CN116355067A - Rice OsGLP8-12 inhibiting sclerotinia and its application - Google Patents
Rice OsGLP8-12 inhibiting sclerotinia and its application Download PDFInfo
- Publication number
- CN116355067A CN116355067A CN202310409743.3A CN202310409743A CN116355067A CN 116355067 A CN116355067 A CN 116355067A CN 202310409743 A CN202310409743 A CN 202310409743A CN 116355067 A CN116355067 A CN 116355067A
- Authority
- CN
- China
- Prior art keywords
- osglp8
- sclerotinia
- gene
- rice
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 34
- 235000009566 rice Nutrition 0.000 title claims abstract description 32
- 241000221662 Sclerotinia Species 0.000 title claims abstract description 23
- 240000007594 Oryza sativa Species 0.000 title abstract description 32
- 230000002401 inhibitory effect Effects 0.000 title abstract description 3
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 47
- 241000196324 Embryophyta Species 0.000 claims abstract description 27
- 241000221696 Sclerotinia sclerotiorum Species 0.000 claims abstract description 16
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 12
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 11
- 230000009261 transgenic effect Effects 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 10
- 150000001413 amino acids Chemical class 0.000 claims description 5
- 241000894006 Bacteria Species 0.000 claims description 3
- 108700001094 Plant Genes Proteins 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 241000209094 Oryza Species 0.000 claims 2
- 241000219194 Arabidopsis Species 0.000 abstract description 10
- 241000219195 Arabidopsis thaliana Species 0.000 abstract description 10
- 230000002018 overexpression Effects 0.000 abstract description 7
- 238000011081 inoculation Methods 0.000 description 14
- 239000002609 medium Substances 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 238000003752 polymerase chain reaction Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 241000208125 Nicotiana Species 0.000 description 9
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000013612 plasmid Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 241000589158 Agrobacterium Species 0.000 description 6
- 240000007124 Brassica oleracea Species 0.000 description 6
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 6
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 6
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229940041514 candida albicans extract Drugs 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 239000012138 yeast extract Substances 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 4
- 239000008272 agar Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000012137 tryptone Substances 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000010839 reverse transcription Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 208000035240 Disease Resistance Diseases 0.000 description 2
- RNPABQVCNAUEIY-GUQYYFCISA-N Germine Chemical compound O1[C@@]([C@H](CC[C@]23C)O)(O)[C@H]3C[C@@H](O)[C@@H]([C@]3(O)[C@@H](O)[C@H](O)[C@@H]4[C@]5(C)O)[C@@]12C[C@H]3[C@@H]4CN1[C@H]5CC[C@H](C)C1 RNPABQVCNAUEIY-GUQYYFCISA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000003559 RNA-seq method Methods 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 108010020084 germin Proteins 0.000 description 2
- RNPABQVCNAUEIY-UHFFFAOYSA-N germine Natural products O1C(C(CCC23C)O)(O)C3CC(O)C(C3(O)C(O)C(O)C4C5(C)O)C12CC3C4CN1C5CCC(C)C1 RNPABQVCNAUEIY-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000006870 ms-medium Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- HNXGGWNCFXZSAI-UHFFFAOYSA-N 2-morpholin-2-ylethanesulfonic acid Chemical compound OS(=O)(=O)CCC1CNCCO1 HNXGGWNCFXZSAI-UHFFFAOYSA-N 0.000 description 1
- 101000997623 Arabidopsis thaliana Germin-like protein subfamily 3 member 1 Proteins 0.000 description 1
- 101100375585 Arabidopsis thaliana YAB1 gene Proteins 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000006067 antibiotic powder Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000027288 circadian rhythm Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008641 drought stress Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000010201 enrichment analysis Methods 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000003012 network analysis Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域technical field
本发明属于植物分子生物学领域,具体涉及抑制核盘菌的OsGLP8-12及其应用。The invention belongs to the field of plant molecular biology, and in particular relates to OsGLP8-12 for inhibiting sclerotinia and application thereof.
背景技术Background technique
核盘菌(S.sclerotiorum)是一种致病范围广泛的腐生型丝状真菌。核盘菌能够感染500多种植物(Liang et al.,2018),包括双子叶植物油菜、白菜、甘蓝等,给我们农业生产带来了严重损失(Boland et al.,2009)。由于常规育种途径本身的局限性,抗病育种一直是农业生产上的重大难题。对核盘菌而言,多种禾本科植物,特别是水稻在很早就被鉴定为核盘菌的非寄主植物(Purdy,1979),利用水稻相关基因的非寄主抗性机制,为油菜等寄主植物的核盘菌抗性改良提供了全新的抗病基因资源。Sclerotiorum (S. sclerotiorum) is a saprophytic filamentous fungus with a wide range of pathogenicity. S. sclerotiorum can infect more than 500 kinds of plants (Liang et al., 2018), including dicotyledonous rapeseed, cabbage, cabbage, etc., which has caused serious losses to our agricultural production (Boland et al., 2009). Due to the limitations of conventional breeding methods, disease resistance breeding has always been a major problem in agricultural production. For Sclerotinia, a variety of grasses, especially rice, were identified as non-host plants of S. sclerotiorum very early (Purdy, 1979), using the non-host resistance mechanism of rice-related genes, for rape, etc. The improvement of Sclerotinia resistance in host plants provides a new resource of disease resistance genes.
Germin最早在小麦中发现,是一种普遍存在于外质体或细胞外基质中的水溶性糖蛋白。植物的GLPs一般具有三种作用:真萌发素(truegermin)、植物免疫反应和调节植物生长发育(生理节律、花期)功能等(Sawsan et al.,2001)。转基因水稻中的OsGLPs可以通过影响与JA依赖途径相关的防御相关基因,同时提高内源JA水平,从而增强对细菌性白叶枯病和真菌原病的抗性(Liu et al.,2016)。近期研究者通过将大豆GmGLP7超表达到拟南芥中,并观察后代表型发现阳性系出对盐、干旱和氧化应激的耐盐性提高,并且对外源ABA高度敏感(Li et al.,2022)而GLP GmGLP9显著增加烟草盐胁迫的耐受性(Mo et al.,2010)。Germin, first discovered in wheat, is a water-soluble glycoprotein commonly found in exosomes or extracellular matrix. GLPs in plants generally have three functions: true germin (truegermin), plant immune response and regulation of plant growth and development (circadian rhythm, flowering) functions, etc. (Sawsan et al., 2001). OsGLPs in transgenic rice can enhance resistance to bacterial bacterial blight and fungal pathogens by affecting defense-related genes associated with JA-dependent pathways while increasing endogenous JA levels (Liu et al., 2016). Recently, researchers overexpressed soybean GmGLP7 into Arabidopsis thaliana, and observed the offspring phenotypes, and found that the positive line showed increased salt tolerance to salt, drought and oxidative stress, and was highly sensitive to exogenous ABA (Li et al., 2022) while GLP GmGLP9 significantly increased tolerance to salt stress in tobacco (Mo et al., 2010).
发明内容Contents of the invention
本发明的目的是提供水稻OsGLP8-12及其编码的蛋白与应用。The object of the present invention is to provide rice OsGLP8-12 and its encoded protein and application.
首先,本发明提供水稻OsGLP8-12蛋白,其为:First, the present invention provides rice OsGLP8-12 protein, which is:
1)由SEQ ID No.2所示的氨基酸组成的蛋白质;或1) A protein consisting of amino acids shown in SEQ ID No.2; or
2)在SEQ ID No.2所示的氨基酸序列中经取代、缺失或添加一个或几个氨基酸且具有同等活性的由1)衍生的蛋白质。2) A protein derived from 1) that is substituted, deleted or added with one or several amino acids in the amino acid sequence shown in SEQ ID No. 2 and has equivalent activity.
本发明还提供编码所述蛋白的基因。优选的,所述基因的序列如SEQ ID No.1所示。The present invention also provides the gene encoding the protein. Preferably, the sequence of the gene is shown in SEQ ID No.1.
本发明还提供含有所述基因的载体,宿主细胞和工程菌。The invention also provides vectors containing the genes, host cells and engineering bacteria.
本发明还提供所述基因在调控核盘菌寄主植物菌核病抗性中的用途。The present invention also provides the use of the gene in regulating the Sclerotinia host plant resistance to Sclerotinia sclerotiorum.
在本发明一个实施方案中,将所述基因转入寄主植物基因中,并在转基因植物中超量表达,提高植物菌核病抗性。In one embodiment of the present invention, the gene is transferred into a host plant gene and overexpressed in the transgenic plant to improve the resistance of the plant to Sclerotinia sclerotiorum.
本发明还提供一种提高核盘菌寄主植物对菌核病抗性的方法,其特征在于,将含有所述基因的载体转入所述植物基因组中,并在转基因植株中超量表达。The invention also provides a method for improving the resistance of sclerotinia host plants to sclerotinia, which is characterized in that the vector containing the gene is transferred into the genome of the plant and overexpressed in the transgenic plant.
本研究在通过分析对水稻接种核盘菌的RNA-seq进行分析,并结合甘蓝等寄主植物的转录组数据,挑选出候选基因OsGLP8-12。在拟南芥中异源超表达OsGLP8-12基因,利用荧光定量手段鉴定阳性植株后,培养至T3代,然后对阳性株系进行叶片的核盘菌接种。结果表明,拟南芥过表达系OE_OsGLP8-12的平均菌斑面积(31.8mm2)相较于野生型WT的菌斑面积(47.0mm2)减少32.2%,极显著(p<0.01)提高了拟南芥对于核盘菌的抗性。In this study, the candidate gene OsGLP8-12 was selected by analyzing the RNA-seq of rice inoculated with S. sclerotiorum and combining the transcriptome data of host plants such as cabbage. The OsGLP8-12 gene was heterologously overexpressed in Arabidopsis thaliana, and the positive plants were identified by fluorescence quantitative means, cultured to the T 3 generation, and then the leaves of the positive lines were inoculated with Sclerotinia sclerotiorum. The results showed that the average plaque area (31.8mm 2 ) of the Arabidopsis overexpression line OE_OsGLP8-12 was 32.2% lower than that of the wild-type WT (47.0mm 2 ), which was significantly (p<0.01) increased. Resistance of Arabidopsis thaliana to Sclerotinia sclerotiorum.
附图说明Description of drawings
图1所示为水稻叶片创伤与未创伤接种后表型观察。-w:未创伤处理;+w:创伤处理。Figure 1 shows the phenotype observation of rice leaves after inoculation with wounded and non-wounded. -w: non-wounded treatment; +w: wounded treatment.
图2所示为样品差异表达基因情况。Figure 2 shows the differentially expressed genes of the samples.
图3所示为水稻接种12h的GO富集(A)和KEGG富集结果(B)以及水稻接种24h的GO富集(C)和KEGG富集结果(D)。Figure 3 shows the GO enrichment (A) and KEGG enrichment results (B) of rice inoculation 12h and the GO enrichment (C) and KEGG enrichment results (D) of rice inoculation 24h.
图4所示为水稻、甘蓝接种前后GLP家族基因的表达情况。Figure 4 shows the expression of GLP family genes before and after inoculation of rice and cabbage.
图5所示为OsGLP8-12基因的克隆。Figure 5 shows the cloning of the OsGLP8-12 gene.
图6所示为融合载体构建示意图。Figure 6 is a schematic diagram of the construction of the fusion vector.
图7所示为大肠杆菌中目的片段的鉴定。(M=Marker 2000;lane1-4为阳性克隆)。Figure 7 shows the identification of the target fragment in Escherichia coli. (M=Marker 2000; lane1-4 are positive clones).
图8所示为农杆菌中目的片段的鉴定。(M=Marker 2000;lane1-6为阳性克隆)。Figure 8 shows the identification of target fragments in Agrobacterium. (M=Marker 2000; lane1-6 are positive clones).
图9所示为转基因拟南芥中OsGLP8-12表达量鉴定。Figure 9 shows the identification of the expression level of OsGLP8-12 in transgenic Arabidopsis.
图10所示为转基因拟南芥菌核病抗性鉴定。Figure 10 shows the identification of Sclerotinia resistance in transgenic Arabidopsis thaliana.
图11所示为瞬时转化烟草的抗性鉴定。Figure 11 shows the identification of resistance in transiently transformed tobacco.
具体实施方式Detailed ways
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular cloning:a laboratory manual,2001),或按照制造厂商说明书建议的条件。The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention. Unless otherwise specified, the examples are all in accordance with conventional experimental conditions, such as Sambrook et al. Molecular cloning experiment manual (Sambrook J & Russell DW, Molecular cloning: a laboratory manual, 2001), or in accordance with the conditions suggested by the manufacturer's instructions.
酶及试剂盒:基因克隆高保真酶(ApexHF HS DNA Polymerase FS Master Mix)、DNA凝胶回收试剂盒购于湖南艾科瑞生物工程有限公司;限制性内切酶均购于赛默飞世尔科技(中国)有限公司;DNA marker(BM5000/BM2000)购于博迈德生物技术有限公司;质粒提取试剂盒购于天根生化科技(北京)有限公司;RNA提取试剂盒、总RNA反转录试剂盒购于TIANGEN公司。核酸染料Super GelRedTM购于苏州宇恒生物有限公司;其他药品:琼脂糖购买于全式金生物公司,蛋白胨、酵母提取物、氯仿、异戊醇、乙醇、异丙醇、氯化钠等为国产分析纯,卡那霉素、利福平、和乙酰丁香酮等抗生素粉剂购于北京索莱宝科技有限公司。Enzymes and kits: gene cloning high-fidelity enzyme (ApexHF HS DNA Polymerase FS Master Mix), DNA gel recovery kit were purchased from Hunan Aikerui Bioengineering Co., Ltd.; restriction endonucleases were purchased from Thermo Fisher Technology (China) Co., Ltd.; DNA marker (BM5000/BM2000) was purchased from Biomed Biotechnology Co., Ltd.; plasmid extraction kit was purchased from Tiangen Biochemical Technology (Beijing) Co., Ltd.; RNA extraction kit, total RNA reverse transcription The kit was purchased from TIANGEN Company. Nucleic acid dye Super GelRedTM was purchased from Suzhou Yuheng Biological Co., Ltd.; other drugs: agarose was purchased from Quanshijin Biological Company, and peptone, yeast extract, chloroform, isoamyl alcohol, ethanol, isopropanol, and sodium chloride were domestically produced Analytical pure, kanamycin, rifampicin, and acetosyringone and other antibiotic powders were purchased from Beijing Suolaibao Technology Co., Ltd.
溶液的配制:本文中提到的但未列出的各种试剂均按《分子克隆实验指南》第三版上的方法配制,生化试剂为分析纯或以上级。Solution preparation: All reagents mentioned but not listed in this article were prepared according to the method in the third edition of "Molecular Cloning Experiment Guide", and the biochemical reagents were of analytical grade or above.
LB液体培养基:胰蛋白胨(Tryptone)10g/L、酵母提取物(Yeast extract)5g/L、氯化钠(NaCl)10g/L;LB固体培养基:胰蛋白胨(Tryptone)10g/L、酵母提取物(Yeastextract)5g/L、氯化钠(NaCl)10g/L、琼脂粉15g/L,定容至1L;LB选择培养基:在LB铺平板前,待培养基高压灭菌冷却至55℃时加入相应浓度抗生素,摇匀后铺平板。LB liquid medium: tryptone (Tryptone) 10g/L, yeast extract (Yeast extract) 5g/L, sodium chloride (NaCl) 10g/L; LB solid medium: tryptone (Tryptone) 10g/L, yeast Extract (Yeastextract) 5g/L, sodium chloride (NaCl) 10g/L, agar powder 15g/L, and dilute to 1L; LB selection medium: before LB plating, the medium is autoclaved and cooled to 55 Add the corresponding concentration of antibiotics at ℃, shake well and spread the plate.
供试菌株:核盘菌野生型菌株“1980”由实验室保存,核盘菌“TL”,菌株在PDA培养基上培养,培养温度为22℃Tested strains: Sclerotinia wild-type strain "1980" was preserved in the laboratory, Sclerotinia "TL", the strain was cultured on PDA medium, and the culture temperature was 22°C
主要仪器:PCR扩增仪(BIO-RAD)、高速离心机(Hettich MIKRO 200R)、电泳设备(BIO-RAD)、凝胶成像系统(BIO-RAD)、荧光定量PCR仪(ABI7500)。Main instruments: PCR amplification instrument (BIO-RAD), high-speed centrifuge (Hettich MIKRO 200R), electrophoresis equipment (BIO-RAD), gel imaging system (BIO-RAD), fluorescent quantitative PCR instrument (ABI7500).
实施例1水稻对核盘菌的抗病分子网络分析Example 1 Molecular Network Analysis of Rice Resistance to Sclerotinia
供试植物材料:Test plant material:
水稻材料为缙恢10,种植于西南大学水稻试验基地,核盘菌野生型菌株“1980”,在PDA培养基上培养,培养温度为22℃。The rice material is Jinhui 10, which was planted in the rice experiment base of Southwest University. The wild-type strain "1980" of S. sclerotiorum was cultured on PDA medium at a temperature of 22°C.
水稻接种核盘菌方法:Method of inoculating rice with Sclerotinia sclerotiorum:
核盘菌接种水稻接种:于水稻实验田内剪取水稻倒二叶进行核盘菌的接种。将水稻叶片切口处覆上湿润的棉花,在选择打孔区域时,优先选择菌丝生长均匀且旺盛的核盘菌菌丝块,直径为6mm。接种时镊子夹取菌丝块使菌丝面接触水稻叶片正面,避开叶脉进行接种。对照组采用无菌丝的空白PDA琼脂块进行接种,方法同上。22℃保湿培养接种1~4d(图1)。Sclerotinia inoculation Rice inoculation: cut the second leaf of rice in the rice experimental field for Sclerotinia inoculation. Cover the incision of the rice leaf with moistened cotton, and when selecting the perforated area, preferentially select the Sclerotinia mycelium block with uniform and vigorous mycelium growth, with a diameter of 6 mm. When inoculating, clamp the mycelium block with tweezers so that the mycelium surface touches the front of the rice leaf, avoiding the leaf veins for inoculation. The control group was inoculated with blank PDA agar blocks without hyphae, and the method was the same as above. 22 ℃
转录组测序及分析Transcriptome sequencing and analysis
将创伤后的水稻叶片分别接种空白PDA琼脂块(不接种对照)、两种核盘菌菌株(1980和TL),于接种后12和24h移除琼脂块和菌丝块后,共8个样,送百迈克生物技术公司进行转录组测序(RNA-seq)。测序数据经质量评估后与水稻参考基因组(参考基因来源:Oryzasativa;参考基因组版本:IRGSP-1.0;参考基因组来源:http://plants.ensembl.org/Oryza_sativa/Info/Index;)比对分析,分析基因表达水平和差异表达基因(DEGs)(图2),最后对DEGs进行KEGG富集分析。如图3所示,与未接种对照相比,接种的水稻在ndole-containing compound biosynthetic process、tryptophan biosynthetic process等生物学过程,以及Glutathione metabolism和Phenylalanine biosynthesis等途径被促进。进一步与甘蓝接种核盘菌前后的转录组数据比较,如图4所示,水稻中GLP家族基因(植物类萌发蛋白)受菌诱导上调表达,然而该家族基因在甘蓝等寄主植物接种后没有显著上调,推测OsGLP对核盘菌的抗性有重要一定贡献,OsGLP8-12作为候选基因进行后续的功能验证。The wounded rice leaves were inoculated with blank PDA agar blocks (no inoculation control), two Sclerotinia strains (1980 and TL), and the agar blocks and mycelium blocks were removed 12 and 24 hours after inoculation, and a total of 8 samples were obtained. , sent to Baimic Biotechnology Company for transcriptome sequencing (RNA-seq). After quality assessment, the sequencing data was compared with the rice reference genome (reference gene source: Oryzasativa; reference genome version: IRGSP-1.0; reference genome source: http://plants.ensembl.org/Oryza_sativa/Info/Index;) comparison analysis, Gene expression levels and differentially expressed genes (DEGs) were analyzed (Figure 2), and finally DEGs were subjected to KEGG enrichment analysis. As shown in Figure 3, biological processes such as ndole-containing compound biosynthetic process, tryptophan biosynthetic process, and pathways such as Glutathione metabolism and Phenylalanine biosynthesis were promoted in the inoculated rice compared with the uninoculated control. Further comparison with the transcriptome data before and after inoculation of cabbage with S. sclerotiorum, as shown in Figure 4, the expression of GLP family genes (plant germination-like proteins) in rice was induced by bacteria, but the family genes were not significantly expressed after inoculation of host plants such as cabbage. It is speculated that OsGLP has an important contribution to the resistance of S. sclerotiorum, and OsGLP8-12 is used as a candidate gene for subsequent functional verification.
实施例2水稻中OsGLP8-12基因的克隆Cloning of OsGLP8-12 gene in rice in
(1)试验材料缙恢10种植于西南大学水稻试验基地,按一般大田管理。所取部位有根、茎、叶、花以及不同发育时期的种子,所取材料迅速投入液氮中冷冻,保存于-80℃冰箱备用。植物DNA提取采用改良的CTAB法,植物总RNA提取采用TIANGEN公司试剂盒。(1) The
(2)将200ng RNA反转录为cDNA,将反转录产物cDNA溶液稀释4倍作为PCR反应模板。(2) 200ng RNA was reverse-transcribed into cDNA, and the cDNA solution of the reverse-transcribed product was diluted 4 times as a PCR reaction template.
以提取的各组织的水稻总RNA为模板,利用的是TaKaRa的反转录试剂盒将其反转录为cDNA,反应体系见表1。Using the extracted rice total RNA from each tissue as a template, it was reverse-transcribed into cDNA using a TaKaRa reverse transcription kit. The reaction system is shown in Table 1.
表1反应体系Table 1 reaction system
备注:反应过程在PCR仪器内先37℃温育15min,然后85℃5s最后-20℃保存备用Remarks: The reaction process is first incubated in the PCR instrument at 37°C for 15min, then at 85°C for 5s, and finally stored at -20°C for later use
(3)进行PCR反应扩增目的基因(3) Perform PCR reaction to amplify the target gene
采用Oligo6软件设计OsGLP8-12的引物。以反转录所得到的混合cDNA为模板对水稻OsGLP8-12基因进行PCR扩增。反应体系如表2。Oligo6 software was used to design the primers of OsGLP8-12. Using the mixed cDNA obtained by reverse transcription as a template, the rice OsGLP8-12 gene was amplified by PCR. The reaction system is shown in Table 2.
表2目的基因扩增体系Table 2 Target gene amplification system
PCR反应所需条件设置为:The conditions required for the PCR reaction were set as:
引物序列:Primer sequence:
OsGLP8-12-F:5′-ATGGCCTCCTCTTCCTTATT-3′OsGLP8-12-F:5′-ATGGCCTCCTCTTCCTTATT-3′
OsGLP8-12-R:5′-TCAGTAGTTGTTCTCCCAGA-3′OsGLP8-12-R:5′-TCAGTAGTTGTTCTCCCAGA-3′
(4)反应结束后4℃保存,用1%的琼脂糖电泳进行检测,条带大小符合预期设计则视为有效结果(图5)。(4) Store at 4° C. after the reaction, and detect with 1% agarose electrophoresis. If the band size meets the expected design, it is considered a valid result ( FIG. 5 ).
(5)对目的片段运用胶回收试剂盒进行切胶回收。(5) Use the gel recovery kit to recover the target fragments by cutting the gel.
(6)将上述胶回收的产物连接pBin35SRed载体并转化大肠杆菌。(6) The product recovered from the above gel was connected to the pBin35SRed vector and transformed into Escherichia coli.
(7)37℃过夜培养从抗性LB培养基上挑取单克隆到含有Kan的600μL LB培养基中37℃摇菌培养4h。(7) Overnight culture at 37°C Pick a single clone from the resistant LB medium and place it in 600 μL of Kan-containing LB medium for shaking at 37°C for 4 hours.
(8)菌液PCR验证,送含有目的基因片段大小条带的菌液测序。(8) PCR verification of the bacterial liquid, send the bacterial liquid containing the target gene fragment size band for sequencing.
将拟南芥的AtGLP1(AT1G72610.1)基因在水稻数据库中进行同源比对和鉴定,找到相应目的序列后,采用Oligo 6软件设计引物,采用PCR(Polymerase Chain Reaction)技术从缙恢10中扩增出完整CDS序列675bp(SEQ ID No.1),其中开放阅读框ORF为675bp,编码224个氨基酸残基(SEQ ID No.2)。The AtGLP1 (AT1G72610.1) gene of Arabidopsis thaliana was homologously compared and identified in the rice database, and after finding the corresponding target sequence, primers were designed using
实施例3pBin35SRed::OsGLP8-12过表达载体的构建Example 3 Construction of pBin35SRed::OsGLP8-12 overexpression vector
1)质粒提取及酶切1) Plasmid extraction and digestion
质粒提取采用TIANGEN公司质粒提取试剂盒,质粒浓度经检测为210ng/μl,琼脂糖凝胶电泳检测,没有蛋白污染,达到试验要求,内切酶选用Xba I-Sma I进行双酶切。The plasmid was extracted using the plasmid extraction kit from TIANGEN Company. The concentration of the plasmid was detected to be 210ng/μl. It was detected by agarose gel electrophoresis, and there was no protein contamination, which met the test requirements. Xba I-Sma I was used as the endonuclease for double digestion.
2)pBin35SRed::OsGLP8-12过表达载体的构建2) Construction of pBin35SRed::OsGLP8-12 overexpression vector
目的基因ORF序列扩增:根据终载体pBin35SRed的图谱设计Xba I-Sma I为插入位点并合成引物,引物序列如下:Target gene ORF sequence amplification: Design Xba I-Sma I as the insertion site and synthesize primers according to the map of the final vector pBin35SRed. The primer sequences are as follows:
In-OsGLP8-12-F:5′-ATTTGGAGAGGACACGAATTCATGGCCT CCTCTTCCTTATT-3′(含酶切位点Xba I)In-OsGLP8-12-F: 5′-ATTTGGAGAGGACACGAATTCATGGCCT CCTCTTCCTTATT-3′ (contains restriction site Xba I)
In-OsGLP8-12-R:5′-CCGCCTCGAGCCCGGGTCTAGATCAGT AGTTGTTCTCCCAGA-3′(含酶切位点Sma I)In-OsGLP8-12-R: 5′-CCGCCTCGAGCCCGGGTCTAGATCAGT AGTTGTTCTCCCAGA-3′ (with enzyme cutting site Sma I)
使用高保真酶扩增得到目的片段。Use high-fidelity enzymes to amplify the target fragment.
表3目的基因扩增体系Table 3 Target gene amplification system
(1)PCR反应程序:(1) PCR reaction procedure:
98℃预变性5min;循环为98℃变性10s,60℃退火30s,68℃延伸1min,共30个循环;68℃延伸5min。Pre-denaturation at 98°C for 5min; cycle of denaturation at 98°C for 10s, annealing at 60°C for 30s, extension at 68°C for 1min, a total of 30 cycles; extension at 68°C for 5min.
(2)电泳检测与回收:(2) Electrophoresis detection and recovery:
PCR产物在1.8%琼脂糖凝胶电泳,调节电压至90V,电泳1h,在紫外灯下观察结果,迅速切下目的条带。用胶回收试剂盒回收目的片段,具体方法按试剂盒说明书进行。The PCR product was electrophoresed on 1.8% agarose gel, and the voltage was adjusted to 90V, and the electrophoresis was performed for 1 hour. The result was observed under ultraviolet light, and the target band was cut off quickly. The target fragment was recovered with a gel recovery kit, and the specific method was carried out according to the kit instructions.
(3)融合表达载体构建:(3) Fusion expression vector construction:
将Xba I-Sma I酶切的质粒pBin35SRed与目的基因OsGLP8-12的连接,融合表达载体构建示意图如图6所示。连接体系见表4。The schematic diagram of the construction of the fusion expression vector by connecting the plasmid pBin35SRed digested with Xba I-Sma I to the target gene OsGLP8-12 is shown in Figure 6 . The connection system is shown in Table 4.
表4目的基因与pBin35SRed重组质粒连接体系Table 4 Connection system between target gene and pBin35SRed recombinant plasmid
a.吸打混匀,稍微离心后加一滴矿物油;a. Suction and beat to mix, then add a drop of mineral oil after a little centrifugation;
b.16℃连接2h;b. Connect at 16°C for 2 hours;
c.连接完后放入4℃冰箱中保存过夜。c. After the connection is completed, store in a refrigerator at 4°C overnight.
连接产物转化大肠杆菌Ligation product transformed into Escherichia coli
a.超净工作台灭菌30min,从-70℃超低温冰箱中取出100μL大肠杆菌的感受态细胞,放于冰上,预冷10min;a. Sterilize for 30 minutes on the ultra-clean workbench, take out 100 μL of E. coli competent cells from the -70°C ultra-low temperature refrigerator, put them on ice, and pre-cool for 10 minutes;
b.然后加入10μL的连接产物,用移液枪吸打混匀后冰浴30min;b. Then add 10 μL of the ligation product, mix with a pipette gun, and then ice-bath for 30 minutes;
c.冰浴结束后,放在42℃的恒温水浴锅中热激90s,然后迅速放入冰块中,冰浴2min;c. After the ice bath is over, place it in a constant temperature water bath at 42°C for 90 seconds, then quickly put it into ice cubes, and bathe in ice for 2 minutes;
d.吸500μL LB液体培养液到Ep管中,混匀,置于摇床中160rpm,37℃摇1h;d.
e.取出摇床结束的Ep管,2000~3000rmp离心5min,弃上清300μL,剩余的菌液轻柔吸打混匀后加在含Kan的LB固体培养皿中,用玻璃涂棒涂匀,涂干;e. Take out the Ep tube from the shaker, centrifuge at 2000-3000rmp for 5min, discard 300μL of the supernatant, gently pipette and mix the remaining bacterial solution, add it to the LB solid culture dish containing Kan, and spread it evenly with a glass coating stick. Dry;
f.37℃恒温培养箱中培养16~20h。f. Cultivate in a constant temperature incubator at 37°C for 16-20 hours.
g.随机挑取单克隆进行鉴定,结果如图7所示。g. Randomly pick single clones for identification, the results are shown in Figure 7.
所用引物序列为:The primer sequences used are:
pBin35sRed-F引物:5'-CGCACAATCCCACTATCCTT-3’pBin35sRed-F Primer: 5'-CGCACAATCCCACTATCCTT-3'
pBin35sRed-R引物:5'-AAAAGACAAAAGTGGGGTAG-3'pBin35sRed-R primer: 5'-AAAAGACAAAAGTGGGGTAG-3'
h.对鉴定正确单克隆在含有Kan的LB培养基进行扩繁,37℃条件下190rmp的摇床过夜,提取质粒送擎科公司进行测序后于4℃保存。h. Propagate the identified correct single clone in LB medium containing Kan, overnight at 37°C on a shaker at 190rmp, extract the plasmid and send it to Qingke Company for sequencing and store it at 4°C.
连接产物转化农杆菌Ligation product transformed into Agrobacterium
a.超净工作台灭菌30min,从-70℃超低温冰箱中取出100ΜlGV3101农杆菌的感受态细胞,放于冰上;a. Sterilize the ultra-clean workbench for 30 minutes, take out 100 μlGV3101 Agrobacterium competent cells from the -70 ℃ ultra-low temperature refrigerator, and put them on ice;
b.等待感受态半融化后,向Ep管中加入100ng的重组质粒,后冰浴10min;b. After the competent state is half-thawed, add 100ng of recombinant plasmid to the Ep tube, and then ice-bath for 10 minutes;
c.紧接着液氮5min,37℃水浴5min,冰浴5min;c. Followed by liquid nitrogen for 5 minutes, 37°C water bath for 5 minutes, and ice bath for 5 minutes;
d.吸取500μL LB液体培养液到Ep管中,混匀,置于摇床中160rpm,28℃培养2h;d.
e.取出摇床结束的Ep管,取200μL菌液,吸打在含Kan/Rif的LB固体培养皿中,用玻璃涂棒涂匀,涂干;e. Take out the Ep tube at the end of the shaker, take 200 μL of the bacterial solution, pipette it into the LB solid culture dish containing Kan/Rif, spread it evenly with a glass stick, and dry it;
f.28℃恒温培养箱中培养24-36h。f. Cultivate in a constant temperature incubator at 28°C for 24-36 hours.
g.随机挑取单克隆进行鉴定,结果如图8所示。g. Randomly pick single clones for identification, the results are shown in Figure 8.
实施例4转基因拟南芥的获取
等待野生型拟南芥种(22℃,16h光照/8h黑暗)培养进入盛花期后,采用浸花法进行转化,在转化前一天对拟南芥适当浇水。实施例3制备的阳性的农杆菌液在Kan、Rif双抗性的液体LB培养基中过夜大摇,通过转化介质将注射液浓度调至OD600≈0.8左右,黑暗静置4h左右。野生型拟南芥的转化采用了蘸花法,用枪头吸取少许含有农杆菌转化介质中,滴落在拟南芥花絮上,黑暗避光培养24h。避光培养后取出后,按照正常的培养条件(22℃,16h光照/8h黑暗)培养,待果荚成熟后混收T0代的种子。而后将T0代种子在含有Kan的MS培养基上进行筛选后,进一步进行qRT-PCR进行鉴定发现,拟南芥阳性株系OsGLP8-12的表达水平显著提高(图9)。After waiting for the wild-type Arabidopsis seed (22°C, 16h light/8h dark) to enter the full flowering stage, the flower soaking method was used for transformation, and the Arabidopsis was properly watered one day before the transformation. The positive Agrobacterium solution prepared in Example 3 was shaken overnight in Kan and Rif double-resistant liquid LB medium, and the concentration of the injection solution was adjusted to about OD600≈0.8 through the transformation medium, and left to stand in the dark for about 4 hours. The transformation of wild-type Arabidopsis thaliana adopts the method of dipping flowers. Use a pipette tip to absorb a little transformation medium containing Agrobacterium, drop it on Arabidopsis flocs, and incubate in the dark for 24 hours. After cultivating in the dark, take them out and culture them under normal culture conditions (22°C, 16h light/8h dark), and harvest the seeds of the T 0 generation after the fruit pods mature. Then, the T0 generation seeds were screened on the MS medium containing Kan, and further identified by qRT-PCR. It was found that the expression level of the Arabidopsis positive line OsGLP8-12 was significantly increased ( FIG. 9 ).
引物序列:Primer sequence:
qRT-GLP8-12-F:CCTCCTCTTCCTTATTTCTCCTGqRT-GLP8-12-F: CCTCCTCTTCCTTATTTCTCCTG
qRT-GLP8-12-R:CAAATCCATTCACTCGCACAGqRT-GLP8-12-R: CAAATCCATTCACTCGCACAG
At-Actin-F:AGAAACCCTCGTAGATTGGCACAt-Actin-F: AGAAACCCTCGTAGATTGGCAC
At-Actin-R:ACTCTCCCGCTATGTATGTCGCAt-Actin-R: ACTCTCCCGCTATGTATGTCGC
实施例5转基因拟南芥的抗性鉴定Example 5 Resistance Identification of Transgenic Arabidopsis
将拟南芥播种于1/2MS培养基上,置于温度22℃,空气湿度70%、光照强50μmlo·m-2·s-1、光周期为光照:黑暗=16h:8:h的温室中培养,萌发后将幼苗移植至营养土中培养,30d后进行核盘菌接种处理。Sow Arabidopsis thaliana on 1/2 MS medium, place in a greenhouse with a temperature of 22°C, an air humidity of 70%, a light intensity of 50 μm lo·m -2 ·s -1 , and a photoperiod of light:dark=16h:8:h After germination, the seedlings were transplanted to nutrient soil for cultivation, and 30 days later, they were inoculated with Sclerotinia sclerotiorum.
取长、宽均为90mm的方形培养皿,在其底部放置大小相近的滤纸,加入适量的水将滤纸浸湿,选取大小相近、表面平整的拟南芥叶片,将其平铺于滤纸上,在叶脉处放置灭菌棉条,用移液枪吸取适当的水将棉条浸湿,保持叶片湿润,取直径约为2.5mm的核盘菌菌块,置于拟南芥叶片上,放置温室中处理36h后测量病斑面积并进行拍照记录。Take a square petri dish with a length and width of 90 mm, place filter paper of similar size on the bottom, add an appropriate amount of water to soak the filter paper, select Arabidopsis leaves with similar size and flat surface, and spread them on the filter paper. Place a sterilized cotton sliver on the leaf veins, soak the sliver with appropriate amount of water with a pipette gun to keep the leaves moist, take a sclerotinia block with a diameter of about 2.5 mm, place it on the leaves of Arabidopsis thaliana, and place it in the greenhouse After 36 hours of medium treatment, the lesion area was measured and recorded by photographing.
在苗期对拟南芥进行活体叶片接种,通过对菌斑面积进行统计发现,结果如图10所示。OE_OsGLP8-12转基因株过表达系的平均菌斑面积(38.1mm2)比WT(47.0mm2)减小32.2%,上述结果表明,过表达OsGLP8-12可显著提高拟南芥的菌核病抗性。Live leaf inoculation was carried out on Arabidopsis thaliana at the seedling stage, and the results were shown in Figure 10 through the statistics of the plaque area. The average plaque area (38.1mm 2 ) of the OE_OsGLP8-12 transgenic overexpression line was 32.2% smaller than that of the WT (47.0mm 2 ). sex.
实施例6瞬时转化烟草的抗性鉴定Example 6 Resistance Identification of Transiently Transformed Tobacco
配制500ml烟草注射悬浮液,包括2-吗啉乙磺酸(MES,1.02g)、六水合氯化镁(0.98g)和乙酰丁香酮(As,50mM)。向离心管中加入适量烟草侵染悬浮液,悬浮实施例3制备的携带有pBin35SRed::OsGLP8-12过表达载体的农杆菌菌体沉淀,将菌液OD600调至1.0,28℃培养箱避光孵育2h。用一次性无菌注射器吸取侵染液从烟草叶片背面注射,食指轻抵注射位置的叶片正面,缓缓注入,肉眼可见水渍状圆斑自注射位置向叶片均匀扩散,用马克笔在叶片背面标注菌液侵染位置。注射后将烟草密封于湿润环境中避光培养36~48h。A 500 ml tobacco injection suspension was prepared including 2-morpholineethanesulfonic acid (MES, 1.02 g), magnesium chloride hexahydrate (0.98 g) and acetosyringone (As, 50 mM). Add an appropriate amount of tobacco infection suspension to the centrifuge tube, suspend the Agrobacterium cell precipitate carrying the pBin35SRed::OsGLP8-12 overexpression vector prepared in Example 3, adjust the OD600 of the bacterial solution to 1.0, and keep the incubator at 28°C away from light Incubate for 2h. Use a disposable sterile syringe to suck up the infection liquid and inject it from the back of the tobacco leaves. Lightly touch the front of the leaf at the injection site with your index finger and inject slowly. The water-soaked round spots can be seen spreading evenly from the injection site to the leaves with the naked eye. Use a marker pen on the back of the leaves Mark the location of bacterial infection. After injection, the tobacco was sealed in a humid environment and cultured for 36-48 hours in the dark.
取长、宽均为90mm的方形培养皿,在其底部放置大小相近的滤纸,加入适量的水将滤纸浸湿,选取4-5周的大小相近、表面平整的烟草叶片,将其平铺于滤纸上,在叶脉处放置灭菌棉条,用移液枪吸取适当的水将棉条浸湿,保持叶片湿润,取直径约为2.5mm的核盘菌菌块,置于在注射菌液区域,36h后统计菌斑大小,取样并进行拍照记录。Take a square Petri dish with a length and a width of 90 mm, place filter paper of similar size on the bottom, add an appropriate amount of water to soak the filter paper, select 4-5 weeks of tobacco leaves with similar size and flat surface, and spread it on the On the filter paper, place a sterilized cotton sliver at the leaf vein, soak the sliver with appropriate water with a pipette gun to keep the leaves moist, take a sclerotinia block with a diameter of about 2.5mm, and place it in the area where the bacterial solution is injected After 36 hours, the plaque size was counted, samples were taken and photographed for record.
通过对烟草叶片的菌斑面积进行统计发现,结果如图11所示。四个瞬时表达35S::OsGLP8-12叶片的菌斑面积分别比CK减小35.42%,上述结果都表明,过表达OsGLP8-12可显著提高对菌核病的抗性。The results are shown in Figure 11 through the statistical discovery of the bacterial plaque area of the tobacco leaves. The plaque area of the four leaves transiently expressing 35S::OsGLP8-12 was 35.42% smaller than that of CK. The above results all indicated that the overexpression of OsGLP8-12 could significantly improve the resistance to Sclerotinia sclerotiorum.
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。Although the present invention has been described in detail with general descriptions and specific embodiments above, it is obvious to those skilled in the art that some modifications or improvements can be made on the basis of the present invention. Therefore, the modifications or improvements made on the basis of not departing from the spirit of the present invention all belong to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310409743.3A CN116355067B (en) | 2023-04-17 | 2023-04-17 | Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310409743.3A CN116355067B (en) | 2023-04-17 | 2023-04-17 | Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116355067A true CN116355067A (en) | 2023-06-30 |
CN116355067B CN116355067B (en) | 2024-02-20 |
Family
ID=86916272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310409743.3A Active CN116355067B (en) | 2023-04-17 | 2023-04-17 | Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116355067B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116496372A (en) * | 2023-04-17 | 2023-07-28 | 西南大学 | Rice OsGLP8-11 for inhibiting sclerotinia and application thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003008540A2 (en) * | 2001-06-22 | 2003-01-30 | Syngenta Participations Ag | Abiotic stress responsive polynucleotides and polypeptides |
US20040123343A1 (en) * | 2000-04-19 | 2004-06-24 | La Rosa Thomas J. | Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement |
US20060123505A1 (en) * | 2002-05-30 | 2006-06-08 | National Institute Of Agrobiological Sciences | Full-length plant cDNA and uses thereof |
US20110252501A1 (en) * | 2006-08-17 | 2011-10-13 | Monsanto Technology Llc | Transgenic plants with enhanced agronomic traits |
CN103987848A (en) * | 2011-10-21 | 2014-08-13 | 巴斯夫植物科学有限公司 | Plants having enhanced yield-related traits and a method for making the same |
US20150121573A1 (en) * | 2004-06-14 | 2015-04-30 | Evogene Ltd. | Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same |
CN108570099A (en) * | 2017-03-10 | 2018-09-25 | 中国科学院微生物研究所 | The application of OsGLP2-1 albumen and its encoding gene in regulating and controlling seed dormancy |
CN110157719A (en) * | 2019-05-31 | 2019-08-23 | 西南大学 | Sclerotinia sclerotiorum SsMAS3 gene and its application in plant Sclerotinia resistance breeding |
CN112480225A (en) * | 2020-12-01 | 2021-03-12 | 中国科学院微生物研究所 | Application of GrpE protein and coding gene thereof as molecular target in breeding resistant plants |
CN113528518A (en) * | 2021-06-28 | 2021-10-22 | 西南大学 | MiRNA for inhibiting sclerotinia sclerotiorum and application thereof |
CN115011613A (en) * | 2022-06-29 | 2022-09-06 | 浙江大学 | Arabidopsis sclerotinia resistance candidate gene AtSWEET15 and its application |
-
2023
- 2023-04-17 CN CN202310409743.3A patent/CN116355067B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040123343A1 (en) * | 2000-04-19 | 2004-06-24 | La Rosa Thomas J. | Rice nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement |
WO2003008540A2 (en) * | 2001-06-22 | 2003-01-30 | Syngenta Participations Ag | Abiotic stress responsive polynucleotides and polypeptides |
US20060123505A1 (en) * | 2002-05-30 | 2006-06-08 | National Institute Of Agrobiological Sciences | Full-length plant cDNA and uses thereof |
US20150121573A1 (en) * | 2004-06-14 | 2015-04-30 | Evogene Ltd. | Isolated polypeptides, polynucleotides encoding same, transgenic plants expressing same and methods of using same |
US20110252501A1 (en) * | 2006-08-17 | 2011-10-13 | Monsanto Technology Llc | Transgenic plants with enhanced agronomic traits |
CN103987848A (en) * | 2011-10-21 | 2014-08-13 | 巴斯夫植物科学有限公司 | Plants having enhanced yield-related traits and a method for making the same |
CN108570099A (en) * | 2017-03-10 | 2018-09-25 | 中国科学院微生物研究所 | The application of OsGLP2-1 albumen and its encoding gene in regulating and controlling seed dormancy |
CN110157719A (en) * | 2019-05-31 | 2019-08-23 | 西南大学 | Sclerotinia sclerotiorum SsMAS3 gene and its application in plant Sclerotinia resistance breeding |
CN112480225A (en) * | 2020-12-01 | 2021-03-12 | 中国科学院微生物研究所 | Application of GrpE protein and coding gene thereof as molecular target in breeding resistant plants |
CN113528518A (en) * | 2021-06-28 | 2021-10-22 | 西南大学 | MiRNA for inhibiting sclerotinia sclerotiorum and application thereof |
CN115011613A (en) * | 2022-06-29 | 2022-09-06 | 浙江大学 | Arabidopsis sclerotinia resistance candidate gene AtSWEET15 and its application |
Non-Patent Citations (9)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116496372A (en) * | 2023-04-17 | 2023-07-28 | 西南大学 | Rice OsGLP8-11 for inhibiting sclerotinia and application thereof |
CN116496372B (en) * | 2023-04-17 | 2024-03-01 | 西南大学 | Rice OsGLP8-11 for inhibiting sclerotinia and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116355067B (en) | 2024-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110117320B (en) | Application of cotton GhCAL-D07 gene in promoting plant flowering | |
CN112725360B (en) | Application of cotton GhHDA6 gene in regulating plant flowering period | |
CN105255915B (en) | Application of the arabidopsis AtGDSL genes in the anti-sclerotiniose of rape and in promoting seed to sprout | |
CN113604475B (en) | Application of cotton GH_D03G1517 gene in promoting drought resistance and salt tolerance | |
CN117187294B (en) | Application of BnaC5.ACBP4 gene in improving flooding resistance of plants | |
CN112442506A (en) | Arabidopsis thaliana clubroot disease candidate gene AT2G35930 and application thereof | |
CN118853753A (en) | Application of RhMYB308 gene in regulating axillary bud germination in rose | |
CN116355067B (en) | Rice OsGLP8-12 that inhibits Sclerotinia sclerotiorum and its application | |
CN116425847B (en) | Rice OsGLP8-10 for inhibiting sclerotinia and application thereof | |
CN116444636B (en) | Rice OsGLP3-6 that inhibits Sclerotinia sclerotiorum and its application | |
CN119307514A (en) | A passion fruit PeGRX13 gene for improving drought resistance and its application | |
CN112538489B (en) | Elicitin gene for inducing plant resistance by pythium biocontrol, expression vector and application thereof | |
CN118726410A (en) | WRKY40 transcription factor of peanut for promoting drought tolerance and early flowering in plants and its application | |
CN117467696B (en) | Application of BnaA7.WRKY70 gene in improving plant waterlogging tolerance | |
CN113481210B (en) | Application of cotton GhDof1.7 gene in promoting plant salt tolerance | |
CN116496372B (en) | Rice OsGLP8-11 for inhibiting sclerotinia and application thereof | |
CN110117321A (en) | Cotton GhDctpp1-D11 gene is promoting the application in flowering of plant | |
CN116496371B (en) | Rice OsGLP3-5 for inhibiting sclerotinia and application thereof | |
CN114774434A (en) | Dragonfly pineapple AfFT3 gene, cloning method, expression vector and application | |
CN114591984A (en) | Application of OsAP79 gene to induce brown planthopper resistance in rice | |
CN110551735A (en) | application of cotton GhMADS45-D09 gene in promoting plant flowering | |
CN119842744B (en) | Application of RhRAP2.4 gene in regulating the germination of axillary buds in rose | |
CN116640769B (en) | Peanut AhGATA11 gene and its application in improving plant stress resistance | |
CN119913199B (en) | Application of cytokinin response factor RhARR in regulation of germination of Chinese rose axillary buds | |
CN110055267A (en) | A kind of rice cytosolic kinase-encoding gene OsRLCK5 and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |