at this time, the control message receiving sub-module 2200 determines that the FPMEntry message is received, and the message will be sent to the receiving state machine sub-module 2400 of the core DIE1. The receiving state machine of the core DIE1 The module will generate the Rx_stop signal to control the data message receiving sub-module 2100 to stop receiving data messages. The receiving state machine sub-module 2400 of the core DIE1 will generate the RX_LP signal to control the circuit of the receiving sub-module RX1 of the physical layer interface module PHY1 of the core DIE1 to quickly enter a low power consumption state. The physical layer interface module PHY1 of the core chip DIE1 only reserves one data receiving channel (for example, data receiving channel 0) and clock signal channel of the receiving sub-module for wake-up, and closes other data receiving channels of the receiving sub-module.

若发送通路从数据总线模块接收txFastPM_Exit信号,即txLowPower=0,以控制PCS快速退出低功耗模式。发送状态机子模块210会拉低TX_LP信号,控制PHY的TX0模块快速退出低功耗模式。PCS中的发送状态机子模块210会控制控制报文发送子模块230发送FPMWake控制报文和FPMExit控制报文。FPMWake用于唤醒对方接收状态机子模块。FPMExit控制报文用于告诉另一芯粒下一个时钟周期恢复数据接收。If the sending path receives the txFastPM_Exit signal from the data bus module, that is, txLowPower=0, it controls the PCS to quickly exit the low-power mode. The transmit state machine sub-module 210 will pull down the TX_LP signal to control the TX0 module of the PHY to quickly exit the low power consumption mode. The sending state machine sub-module 210 in the PCS controls the control message sending sub-module 230 to send the FPMWake control message and the FPMExit control message. FPMWake is used to wake up the other party's receiving state machine sub-module. The FPMExit control message is used to tell another chip to resume data reception in the next clock cycle.

发送状态机子模块210会拉低Tx_Stop信号以控制数据报文发送模块开始正常数据发送。The sending state machine sub-module 210 will pull down the Tx_Stop signal to control the data message sending module to start normal data sending.

另一个芯粒DIE1在接收到FPMWake控制报文之前只有一个数据接收通道和时钟信号通道处于打开状态,用于接收FPMWake报文。控制报文接收子模块2200接收到FPMWake控制报文后,会拉低RX_LP信号,控制PHY1退出低功耗状态,PHY1会打开所有的数据接收通道。Before the other core particle DIE1 receives the FPMWake control message, only one data receiving channel and clock signal channel are open for receiving the FPMWake message. After receiving the FPMWake control message, the control message receiving sub-module 2200 will pull down the RX_LP signal, control PHY1 to exit the low power consumption state, and PHY1 will open all data receiving channels.

接收状态机子模块2400接收到FPMExit控制报文后,拉低Rx_Stop信号,控制数据报文接收模块2100开始正常接收数据报文。After receiving the FPMExit control message, the receiving state machine sub-module 2400 pulls the Rx_Stop signal low and controls the data message receiving module 2100 to start receiving data messages normally.

如图5所示,对于芯粒DIE0的控制报文收发通路的接收通道,芯粒DIE0在接收到FPMWake控制报文之前只有一个数据接收通道和时钟信号通道处于打开状态,用于接收FPMWake报文。控制报文接收子模块280接收到FPMWake控制报文后,会拉低RX_LP信号,控制PHY0退出低功耗状态,PHY0会打开所有的数据接收通道。As shown in Figure 5, for the receiving channel of the control message sending and receiving path of the core particle DIE0, before the core particle DIE0 receives the FPMWake control message, only one data receiving channel and a clock signal channel are open for receiving FPMWake messages. . After receiving the FPMWake control message, the control message receiving sub-module 280 will pull down the RX_LP signal, control PHY0 to exit the low power consumption state, and PHY0 will open all data receiving channels.

接收状态机子模块260接收到FPMExit控制报文后,拉低Rx_Stop信号,控制数据报文接收模块270开始正常接收数据报文。After receiving the FPMExit control message, the receiving state machine sub-module 260 pulls the Rx_Stop signal low and controls the data message receiving module 270 to start receiving data messages normally.

图6A示出了本公开至少一个实施例提供的一种发送子模块的状态机的示意图。图6B示出了本公开至少一个实施例提供的一种接收子模块的状态机的示意图。FIG. 6A shows a schematic diagram of a state machine of a sending submodule provided by at least one embodiment of the present disclosure. FIG. 6B shows a schematic diagram of a state machine of a receiving submodule provided by at least one embodiment of the present disclosure.

如图6A所示,当信号TX_LP=1时,物理层接口模块的发送子模块快速进入低功耗状态,将发送子模块的数据通道的IO供电关闭。当信号TX_LP=0时,快速退出低功耗状态,将发送子模块的数据通道的IO供电打开。As shown in Figure 6A, when the signal TX_LP=1, the sending sub-module of the physical layer interface module quickly enters a low power consumption state and turns off the IO power supply of the data channel of the sending sub-module. When the signal TX_LP=0, it quickly exits the low power consumption state and turns on the IO power supply of the data channel of the sending sub-module.

如图6B所示,当信号RX_LP=1时,物理层接口模块的接收子模块快速进入低功耗状态,将接收子模块的数据通道的IO供电关闭。当信号TX_LP=0时,快速退出低功耗状态,将接收子模块的数据通道的IO供电打开。As shown in Figure 6B, when the signal RX_LP=1, the receiving sub-module of the physical layer interface module quickly enters a low power consumption state and turns off the IO power supply of the data channel of the receiving sub-module. When the signal TX_LP=0, it quickly exits the low-power state and turns on the IO power supply of the data channel of the receiving sub-module.

本公开的至少一些实施例提供的芯粒通过收发双方交互控制报文,控制PHY进入、退出低功耗模式,不需要额外的芯片管脚。本公开的实施例通过发送状态机子模块和数据总线模块的逻辑实现双方交互控制报文,不需要额外的芯片管脚。额外的芯片管脚不仅增加成本,还给芯片的设计带来不便。本公开的一些实施例通过收发双方协商后确定PHY安全进入、退出低功耗模式的时间点,可以安全关闭PHY的IO供电,从而比门控时钟方案节省更多的功耗。当PHY进入快速低功耗时,关闭模拟驱动缓冲器不需要对PHY重新做训练。因此可以快速进入退出低功耗模式。The core provided by at least some embodiments of the present disclosure controls the PHY to enter and exit the low power consumption mode by sending and receiving interactive control messages from both parties, without requiring additional chip pins. The embodiment of the present disclosure realizes interactive control messages between the two parties by sending the logic of the state machine sub-module and the data bus module, without requiring additional chip pins. Extra chip pins not only increase costs, but also bring inconvenience to chip design. Some embodiments of the present disclosure determine the time point when the PHY safely enters and exits the low-power mode through negotiation between the sending and receiving parties, and can safely turn off the IO power supply of the PHY, thereby saving more power consumption than the gated clock solution. When the PHY enters fast low power mode, turning off the analog driver buffer does not require retraining the PHY. Therefore, you can quickly enter and exit low-power mode.

需要说明的是,在上述一些实施例中,快速进入低功耗模式时时钟信号通道保持打开状态,但时钟信号在进入快速低功耗模式被关闭,在退出快速低功耗模式被打开。在本公开的另一些实施例中,可以使用时钟信号的跳变来控制接收端的接收子模块的唤醒。It should be noted that in some of the above embodiments, the clock signal channel remains open when entering the fast low power mode, but the clock signal is turned off when entering the fast low power mode, and is turned on when exiting the fast low power mode. In other embodiments of the present disclosure, the transition of the clock signal may be used to control the wake-up of the receiving sub-module at the receiving end.

本公开的另一实施例提供了一种芯粒的控制方法。该芯粒包括物理层功能模块和第一物理层接口模块,第一物理层接口模块用于与另一芯粒的第二物理层接口模块通过物理链路电连接。该方法包括:响应于第一控制信号的第一模式,控制物理层功能模块由向第一物理层接口模块提供第一数据报文切换为向第一物理层接口模块提供第一状态进入报文,使得第一物理层接口模块由通过物理链路向另一芯粒提供第一数据报文切换为通过物理链路向另一芯粒提供第一状态进入报文,以及在第一物理层接口模块向另一芯粒提供第一状态进入报文之后,控制第一物理层接口模块由工作状态进入低功耗状态,第一状态进入报文用于通知另一芯粒进入低功耗状态,第一物理层接口模块在低功耗状态的功耗小于在工作状态的功耗。Another embodiment of the present disclosure provides a method for controlling core particles. The core particle includes a physical layer function module and a first physical layer interface module. The first physical layer interface module is used to electrically connect with the second physical layer interface module of another core particle through a physical link. The method includes: in response to the first mode of the first control signal, controlling the physical layer function module to switch from providing a first data message to the first physical layer interface module to providing a first state entry message to the first physical layer interface module. , causing the first physical layer interface module to switch from providing the first data message to another core through the physical link to providing the first state entry message to another core through the physical link, and in the first physical layer interface After the module provides the first state entry message to another core particle, it controls the first physical layer interface module to enter the low power consumption state from the working state. The first state entry message is used to notify the other core particle to enter the low power consumption state. The power consumption of the first physical layer interface module in the low power consumption state is less than the power consumption in the working state.

该控制方法通过发送状态机子模块控制物理链路传输状态进入报文,使得物理链路不仅能够传输数据报文还能够传输状态进入报文,从而不需要增加额外的管脚,便能够使得芯粒快速进入退出低功耗模式。This control method controls the physical link to transmit status entry messages by sending a state machine sub-module, so that the physical link can transmit not only data messages but also status entry messages, so that the core can be made without adding additional pins. Quickly enter and exit low-power mode.

例如,物理层功能模块可以是物理层编码子模块,也可以是适配层。适配层用于在多个协议之间进行选择和仲裁。物理层编码子模块用于控制物理层接口模块收发数据。物理层接口模块负责与电气特性相关的信号传输技术。物理链路可以是有线链路,也可以是无线链路(例如,光纤等),本公开的实施例对物理链路的形式不做具体限定。For example, the physical layer functional module can be a physical layer coding sub-module or an adaptation layer. The adaptation layer is used to select and arbitrate between multiple protocols. The physical layer coding submodule is used to control the physical layer interface module to send and receive data. The physical layer interface module is responsible for signal transmission technology related to electrical characteristics. The physical link may be a wired link or a wireless link (for example, optical fiber, etc.). The embodiments of the present disclosure do not specifically limit the form of the physical link.

例如,如图2所示,芯粒DIE0的物理层功能模块PCA0包括发送状态机子模块210、数据报文发送子模块220和控制报文发送子模块230。For example, as shown in Figure 2, the physical layer function module PCA0 of the core particle DIE0 includes a sending state machine sub-module 210, a data message sending sub-module 220 and a control message sending sub-module 230.

物理接口模块PHY0通过物理链路向另一芯粒DIE1提供从物理层功能模块PCA0接收到的报文。例如,物理层功能模块PCA0向物理接口模块PHY0提供数据报文txData,则物理接口模块PHY0通过物理链路向另一芯粒DIE1提供该数据报文txData;若物理层功能模块PCA0向物理接口模块PHY0提供第一状态进入报文,则物理接口模块PHY0通过物理链路向另一芯粒DIE1提供该第一状态进入报文。The physical interface module PHY0 provides the message received from the physical layer function module PCA0 to another core chip DIE1 through a physical link. For example, the physical layer function module PCA0 provides the data message txData to the physical interface module PHY0, then the physical interface module PHY0 provides the data message txData to another core chip DIE1 through the physical link; if the physical layer function module PCA0 provides the data message txData to the physical interface module PHY0 provides the first state entry message, and the physical interface module PHY0 provides the first state entry message to another chip DIE1 through the physical link.

物理层功能模块PCA0由向物理层接口模块PHY0提供数据报文txData切换为向物理层接口模块PHY0提供第一状态进入报文,使得物理层接口模块PHY0由通过物理链路向另一芯粒DIE1提供数据报文txData切换为通过物理链路向所述另一芯粒DIE1提供第一状态进入报文。The physical layer function module PCA0 switches from providing the data message txData to the physical layer interface module PHY0 to providing the first state entry message to the physical layer interface module PHY0, so that the physical layer interface module PHY0 switches from providing the data message txData to the other core chip DIE1 through the physical link. Providing the data message txData is switched to providing the first state entry message to the other core particle DIE1 through the physical link.

在物理层接口模块PHY0向另一芯粒DIE1提供第一状态进入报文之后,控制物理层接口模块PHY0由工作状态进入低功耗状态。物理层接口模块PHY0在低功耗状态的功耗小于在工作状态的功耗。After the physical layer interface module PHY0 provides the first state entry message to the other die DIE1, the physical layer interface module PHY0 is controlled to enter the low power consumption state from the working state. The power consumption of the physical layer interface module PHY0 in the low power consumption state is less than the power consumption in the working state.

在本公开的实施例中,芯粒通过发送状态机子模块响应于控制信号,控制物理层功能模块既利用物理链路传输数据报文也利用物理链路传输第一状态进入报文,从而该芯粒不需要增加额外的管脚,便能够使得芯粒快速进入退出低功耗模式。In the embodiment of the present disclosure, the core particle responds to the control signal by sending the state machine sub-module, and controls the physical layer function module to use the physical link to transmit the data message and the physical link to transmit the first state entry message, so that the core particle The chip can quickly enter and exit low-power consumption mode without adding additional pins.

如图2所示,在本公开的一些实施例中,物理层功能模块PCA0还可以包括选择器,选择器包括第一输入端(例如,输入端D0)、第二输入端(例如,输入端D1)、第三输入端(例如,输入端S)和输出端(例如,输入端P)。As shown in Figure 2, in some embodiments of the present disclosure, the physical layer function module PCA0 may also include a selector. The selector includes a first input terminal (for example, input terminal D0), a second input terminal (for example, input terminal D0 D1), a third input terminal (for example, input terminal S) and an output terminal (for example, input terminal P).

数据报文发送子模块220与输入端D0连接,控制报文发送子模块230与输入端D1连接,输出端P与物理层接口模块PHY0连接,The data message sending sub-module 220 is connected to the input terminal D0, the control message sending sub-module 230 is connected to the input terminal D1, and the output terminal P is connected to the physical layer interface module PHY0.

发送状态机子模块210还配置为向输入端S提供第二控制信号,第二控制信号例如为图2所示的控制信号txFastPM_Sel。The sending state machine sub-module 210 is further configured to provide a second control signal to the input terminal S. The second control signal is, for example, the control signal txFastPM_Sel shown in FIG. 2 .

选择器240配置为根据控制信号txFastPM_Sel选择输出端P向物理层接口模块PHY0提供数据报文发送子模块220提供的报文或者控制报文发送子模块230提供的控制报文。The selector 240 is configured to select the output terminal P to provide the message provided by the data message sending sub-module 220 or the control message provided by the control message sending sub-module 230 to the physical layer interface module PHY0 according to the control signal txFastPM_Sel.

控制报文发送子模块230提供的控制报文不仅可以包括上文描述的第一状态进入报文,还可以包括状态退出报文、唤醒报文等。关于退出报文或者唤醒报文请参考下文的描述。The control messages provided by the control message sending sub-module 230 may not only include the first state entry message described above, but may also include state exit messages, wake-up messages, etc. For exit messages or wake-up messages, please refer to the description below.

在本公开的一些实施例中,控制报文发送子模块230还配置为向发送子模块TX0提供唤醒报文和状态退出报文。In some embodiments of the present disclosure, the control message sending sub-module 230 is also configured to provide a wake-up message and a status exit message to the sending sub-module TX0.

关于唤醒报文和状态退出报文请参考上文的描述,不再赘述。Regarding the wake-up message and status exit message, please refer to the above description and will not be repeated.

该控制方法例如应用于前述任一实施例提供的芯粒。该控制方法与前述芯粒的各个部分相对应,请参考前述芯粒的描述。This control method is, for example, applied to the core particles provided in any of the foregoing embodiments. This control method corresponds to each part of the aforementioned core particles. Please refer to the description of the aforementioned core particles.

图7A示出了本公开至少一个实施例提供的一种发送端和接收端快速进入低功耗状态的方法流程图;图7B示出了本公开至少一个实施例提供的一种发送端快速进入低功耗状态的时序图;图7C示出了本公开至少一个实施例提供的一种接收端快速进入低功耗状态的时序图。Figure 7A shows a flow chart of a method for a transmitter and a receiver to quickly enter a low power consumption state provided by at least one embodiment of the present disclosure; Figure 7B shows a method for a transmitter to quickly enter a low power state provided by at least one embodiment of the present disclosure. Timing diagram of low power consumption state; FIG. 7C shows a timing diagram of a receiving end quickly entering a low power consumption state provided by at least one embodiment of the present disclosure.

在下文中将低功耗状态称为“FastPM状态”。FastPM状态由发送端(例如,图7A中的芯粒DIE0)的PCS发起。接收端例如为图7A中的芯粒DIE1。The low power consumption state is referred to as "FastPM state" in the following. The FastPM state is initiated by the PCS of the sending end (eg, die DIE0 in Figure 7A). The receiving end is, for example, the core particle DIE1 in Figure 7A.

如图7A所示,进入FastPM状态的方法包括步骤S701~S705。As shown in Figure 7A, the method of entering the FastPM state includes steps S701 to S705.

步骤S701:发送端的数据总线模块拉高txLowerPower信号,控制发送端的PCS进入txFastPM状态,发送端的PCS停止从数据总线模块接收数据。txFastPM状态表示发送子模块进入低功耗状态。在初始时,发送端的发送子模块TX处于正常工作状态。图7A中的“TX”表示发送子模块,“RX”表示接收子模块。Step S701: The data bus module at the sending end raises the txLowerPower signal to control the PCS at the sending end to enter the txFastPM state, and the PCS at the sending end stops receiving data from the data bus module. The txFastPM state indicates that the sending sub-module enters a low power consumption state. At the beginning, the sending sub-module TX of the sending end is in normal working state. "TX" in Figure 7A represents the transmitting sub-module, and "RX" represents the receiving sub-module.

DIE0的数据总线模块发送了拉高后的TxLowPower信号后,就不会有数据发送了。因此,此时数据总线模块的发送方向为空闲状态。After the data bus module of DIE0 sends the high TxLowPower signal, no data will be sent. Therefore, the sending direction of the data bus module is idle at this time.

步骤S702:发送端的PCS发送FPMEntry控制报文。Step S702: The PCS at the sending end sends the FPMEntry control message.

步骤S703:发送端的PCS发送完FPMEntry控制报文后,发送端的PCS拉高TX_LP信号,控制发送端的PHY进入txFastPM状态,即发送端的发送子模块空闲,并且PHY进行时钟门控。Step S703: After the PCS at the sending end sends the FPMEntry control message, the PCS at the sending end pulls up the TX_LP signal and controls the PHY at the sending end to enter the txFastPM state, that is, the transmitting submodule at the sending end is idle, and the PHY performs clock gating.

步骤S704:接收端的PCS接收到FPMEntry控制报文后,控制接收端的PCS进入rxFastPM状态,接收端的PCS停止从接收端的PHY接收数据给接收端的数据总线模块。rxFastPM状态表示接收子模块进入低功耗状态。Step S704: After receiving the FPMEntry control message, the PCS at the receiving end controls the PCS at the receiving end to enter the rxFastPM state, and the PCS at the receiving end stops receiving data from the PHY at the receiving end to the data bus module at the receiving end. The rxFastPM state indicates that the receiving submodule enters a low power consumption state.

步骤S705:接收端的PCS拉高RX_LP控制信号,控制接收端的PHY进入rxFastPM状态,即接收端的接收子模块RX空闲。Step S705: The PCS of the receiving end pulls the RX_LP control signal high to control the PHY of the receiving end to enter the rxFastPM state, that is, the receiving sub-module RX of the receiving end is idle.

DIE1的数据总线模块在接收到rxValid=0后,没有有效数据接收,所以DIE1的数据总线模块的接收方向也是处于空闲状态。After receiving rxValid=0, the data bus module of DIE1 does not receive valid data, so the receiving direction of the data bus module of DIE1 is also in an idle state.

如图7B所示,首先,例如在时钟信号Clock的第i(i为大于等于1的整数)个时钟周期的上升沿,由发送端的数据总线模块拉高txLowPower信号,控制发送端的PCS的发送状态机由正常工作状态进入低功耗状态,停止发送数据报文。之后,例如第i+1个时钟周期,由发送端的PCS通过TXDATA信号线发送FPMEntry报文。在第i+2时钟周期,发送端的PCS拉高TX_LP。在第i+3个时钟周期,发送端的PHY由正常工作状态进入低功耗状态。As shown in Figure 7B, first, for example, at the rising edge of the i-th clock cycle of the clock signal Clock (i is an integer greater than or equal to 1), the data bus module at the sending end pulls up the txLowPower signal to control the sending status of the PCS at the sending end. The machine enters the low power consumption state from the normal working state and stops sending data packets. Afterwards, for example, in the i+1th clock cycle, the PCS at the sending end sends the FPMEntry message through the TXDATA signal line. In the i+2th clock cycle, the PCS at the transmitting end pulls TX_LP high. In the i+3 clock cycle, the PHY at the transmitting end enters the low power consumption state from the normal working state.

如图7C所示,例如首先在j个时钟周期,接收端的PCS中的通过RXDATA信号线接收到FPMEntry报文。响应于检测到FPMEntry报文,,进入rxFastPM状态,停止接收数据报文。之后,接收端的PCS拉高RX_LP信号。最后,接收端的PHY进入rxFastPM状态。j为大于i+1的整数。As shown in Figure 7C, for example, first in j clock cycles, the PCS in the receiving end receives the FPMEntry message through the RXDATA signal line. In response to detecting the FPMEntry message, it enters the rxFastPM state and stops receiving data messages. After that, the PCS at the receiving end pulls the RX_LP signal high. Finally, the PHY at the receiving end enters the rxFastPM state. j is an integer greater than i+1.

图8A示出了本公开至少一个实施例提供的一种发送端和接收端退出快速低功耗状态的方法流程图;图8B示出了本公开至少一个实施例提供的一种发送端快速退出低功耗状态的时序图;图8C示出了本公开至少一个实施例提供的一种接收端快速退出低功耗状态的时序图。Figure 8A shows a flow chart of a method for a sending end and a receiving end to exit a fast low power consumption state provided by at least one embodiment of the present disclosure; Figure 8B shows a method for a sending end to quickly exit provided by at least one embodiment of the present disclosure. Timing diagram of low power consumption state; FIG. 8C shows a timing diagram of a receiving end quickly exiting the low power consumption state provided by at least one embodiment of the present disclosure.

如图8A所示,退出FastPM状态的方法包括步骤S801~S807。As shown in Figure 8A, the method of exiting the FastPM state includes steps S801 to S807.

步骤S801:发送端的数据总线模块拉低txLowerPower信号,控制发送端的PCS退出txFastPM状态。Step S801: The data bus module at the sending end pulls down the txLowerPower signal and controls the PCS at the sending end to exit the txFastPM state.

步骤S802:发送端的PCS拉低TX_LP控制信号,控制发送端的PHY退出txFastPM状态。Step S802: The PCS of the transmitting end pulls down the TX_LP control signal to control the PHY of the transmitting end to exit the txFastPM state.

步骤S803:发送端的PCS发送FPMWake控制报文。Step S803: The PCS at the sending end sends the FPMWake control message.

步骤S804:接收端的PCS接收到FPMWake控制报文后,控制接收端的PCS退出rxFastPM状态。Step S804: After receiving the FPMWake control message, the PCS at the receiving end controls the PCS at the receiving end to exit the rxFastPM state.

步骤S805:接收端的PCS拉低RX_LP控制信号,控制接收端的PHY退出rxFastPM状态。Step S805: The PCS at the receiving end pulls down the RX_LP control signal to control the PHY at the receiving end to exit the rxFastPM state.

步骤S806:发送端的PCS发送FPMExit控制报文,并且开始发送数据报文。Step S806: The PCS at the sending end sends the FPMExit control message and starts sending data messages.

步骤S807:接收端的PCS接收到FPMExit控制报文后,开始接收数据报文。Step S807: After receiving the FPMExit control message, the PCS at the receiving end starts receiving data messages.

如图8B所示,首先,例如在时钟信号Clock的第m(m为大于等于1的整数)个时钟周期的上升沿,由发送端的数据总线模块拉低txLowPower信号,控制发送端的PCS中的接收状态机退出低功耗状态,进入唤醒状态。之后,例如第m+1个时钟周期,发送端的PCS拉低TX_LP控制信号,控制发送端的PHY退出低功耗状态进入正常工作状态。例如,在第i+2时钟周期,发送端PHY响应于TX_LP的低电平信号,退出低功耗状态。在发送端的PHY退出低功耗状态,进入工作状态之后,开始发送有效数据报文。As shown in Figure 8B, first, for example, at the rising edge of the mth (m is an integer greater than or equal to 1) clock cycle of the clock signal Clock, the data bus module at the sending end pulls down the txLowPower signal to control the reception in the PCS at the sending end. The state machine exits the low-power state and enters the wake-up state. Afterwards, for example, in the m+1th clock cycle, the PCS at the transmitting end pulls down the TX_LP control signal to control the PHY at the transmitting end to exit the low power consumption state and enter the normal working state. For example, in the i+2th clock cycle, the transmitting end PHY responds to the low-level signal of TX_LP and exits the low-power state. After the PHY at the sending end exits the low-power state and enters the working state, it starts sending valid data messages.

如图8C所示,例如首先在n个时钟周期,接收端的PCS通过RXDATA信号线接收到FPMWake报文,退出低功耗工作状态,进入唤醒状态。之后,接收端的PCS拉低RX_LP信号,以控制接收端的PHY退出低功耗状态。在接收端的PCS拉低RX_LP信号之后,接收端的PHY退出低功耗状态。最后,接收端的PCS发送FPMExit控制报文,进入工作状态,开始正常接收数据。n为大于m+1的整数。As shown in Figure 8C, for example, first in n clock cycles, the PCS at the receiving end receives the FPMWake message through the RXDATA signal line, exits the low-power working state, and enters the wake-up state. Afterwards, the PCS at the receiving end pulls the RX_LP signal low to control the PHY at the receiving end to exit the low-power state. After the PCS at the receiving end pulls the RX_LP signal low, the PHY at the receiving end exits the low power consumption state. Finally, the PCS at the receiving end sends the FPMExit control message, enters the working state, and starts receiving data normally. n is an integer greater than m+1.

图9A示出了本公开至少一个实施例提供的一种发送状态机的状态跳转的流程图。例如,发送状态机子模块按照图9A所示的发送状态机执行控制操作。FIG. 9A shows a flow chart of state transition of a sending state machine provided by at least one embodiment of the present disclosure. For example, the sending state machine submodule performs control operations according to the sending state machine shown in FIG. 9A.

如图9A所示,发送状态机的状态跳转包括步骤S901~S907。As shown in Figure 9A, the state transition of the sending state machine includes steps S901 to S907.

步骤S901:发送状态机处于TXFPM_IDLE状态。TXFPM_IDLE状态指示发送端处于初始状态,即,没有接收到总线模块的进入低功耗的控制信号txLowPower,此时处于发送数据报文状态。Step S901: The sending state machine is in the TXFPM_IDLE state. The TXFPM_IDLE state indicates that the sending end is in the initial state, that is, it has not received the control signal txLowPower from the bus module to enter low power consumption, and is in the state of sending data messages.

步骤S902:当发送端的数据总线发送模块送给PCS的控制信号txLowPower为高电平(即,txLowPower==1)时,PCS发送FPMEntry控制报文。通知接收端的PCS进入FastPM状态。Step S902: When the control signal txLowPower sent to the PCS by the data bus sending module at the sending end is high level (ie, txLowPower==1), the PCS sends the FPMEntry control message. Notify the PCS at the receiving end to enter the FastPM state.

步骤S903:发送完FPMEntry控制报文后进入TXFPM_ENTRY_WAIT状态。TXFPM_ENTRY_WAIT状态表示进入FastPM状态之前的等待状态。此时等待预设时间,如果在这段预设时间内txLowPower切换为低电平(即,txLowPower==0),则跳转到TXFPM_EXIT_WAKE状态。或者,在等待的预设时间内,如果出现接收端的循环冗馀校验(Cyclic redundancycheck,CRC)错误,则也退出到TXFPM_EXIT_WAKE状态,通知接收端的接收状态机子模块停止进入rxFastPM状态的流程。在TXFPM_EXIT_WAKE状态PHY的发送子模块的内部电路被开启。Step S903: After sending the FPMEntry control message, enter the TXFPM_ENTRY_WAIT state. The TXFPM_ENTRY_WAIT state represents the waiting state before entering the FastPM state. At this time, wait for the preset time. If txLowPower switches to low level (ie, txLowPower==0) within this preset time, jump to the TXFPM_EXIT_WAKE state. Or, during the preset waiting time, if a cyclic redundancy check (CRC) error occurs on the receiving end, it will also exit to the TXFPM_EXIT_WAKE state and notify the receiving state machine sub-module of the receiving end to stop the process of entering the rxFastPM state. In the TXFPM_EXIT_WAKE state, the internal circuit of the PHY's transmit submodule is turned on.

步骤S904:在TXFPM_ENTRY_WAIT状态下等待了预设时间后,跳转到TXFPM_ENTRY_DONE状态,即进入txFastPM状态。发送端的PHY的接收子模块被关断。预设时间可以是本领域技术人员自己设置的。Step S904: After waiting for the preset time in the TXFPM_ENTRY_WAIT state, jump to the TXFPM_ENTRY_DONE state, that is, enter the txFastPM state. The receiving sub-module of the PHY at the sending end is turned off. The preset time can be set by those skilled in the art.

步骤S905:当txLowPower切换为低电平时,表明数据总线控制模块控制PCS退出txFastPM状态。发送状态机跳转到TXFPM_EXIT_WAKE状态。在TXFPM_EXIT_WAKE状态将PHY的TX打开,并发送FPMWake控制报文。Step S905: When txLowPower switches to low level, it indicates that the data bus control module controls the PCS to exit the txFastPM state. The transmit state machine jumps to the TXFPM_EXIT_WAKE state. In the TXFPM_EXIT_WAKE state, open the PHY's TX and send the FPMWake control message.

步骤S906:FPMWake控制报文发送完成后进入TXFPM_EXIT_SENT状态。在TXFPM_EXIT_SENT状态,发送端开始发送FPMExit控制报文。Step S906: After the FPMWake control message is sent, it enters the TXFPM_EXIT_SENT state. In the TXFPM_EXIT_SENT state, the sender starts sending FPMExit control messages.

步骤S907:发送完FPMExit控制报文,进入TXFPM_EXIT_DONE状态,以完全退出txFastPM状态。Step S907: After sending the FPMExit control message, enter the TXFPM_EXIT_DONE state to completely exit the txFastPM state.

最终发送状态机恢复到TXFPM_IDLE状态。Finally, the sending state machine returns to the TXFPM_IDLE state.

图9B示出了本公开至少一个实施例提供的一种接收状态机的状态跳转的流程图。例如,接收状态机子模块按照图9B所示的接收状态机执行控制操作。FIG. 9B shows a flow chart of state transition of a receiving state machine provided by at least one embodiment of the present disclosure. For example, the receiving state machine submodule performs control operations according to the receiving state machine shown in FIG. 9B.

如图9B所示,接收状态机的状态跳转包括步骤S910~S950。As shown in Figure 9B, the state transition of the receiving state machine includes steps S910 to S950.

步骤S910:初始时接收状态机处于RXFPM_IDLE状态(即,初始状态)。Step S910: Initially, the receiving state machine is in the RXFPM_IDLE state (that is, the initial state).

步骤S920:接收到FPMEntry控制报文后,接收状态机进入RXFPM_ENTRY_WAIT状态。如果在RXFPM_ENTRY_WAIT状态收到了FPMWake控制报文,则进入到步骤S940。若在RXFPM_ENTRY_WAIT状态下等待了预设时间后,跳转到步骤S930。预设时间可以是本领域技术人员自己设置的。Step S920: After receiving the FPMEntry control message, the receiving state machine enters the RXFPM_ENTRY_WAIT state. If the FPMWake control message is received in the RXFPM_ENTRY_WAIT state, step S940 is entered. If the system waits for the preset time in the RXFPM_ENTRY_WAIT state, jump to step S930. The preset time can be set by those skilled in the art.

步骤S930:接收状态机进入RXFPM_ENTRY_DONE状态。在RXFPM_ENTRY_DONE状态,接收端的PHY的接收子模块被关断。Step S930: The receiving state machine enters the RXFPM_ENTRY_DONE state. In the RXFPM_ENTRY_DONE state, the receiving sub-module of the PHY at the receiving end is turned off.

步骤S940:接收状态机进入RXFPM_ENTRY_WAKE状态(即,唤醒状态),退出rxFastPM状态,并将接收端PHY的接收子模块的内部电路打开。Step S940: The receiving state machine enters the RXFPM_ENTRY_WAKE state (ie, wake-up state), exits the rxFastPM state, and opens the internal circuit of the receiving sub-module of the receiving end PHY.

步骤S950:在RXFPM_ENTRY_WAKE状态,收到FPMExit控制报文后,则进入RXFPM_EXIT_DONE状态,完全退出rxFastPM状态。Step S950: In the RXFPM_ENTRY_WAKE state, after receiving the FPMExit control message, it enters the RXFPM_EXIT_DONE state and completely exits the rxFastPM state.

最终接收状态机恢复到RXFPM_IDLE状态。Finally, the receiving state machine returns to the RXFPM_IDLE state.

该控制方法通过发送状态机子模块控制物理链路传输状态进入报文,使得物理链路不仅能够传输数据报文还能够传输状态进入报文,从而不需要增加额外的管脚,便能够使得芯粒快速进入退出低功耗模式。This control method controls the physical link to transmit status entry messages by sending a state machine sub-module, so that the physical link can transmit not only data messages but also status entry messages, so that the core can be made without adding additional pins. Quickly enter and exit low-power mode.

有以下几点需要说明:The following points need to be explained:

(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。(1) The drawings of the embodiments of this disclosure only relate to the structures involved in the embodiments of this disclosure, and other structures can refer to common designs.

(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。(2) Without conflict, the embodiments of the present disclosure and the features in the embodiments can be combined with each other to obtain new embodiments.

以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present disclosure, but the protection scope of the present disclosure is not limited thereto. The protection scope of the present disclosure should be subject to the protection scope of the claims.

Claims (20)

1. A core particle comprising a physical layer functional module and a first physical layer interface module, wherein the first physical layer interface module is used for being electrically connected with a second physical layer interface module of another core particle through a physical link,
the physical layer function module comprises a sending state machine sub-module, a data message sending sub-module and a control message sending sub-module, wherein the data message sending sub-module is configured to provide a first data message for the first physical layer interface module, the control message sending sub-module is configured to provide a first state entering message for the first physical layer interface module,
the transmit state machine submodule is configured to:
Receiving a first control signal;
in response to the first control signal switching from a second mode to a first mode, controlling the physical layer functional module to switch from providing the first data message to the first physical layer interface module to providing a first state entry message to the first physical layer interface module, so that the first physical layer interface module switches from providing the first data message to the other core particle through the physical link to providing the first state entry message to the other core particle through the physical link; and
after the first physical layer interface module provides the first state entry message for the other core particle, the first physical layer interface module is controlled to enter a low power consumption state from a working state, wherein the first state entry message is used for notifying the other core particle to enter the low power consumption state, the power consumption of the first physical layer interface module in the low power consumption state is smaller than that in the working state,
in the low power state of the first physical layer interface module, the first physical layer interface module includes a target data channel that is kept in an open state or includes a sideband signal path to wake up the second physical layer interface module through the target data channel or the sideband signal path.
2. The core particle of claim 1, wherein the first physical layer interface module comprises a transmit sub-module electrically coupled to the transmit state machine sub-module,
the transmit state machine submodule is configured to control the transmit submodule to enter the low-power-consumption state from the operational state in response to a first mode of the first control signal.
3. The core particle of claim 2, wherein the control message transmitting sub-module is further configured to provide a wake-up message and a state exit message to the transmitting sub-module,
the transmit state machine sub-module is further configured to:
responding to the first control signal to switch from the first mode to the second mode, and controlling the sending sub-module to exit the low-power consumption state and enter the working state;
controlling the control message sending sub-module to provide the wake-up message for the sending sub-module, so that the sending sub-module provides the wake-up message for the other core particle to inform the second physical layer interface module to enter a working state;
and controlling the control message sending sub-module to provide the state exit message for the sending sub-module, so that the sending sub-module provides the state exit message for another core particle to inform the other core particle of recovering the receiving of the first data message in the next clock cycle.
4. The core particle of claim 3, wherein the transmit state machine submodule is further configured to: providing a third control signal to the transmitting sub-module to enable the transmitting sub-module to enter the low power consumption state from the working state,
the transmitting sub-module is in the working state in response to the third control signal being in the first control mode, and is in the low power consumption state in response to the third control signal being in the second control mode.
5. The core particle of claim 4, wherein said second control mode causes at least a portion of the circuit structure in said transmit sub-module to be off, causing said transmit sub-module to be in said low power state, said first control mode causes said at least a portion of the circuit structure to be on, causing said transmit sub-module to be in said operational state,
the second control mode causes at least part of circuit structures in the sending sub-module to be closed, and the method comprises the following steps:
the second control mode enables circuit structures in data transmission channels except the target data channel in the plurality of data transmission channels in the transmission sub-module to be closed; or alternatively
The transmit sub-module further includes the sideband signal path, and the second control mode causes each circuit structure in the plurality of data transmit channels in the transmit sub-module to be closed.
6. The core particle of claim 5, wherein the transmit sub-module further comprises a phase locked loop, a clock phase control unit, and a clock switching unit, the plurality of data transmit channels each comprising a data drive buffer and a parallel to serial conversion unit coupled to the data drive buffer, the parallel to serial conversion unit configured to convert parallel data to serial data to provide the serial data to the data drive buffer, each data drive buffer coupled to the physical link,
the phase-locked loop is connected with the clock phase control unit, the clock switch unit is connected with the clock phase control unit and the parallel-serial conversion unit,
the phase locked loop is configured to generate a clock signal, the clock phase control unit is configured to control a phase of the clock signal, and after the phase control of the clock signal, the clock signal is provided to the clock switching unit, the clock switching unit is configured to provide the clock signal to the parallel-to-serial conversion unit,
The at least part of the circuit structure comprises: a data driving buffer in at least one of the plurality of data transmission channels and the clock switching unit.
7. The core particle of claim 6, wherein the transmit sub-module is in an on state for a data-driven buffer in a target data lane of the plurality of data transmit lanes in the low power state,
the sending state machine submodule is configured to provide the wake-up message to the other core particle through a data drive buffer in the target data channel; or alternatively
The transmit state machine sub-module is configured to provide the wake-up message to the other core via the sideband signal path.
8. The core particle of claim 1, wherein the physical layer function further comprises a selector comprising a first input, a second input, a third input, and an output,
the data message sending sub-module is connected with the first input end, the control message sending sub-module is connected with the second input end, the output end is connected with the physical layer interface module,
the transmit state machine sub-module is further configured to provide a second control signal to the third input,
The selector is configured to:
and selecting the data message provided by the data message sending sub-module or the control message provided by the control message sending sub-module from the output end to the first physical layer interface module according to the second control signal.
9. The core particle of claim 1, wherein the transmit state machine submodule is further configured to:
responding to a first mode of the first control signal, and providing a message stop receiving signal for the data message sending sub-module;
the data message sending submodule is configured to: and responding to the message stop receiving signal, and stopping receiving the first data message.
10. The core particle of claim 3, further comprising:
and the data bus module is configured to provide the first data message and the first control signal for the physical layer functional module.
11. The core particle of claim 10, wherein the data bus module is further configured to:
counting the number of invalid data; and
and triggering the first control signal to switch to the first mode in response to the number of invalid data being greater than a first preset threshold.
12. The core particle of claim 11, wherein the data bus module comprises a data buffer for storing the first data packet provided to the physical layer function module, the data bus module further configured to:
Counting the number of effective data in the data buffer; and
and triggering the first control signal to switch to the second mode in response to the number of the effective data reaching a second preset threshold so as to provide the first data message for the physical layer interface module.
13. The core particle of claim 10, wherein the physical layer function module further comprises a receive state machine sub-module, a data message receive sub-module, and a control message receive sub-module,
the first physical layer interface module is further configured to: receiving a communication message provided from the other core particle and providing the communication message to the data message receiving sub-module and the control message receiving sub-module,
the data message receiving submodule is configured to: the communication message is received and the message is sent to the server,
the control message receiving sub-module is configured to: receiving the communication message and providing the second state entry message to the receive state machine sub-module in response to the communication message being the second state entry message,
the receive state machine module is configured to: and responding to the second state entering message, controlling the data message receiving sub-module to stop receiving the second data message, and controlling the first physical layer interface module to be switched from the working state to the low power consumption state.
14. The core particle of claim 13, wherein the data message receiving sub-module provides the second data message to the data bus module in response to the communication message being the second data message.
15. The core particle of claim 13, wherein the first physical layer interface module comprises a receive sub-module coupled to the receive state machine sub-module,
the receive state machine sub-module is configured to: and controlling the receiving sub-module to be switched from the working state to the low-power consumption state.
16. The core particle of claim 15, wherein the receive state machine submodule is further configured to: providing a fourth control signal to the receiving sub-module to enable the receiving sub-module to enter the low power consumption state from the working state,
and the receiving sub-module is in the working state in response to the fourth control signal being in the first control mode, and is in the low power consumption state in response to the fourth control signal being in the second control mode.
17. The core particle of claim 16, wherein the second control mode causes at least a portion of the circuit structure in the receiving sub-module to be off, causing the receiving sub-module to be in the low power state, the first control mode causes the at least a portion of the circuit structure to be on, causing the receiving sub-module to be in the operational state,
The receiving sub-module comprises a plurality of data receiving channels for transmitting the data message, and the second control mode enables at least part of circuit structures in the receiving sub-module to be closed, and the method comprises the following steps:
the second control mode causes a circuit structure in a data receiving channel other than a target data receiving channel among the plurality of data receiving channels in the receiving sub-module to be turned off; or the receiving sub-module further comprises the sideband signal path, and the second control mode causes each circuit structure in the plurality of data receiving channels in the receiving sub-module to be turned off.
18. The core particle of claim 17, wherein the receive sub-module comprises a clock phase control unit and a clock switching unit, the plurality of data receive channels each comprising a data receive buffer and a serial-to-parallel conversion unit, each data receive buffer being coupled to the physical link, the serial-to-parallel conversion unit being coupled to the data receive buffer, the serial-to-parallel conversion unit being configured to receive serial data provided by the data receive buffer and to convert the serial data to parallel data,
the clock switch unit is connected with the clock phase control unit and connected with the serial-parallel conversion unit,
The clock phase control unit is configured to receive a clock signal, control a phase of the clock signal, and after the phase control of the clock signal, provide the clock signal to the clock switching unit, the clock switching unit is configured to provide the clock signal to the serial-parallel conversion unit,
the at least part of the circuit structure comprises: a data reception buffer in at least one of the plurality of data reception channels and the clock switching unit.
19. The core particle of claim 16, wherein the control message receiving sub-module is further configured to:
responding the communication message as the awakening message, sending the awakening message to the receiving state machine submodule,
the receive state machine sub-module is configured to: responding to the received awakening message, and switching the fourth control signal into the first control mode so as to control the receiving sub-module to enter the working state;
the control message receiving sub-module is further configured to: providing the exit message to the receiving state machine sub-module in response to the communication message being the state exit message,
The receive state machine sub-module is further configured to: and responding to the state exit message, and controlling the data message receiving sub-module to start receiving the second data message.
20. A control method of a core particle, wherein the core particle comprises a physical layer functional module and a first physical layer interface module, the first physical layer interface module is used for being electrically connected with a second physical layer interface module of another core particle through a physical link,
the method comprises the following steps:
controlling the physical layer function module to switch from providing a first data message to the first physical layer interface module to providing a first state entry message to the first physical layer interface module in response to a first mode of a first control signal, causing the first physical layer interface module to switch from providing the first data message to the other core particle via the physical link to providing the first state entry message to the other core particle via the physical link, and controlling the first physical layer interface module to enter a low power consumption state from an operating state after the first physical layer interface module provides the first state entry message to the other core particle,
wherein the first state entry message is used for notifying the other core particle to enter the low power consumption state, the power consumption of the first physical layer interface module in the low power consumption state is smaller than that in the working state,
In the low power state of the first physical layer interface module, the first physical layer interface module includes a target data channel that is kept in an open state or includes a sideband signal path to wake up the second physical layer interface module through the target data channel or the sideband signal path.
CN202310397447.6A 2023-04-13 2023-04-13 Core particle and control method for core particle Active CN116414212B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310397447.6A CN116414212B (en) 2023-04-13 2023-04-13 Core particle and control method for core particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310397447.6A CN116414212B (en) 2023-04-13 2023-04-13 Core particle and control method for core particle

Publications (2)

Publication Number Publication Date
CN116414212A CN116414212A (en) 2023-07-11
CN116414212B true CN116414212B (en) 2024-02-13

Family

ID=87057732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310397447.6A Active CN116414212B (en) 2023-04-13 2023-04-13 Core particle and control method for core particle

Country Status (1)

Country Link
CN (1) CN116414212B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117539809A (en) * 2023-07-12 2024-02-09 海光信息技术股份有限公司 Data transmission method, data link layer, chip interconnection interface and electronic equipment
CN117793021B (en) * 2023-12-26 2024-11-08 无锡众星微系统技术有限公司 Sideband management message processing method and circuit
CN117539818B (en) * 2024-01-10 2024-04-02 富瀚微电子(成都)有限公司 Interface based on PHY model, chip integrating interface and chip simulation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109857243A (en) * 2017-11-28 2019-06-07 华为技术有限公司 System level chip, universal serial bus main equipment, system and awakening method
CN112433596A (en) * 2020-11-27 2021-03-02 海光信息技术股份有限公司 Link width adjusting method, device, equipment and storage medium
WO2022204990A1 (en) * 2021-03-30 2022-10-06 华为技术有限公司 Method for controlling chip, and integrated circuit system
CN115563046A (en) * 2022-09-29 2023-01-03 奇异摩尔(上海)集成电路设计有限公司 High-speed interface, method and system suitable for Chiplet Chiplet interconnection
CN115589342A (en) * 2022-09-23 2023-01-10 无锡众星微系统技术有限公司 Power consumption management method of SAS controller
CN115617739A (en) * 2022-09-27 2023-01-17 南京信息工程大学 Chiplet architecture-based chip and control method
CN115756144A (en) * 2022-11-23 2023-03-07 成都海光微电子技术有限公司 Power consumption control device and method and high-speed interconnection interface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9971666B2 (en) * 2015-03-06 2018-05-15 Qualcomm Incorporated Technique of link state detection and wakeup in power state oblivious interface
US10523867B2 (en) * 2016-06-10 2019-12-31 Apple Inc. Methods and apparatus for multi-lane mapping, link training and lower power modes for a high speed bus interface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109857243A (en) * 2017-11-28 2019-06-07 华为技术有限公司 System level chip, universal serial bus main equipment, system and awakening method
CN112433596A (en) * 2020-11-27 2021-03-02 海光信息技术股份有限公司 Link width adjusting method, device, equipment and storage medium
WO2022204990A1 (en) * 2021-03-30 2022-10-06 华为技术有限公司 Method for controlling chip, and integrated circuit system
CN115589342A (en) * 2022-09-23 2023-01-10 无锡众星微系统技术有限公司 Power consumption management method of SAS controller
CN115617739A (en) * 2022-09-27 2023-01-17 南京信息工程大学 Chiplet architecture-based chip and control method
CN115563046A (en) * 2022-09-29 2023-01-03 奇异摩尔(上海)集成电路设计有限公司 High-speed interface, method and system suitable for Chiplet Chiplet interconnection
CN115756144A (en) * 2022-11-23 2023-03-07 成都海光微电子技术有限公司 Power consumption control device and method and high-speed interconnection interface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chiplet接口IP 3DIC混合信号仿真验证;龙志军等;中国集成电路(第2022年8期期);全文 *

Also Published As

Publication number Publication date
CN116414212A (en) 2023-07-11

Similar Documents

Publication Publication Date Title
CN116414212B (en) Core particle and control method for core particle
US20240282354A1 (en) Protocol for memory power-mode control
US8638783B2 (en) Optimized link training and management mechanism
US9830292B2 (en) Architected protocol for changing link operating mode
US9223735B2 (en) Providing a consolidated sideband communication channel between devices
CN106970886B (en) Controlling a physical link of a first protocol using an extended functionality architecture of a second protocol
US8446903B1 (en) Providing a load/store communication protocol with a low power physical unit
KR101497001B1 (en) Graphics multi-media ic and method of its operation
US20160267048A1 (en) Device, system and method for communication with heterogeneous physical layers
WO2014004924A1 (en) Device disconnect detection
TW201301047A (en) Interface extender for portable electronic devices
KR102151178B1 (en) Serial communication apparatus and method thereof
CN104380274B (en) Apparatus and method for optimized link training and management
CN101369948B (en) Communication system implementing low-power consumption
US10551905B1 (en) Data-transmission-format conversion circuit and control method for data-transmission-format conversions between different high-speed data transmission interfaces
WO2022204990A1 (en) Method for controlling chip, and integrated circuit system
US10331592B2 (en) Communication apparatus with direct control and associated methods
US20240111354A1 (en) Power management for peripheral component interconnect
CN103164370B (en) A kind of high-speed local bus access control interface module
US20070260789A1 (en) Interface transmission structure between modules and method thereof
Zhao et al. A Lightweight and Reliable Sideband Interface for Die-to-Die

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant