CN116399489A - A high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration - Google Patents
A high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration Download PDFInfo
- Publication number
- CN116399489A CN116399489A CN202310680812.4A CN202310680812A CN116399489A CN 116399489 A CN116399489 A CN 116399489A CN 202310680812 A CN202310680812 A CN 202310680812A CN 116399489 A CN116399489 A CN 116399489A
- Authority
- CN
- China
- Prior art keywords
- silicon
- layer
- wafer
- cavity
- sacrificial layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 48
- 239000010703 silicon Substances 0.000 title claims abstract description 48
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 230000010354 integration Effects 0.000 title claims abstract description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 76
- 230000003287 optical effect Effects 0.000 claims abstract description 39
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 38
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 238000007789 sealing Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 24
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 21
- 238000005530 etching Methods 0.000 claims abstract description 18
- 238000011049 filling Methods 0.000 claims abstract description 18
- 239000012212 insulator Substances 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 9
- 239000013078 crystal Substances 0.000 claims abstract description 6
- 238000002360 preparation method Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 114
- 235000012431 wafers Nutrition 0.000 claims description 60
- 239000000463 material Substances 0.000 claims description 39
- 238000000151 deposition Methods 0.000 claims description 26
- 239000012792 core layer Substances 0.000 claims description 22
- 239000003990 capacitor Substances 0.000 claims description 15
- 238000000206 photolithography Methods 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 238000005253 cladding Methods 0.000 claims description 10
- 238000004806 packaging method and process Methods 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- 238000010292 electrical insulation Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 4
- 238000004528 spin coating Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 238000007650 screen-printing Methods 0.000 claims description 3
- 229910001415 sodium ion Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims 1
- 238000004377 microelectronic Methods 0.000 abstract description 11
- 230000005693 optoelectronics Effects 0.000 abstract description 8
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
- G01L1/242—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L11/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
- G01L11/02—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
- G01L11/025—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明公开了一种面向晶上系统集成的高温硅基光电压力传感芯片,其制备方法包括:法珀腔深刻蚀步骤、牺牲层填充步骤、光波导制造步骤、牺牲层释放步骤、气密封装步骤。本发明采用微电子深刻蚀方法,直接在绝缘体上硅晶圆上制造垂直方向的法珀腔,并利用绝缘体上硅晶圆的器件层单晶硅和埋氧层二氧化硅制造光束传输的硅基光波导,与微电子工艺完全兼容,具有更高的生产效率。同时,本发明的制造工艺直接在硅晶圆上制造硅基光电子传感芯片,有利于硅基微电子芯片在晶圆上实现光电混合的单片集成,进一步提升了系统的性能。此外,本发明在晶圆上制造硅基法珀压力传感芯片,可以在120℃以上的高温环境中工作。
The invention discloses a high-temperature silicon-based photoelectric pressure sensor chip oriented to on-crystal system integration. The preparation method comprises: a step of deep etching of a Fapper cavity, a step of filling a sacrificial layer, a step of manufacturing an optical waveguide, a step of releasing a sacrificial layer, and air sealing Install steps. The invention adopts the microelectronic deep etching method to directly manufacture a vertical Fab cavity on the silicon-on-insulator wafer, and utilizes the device layer single crystal silicon and the buried oxide layer silicon dioxide of the silicon-on-insulator wafer to manufacture silicon for beam transmission. The base optical waveguide is fully compatible with microelectronics process and has higher production efficiency. At the same time, the manufacturing process of the present invention directly manufactures the silicon-based optoelectronic sensor chip on the silicon wafer, which is beneficial to realize the monolithic integration of the photoelectric hybrid on the silicon-based microelectronic chip on the wafer, and further improves the performance of the system. In addition, the invention manufactures the silicon-based Fabry pressure sensor chip on the wafer, which can work in a high-temperature environment above 120°C.
Description
技术领域technical field
本发明属于电子技术领域,尤其涉及一种面向晶上系统集成的高温硅基光电压力传感芯片。The invention belongs to the field of electronic technology, and in particular relates to a high-temperature silicon-based photoelectric pressure sensor chip for on-crystal system integration.
背景技术Background technique
自从法布里和珀罗发明多光束干涉仪以来,多种基于多光束干涉原理的法珀传感器被研发出来,法珀压力传感器是的典型应用之一。传统的法珀压力传感器主要是光纤式的,即主要由含有压力敏感膜片的真空法珀腔和光纤组成。光纤法珀式压力传感器具有抗电磁干扰能力强、测量精度高、可以在高温环境中工作的优点。但是无论是真空法珀腔的加工过程还是光纤与真空法珀腔的组装过程通常都是通过传统的机械加工的方式进行的。不仅生产效率较低,而且无法与集成电路芯片实现单片集成。Since Fabry and Perot invented the multi-beam interferometer, a variety of Fabry sensors based on the principle of multi-beam interference have been developed, and the Fabry pressure sensor is one of the typical applications. The traditional Foper pressure sensor is mainly of fiber optic type, that is, it is mainly composed of a vacuum Foper cavity containing a pressure sensitive diaphragm and an optical fiber. The fiber-optic Fapper pressure sensor has the advantages of strong anti-electromagnetic interference, high measurement accuracy, and can work in high-temperature environments. However, both the processing process of the vacuum Fab cavity and the assembly process of the optical fiber and the vacuum Fab cavity are usually carried out by traditional mechanical processing. Not only is the production efficiency low, but it is also impossible to achieve monolithic integration with integrated circuit chips.
随着微电子制造工艺和硅基光电子技术的发展,通过微电子工艺将光子器件和电子器件在硅晶圆上单片集成成为了研究的热点。光电混合集成电路把光电器件与微电子器件集成在一起,实现了集成电路技术与光互连技术的优势结合。一方面,光电混合集成极大程度的缩短了互连长度,提高了集成度;另一方面,光互连提高了大数据系统的通信速度和传输带宽,提升了集成电路系统的性能。此外,基于微电子制造工艺可以快速、大批量、高精度地制造硅基光电子器件,显著提升了光电器件的生产效率。With the development of microelectronics manufacturing process and silicon-based optoelectronics technology, monolithic integration of photonic devices and electronic devices on silicon wafers through microelectronics technology has become a research hotspot. The optoelectronic hybrid integrated circuit integrates optoelectronic devices and microelectronic devices, realizing the combination of the advantages of integrated circuit technology and optical interconnection technology. On the one hand, photoelectric hybrid integration greatly shortens the interconnection length and improves the integration level; on the other hand, optical interconnection improves the communication speed and transmission bandwidth of the big data system, and improves the performance of the integrated circuit system. In addition, based on the microelectronics manufacturing process, silicon-based optoelectronic devices can be manufactured quickly, in large quantities, and with high precision, which significantly improves the production efficiency of optoelectronic devices.
发明内容Contents of the invention
本申请实施例的目的是提供一种面向晶上系统集成的高温硅基光电压力传感芯片,不采用传统的光纤式的器件结构和制造工艺,而是采用微电子深刻蚀方法,直接在绝缘体上硅(SOI)晶圆上制造垂直方向的法珀腔,同时在利用SOI晶圆的器件层单晶硅和埋氧层二氧化硅制造光束传输的硅基光波导。与传统的光纤式法珀压力传感器的制造方法相比,本发明提出的方法与集成电路工艺完全兼容,可以实现晶上的光电混合集成,生产效率和系统性能均得到大幅提升系。The purpose of the embodiment of the present application is to provide a high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration, which does not use the traditional fiber-optic device structure and manufacturing process, but uses the microelectronics deep etching method, directly on the insulator A vertical Fab cavity is manufactured on a silicon-on-silicon (SOI) wafer, and a silicon-based optical waveguide for beam transmission is manufactured using the device layer monocrystalline silicon of the SOI wafer and the buried oxide layer of silicon dioxide. Compared with the traditional manufacturing method of fiber-optic Fabry pressure sensor, the method proposed by the present invention is fully compatible with the integrated circuit technology, can realize on-crystal photoelectric hybrid integration, and greatly improves the production efficiency and system performance.
根据本申请实施例的第一方面,提供一种面向晶上系统集成的高温硅基光电压力传感芯片,该芯片的制备方法包括:According to the first aspect of the embodiments of the present application, there is provided a high-temperature silicon-based photoelectric pressure sensor chip for system-on-chip integration, and the method for preparing the chip includes:
法珀腔深刻蚀步骤:在绝缘体上硅晶圆上光刻并深刻蚀硅、埋氧层二氧化硅、衬底硅,形成开口的法珀腔、垂直方向压力敏感膜片、进气槽;Deep etching of the Fab cavity: photolithography and deep etching of silicon, buried oxide layer silicon dioxide, and substrate silicon on the silicon-on-insulator wafer to form an open Fab cavity, vertical pressure-sensitive diaphragm, and air intake groove;
牺牲层填充步骤:在所述开口的法珀腔、进气槽中填充起临时支撑作用的牺牲层材料,并在晶圆正面沉积密封层;Sacrificial layer filling step: filling the open Fab cavity and air intake groove with a sacrificial layer material that acts as a temporary support, and depositing a sealing layer on the front side of the wafer;
光波导制造步骤:光刻刻蚀晶圆的器件层形成单晶硅光波导的芯层,并在晶圆的上表面沉积二氧化硅层,将所述芯层包裹起来,形成单晶硅光波导的包层;Optical waveguide manufacturing steps: Photolithography etch the device layer of the wafer to form the core layer of the single crystal silicon optical waveguide, and deposit a silicon dioxide layer on the upper surface of the wafer to wrap the core layer to form a single crystal silicon optical waveguide The cladding of the waveguide;
牺牲层释放步骤:去除所述开口的法珀腔、进气槽中填充起临时支撑作用的牺牲层材料;Sacrificial layer releasing step: removing the open Fab cavity, filling the air intake groove with the sacrificial layer material which acts as a temporary support;
气密封装步骤:在真空条件下将所述开口的法珀腔密封。Hermetic packaging step: sealing the open Fappel cavity under vacuum condition.
进一步地,在所述牺牲层填充步骤中,采用多次交替旋涂、烘干光刻胶的方式或喷涂光刻胶的方式填充所述牺牲层材料。Further, in the step of filling the sacrificial layer, the material of the sacrificial layer is filled by multiple times of alternate spin coating, drying photoresist or spraying photoresist.
进一步地,所述光波导制造步骤包括:Further, the manufacturing steps of the optical waveguide include:
光刻刻蚀绝缘体上硅晶圆的器件层形成单晶硅光波导的芯层;Photolithography etches the device layer of the silicon-on-insulator wafer to form the core layer of the single crystal silicon optical waveguide;
在绝缘体上硅晶圆正面沉积二氧化硅层,与绝缘体上硅晶圆的埋氧层二氧化硅将所述芯层包裹起来,形成单晶硅光波导的包层;Deposit a silicon dioxide layer on the front side of the silicon-on-insulator wafer, and wrap the core layer with silicon dioxide, the buried oxide layer of the silicon-on-insulator wafer, to form the cladding layer of the single crystal silicon optical waveguide;
在光波导区域临时填充材料使深槽形成工艺平面。The material is temporarily filled in the optical waveguide area to make the deep groove form a process plane.
进一步地,所述芯层的轴线与所述垂直方向压力敏感膜片的中轴线重合。Further, the axis of the core layer coincides with the central axis of the pressure-sensitive diaphragm in the vertical direction.
进一步地,牺牲层释放步骤包括:Further, the step of releasing the sacrificial layer includes:
光刻刻蚀所述开口的法珀腔、进气槽上方的二氧化硅层,分别形成牺牲层材料的法珀腔释放孔和进气槽释放孔;Lithographically etching the Fab cavity of the opening and the silicon dioxide layer above the air intake groove to form the release hole of the Fab cavity and the release hole of the air intake groove of the sacrificial layer material;
通过所述法珀腔释放孔和进气槽释放孔去除所述临时支撑的牺牲层材料。The sacrificial layer material of the temporary support is removed through the release hole of the Fab cavity and the release hole of the gas inlet groove.
进一步地,在所述气密封装步骤中,在真空条件下,通过沉积密封结构将所述开口的法珀腔释放孔密封;所述密封结构的材料包括金属浆料、玻璃浆料、聚酰亚胺、SU8、BCB、二氧化硅、环氧树脂、金属镀层、含钠离子玻璃圆片、硅晶圆;所述密封结构的沉积方法包括丝网印刷、倒装键合、化学气相淀积、牺牲层粘附效应法、阳极键合、热压键合、激光局部加热。Further, in the hermetic packaging step, under vacuum conditions, the opening of the Fab cavity release hole is sealed by depositing a sealing structure; the materials of the sealing structure include metal paste, glass paste, polyamide Imine, SU8, BCB, silica, epoxy resin, metal coating, sodium ion-containing glass wafer, silicon wafer; the deposition method of the sealing structure includes screen printing, flip-chip bonding, chemical vapor deposition , Sacrificial layer adhesion effect method, anodic bonding, thermocompression bonding, laser local heating.
根据本申请实施例的第二方面,提供一种具有差分功能的法珀式压力传感芯片,由具有垂直敏感膜片的法珀式压力传感芯片与电容式压力传感芯片单片集成,该压力传感器的制备方法包括:According to the second aspect of the embodiment of the present application, there is provided a Faptor pressure sensor chip with a differential function, which is monolithically integrated with a Faptor pressure sensor chip with a vertical sensitive diaphragm and a capacitive pressure sensor chip, The preparation method of the pressure sensor comprises:
法珀腔深刻蚀步骤:在绝缘体上硅晶圆上光刻并深刻蚀硅、埋氧层二氧化硅、衬底硅,形成开口的法珀腔、垂直方向压力敏感膜片、进气槽;Deep etching of the Fab cavity: photolithography and deep etching of silicon, buried oxide layer silicon dioxide, and substrate silicon on the silicon-on-insulator wafer to form an open Fab cavity, vertical pressure-sensitive diaphragm, and air intake groove;
牺牲层填充步骤:在所述开口的法珀腔、进气槽中填充起临时支撑作用的牺牲层材料,并在晶圆正面沉积密封层;Sacrificial layer filling step: filling the open Fab cavity and air intake groove with a sacrificial layer material that acts as a temporary support, and depositing a sealing layer on the front side of the wafer;
光波导制造步骤:光刻刻蚀晶圆的器件层形成单晶硅光波导的芯层,并在晶圆的上表面沉积二氧化硅层,将所述芯层包裹起来,形成单晶硅光波导的包层;Optical waveguide manufacturing steps: Photolithography etch the device layer of the wafer to form the core layer of the single crystal silicon optical waveguide, and deposit a silicon dioxide layer on the upper surface of the wafer to wrap the core layer to form a single crystal silicon optical waveguide The cladding of the waveguide;
第一牺牲层释放步骤:去除所述进气槽中填充起临时支撑作用的牺牲层材料;The first sacrificial layer releasing step: removing the sacrificial layer material filled in the air intake groove and acting as a temporary support;
平行板电容制造步骤:在所述进气槽的内壁沉积起电学绝缘隔离功能的二氧化硅层,并在所述法珀腔的外侧壁及其相对的侧壁沉积金属层作为平行板电容器的极板;Parallel plate capacitor manufacturing steps: depositing a silicon dioxide layer with an electrical insulation function on the inner wall of the air inlet slot, and depositing a metal layer on the outer wall of the Fapp cavity and its opposite side wall as a parallel plate capacitor plate;
第二牺牲层释放步骤:去除所述开口的法珀腔中填充起临时支撑作用的牺牲层材料;The second sacrificial layer releasing step: removing the sacrificial layer material filled with temporary support in the opened Fab cavity;
气密封装步骤:在真空条件下将所述开口的法珀腔密封。Hermetic packaging step: sealing the open Fappel cavity under vacuum condition.
进一步地,所述平行板电容制造步骤包括:Further, the manufacturing steps of the parallel plate capacitor include:
在所述进气槽的内壁沉积起电学绝缘隔离功能的二氧化硅层;Depositing a silicon dioxide layer with an electrical insulation function on the inner wall of the air intake groove;
在密封后的真空法珀腔的外侧壁及其相对的侧壁上沉积金属层作为平行板电容器的极板;Depositing a metal layer on the outer wall of the sealed vacuum Fapper cavity and its opposite side wall as the polar plate of the parallel plate capacitor;
将所述平行板电容器的极板引出到晶圆上表面形成焊盘。The pole plates of the parallel plate capacitors are drawn out to the upper surface of the wafer to form pads.
本申请的实施例提供的技术方案可以包括以下有益效果:The technical solutions provided by the embodiments of the present application may include the following beneficial effects:
第一,采用微电子深刻蚀方法,直接在SOI晶圆上制造垂直方向的法珀腔,同时在利用SOI晶圆的器件层单晶硅和埋氧层二氧化硅制造光束传输的硅基光波导,与微电子工艺完全兼容,可以大规模批量化生产;First, adopt microelectronics deep etching method to directly fabricate a vertical Fab cavity on the SOI wafer, and at the same time fabricate a silicon-based optical fiber for beam transmission using the single crystal silicon of the device layer and the buried oxide layer of silicon dioxide on the SOI wafer. Waveguide, fully compatible with microelectronics technology, can be mass-produced on a large scale;
第二,本发明的制造工艺直接在硅晶圆上制造硅基光电子传感芯片,有利于硅基微电子芯片在晶圆上实现光电混合的单片集成,提升系统的性能;Second, the manufacturing process of the present invention directly manufactures silicon-based optoelectronic sensor chips on silicon wafers, which is conducive to the realization of monolithic integration of photoelectric hybrids on silicon-based microelectronic chips on the wafer, and improves the performance of the system;
第三,本发明在晶圆上制造硅基法珀压力传感芯片,可以在120℃以上的高温环境中工作。Thirdly, the present invention manufactures a silicon-based Fabry pressure sensor chip on a wafer, which can work in a high-temperature environment above 120°C.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the application.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the application and together with the description serve to explain the principles of the application.
图1为一种面向晶上系统集成的高温硅基光电压力传感芯片的制造工艺流程图,其中的图1中的(a)~图1中的(h)为各流程中的晶圆剖面图;Figure 1 is a flow chart of the manufacturing process of a high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration, in which (a) in Figure 1 to (h) in Figure 1 are wafer sections in each process picture;
图2为一种面向晶上系统集成的高温硅基光电压力传感芯片的制造工艺流程图,其中的图2中的(a)~图2中的(g)为各流程中的晶圆俯视图;Figure 2 is a manufacturing process flow chart of a high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration, in which (a) in Figure 2 to (g) in Figure 2 are top views of wafers in each process ;
图3为一种面向晶上系统集成的高温硅基光电压力传感芯片的三维结构示意图;Fig. 3 is a schematic diagram of a three-dimensional structure of a high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration;
图4为一种面向晶上系统集成的高温硅基光电压力传感芯片的工作原理示意图,其中图4中的(a)为晶圆剖面图,图4中的(b)为晶圆俯视图;Figure 4 is a schematic diagram of the working principle of a high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration, where (a) in Figure 4 is a cross-sectional view of the wafer, and (b) in Figure 4 is a top view of the wafer;
图5为具有差分功能的法珀式压力传感芯片的结构示意图;Fig. 5 is a structural schematic diagram of a Fapau pressure sensor chip with a differential function;
图6为具有差分功能的双侧法珀式压力传感芯片的结构示意图。FIG. 6 is a schematic structural diagram of a double-sided Fappaut pressure sensor chip with a differential function.
附图标记:SOI晶圆1,埋氧层二氧化硅2,法珀腔3,垂直方向压力敏感膜片4,进气槽5,牺牲层材料6,上表面二氧化硅层7,芯层8,包层9,材料10,法珀腔释放孔11,进气槽释放孔12,密封结构13,真空法珀腔14,第一界面15,第二界面16,二氧化硅层17,极板18。Reference numerals: SOI wafer 1, buried oxide
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. When the following description refers to the accompanying drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with this application.
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in this application is for the purpose of describing particular embodiments only, and is not intended to limit the application. As used in this application and the appended claims, the singular forms "a", "the", and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It should also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。It should be understood that although the terms first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present application, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word "if" as used herein may be interpreted as "at" or "when" or "in response to a determination."
以下以基于SOI的法珀式压力传感芯片为例进行介绍,但是本发明的应用范围不局限于所述法珀式压力传感芯片和SOI晶圆,也适用于其他具有垂直方向敏感结构的传感芯片的制造。The following is an example of an SOI-based Fapper pressure sensor chip, but the scope of application of the present invention is not limited to the Fapper pressure sensor chip and SOI wafer, and is also applicable to other devices with vertically sensitive structures. Fabrication of sensor chips.
图1所示为基于SOI晶圆的具有垂直敏感膜的法珀式压力传感芯片的制造工艺流程的剖面图(左)和俯视图(右)。本实施例中以具有较厚器件层的SOI晶圆1为材料制造所述芯片(图1中的(a))。Figure 1 shows a cross-sectional view (left) and a top view (right) of the manufacturing process flow of a Fappon-style pressure sensing chip with a vertical sensitive film based on an SOI wafer. In this embodiment, the chip is manufactured using an SOI wafer 1 with a thicker device layer as a material ((a) in FIG. 1 ).
法珀腔3深刻蚀步骤:在SOI晶圆1器件层上光刻并深刻蚀器件层硅、埋氧层二氧化硅2、衬底硅,形成开口的法珀腔3、垂直方向压力敏感膜片4、进气槽5(图1中的(b)、图2中的(a))。Deep etching step of Fab cavity 3: photolithography and deep etching of device layer silicon, buried oxide
牺牲层填充步骤:在所述开口的法珀腔3、进气槽5中填充起临时支撑作用的牺牲层材料6,并在晶圆正面沉积密封层;具体为:Sacrificial layer filling step: filling the
首先,在所述开口的法珀腔3、进气槽5中填充起临时支撑作用的牺牲层材料6,优选多次交替旋涂、烘干光刻胶或喷涂光刻胶的方式填充。然后,在SOI晶圆正面沉积密封层,其中所述密封层的材料包括但不局限于聚酰亚胺、SU8、BCB、二氧化硅,优选用等离子体增强化学气相淀积法(PECVD)沉积上表面二氧化硅层7(图1中的(c)、图2中的(b))。Firstly, fill the
光波导制造步骤:光刻刻蚀晶圆的器件层形成单晶硅光波导的芯层8,并在晶圆的上表面沉积二氧化硅层,将所述芯层8包裹起来,形成单晶硅光波导的包层9;具体为:Optical waveguide manufacturing steps: photoetching the device layer of the wafer to form the
光刻刻蚀SOI晶圆的器件层形成单晶硅光波导的芯层8(图1中的(d)、图2中的(c)),其中所述芯层8的轴线应与所述垂直方向压力敏感膜片4的中轴线重合。The device layer of the SOI wafer is photolithographically etched to form the
在SOI晶圆的上表面用PECVD法沉积二氧化硅层,与SOI晶圆的埋氧层二氧化硅2将所述芯层8包裹起来,形成单晶硅光波导的包层9(图1中的(e)、图2中的(d))。A silicon dioxide layer is deposited on the upper surface of the SOI wafer by PECVD, and the
在光波导区域临时填充材料10使深槽形成工艺平面,优选多次交替旋涂、烘干光刻胶或喷涂光刻胶的方式填充。The
牺牲层释放步骤:去除所述开口的法珀腔3、进气槽5中填充起临时支撑作用的牺牲层材料6;Sacrificial layer release step: removing the
具体地,光刻刻蚀所述开口的法珀腔3、进气槽5上方的上表面二氧化硅层7,分别形成牺牲层材料6的法珀腔释放孔11和进气槽释放孔12(图1中的(f)、图2中的(e))。优选丙酮或去胶液去除所述临时支撑的牺牲层材料6和光波导区域临时填充的材料10(图1中的(g)、图2中的(f))。Specifically, photolithography etches the upper surface silicon dioxide layer 7 above the
气密封装步骤:在真空条件下将所述开口的法珀腔3密封;Hermetic packaging step: sealing the
具体地,在真空条件下,通过沉积密封结构13将将所述法珀腔释放孔11密封,如图1中的(h)和图2中的(g)所示,形成具有垂直敏感膜片的绝压式真空法珀腔14,同时即形成了所述面向晶上系统集成的高温硅基光电压力传感芯片。所述密封结构13的材料包含但不局限于金属浆料、玻璃浆料、聚酰亚胺、SU8、BCB、二氧化硅、环氧树脂、金属镀层、含钠离子玻璃圆片、硅晶圆等。密封结构13的沉积方法包含但不局限于丝网印刷、倒装键合、化学气相淀积、牺牲层粘附效应法、阳极键合、热压键合、激光局部加热等。Specifically, under vacuum conditions, the
图3为一种面向晶上系统集成的高温硅基光电压力传感芯片的三维结构示意图,图4所示为一种面向晶上系统集成的高温硅基光电压力传感芯片的工作原理示意图。如图3和图4所示,具有垂直敏感膜的法珀式压力传感芯片的工作原理是,当光束从单晶硅光波导的芯层8入到至真空法珀腔14时,入射光束将在第一界面15和第二界面16产生反射,两束反射光发生干涉。当外界压力增大时,垂直方向压力敏感膜片4的中心形变量增加,真空法珀腔14的腔长缩短。通过解调求出腔长的变化量就可以计算出垂直方向压力敏感膜片4所受压力。由于本发明所述的工艺步骤在硅晶圆上进行,组成法珀式压力传感芯片的单晶硅光波导和硅基法珀腔均为耐高温材料,因此可以在120℃以上的高温环境中工作。此外,垂直方向的深槽平行板电容结构占用的芯片面积较小,且并不一定依赖复杂的硅-硅、硅-玻璃键合工艺,有利于与信号处理部分在晶圆上实现光电单片集成。Fig. 3 is a schematic diagram of a three-dimensional structure of a high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration, and Fig. 4 is a schematic diagram of the working principle of a high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration. As shown in Fig. 3 and Fig. 4, the working principle of the Fapper type pressure sensor chip with vertical sensitive film is that when the light beam enters the
本申请还提供如图5所示的具有垂直敏感膜片的法珀式压力传感芯片与电容式压力传感芯片单片集成的具有差分功能的法珀式压力传感芯片。该压力传感器的制备方法包括:The present application also provides a Fapole pressure sensor chip with a differential function monolithically integrated with a Fapole pressure sensor chip with a vertical sensitive diaphragm and a capacitive pressure sensor chip as shown in FIG. 5 . The preparation method of the pressure sensor comprises:
法珀腔3深刻蚀步骤:在绝缘体上硅晶圆上光刻并深刻蚀硅、埋氧层二氧化硅2、衬底硅,形成开口的法珀腔3、垂直方向压力敏感膜片4、进气槽5;Step of deep etching of Fab cavity 3: photolithography and deep etching of silicon, buried oxide
牺牲层填充步骤:在所述开口的法珀腔3、进气槽5中填充起临时支撑作用的牺牲层材料6,并在晶圆正面沉积密封层;Sacrificial layer filling step: filling the
光波导制造步骤:光刻刻蚀晶圆的器件层形成单晶硅光波导的芯层8,并在晶圆的上表面沉积二氧化硅层,将所述芯层8包裹起来,形成单晶硅光波导的包层9;Optical waveguide manufacturing steps: photoetching the device layer of the wafer to form the
第一牺牲层释放步骤:去除所述进气槽5中填充起临时支撑作用的牺牲层材料6;The first sacrificial layer releasing step: removing the
平行板电容制造步骤:在所述进气槽5的内壁沉积起电学绝缘隔离功能的二氧化硅层17,并在所述法珀腔3的外侧壁及其相对的侧壁沉积金属层作为平行板电容器的极板18;Parallel plate capacitor manufacturing steps: depositing a
第二牺牲层释放步骤:去除所述开口的法珀腔3中填充起临时支撑作用的牺牲层材料6;The second sacrificial layer releasing step: removing the
气密封装步骤:在真空条件下将所述开口的法珀腔3密封。Hermetic packaging step: sealing the
具体而言,该方法相对于上述面向晶上系统集成的高温硅基光电压力传感芯片的制备方法的区别在于,在光波导制造步骤之后,本方法中需首先释放进气槽中的牺牲层材料,在所述进气槽5的内壁沉积起电学绝缘隔离功能的二氧化硅层17;然后,在所述法珀腔3的外侧壁及其相对的侧壁上沉积金属层作为平行板电容器的极板18;之后将极板18引出到晶圆上表面形成焊盘19。再释放开口的法珀腔中的牺牲层材料和光波导区域临时填充的材料10。Specifically, the difference between this method and the above-mentioned method for preparing a high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration is that after the optical waveguide manufacturing step, in this method, the sacrificial layer in the gas inlet groove needs to be released first. material, depositing a
所述光电集成的具有差分功能的法珀式压力传感芯片的工作原理是,当外界压力增大时,垂直方向压力敏感膜片4的中心形变量增加,真空法珀腔14的腔长缩短;而平行板电容器的间距变大,即进气槽5的宽度间距变大。因此分别通过检测腔长变短和间距变大引起的反射光相位变化和电容变化就可以得到相应的压力变化,具有进一步放大压力信号的功能。The operating principle of the photoelectrically integrated Fappau pressure sensor chip with differential function is that when the external pressure increases, the central deformation of the pressure sensitive diaphragm 4 in the vertical direction increases, and the cavity length of the
图6为具有差分功能的双侧法珀式压力传感芯片的结构示意图。受到压力作用时,绝压一侧的法珀腔的腔长变短,与外界气体相通一侧的法珀腔的腔长变长,形成差分结构,具有进一步放大压力信号的功能。FIG. 6 is a schematic structural diagram of a double-sided Fappaut pressure sensor chip with a differential function. When subjected to pressure, the cavity length of the Fappel cavity on the side of absolute pressure becomes shorter, and the cavity length of the Fappel cavity on the side communicating with the outside gas becomes longer, forming a differential structure, which has the function of further amplifying the pressure signal.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples have been used to illustrate the principle and implementation of the present invention. The description of the above embodiments is only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to the present invention Thoughts, there will be changes in the specific implementation and application scope. In summary, the contents of this specification should not be construed as limiting the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310680812.4A CN116399489B (en) | 2023-06-09 | 2023-06-09 | A high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310680812.4A CN116399489B (en) | 2023-06-09 | 2023-06-09 | A high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116399489A true CN116399489A (en) | 2023-07-07 |
CN116399489B CN116399489B (en) | 2023-09-01 |
Family
ID=87020305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310680812.4A Active CN116399489B (en) | 2023-06-09 | 2023-06-09 | A high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116399489B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117003197A (en) * | 2023-09-26 | 2023-11-07 | 之江实验室 | Preparation method of high-temperature inertial chip capable of being integrated on crystal and provided with vertical Fabry-Perot cavity |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060081056A1 (en) * | 2004-10-18 | 2006-04-20 | Kia Silverbrook | Pressure sensor with conductive ceramic membrane |
CN101076891A (en) * | 2004-05-28 | 2007-11-21 | 先进微装置公司 | Semiconductor structure comprising a stress sensitive element and method of measuring a stress in a semiconductor structure |
WO2009115859A1 (en) * | 2008-03-19 | 2009-09-24 | S.O.I. Tec Silicon On Insulator Technologies | Substrates for monolithic optical circuits and electronic circuits |
CN103528735A (en) * | 2013-10-31 | 2014-01-22 | 南京信息工程大学 | Miniature optical fiber Fabry-Perot pressure sensor and manufacturing method thereof |
CN106233174A (en) * | 2014-03-07 | 2016-12-14 | 艾易珀尼斯公司 | The method and system of wavelengthtunable optical module and subsystem |
CN110057479A (en) * | 2019-04-17 | 2019-07-26 | 中国地质大学(武汉) | Plating laminar double-layer sensitive film and preparation method for FP chamber fibre optic compression sensor |
CN112629720A (en) * | 2020-11-30 | 2021-04-09 | 中国航空工业集团公司北京长城计量测试技术研究所 | Low-loss optical fiber pressure sensor and manufacturing method thereof |
CN114487479A (en) * | 2022-01-26 | 2022-05-13 | 西安交通大学 | A Faber acceleration-sensitive chip with adjustable sensitivity and range and its processing method |
CN115799076A (en) * | 2023-02-03 | 2023-03-14 | 之江实验室 | A wafer system microfluidic manufacturing method capable of measuring flow rate, pressure and temperature |
CN115863183A (en) * | 2023-02-03 | 2023-03-28 | 之江实验室 | Flow-measurable microfluidic fabrication method for heat dissipation in 3D integrated wafer systems |
-
2023
- 2023-06-09 CN CN202310680812.4A patent/CN116399489B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101076891A (en) * | 2004-05-28 | 2007-11-21 | 先进微装置公司 | Semiconductor structure comprising a stress sensitive element and method of measuring a stress in a semiconductor structure |
US20060081056A1 (en) * | 2004-10-18 | 2006-04-20 | Kia Silverbrook | Pressure sensor with conductive ceramic membrane |
WO2009115859A1 (en) * | 2008-03-19 | 2009-09-24 | S.O.I. Tec Silicon On Insulator Technologies | Substrates for monolithic optical circuits and electronic circuits |
CN103528735A (en) * | 2013-10-31 | 2014-01-22 | 南京信息工程大学 | Miniature optical fiber Fabry-Perot pressure sensor and manufacturing method thereof |
CN106233174A (en) * | 2014-03-07 | 2016-12-14 | 艾易珀尼斯公司 | The method and system of wavelengthtunable optical module and subsystem |
CN110057479A (en) * | 2019-04-17 | 2019-07-26 | 中国地质大学(武汉) | Plating laminar double-layer sensitive film and preparation method for FP chamber fibre optic compression sensor |
CN112629720A (en) * | 2020-11-30 | 2021-04-09 | 中国航空工业集团公司北京长城计量测试技术研究所 | Low-loss optical fiber pressure sensor and manufacturing method thereof |
CN114487479A (en) * | 2022-01-26 | 2022-05-13 | 西安交通大学 | A Faber acceleration-sensitive chip with adjustable sensitivity and range and its processing method |
CN115799076A (en) * | 2023-02-03 | 2023-03-14 | 之江实验室 | A wafer system microfluidic manufacturing method capable of measuring flow rate, pressure and temperature |
CN115863183A (en) * | 2023-02-03 | 2023-03-28 | 之江实验室 | Flow-measurable microfluidic fabrication method for heat dissipation in 3D integrated wafer systems |
Non-Patent Citations (5)
Title |
---|
K TOTSU等: "Development of ultra-miniature fiber-optic pressure sensor", FUTURE MEDICAL ENGINEERING BASED ON BIONANOTECHNOLOGY * |
T LISEC等: "Combined TMAH and HF sacrificial layer etching technique for surface micromachined devices", MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY, pages 286 - 293 * |
刘宇;王萌;王博;姜丽娟;王少华;: "激光加工硅片的膜片式法―珀干涉型光纤压力传感器", 传感器与微系统, no. 01 * |
李元元;蒙庆华;陈四海;曾毅波;郭航;: "微F-P腔可调谐滤波器关键工艺研究", 传感器与微系统, no. 10 * |
高伦;梁斌明;王婷;陈家璧;: "基于光子晶体和法布里珀罗腔结构的折射率传感器", 光学仪器, no. 03 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117003197A (en) * | 2023-09-26 | 2023-11-07 | 之江实验室 | Preparation method of high-temperature inertial chip capable of being integrated on crystal and provided with vertical Fabry-Perot cavity |
CN117003197B (en) * | 2023-09-26 | 2024-03-26 | 之江实验室 | Preparation method of high-temperature inertial chip with vertical Faber cavity that can be integrated on crystal |
Also Published As
Publication number | Publication date |
---|---|
CN116399489B (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100588928C (en) | Fabry-Perot type optical fiber pressure sensor and its manufacturing method | |
CN108507709A (en) | A kind of preparation method of resonance type pressure sensor | |
CN101034028B (en) | Fabry-Perot type optical fiber pressure sensor and its manufacturing method | |
CN105858585B (en) | Sensitive structure, accelerometer and the manufacture method of superelevation acceleration displacement sensitivity | |
CN103308717B (en) | Optical fiber Fabry-Perot acceleration sensor and manufacturing method thereof | |
CN105181231A (en) | Pressure sensor of packaging structure and preparation method thereof | |
CN107328449B (en) | A thermopile gas flow sensor and its preparation method | |
CN116399489B (en) | A high-temperature silicon-based photoelectric pressure sensor chip for on-chip system integration | |
CN114486019A (en) | Optical fiber Fabry-Perot pressure sensor for eliminating third-cavity interference and MEMS manufacturing method | |
CN108444623A (en) | High sensibility pressure transducer and preparation method thereof based on silicon thin film | |
CN111796119B (en) | Resonant acceleration sensor based on nano piezoelectric beam and preparation method thereof | |
CN116425110B (en) | Wafer-level manufacturing method of high-temperature photoelectric pressure sensing chip with differential structure | |
CN210084937U (en) | Back hole lead wire type pressure sensor | |
CN103241704B (en) | Three-dimensional integrated sensor and preparation method thereof | |
CN114477076A (en) | Fabrication method of Fabry-Perot acceleration-sensitive chip suitable for double-layer beam structure | |
CN116429299B (en) | A pressure sensing chip manufacturing method that can be integrated into wafer systems | |
CN103072941B (en) | MEMS based on surface sacrificial process encapsulates preparation method certainly | |
CN113636521A (en) | Airtight packaging structure of device with cavity and manufacturing method | |
CN108663538A (en) | Vibration-sensing corrugated diaphragm and optical fiber acceleration sensor and micro-vibration detection system based on same | |
Mirza | Wafer-level packaging technology for MEMS | |
CN106597012A (en) | Accelerometer based on light intensity modulation type MOEMS | |
CN114279551B (en) | An optical fiber sound pressure sensor based on MEMS technology and its preparation method | |
CN108195366B (en) | A kind of processing method of micro-nano gyroscope based on double-layer nano-grating | |
CN116358608A (en) | High temperature optical fiber F-P cavity MEMS sensor with stress isolation structure and manufacturing method thereof | |
CN216303263U (en) | Airtight packaging structure of device with cavity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |