CN116355067B - Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application - Google Patents
Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application Download PDFInfo
- Publication number
- CN116355067B CN116355067B CN202310409743.3A CN202310409743A CN116355067B CN 116355067 B CN116355067 B CN 116355067B CN 202310409743 A CN202310409743 A CN 202310409743A CN 116355067 B CN116355067 B CN 116355067B
- Authority
- CN
- China
- Prior art keywords
- osglp8
- rice
- gene
- sclerotinia sclerotiorum
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 36
- 241000221696 Sclerotinia sclerotiorum Species 0.000 title claims abstract description 34
- 235000009566 rice Nutrition 0.000 title claims abstract description 34
- 240000007594 Oryza sativa Species 0.000 title abstract description 32
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 46
- 241000196324 Embryophyta Species 0.000 claims abstract description 29
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 12
- 230000002018 overexpression Effects 0.000 claims abstract description 10
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 10
- 230000009261 transgenic effect Effects 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 108700001094 Plant Genes Proteins 0.000 claims description 2
- 241000209094 Oryza Species 0.000 claims 4
- 239000002773 nucleotide Substances 0.000 claims 2
- 125000003729 nucleotide group Chemical group 0.000 claims 2
- 241000219195 Arabidopsis thaliana Species 0.000 abstract description 12
- 241000221662 Sclerotinia Species 0.000 abstract description 6
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 238000011081 inoculation Methods 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 241000219194 Arabidopsis Species 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 238000003752 polymerase chain reaction Methods 0.000 description 10
- 241000208125 Nicotiana Species 0.000 description 9
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000009466 transformation Effects 0.000 description 7
- 241000589158 Agrobacterium Species 0.000 description 6
- 240000007124 Brassica oleracea Species 0.000 description 6
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 6
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 6
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 4
- 239000008272 agar Substances 0.000 description 4
- 229940041514 candida albicans extract Drugs 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- 239000012138 yeast extract Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 208000035240 Disease Resistance Diseases 0.000 description 2
- 238000003559 RNA-seq method Methods 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 1
- 101000997623 Arabidopsis thaliana Germin-like protein subfamily 3 member 1 Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical class [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- RNPABQVCNAUEIY-GUQYYFCISA-N Germine Chemical compound O1[C@@]([C@H](CC[C@]23C)O)(O)[C@H]3C[C@@H](O)[C@@H]([C@]3(O)[C@@H](O)[C@H](O)[C@@H]4[C@]5(C)O)[C@@]12C[C@H]3[C@@H]4CN1[C@H]5CC[C@H](C)C1 RNPABQVCNAUEIY-GUQYYFCISA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 239000012880 LB liquid culture medium Substances 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000006067 antibiotic powder Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 230000027288 circadian rhythm Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000008641 drought stress Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010201 enrichment analysis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 108010020084 germin Proteins 0.000 description 1
- RNPABQVCNAUEIY-UHFFFAOYSA-N germine Natural products O1C(C(CCC23C)O)(O)C3CC(O)C(C3(O)C(O)C(O)C4C5(C)O)C12CC3C4CN1C5CCC(C)C1 RNPABQVCNAUEIY-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 238000003012 network analysis Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域Technical field
本发明属于植物分子生物学领域,具体涉及抑制核盘菌的OsGLP8-12及其应用。The invention belongs to the field of plant molecular biology, and specifically relates to OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application.
背景技术Background technique
核盘菌(S.sclerotiorum)是一种致病范围广泛的腐生型丝状真菌。核盘菌能够感染500多种植物(Liang et al.,2018),包括双子叶植物油菜、白菜、甘蓝等,给我们农业生产带来了严重损失(Boland et al.,2009)。由于常规育种途径本身的局限性,抗病育种一直是农业生产上的重大难题。对核盘菌而言,多种禾本科植物,特别是水稻在很早就被鉴定为核盘菌的非寄主植物(Purdy,1979),利用水稻相关基因的非寄主抗性机制,为油菜等寄主植物的核盘菌抗性改良提供了全新的抗病基因资源。S. sclerotiorum is a saprophytic filamentous fungus that causes a wide range of diseases. Sclerotinia sclerotiorum can infect more than 500 types of plants (Liang et al., 2018), including dicotyledonous plants such as rape, cabbage, cabbage, etc., causing serious losses to our agricultural production (Boland et al., 2009). Due to the limitations of conventional breeding approaches, disease resistance breeding has always been a major problem in agricultural production. For Sclerotinia sclerotiorum, a variety of grass plants, especially rice, were identified as non-host plants of Sclerotinia sclerotiorum very early (Purdy, 1979). Using the non-host resistance mechanism of rice-related genes, it has been used for rapeseed, etc. Improvement of S. sclerotiorum resistance in host plants provides a new resource of disease resistance genes.
Germin最早在小麦中发现,是一种普遍存在于外质体或细胞外基质中的水溶性糖蛋白。植物的GLPs一般具有三种作用:真萌发素(truegermin)、植物免疫反应和调节植物生长发育(生理节律、花期)功能等(Sawsan et al.,2001)。转基因水稻中的OsGLPs可以通过影响与JA依赖途径相关的防御相关基因,同时提高内源JA水平,从而增强对细菌性白叶枯病和真菌原病的抗性(Liu et al.,2016)。近期研究者通过将大豆GmGLP7超表达到拟南芥中,并观察后代表型发现阳性系出对盐、干旱和氧化应激的耐盐性提高,并且对外源ABA高度敏感(Li et al.,2022)而GLP GmGLP9显著增加烟草盐胁迫的耐受性(Mo et al.,2010)。Germin was first discovered in wheat and is a water-soluble glycoprotein commonly found in exoplasts or extracellular matrix. Plant GLPs generally have three functions: truegermin, plant immune response, and regulating plant growth and development (circadian rhythm, flowering period) (Sawsan et al., 2001). OsGLPs in transgenic rice can enhance resistance to bacterial leaf blight and fungal pathogens by affecting defense-related genes related to JA-dependent pathways while increasing endogenous JA levels (Liu et al., 2016). Recently, researchers overexpressed soybean GmGLP7 into Arabidopsis and observed the offspring phenotype and found that the positive lines had improved salt tolerance to salt, drought and oxidative stress, and were highly sensitive to exogenous ABA (Li et al., 2022) and GLP GmGLP9 significantly increases the tolerance of tobacco salt stress (Mo et al., 2010).
发明内容Contents of the invention
本发明的目的是提供水稻OsGLP8-12及其编码的蛋白与应用。The purpose of the present invention is to provide rice OsGLP8-12 and its encoded proteins and applications.
首先,本发明提供水稻OsGLP8-12蛋白,其为:First, the present invention provides rice OsGLP8-12 protein, which is:
1)由SEQ ID No.2所示的氨基酸组成的蛋白质;或1) A protein composed of the amino acids shown in SEQ ID No. 2; or
2)在SEQ ID No.2所示的氨基酸序列中经取代、缺失或添加一个或几个氨基酸且具有同等活性的由1)衍生的蛋白质。2) A protein derived from 1) in which one or several amino acids are substituted, deleted or added in the amino acid sequence shown in SEQ ID No. 2 and has equivalent activity.
本发明还提供编码所述蛋白的基因。优选的,所述基因的序列如SEQ ID No.1所示。The invention also provides genes encoding said proteins. Preferably, the sequence of the gene is shown in SEQ ID No. 1.
本发明还提供含有所述基因的载体,宿主细胞和工程菌。The invention also provides vectors, host cells and engineering bacteria containing the genes.
本发明还提供所述基因在调控核盘菌寄主植物菌核病抗性中的用途。The present invention also provides the use of the gene in regulating sclerotinia resistance of S. sclerotiorum host plants.
在本发明一个实施方案中,将所述基因转入寄主植物基因中,并在转基因植物中超量表达,提高植物菌核病抗性。In one embodiment of the present invention, the gene is transferred into the host plant gene and overexpressed in the transgenic plant to improve plant sclerotinia resistance.
本发明还提供一种提高核盘菌寄主植物对菌核病抗性的方法,其特征在于,将含有所述基因的载体转入所述植物基因组中,并在转基因植株中超量表达。The invention also provides a method for improving the resistance of Sclerotinia sclerotiorum host plants to Sclerotinia sclerotiorum, which is characterized in that the vector containing the gene is transferred into the plant genome and overexpressed in the transgenic plant.
本研究在通过分析对水稻接种核盘菌的RNA-seq进行分析,并结合甘蓝等寄主植物的转录组数据,挑选出候选基因OsGLP8-12。在拟南芥中异源超表达OsGLP8-12基因,利用荧光定量手段鉴定阳性植株后,培养至T3代,然后对阳性株系进行叶片的核盘菌接种。结果表明,拟南芥过表达系OE_OsGLP8-12的平均菌斑面积(31.8mm2)相较于野生型WT的菌斑面积(47.0mm2)减少32.2%,极显著(p<0.01)提高了拟南芥对于核盘菌的抗性。In this study, candidate genes OsGLP8-12 were selected by analyzing RNA-seq of rice inoculated with Sclerotinia sclerotiorum, combined with transcriptome data of host plants such as cabbage. The OsGLP8-12 gene was heterologously overexpressed in Arabidopsis. After identifying positive plants using fluorescence quantitative methods, they were cultured to T3 generation, and then the leaves of the positive plants were inoculated with S. sclerotiorum. The results showed that the average plaque area of the Arabidopsis overexpression line OE_OsGLP8-12 (31.8mm 2 ) was reduced by 32.2% compared to the plaque area of the wild type WT (47.0mm 2 ), which was a very significant (p<0.01) increase. Resistance of Arabidopsis thaliana to Sclerotinia sclerotiorum.
附图说明Description of the drawings
图1所示为水稻叶片创伤与未创伤接种后表型观察。-w:未创伤处理;+w:创伤处理。Figure 1 shows the phenotypic observation of rice leaves after wounding and unwounded inoculation. -w: No trauma treatment; +w: Trauma treatment.
图2所示为样品差异表达基因情况。Figure 2 shows the differentially expressed genes in the samples.
图3所示为水稻接种12h的GO富集(A)和KEGG富集结果(B)以及水稻接种24h的GO富集(C)和KEGG富集结果(D)。Figure 3 shows the GO enrichment (A) and KEGG enrichment results (B) of rice inoculated for 12 h and the GO enrichment (C) and KEGG enrichment results (D) of rice inoculated for 24 h.
图4所示为水稻、甘蓝接种前后GLP家族基因的表达情况。Figure 4 shows the expression of GLP family genes before and after inoculation of rice and cabbage.
图5所示为OsGLP8-12基因的克隆。Figure 5 shows the cloning of OsGLP8-12 gene.
图6所示为融合载体构建示意图。Figure 6 shows a schematic diagram of fusion vector construction.
图7所示为大肠杆菌中目的片段的鉴定。(M=Marker 2000;lane1-4为阳性克隆)。Figure 7 shows the identification of target fragments in E. coli. (M=Marker 2000; lane1-4 is a positive clone).
图8所示为农杆菌中目的片段的鉴定。(M=Marker 2000;lane1-6为阳性克隆)。Figure 8 shows the identification of target fragments in Agrobacterium. (M=Marker 2000; lane1-6 is a positive clone).
图9所示为转基因拟南芥中OsGLP8-12表达量鉴定。Figure 9 shows the identification of OsGLP8-12 expression in transgenic Arabidopsis.
图10所示为转基因拟南芥菌核病抗性鉴定。Figure 10 shows the identification of sclerotinia resistance in transgenic Arabidopsis.
图11所示为瞬时转化烟草的抗性鉴定。Figure 11 shows the resistance identification of transiently transformed tobacco.
具体实施方式Detailed ways
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular cloning:a laboratory manual,2001),或按照制造厂商说明书建议的条件。The following examples are used to illustrate the invention but are not intended to limit the scope of the invention. Unless otherwise specified, the examples are all in accordance with conventional experimental conditions, such as Sambrook et al. Molecular cloning experimental manual (Sambrook J & Russell DW, Molecular cloning: a laboratory manual, 2001), or in accordance with the conditions recommended by the manufacturer's instructions.
酶及试剂盒:基因克隆高保真酶(ApexHF HS DNA Polymerase FS Master Mix)、DNA凝胶回收试剂盒购于湖南艾科瑞生物工程有限公司;限制性内切酶均购于赛默飞世尔科技(中国)有限公司;DNA marker(BM5000/BM2000)购于博迈德生物技术有限公司;质粒提取试剂盒购于天根生化科技(北京)有限公司;RNA提取试剂盒、总RNA反转录试剂盒购于TIANGEN公司。核酸染料Super GelRedTM购于苏州宇恒生物有限公司;其他药品:琼脂糖购买于全式金生物公司,蛋白胨、酵母提取物、氯仿、异戊醇、乙醇、异丙醇、氯化钠等为国产分析纯,卡那霉素、利福平、和乙酰丁香酮等抗生素粉剂购于北京索莱宝科技有限公司。Enzymes and kits: Gene cloning high-fidelity enzyme (ApexHF HS DNA Polymerase FS Master Mix) and DNA gel recovery kit were purchased from Hunan Aikerui Bioengineering Co., Ltd.; restriction endonucleases were purchased from Thermo Fisher Technology (China) Co., Ltd.; DNA marker (BM5000/BM2000) was purchased from Bomed Biotechnology Co., Ltd.; plasmid extraction kit was purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.; RNA extraction kit, total RNA reverse transcription The test kit was purchased from TIANGEN Company. The nucleic acid dye Super GelRedTM was purchased from Suzhou Yuheng Biological Co., Ltd.; other drugs: agarose was purchased from Quanshijin Biological Co., Ltd., and peptone, yeast extract, chloroform, isoamyl alcohol, ethanol, isopropyl alcohol, sodium chloride, etc. were domestically produced. Analytically pure antibiotic powders such as kanamycin, rifampin, and acetosyringone were purchased from Beijing Solebao Technology Co., Ltd.
溶液的配制:本文中提到的但未列出的各种试剂均按《分子克隆实验指南》第三版上的方法配制,生化试剂为分析纯或以上级。Solution preparation: Various reagents mentioned but not listed in this article are prepared according to the methods in the third edition of "Molecular Cloning Experiment Guide". Biochemical reagents are of analytical grade or above.
LB液体培养基:胰蛋白胨(Tryptone)10g/L、酵母提取物(Yeast extract)5g/L、氯化钠(NaCl)10g/L;LB固体培养基:胰蛋白胨(Tryptone)10g/L、酵母提取物(Yeastextract)5g/L、氯化钠(NaCl)10g/L、琼脂粉15g/L,定容至1L;LB选择培养基:在LB铺平板前,待培养基高压灭菌冷却至55℃时加入相应浓度抗生素,摇匀后铺平板。LB liquid medium: tryptone 10g/L, yeast extract 5g/L, sodium chloride (NaCl) 10g/L; LB solid medium: tryptone 10g/L, yeast Extract (Yeastextract) 5g/L, sodium chloride (NaCl) 10g/L, agar powder 15g/L, adjust the volume to 1L; LB selection medium: Before LB plating, wait for the medium to be autoclaved and cooled to 55 Add corresponding concentration of antibiotics at ℃, shake well and spread the plate.
供试菌株:核盘菌野生型菌株“1980”由实验室保存,核盘菌“TL”,菌株在PDA培养基上培养,培养温度为22℃Test strains: Sclerotinia sclerotiorum wild-type strain "1980" was preserved in the laboratory, Sclerotinia sclerotiorum "TL", the strain was cultured on PDA medium, the culture temperature was 22°C
主要仪器:PCR扩增仪(BIO-RAD)、高速离心机(Hettich MIKRO 200R)、电泳设备(BIO-RAD)、凝胶成像系统(BIO-RAD)、荧光定量PCR仪(ABI7500)。Main instruments: PCR amplification instrument (BIO-RAD), high-speed centrifuge (Hettich MIKRO 200R), electrophoresis equipment (BIO-RAD), gel imaging system (BIO-RAD), fluorescence quantitative PCR instrument (ABI7500).
实施例1水稻对核盘菌的抗病分子网络分析Example 1 Molecular network analysis of rice resistance to Sclerotinia sclerotiorum
供试植物材料:Plant materials for testing:
水稻材料为缙恢10,种植于西南大学水稻试验基地,核盘菌野生型菌株“1980”,在PDA培养基上培养,培养温度为22℃。The rice material was Jinhui 10, which was planted at the Rice Experimental Base of Southwest University. The S. sclerotiorum wild-type strain "1980" was cultured on PDA medium at a culture temperature of 22°C.
水稻接种核盘菌方法:Method for inoculating rice with Sclerotinia sclerotiorum:
核盘菌接种水稻接种:于水稻实验田内剪取水稻倒二叶进行核盘菌的接种。将水稻叶片切口处覆上湿润的棉花,在选择打孔区域时,优先选择菌丝生长均匀且旺盛的核盘菌菌丝块,直径为6mm。接种时镊子夹取菌丝块使菌丝面接触水稻叶片正面,避开叶脉进行接种。对照组采用无菌丝的空白PDA琼脂块进行接种,方法同上。22℃保湿培养接种1~4d(图1)。Sclerotinia sclerotiorum inoculation Rice inoculation: Cut the first two leaves of rice in the rice experimental field to inoculate Sclerotinia sclerotiorum. Cover the incisions of the rice leaves with moist cotton. When selecting the punching area, give priority to the S. sclerotiorum mycelium pieces with a diameter of 6 mm that grow evenly and vigorously. During inoculation, use tweezers to pick up the mycelial pieces so that the mycelial surface contacts the front of the rice leaves and avoids the leaf veins for inoculation. In the control group, blank PDA agar blocks without hyphae were used for inoculation, and the method was the same as above. Culture and inoculate in a humidified environment at 22°C for 1 to 4 days (Figure 1).
转录组测序及分析Transcriptome sequencing and analysis
将创伤后的水稻叶片分别接种空白PDA琼脂块(不接种对照)、两种核盘菌菌株(1980和TL),于接种后12和24h移除琼脂块和菌丝块后,共8个样,送百迈克生物技术公司进行转录组测序(RNA-seq)。测序数据经质量评估后与水稻参考基因组(参考基因来源:Oryzasativa;参考基因组版本:IRGSP-1.0;参考基因组来源:http://plants.ensembl.org/Oryza_sativa/Info/Index;)比对分析,分析基因表达水平和差异表达基因(DEGs)(图2),最后对DEGs进行KEGG富集分析。如图3所示,与未接种对照相比,接种的水稻在ndole-containing compound biosynthetic process、tryptophan biosynthetic process等生物学过程,以及Glutathione metabolism和Phenylalanine biosynthesis等途径被促进。进一步与甘蓝接种核盘菌前后的转录组数据比较,如图4所示,水稻中GLP家族基因(植物类萌发蛋白)受菌诱导上调表达,然而该家族基因在甘蓝等寄主植物接种后没有显著上调,推测OsGLP对核盘菌的抗性有重要一定贡献,OsGLP8-12作为候选基因进行后续的功能验证。The injured rice leaves were inoculated with blank PDA agar blocks (no inoculation control) and two S. sclerotiorum strains (1980 and TL). After removing the agar blocks and mycelium blocks 12 and 24 hours after inoculation, a total of 8 samples were collected. , sent to Biomic Biotechnology Company for transcriptome sequencing (RNA-seq). After quality assessment, the sequencing data were compared and analyzed with the rice reference genome (reference gene source: Oryzasativa; reference genome version: IRGSP-1.0; reference genome source: http://plants.ensembl.org/Oryza_sativa/Info/Index;). Gene expression levels and differentially expressed genes (DEGs) were analyzed (Figure 2), and finally KEGG enrichment analysis was performed on DEGs. As shown in Figure 3, compared with the uninoculated control, inoculated rice was promoted in biological processes such as ndole-containing compound biosynthetic process, tryptophan biosynthetic process, and pathways such as Glutathione metabolism and Phenylalanine biosynthesis. Further comparison with the transcriptome data of cabbage before and after inoculation with Sclerotinia sclerotiorum, as shown in Figure 4, the expression of GLP family genes (plant-like germination proteins) in rice was induced by the bacteria. However, the expression of this family gene was not significant after inoculation with host plants such as cabbage. Up-regulated, it is speculated that OsGLP has an important contribution to the resistance of Sclerotinia sclerotiorum. OsGLP8-12 was used as a candidate gene for subsequent functional verification.
实施例2水稻中OsGLP8-12基因的克隆Example 2 Cloning of OsGLP8-12 gene in rice
(1)试验材料缙恢10种植于西南大学水稻试验基地,按一般大田管理。所取部位有根、茎、叶、花以及不同发育时期的种子,所取材料迅速投入液氮中冷冻,保存于-80℃冰箱备用。植物DNA提取采用改良的CTAB法,植物总RNA提取采用TIANGEN公司试剂盒。(1) The test material Jinhui 10 was planted in the rice experimental base of Southwest University and was managed as a general field. The parts taken included roots, stems, leaves, flowers and seeds at different development stages. The taken materials were quickly frozen in liquid nitrogen and stored in a -80°C refrigerator for later use. Plant DNA was extracted using the modified CTAB method, and plant total RNA was extracted using the TIANGEN company kit.
(2)将200ng RNA反转录为cDNA,将反转录产物cDNA溶液稀释4倍作为PCR反应模板。(2) Reverse-transcribe 200ng RNA into cDNA, and dilute the reverse-transcription product cDNA solution 4 times as a PCR reaction template.
以提取的各组织的水稻总RNA为模板,利用的是TaKaRa的反转录试剂盒将其反转录为cDNA,反应体系见表1。The extracted total rice RNA from each tissue was used as a template, and the TaKaRa reverse transcription kit was used to reverse-transcribe it into cDNA. The reaction system is shown in Table 1.
表1反应体系Table 1 Reaction system
备注:反应过程在PCR仪器内先37℃温育15min,然后85℃5s最后-20℃保存备用Note: The reaction process is first incubated in the PCR instrument at 37°C for 15 minutes, then 85°C for 5 seconds, and finally stored at -20°C for later use.
(3)进行PCR反应扩增目的基因(3) Perform PCR reaction to amplify the target gene
采用Oligo6软件设计OsGLP8-12的引物。以反转录所得到的混合cDNA为模板对水稻OsGLP8-12基因进行PCR扩增。反应体系如表2。Oligo6 software was used to design primers for OsGLP8-12. The rice OsGLP8-12 gene was PCR amplified using the mixed cDNA obtained by reverse transcription as a template. The reaction system is shown in Table 2.
表2目的基因扩增体系Table 2 Target gene amplification system
PCR反应所需条件设置为:The conditions required for the PCR reaction are set to:
引物序列:Primer sequence:
OsGLP8-12-F:5′-ATGGCCTCCTCTTCCTTATT-3′OsGLP8-12-F:5′-ATGGCCTCCTCTCCTTATT-3′
OsGLP8-12-R:5′-TCAGTAGTTGTTCTCCCAGA-3′OsGLP8-12-R:5′-TCAGTAGTTGTTTCTCCAGA-3′
(4)反应结束后4℃保存,用1%的琼脂糖电泳进行检测,条带大小符合预期设计则视为有效结果(图5)。(4) After the reaction, store it at 4°C and use 1% agarose electrophoresis for detection. If the band size is in line with the expected design, it is considered a valid result (Figure 5).
(5)对目的片段运用胶回收试剂盒进行切胶回收。(5) Use a gel recovery kit to cut and recover the target fragment.
(6)将上述胶回收的产物连接pBin35SRed载体并转化大肠杆菌。(6) Connect the product recovered from the above gel to the pBin35SRed vector and transform into E. coli.
(7)37℃过夜培养从抗性LB培养基上挑取单克隆到含有Kan的600μL LB培养基中37℃摇菌培养4h。(7) Overnight culture at 37°C. Pick single clones from the resistant LB medium and culture them in 600 μL LB medium containing Kan for 4 hours at 37°C with shaking.
(8)菌液PCR验证,送含有目的基因片段大小条带的菌液测序。(8) Bacterial liquid PCR verification, send the bacterial liquid containing the size band of the target gene fragment for sequencing.
将拟南芥的AtGLP1(AT1G72610.1)基因在水稻数据库中进行同源比对和鉴定,找到相应目的序列后,采用Oligo 6软件设计引物,采用PCR(Polymerase Chain Reaction)技术从缙恢10中扩增出完整CDS序列675bp(SEQ ID No.1),其中开放阅读框ORF为675bp,编码224个氨基酸残基(SEQ ID No.2)。The AtGLP1 (AT1G72610.1) gene of Arabidopsis thaliana was homologously compared and identified in the rice database. After finding the corresponding target sequence, Oligo 6 software was used to design primers, and PCR (Polymerase Chain Reaction) technology was used to extract the gene from Jinhui 10. The complete CDS sequence of 675 bp (SEQ ID No. 1) was amplified, in which the open reading frame ORF was 675 bp, encoding 224 amino acid residues (SEQ ID No. 2).
实施例3pBin35SRed::OsGLP8-12过表达载体的构建Example 3 Construction of pBin35SRed::OsGLP8-12 overexpression vector
1)质粒提取及酶切1) Plasmid extraction and enzyme digestion
质粒提取采用TIANGEN公司质粒提取试剂盒,质粒浓度经检测为210ng/μl,琼脂糖凝胶电泳检测,没有蛋白污染,达到试验要求,内切酶选用Xba I-Sma I进行双酶切。The plasmid was extracted using a plasmid extraction kit from TIANGEN. The plasmid concentration was tested to be 210ng/μl. The agarose gel electrophoresis showed that there was no protein contamination and met the test requirements. Xba I-Sma I was used as the endonuclease for double enzyme digestion.
2)pBin35SRed::OsGLP8-12过表达载体的构建2) Construction of pBin35SRed::OsGLP8-12 overexpression vector
目的基因ORF序列扩增:根据终载体pBin35SRed的图谱设计Xba I-Sma I为插入位点并合成引物,引物序列如下:Amplification of target gene ORF sequence: Design Xba I-Sma I as insertion sites according to the map of the final vector pBin35SRed and synthesize primers. The primer sequences are as follows:
In-OsGLP8-12-F:5′-ATTTGGAGAGGACACGAATTCATGGCCT CCTCTTCCTTATT-3′(含酶切位点Xba I)In-OsGLP8-12-F:5′-ATTTGGAGAGGACACGAATTCATGGCCT CCTCTTCCTTATT-3′ (contains restriction site Xba I)
In-OsGLP8-12-R:5′-CCGCCTCGAGCCCGGGTCTAGATCAGT AGTTGTTCTCCCAGA-3′(含酶切位点Sma I)In-OsGLP8-12-R:5′-CCGCCTCGAGCCCGGGTCTAGATCAGT AGTTGTTCCTCCCAGA-3′ (contains enzyme cleavage site Sma I)
使用高保真酶扩增得到目的片段。Use high-fidelity enzymes to amplify the target fragments.
表3目的基因扩增体系Table 3 Target gene amplification system
(1)PCR反应程序:(1)PCR reaction procedure:
98℃预变性5min;循环为98℃变性10s,60℃退火30s,68℃延伸1min,共30个循环;68℃延伸5min。Pre-denaturation at 98°C for 5 minutes; cycle of denaturation at 98°C for 10 seconds, annealing at 60°C for 30 seconds, extension at 68°C for 1 minute, a total of 30 cycles; extension at 68°C for 5 minutes.
(2)电泳检测与回收:(2) Electrophoresis detection and recovery:
PCR产物在1.8%琼脂糖凝胶电泳,调节电压至90V,电泳1h,在紫外灯下观察结果,迅速切下目的条带。用胶回收试剂盒回收目的片段,具体方法按试剂盒说明书进行。The PCR product was electrophoresed in a 1.8% agarose gel, the voltage was adjusted to 90V, electrophoresed for 1 hour, the results were observed under UV light, and the target band was quickly cut out. Use a gel recovery kit to recover the target fragment. The specific method is carried out according to the kit instructions.
(3)融合表达载体构建:(3) Fusion expression vector construction:
将Xba I-Sma I酶切的质粒pBin35SRed与目的基因OsGLP8-12的连接,融合表达载体构建示意图如图6所示。连接体系见表4。The Xba I-Sma I digested plasmid pBin35SRed was connected to the target gene OsGLP8-12, and the schematic diagram of the construction of the fusion expression vector is shown in Figure 6. The connection system is shown in Table 4.
表4目的基因与pBin35SRed重组质粒连接体系Table 4 Connection system between target gene and pBin35SRed recombinant plasmid
a.吸打混匀,稍微离心后加一滴矿物油;a. Mix well by pipetting, centrifuge slightly and add a drop of mineral oil;
b.16℃连接2h;b. Connect at 16°C for 2 hours;
c.连接完后放入4℃冰箱中保存过夜。c. After the connection is completed, store it in a 4°C refrigerator overnight.
连接产物转化大肠杆菌Transformation of E. coli with the ligation product
a.超净工作台灭菌30min,从-70℃超低温冰箱中取出100μL大肠杆菌的感受态细胞,放于冰上,预冷10min;a. Sterilize the ultra-clean workbench for 30 minutes, take out 100 μL of E. coli competent cells from the -70°C ultra-low temperature refrigerator, place it on ice, and pre-cool for 10 minutes;
b.然后加入10μL的连接产物,用移液枪吸打混匀后冰浴30min;b. Then add 10 μL of ligation product, mix well with a pipette, and then incubate on ice for 30 minutes;
c.冰浴结束后,放在42℃的恒温水浴锅中热激90s,然后迅速放入冰块中,冰浴2min;c. After the ice bath, place it in a constant temperature water bath at 42°C for 90 seconds, then quickly put it into ice cubes and bathe in ice for 2 minutes;
d.吸500μL LB液体培养液到Ep管中,混匀,置于摇床中160rpm,37℃摇1h;d. Aspirate 500 μL of LB liquid culture medium into the Ep tube, mix well, and place in a shaker at 160 rpm and shake at 37°C for 1 hour;
e.取出摇床结束的Ep管,2000~3000rmp离心5min,弃上清300μL,剩余的菌液轻柔吸打混匀后加在含Kan的LB固体培养皿中,用玻璃涂棒涂匀,涂干;e. Take out the Ep tube at the end of the shaker, centrifuge at 2000-3000 rpm for 5 minutes, discard 300 μL of the supernatant, and gently pipette the remaining bacterial liquid to mix evenly, then add it to the LB solid culture dish containing Kan, and spread evenly with a glass applicator stick. Dry;
f.37℃恒温培养箱中培养16~20h。f. Cultivate in a constant temperature incubator at 37°C for 16 to 20 hours.
g.随机挑取单克隆进行鉴定,结果如图7所示。g. Randomly select single clones for identification. The results are shown in Figure 7.
所用引物序列为:The primer sequences used are:
pBin35sRed-F引物:5'-CGCACAATCCCACTATCCTT-3’pBin35sRed-F primer: 5’-CGCACAATCCCACTATCCTT-3’
pBin35sRed-R引物:5'-AAAAGACAAAAGTGGGGTAG-3'pBin35sRed-R primer: 5'-AAAAGACAAAAGTGGGGTAG-3'
h.对鉴定正确单克隆在含有Kan的LB培养基进行扩繁,37℃条件下190rmp的摇床过夜,提取质粒送擎科公司进行测序后于4℃保存。h. Expand the identified correct single clone in LB medium containing Kan, shake it at 190 rpm at 37°C overnight, extract the plasmid and send it to Qingke Company for sequencing and store it at 4°C.
连接产物转化农杆菌Transformation of ligation products into Agrobacterium
a.超净工作台灭菌30min,从-70℃超低温冰箱中取出100ΜlGV3101农杆菌的感受态细胞,放于冰上;a. Sterilize the ultra-clean workbench for 30 minutes, take out 100 µl GV3101 Agrobacterium competent cells from the -70°C ultra-low temperature refrigerator, and place them on ice;
b.等待感受态半融化后,向Ep管中加入100ng的重组质粒,后冰浴10min;b. After the competent state is half melted, add 100ng of recombinant plasmid to the Ep tube, and then incubate on ice for 10 minutes;
c.紧接着液氮5min,37℃水浴5min,冰浴5min;c. Followed by 5 minutes of liquid nitrogen, 5 minutes of 37°C water bath, and 5 minutes of ice bath;
d.吸取500μL LB液体培养液到Ep管中,混匀,置于摇床中160rpm,28℃培养2h;d. Pipette 500 μL of LB liquid culture solution into the Ep tube, mix well, place in a shaker at 160 rpm, and incubate at 28°C for 2 hours;
e.取出摇床结束的Ep管,取200μL菌液,吸打在含Kan/Rif的LB固体培养皿中,用玻璃涂棒涂匀,涂干;e. Take out the Ep tube at the end of the shaker, take 200 μL of bacterial liquid, pipet it into an LB solid petri dish containing Kan/Rif, spread it evenly with a glass coating rod, and apply it dry;
f.28℃恒温培养箱中培养24-36h。f. Cultivate in a constant temperature incubator at 28°C for 24-36 hours.
g.随机挑取单克隆进行鉴定,结果如图8所示。g. Randomly select single clones for identification. The results are shown in Figure 8.
实施例4转基因拟南芥的获取Example 4 Obtaining transgenic Arabidopsis thaliana
等待野生型拟南芥种(22℃,16h光照/8h黑暗)培养进入盛花期后,采用浸花法进行转化,在转化前一天对拟南芥适当浇水。实施例3制备的阳性的农杆菌液在Kan、Rif双抗性的液体LB培养基中过夜大摇,通过转化介质将注射液浓度调至OD600≈0.8左右,黑暗静置4h左右。野生型拟南芥的转化采用了蘸花法,用枪头吸取少许含有农杆菌转化介质中,滴落在拟南芥花絮上,黑暗避光培养24h。避光培养后取出后,按照正常的培养条件(22℃,16h光照/8h黑暗)培养,待果荚成熟后混收T0代的种子。而后将T0代种子在含有Kan的MS培养基上进行筛选后,进一步进行qRT-PCR进行鉴定发现,拟南芥阳性株系OsGLP8-12的表达水平显著提高(图9)。Wait for the wild-type Arabidopsis seeds (22°C, 16h light/8h dark) to enter the full flowering stage, then use the flower dipping method for transformation, and water the Arabidopsis appropriately the day before transformation. The positive Agrobacterium solution prepared in Example 3 was shaken overnight in Kan and Rif double-resistant liquid LB culture medium, and the concentration of the injection solution was adjusted to about OD600≈0.8 through the transformation medium, and left to stand in the dark for about 4 hours. The transformation of wild-type Arabidopsis thaliana uses the flower dipping method. Use a pipette tip to absorb a small amount of Agrobacterium-containing transformation medium, drop it on the Arabidopsis thaliana flowers, and culture it in the dark and away from light for 24 hours. After culturing in the dark, take them out and cultivate according to normal culture conditions (22°C, 16h light/8h dark). After the fruit pods mature, the seeds of the T 0 generation are mixed and harvested. Then, the T0 generation seeds were screened on MS medium containing Kan, and further identified by qRT-PCR. It was found that the expression level of OsGLP8-12, a positive Arabidopsis strain, was significantly increased (Figure 9).
引物序列:Primer sequence:
qRT-GLP8-12-F:CCTCCTCTTCCTTATTTCTCCTGqRT-GLP8-12-F: CCTCCTCTTCCTTTATTTCTCCTG
qRT-GLP8-12-R:CAAATCCATTCACTCGCACAGqRT-GLP8-12-R: CAAATCCATTCACTCGCACAG
At-Actin-F:AGAAACCCTCGTAGATTGGCACAt-Actin-F:AGAAACCCTCGTAGATTGGCAC
At-Actin-R:ACTCTCCCGCTATGTATGTCGCAt-Actin-R:ACTCTCCCGCTATGTATGTCGC
实施例5转基因拟南芥的抗性鉴定Example 5 Resistance identification of transgenic Arabidopsis thaliana
将拟南芥播种于1/2MS培养基上,置于温度22℃,空气湿度70%、光照强50μmlo·m-2·s-1、光周期为光照:黑暗=16h:8:h的温室中培养,萌发后将幼苗移植至营养土中培养,30d后进行核盘菌接种处理。Arabidopsis thaliana was sown on 1/2MS medium and placed in a greenhouse with a temperature of 22°C, an air humidity of 70%, a light intensity of 50 μmlo·m -2 ·s -1 , and a photoperiod of light:dark=16h:8:h. After germination, the seedlings were transplanted to nutrient soil for culture, and 30 days later, S. sclerotiorum inoculation was performed.
取长、宽均为90mm的方形培养皿,在其底部放置大小相近的滤纸,加入适量的水将滤纸浸湿,选取大小相近、表面平整的拟南芥叶片,将其平铺于滤纸上,在叶脉处放置灭菌棉条,用移液枪吸取适当的水将棉条浸湿,保持叶片湿润,取直径约为2.5mm的核盘菌菌块,置于拟南芥叶片上,放置温室中处理36h后测量病斑面积并进行拍照记录。Take a square petri dish with a length and width of 90mm, place filter paper of similar size at the bottom, add an appropriate amount of water to soak the filter paper, select Arabidopsis leaves of similar size and flat surface, and lay them flat on the filter paper. Place a sterilized cotton swab at the leaf veins, use a pipette gun to absorb appropriate water to soak the cotton swab, keep the leaves moist, take a S. sclerotiorum bacteria block with a diameter of about 2.5mm, place it on the Arabidopsis leaves, and place it in the greenhouse After 36 hours of treatment, the area of the lesions was measured and photographed for recording.
在苗期对拟南芥进行活体叶片接种,通过对菌斑面积进行统计发现,结果如图10所示。OE_OsGLP8-12转基因株过表达系的平均菌斑面积(38.1mm2)比WT(47.0mm2)减小32.2%,上述结果表明,过表达OsGLP8-12可显著提高拟南芥的菌核病抗性。Arabidopsis thaliana was inoculated into live leaves at the seedling stage, and the plaque area was statistically found. The results are shown in Figure 10. The average plaque area of the OE_OsGLP8-12 transgenic overexpression line was 32.2% smaller than that of the WT ( 47.0mm 2 ) . The above results show that overexpression of OsGLP8-12 can significantly improve the sclerotinia resistance of Arabidopsis thaliana. sex.
实施例6瞬时转化烟草的抗性鉴定Example 6 Resistance identification of transiently transformed tobacco
配制500ml烟草注射悬浮液,包括2-吗啉乙磺酸(MES,1.02g)、六水合氯化镁(0.98g)和乙酰丁香酮(As,50mM)。向离心管中加入适量烟草侵染悬浮液,悬浮实施例3制备的携带有pBin35SRed::OsGLP8-12过表达载体的农杆菌菌体沉淀,将菌液OD600调至1.0,28℃培养箱避光孵育2h。用一次性无菌注射器吸取侵染液从烟草叶片背面注射,食指轻抵注射位置的叶片正面,缓缓注入,肉眼可见水渍状圆斑自注射位置向叶片均匀扩散,用马克笔在叶片背面标注菌液侵染位置。注射后将烟草密封于湿润环境中避光培养36~48h。Prepare 500 ml of tobacco injection suspension, including 2-morpholinoethanesulfonic acid (MES, 1.02g), magnesium chloride hexahydrate (0.98g), and acetosyringone (As, 50mM). Add an appropriate amount of tobacco infection suspension to the centrifuge tube, suspend the Agrobacterium cell pellet carrying the pBin35SRed::OsGLP8-12 overexpression vector prepared in Example 3, adjust the OD600 of the bacterial solution to 1.0, and keep it away from light in a 28°C incubator Incubate for 2h. Use a disposable sterile syringe to absorb the infection fluid and inject it from the back of the tobacco leaf. Place your index finger lightly on the front of the leaf at the injection site and slowly inject. The water-stained round spots will be visible to the naked eye and spread evenly from the injection site to the leaf. Use a marker pen to mark the back of the leaf. Mark the location of bacterial infection. After injection, the tobacco was sealed in a humid environment to avoid light and cultured for 36 to 48 hours.
取长、宽均为90mm的方形培养皿,在其底部放置大小相近的滤纸,加入适量的水将滤纸浸湿,选取4-5周的大小相近、表面平整的烟草叶片,将其平铺于滤纸上,在叶脉处放置灭菌棉条,用移液枪吸取适当的水将棉条浸湿,保持叶片湿润,取直径约为2.5mm的核盘菌菌块,置于在注射菌液区域,36h后统计菌斑大小,取样并进行拍照记录。Take a square petri dish with a length and width of 90mm, place filter paper of similar size at the bottom, add an appropriate amount of water to soak the filter paper, select 4-5 weeks old tobacco leaves of similar size and flat surface, and lay them flat on the On the filter paper, place a sterilized cotton swab on the leaf veins. Use a pipette gun to soak the cotton swab with appropriate water to keep the leaves moist. Take a S. sclerotiorum bacteria block with a diameter of about 2.5mm and place it in the injection area. , count the plaque size after 36 hours, take samples and take photos and records.
通过对烟草叶片的菌斑面积进行统计发现,结果如图11所示。四个瞬时表达35S::OsGLP8-12叶片的菌斑面积分别比CK减小35.42%,上述结果都表明,过表达OsGLP8-12可显著提高对菌核病的抗性。Through statistics on the plaque area of tobacco leaves, the results are shown in Figure 11. The plaque area of the four leaves transiently expressing 35S::OsGLP8-12 was 35.42% smaller than that of CK. The above results show that overexpression of OsGLP8-12 can significantly improve the resistance to Sclerotinia sclerotiorum.
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。Although the present invention has been described in detail with general descriptions and specific embodiments above, it is obvious to those skilled in the art that some modifications or improvements can be made based on the present invention. Therefore, these modifications or improvements made without departing from the spirit of the present invention all fall within the scope of protection claimed by the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310409743.3A CN116355067B (en) | 2023-04-17 | 2023-04-17 | Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310409743.3A CN116355067B (en) | 2023-04-17 | 2023-04-17 | Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116355067A CN116355067A (en) | 2023-06-30 |
CN116355067B true CN116355067B (en) | 2024-02-20 |
Family
ID=86916272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310409743.3A Active CN116355067B (en) | 2023-04-17 | 2023-04-17 | Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116355067B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116496372B (en) * | 2023-04-17 | 2024-03-01 | 西南大学 | Rice OsGLP8-11 for inhibiting sclerotinia and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003008540A2 (en) * | 2001-06-22 | 2003-01-30 | Syngenta Participations Ag | Abiotic stress responsive polynucleotides and polypeptides |
CN103987848A (en) * | 2011-10-21 | 2014-08-13 | 巴斯夫植物科学有限公司 | Plants having enhanced yield-related traits and a method for making the same |
CN108570099A (en) * | 2017-03-10 | 2018-09-25 | 中国科学院微生物研究所 | The application of OsGLP2-1 albumen and its encoding gene in regulating and controlling seed dormancy |
CN110157719A (en) * | 2019-05-31 | 2019-08-23 | 西南大学 | Sclerotinia sclerotiorum SsMAS3 gene and its application in plant Sclerotinia resistance breeding |
CN112480225A (en) * | 2020-12-01 | 2021-03-12 | 中国科学院微生物研究所 | Application of GrpE protein and coding gene thereof as molecular target in breeding resistant plants |
CN113528518A (en) * | 2021-06-28 | 2021-10-22 | 西南大学 | MiRNA for inhibiting sclerotinia sclerotiorum and application thereof |
CN115011613A (en) * | 2022-06-29 | 2022-09-06 | 浙江大学 | Arabidopsis sclerotinia resistance candidate gene AtSWEET15 and its application |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110131679A2 (en) * | 2000-04-19 | 2011-06-02 | Thomas La Rosa | Rice Nucleic Acid Molecules and Other Molecules Associated with Plants and Uses Thereof for Plant Improvement |
JP2005185101A (en) * | 2002-05-30 | 2005-07-14 | National Institute Of Agrobiological Sciences | Plant full-length cDNA and use thereof |
EP2716654A1 (en) * | 2005-10-24 | 2014-04-09 | Evogene Ltd. | Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same |
EP2048939A4 (en) * | 2006-08-17 | 2010-04-28 | Monsanto Technology Llc | Transgenic plants with enhanced agronomic traits |
-
2023
- 2023-04-17 CN CN202310409743.3A patent/CN116355067B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003008540A2 (en) * | 2001-06-22 | 2003-01-30 | Syngenta Participations Ag | Abiotic stress responsive polynucleotides and polypeptides |
CN103987848A (en) * | 2011-10-21 | 2014-08-13 | 巴斯夫植物科学有限公司 | Plants having enhanced yield-related traits and a method for making the same |
CN108570099A (en) * | 2017-03-10 | 2018-09-25 | 中国科学院微生物研究所 | The application of OsGLP2-1 albumen and its encoding gene in regulating and controlling seed dormancy |
CN110157719A (en) * | 2019-05-31 | 2019-08-23 | 西南大学 | Sclerotinia sclerotiorum SsMAS3 gene and its application in plant Sclerotinia resistance breeding |
CN112480225A (en) * | 2020-12-01 | 2021-03-12 | 中国科学院微生物研究所 | Application of GrpE protein and coding gene thereof as molecular target in breeding resistant plants |
CN113528518A (en) * | 2021-06-28 | 2021-10-22 | 西南大学 | MiRNA for inhibiting sclerotinia sclerotiorum and application thereof |
CN115011613A (en) * | 2022-06-29 | 2022-09-06 | 浙江大学 | Arabidopsis sclerotinia resistance candidate gene AtSWEET15 and its application |
Non-Patent Citations (9)
Also Published As
Publication number | Publication date |
---|---|
CN116355067A (en) | 2023-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110117320B (en) | Application of cotton GhCAL-D07 gene in promoting plant flowering | |
CN112725360B (en) | Application of cotton GhHDA6 gene in regulating plant flowering period | |
CN116355067B (en) | Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application | |
CN116425847B (en) | Rice OsGLP8-10 for inhibiting sclerotinia and application thereof | |
CN116444636B (en) | Rice OsGLP3-6 that inhibits Sclerotinia sclerotiorum and its application | |
CN113604475B (en) | Application of cotton GH_D03G1517 gene in promoting drought resistance and salt tolerance | |
WO2021254077A1 (en) | Use of shr-scr in leguminous cortical cell fate determination and non-leguminous cortical cell division potential modification | |
CN112538489B (en) | Elicitin gene for inducing plant resistance by pythium biocontrol, expression vector and application thereof | |
CN118726410A (en) | WRKY40 transcription factor of peanut for promoting drought tolerance and early flowering in plants and its application | |
CN117187294B (en) | Application of BnaC5.ACBP4 gene in improving flooding resistance of plants | |
CN116375829B (en) | Application of OfWRKY36 gene of Osmanthus fragrans in enhancing the synthesis of dihydro-β-ionone in plants | |
CN116496372B (en) | Rice OsGLP8-11 for inhibiting sclerotinia and application thereof | |
CN116496371B (en) | Rice OsGLP3-5 for inhibiting sclerotinia and application thereof | |
CN114672487B (en) | Vascular bundle tissue specific promoter P from sugarcane baculovirus SCBV-GT127 Application and application thereof | |
CN113846105B (en) | Application of GhAIF3 gene in regulating plant phenotype and method for regulating plant phenotype | |
CN113337522B (en) | Application of cotton GhNFYC4 gene in promoting plant flowering | |
CN110117321A (en) | Cotton GhDctpp1-D11 gene is promoting the application in flowering of plant | |
CN116622737A (en) | Pinus massoniana PmAP2/ERF gene and its expression protein and application | |
CN113337515B (en) | Osmanthus fragrans rapid dedifferentiation related ofWOX2 gene and application thereof | |
CN115786371A (en) | Application of tomato gene SlLyk4 in regulating crop resistance to soil-borne diseases | |
CN115960189A (en) | Xanthoceras sorbifolia bunge protein and application of encoding gene thereof in improving content of anthocyanin in plant petals | |
CN114591984A (en) | Application of OsAP79 gene to induce brown planthopper resistance in rice | |
CN118703557B (en) | New application of China rose auxin oxidase gene RhDAO1 | |
CN110551735A (en) | application of cotton GhMADS45-D09 gene in promoting plant flowering | |
CN116640769B (en) | Peanut AhGATA11 gene and its application in improving plant stress resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |