CN116334529A - Handling method, baffles and components for components in a PVD chamber - Google Patents
Handling method, baffles and components for components in a PVD chamber Download PDFInfo
- Publication number
- CN116334529A CN116334529A CN202111592571.5A CN202111592571A CN116334529A CN 116334529 A CN116334529 A CN 116334529A CN 202111592571 A CN202111592571 A CN 202111592571A CN 116334529 A CN116334529 A CN 116334529A
- Authority
- CN
- China
- Prior art keywords
- components
- coating
- surface roughness
- pvd chamber
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000011248 coating agent Substances 0.000 claims abstract description 93
- 238000000576 coating method Methods 0.000 claims abstract description 93
- 230000003746 surface roughness Effects 0.000 claims abstract description 62
- 238000003672 processing method Methods 0.000 claims abstract description 16
- 229910000831 Steel Inorganic materials 0.000 claims description 73
- 239000010959 steel Substances 0.000 claims description 73
- 239000002245 particle Substances 0.000 claims description 69
- 239000002994 raw material Substances 0.000 claims description 44
- 239000004576 sand Substances 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 18
- 239000011324 bead Substances 0.000 claims description 13
- 238000007751 thermal spraying Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 abstract description 16
- 238000011084 recovery Methods 0.000 abstract description 5
- 239000002699 waste material Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005240 physical vapour deposition Methods 0.000 description 39
- 230000000052 comparative effect Effects 0.000 description 12
- 238000005488 sandblasting Methods 0.000 description 11
- 239000007921 spray Substances 0.000 description 7
- 238000005202 decontamination Methods 0.000 description 4
- 230000003588 decontaminative effect Effects 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
本申请涉及仪器设备领域,具体而言,涉及一种用于PVD腔室内的元件的处理方法、挡板和元件。处理方法包括:提供工作表面的表面粗糙度为4.2~8.2μm的元件;于工作表面上形成表面粗糙度为7.0~9.2μm的第一涂层;于第一涂层表面粗糙度为8.3~11.5μm的第二涂层。通过上述方法可以使元件的整个表层结构更加致密,后续材料源不会进入到元件的内部,方便后续对材料源的回收,同时表层结构元件结合强度高,有效降低其因使用场景的温度、湿度变化对表层结构粘附能力的影响。此外,上述的表层结构还可以提供较大的附着力,为材料源提供附着力,增加材料源的回收率,降低浪费,同时也可以增加前述元件的使用周期。
The present application relates to the field of instruments and equipment, in particular, to a processing method for components in a PVD chamber, a baffle and components. The treatment method includes: providing components with a surface roughness of 4.2-8.2 μm on the working surface; forming a first coating with a surface roughness of 7.0-9.2 μm on the working surface; and forming a first coating with a surface roughness of 8.3-11.5 μm of the second coating. Through the above method, the entire surface structure of the component can be made denser, and the subsequent material source will not enter the interior of the component, which facilitates the subsequent recovery of the material source. At the same time, the surface structure components have high bonding strength, which effectively reduces the temperature and humidity of the use scene. The effect of changes on the adhesion ability of the surface structure. In addition, the above-mentioned surface structure can also provide greater adhesion, provide adhesion for the material source, increase the recovery rate of the material source, reduce waste, and can also increase the service life of the aforementioned components.
Description
技术领域technical field
本申请涉及仪器设备领域,具体而言,涉及一种用于PVD腔室内的元件的处理方法、挡板和元件。The present application relates to the field of instruments and equipment, in particular, to a processing method for components in a PVD chamber, a baffle and components.
背景技术Background technique
物理气相沉积(Physical Vapor Deposition,PVD)是指在真空条件下采用物理方法将材料源表面气化成气态原子或分子,或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。Physical Vapor Deposition (Physical Vapor Deposition, PVD) refers to the use of physical methods under vacuum conditions to vaporize the surface of the material source into gaseous atoms or molecules, or partially ionize into ions, and through a low-pressure gas (or plasma) process, on the surface of the substrate A technique for depositing thin films with certain special functions.
异质结电池的工艺流程主要包括制绒清洗、非晶硅镀膜、TCO镀膜以及丝网印刷四步,其中TCO镀膜主要使用ITO(掺锡氧化铟(IndiμmTinOxide))靶材,其在占电池片非硅成本10%左右,ITO成本的降低是异质结电池降本工作的重点。The process flow of heterojunction cells mainly includes four steps of texture cleaning, amorphous silicon coating, TCO coating, and screen printing. Among them, TCO coating mainly uses ITO (Indiμm Tin Oxide) target material, which accounts for 10% of the battery sheet. The non-silicon cost is about 10%, and the reduction of ITO cost is the focus of the cost reduction work of heterojunction cells.
TCO(transparent conducting oxide)镀膜常用的是PVD-物理气相沉积法镀膜,常见的为板式(载板)PVD镀膜,设备在工作过程中,腔室内的ITO分子的随机碰撞,导致ITO分子会溅射到腔室内壁、载板以及其他地方,这部分溅射出去的ITO未被完全收集,会造成ITO浪费;而且当腔室内壁上的ITO积累到一定厚度会掉渣、掉粉等,所以腔室需定期清理,额外增加宕机时间。TCO (transparent conducting oxide) coating is commonly used for PVD-Physical Vapor Deposition coating, and the common one is plate (carrier) PVD coating. During the working process of the equipment, the random collision of ITO molecules in the chamber will cause the ITO molecules to sputter To the inner wall of the chamber, the carrier plate and other places, this part of the sputtered ITO is not completely collected, which will cause ITO waste; and when the ITO on the inner wall of the chamber accumulates to a certain thickness, it will drop slag, powder, etc., so the chamber The room needs to be cleaned regularly, adding extra downtime.
发明内容Contents of the invention
本申请实施例的目的在于提供一种用于PVD腔室内的元件的处理方法、挡板和元件,其旨在降低PVD过程中材料源的消耗。The purpose of the embodiments of the present application is to provide a processing method for components in a PVD chamber, a baffle and components, which aim to reduce the consumption of material sources during the PVD process.
本申请提供一种用于PVD腔室内的元件的处理方法,包括:The application provides a method for processing components in a PVD chamber, comprising:
提供工作表面的表面粗糙度为4.2~8.2μm的元件;Provide components with a surface roughness of 4.2-8.2 μm on the working surface;
于所述工作表面上形成表面粗糙度为7.0~9.2μm的第一涂层;forming a first coating with a surface roughness of 7.0-9.2 μm on the working surface;
于所述第一涂层远离所述工作表面的一面形成表面粗糙度为8.3~11.5μm的第二涂层;forming a second coating with a surface roughness of 8.3-11.5 μm on the side of the first coating away from the working surface;
工作表面的表面粗糙度小于所述第一涂层的表面粗糙度,所述第一涂层的表面粗糙度小于所述第二涂层的表面粗糙度。The surface roughness of the working surface is less than the surface roughness of the first coating, and the surface roughness of the first coating is less than the surface roughness of the second coating.
通过上述方法在元件的工作表面制备表层结构,可以使元件的整个表层结构更加致密,后续材料源(例如ITO)不会进入到元件的内部,方便后续对材料源的回收,同时表层结构元件结合强度高,有效降低其因使用场景的温度、湿度变化对表层结构粘附能力的影响。此外,上述的表层结构还可以提供较大的附着力,为材料源提供附着力,增加材料源(例如ITO)的回收率,降低浪费,同时也可以增加前述元件的使用周期。Prepare the surface structure on the working surface of the element by the above method, which can make the entire surface structure of the element more dense, and the subsequent material source (such as ITO) will not enter the interior of the element, which facilitates the subsequent recovery of the material source. At the same time, the surface structure element combines High strength, effectively reducing the influence of temperature and humidity changes in the use scene on the adhesion ability of the surface structure. In addition, the above-mentioned surface structure can also provide greater adhesion, provide adhesion for the material source, increase the recovery rate of the material source (such as ITO), reduce waste, and also increase the service life of the aforementioned components.
在本申请的一些实施例中,采用第一原料于所述工作表面上形成所述第一涂层,所述第一原料包括按照质量百分比计的以下组分:20%~50%的粒径为500μm~1000μm的类球形钢砂、10%~30%的粒径为500μm~1000μm的圆柱形钢砂以及10%~20%的粒径为400~800μm棱角形钢砂。In some embodiments of the present application, a first raw material is used to form the first coating on the working surface, and the first raw material includes the following components in terms of mass percentage: 20% to 50% of the particle size 500-1000 μm quasi-spherical steel grit, 10%-30% cylindrical steel grit with a particle size of 500-1000 μm, and 10%-20% angular steel grit with a particle size of 400-800 μm.
在本申请的一些实施例中,形成第一涂层的工艺为热喷涂工艺。In some embodiments of the present application, the process of forming the first coating is a thermal spraying process.
在本申请的一些实施例中,采用第二原料与所述第一涂层远离所述工作表面的一面形成所述第二涂层,所述第二原料包括按照质量百分比计的以下组分:In some embodiments of the present application, the second coating is formed by using a second raw material and the side of the first coating away from the working surface, and the second raw material includes the following components in terms of mass percentage:
10%~30%的粒径为200μm~500μm的类球形钢砂、10%~40%的粒径为100μm~500μm的圆柱形钢砂以及10%~40%的粒径为100μm~500μm的棱角形钢砂。10% to 30% of spherical steel sand with a particle size of 200 μm to 500 μm, 10% to 40% of cylindrical steel sand with a particle size of 100 μm to 500 μm, and 10% to 40% of angular steel sand with a particle size of 100 μm to 500 μm shaped steel grit.
在本申请的一些实施例中,所述形成第二涂层的工艺为热喷涂工艺。In some embodiments of the present application, the process for forming the second coating is a thermal spraying process.
在本申请的一些实施例中,所述工作表面的表面粗糙度为4.2~8.2μm的元件通过以下步骤制得:In some embodiments of the present application, the element whose working surface has a surface roughness of 4.2-8.2 μm is manufactured through the following steps:
采用直径为0.1~0.5mm的颗粒对表面粗糙度为2.0~4.6μm的元件进行珠击;珠击前元件的表面粗糙度小于所述工作表面的表面粗糙度。Particles with a diameter of 0.1 to 0.5 mm are used to perform bead peening on components with a surface roughness of 2.0 to 4.6 μm; the surface roughness of the components before bead peening is smaller than that of the working surface.
在本申请的一些实施例中,所述表面粗糙度为2.0~4.6μm的元件通过以下步骤制得:In some embodiments of the present application, the element with a surface roughness of 2.0-4.6 μm is manufactured through the following steps:
采用直径为1.0~3.0mm的颗粒对表面对表面粗糙度为0.8-1.2μm的元件进行珠击。Particles with a diameter of 1.0 to 3.0 mm are used for bead peening on components with a surface-to-surface roughness of 0.8-1.2 μm.
在本申请的一些实施例中,形成第二涂层后还包括对第二涂层进行磨砂处理,使磨砂后的粗糙度为10-12μm。In some embodiments of the present application, after forming the second coating, it further includes frosting the second coating, so that the roughness after frosting is 10-12 μm.
一种用于PVD腔室内的挡板,挡板的表面经过上述的用于PVD腔室内的元件的处理方法处理得到。A baffle used in a PVD chamber, the surface of the baffle is obtained through the above-mentioned processing method for components in the PVD chamber.
本申请还提供一种用于PVD腔室内的元件,用于PVD腔室内的元件的至少一个表面采用上述的用于PVD腔室内的元件的处理方法处理得到。The present application also provides an element used in a PVD chamber, at least one surface of the element used in the PVD chamber is processed by the above-mentioned processing method for the element in the PVD chamber.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the accompanying drawings that are required in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present application, and thus It should be regarded as a limitation on the scope, and those skilled in the art can also obtain other related drawings based on these drawings without creative work.
图1示出了本申请实施例提供的PVD腔室内的元件的处理方法的主要流程图。Fig. 1 shows a main flowchart of a method for processing components in a PVD chamber provided by an embodiment of the present application.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below. Those who do not indicate the specific conditions in the examples are carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used were not indicated by the manufacturer, and they were all conventional products that could be purchased from the market.
下面对本申请实施例的用于PVD腔室内的元件的处理方法、挡板和元件进行具体说明。The processing method, baffles and components used in the PVD chamber according to the embodiments of the present application will be described in detail below.
图1示出了本申请实施例提供的PVD腔室内的元件的处理方法的主要流程图,请参阅图1,本实施例提供一种用于PVD腔室内的元件的处理方法,包括:Fig. 1 shows the main flowchart of the processing method for the components in the PVD chamber provided by the embodiment of the present application, please refer to Fig. 1, the present embodiment provides a processing method for the components in the PVD chamber, including:
步骤S1:提供元件,该元件的工作表面的表面粗糙度为4.2~8.2μm。Step S1: providing a component, the surface roughness of the working surface of the component is 4.2-8.2 μm.
在本申请的实施例中,前述元件为PVD腔室内的载板,载板的形状以及大小可以根据PVD设备进行设置,本申请不对其进行限定。可以理解的是,在本申请的其他实施例中,前述的元件也可以为置于PVD腔室内的挡板、防尘罩等可拆卸的腔室内的部件。In the embodiment of the present application, the aforementioned components are the carrier in the PVD chamber, and the shape and size of the carrier can be set according to the PVD equipment, which is not limited in the present application. It can be understood that, in other embodiments of the present application, the aforesaid components may also be components placed in detachable chambers such as baffles and dust covers in the PVD chamber.
上述“工作表面”是指PVD设备在运行过程中,材料源会溅射到的位置;可以理解的是,本申请并不限制元件的除了工作表面之外的表面就不能进行后续的操作工艺;换言之,根据具体的制备工艺和制备成本等进行考虑,元件的所有的表面均可以被设置为表面的粗糙度为4.2~8.2μm,且所有的表面均可以进行后续的操作工艺。The above "working surface" refers to the position where the material source will be sputtered during the operation of the PVD equipment; it can be understood that this application does not limit that the surface of the component other than the working surface cannot be used for subsequent operation processes; In other words, considering the specific manufacturing process and manufacturing cost, all surfaces of the element can be set to have a surface roughness of 4.2-8.2 μm, and all surfaces can be subjected to subsequent operating processes.
元件的表面粗糙度为4.2μm~8.2μm,例如可以为4.2μm、4.3μm、4.4μm、4.5μm、5μm、5.2μm、5.8μm、6.2μm、6.5μm、7.4μm、7.6μm、8μm、8.2μm等等。The surface roughness of the element is 4.2 μm to 8.2 μm, for example, it can be 4.2 μm, 4.3 μm, 4.4 μm, 4.5 μm, 5 μm, 5.2 μm, 5.8 μm, 6.2 μm, 6.5 μm, 7.4 μm, 7.6 μm, 8 μm, 8.2 μm and so on.
在本申请的实施例中,就获取工作表面的表面粗糙度为4.2~8.2μm的元件的方法提供示例,例如,采用直径为0.1~0.5mm的颗粒对表面粗糙度为2.0~4.6μm的元件进行珠击,需要说明的是,在珠击之前表面粗糙度小于工作表面的表面粗糙度。In the embodiments of the present application, an example is provided on the method of obtaining components with a surface roughness of 4.2 to 8.2 μm on the working surface, for example, using particles with a diameter of 0.1 to 0.5 mm for components with a surface roughness of 2.0 to 4.6 μm For bead peening, it should be noted that the surface roughness before bead peening is smaller than that of the working surface.
换言之,选用表面粗糙度为2.0μm~4.6μm的元件,并对其需要形成表面粗糙度为4.2~8.2μm的表面进行珠击,珠击采用直径为0.1~0.5mm的颗粒。In other words, select components with a surface roughness of 2.0 μm to 4.6 μm, and perform bead peening on a surface with a surface roughness of 4.2 to 8.2 μm, using particles with a diameter of 0.1 to 0.5 mm.
“珠击”是指采用颗粒对相应的表面进行击打,颗粒的材料可以为钢材。"Pearl beating" refers to hitting the corresponding surface with particles, and the material of the particles can be steel.
例如,珠击采用的颗粒的直径可以为0.1mm、0.2mm、0.3mm、0.4mm、0.5mm等等。For example, the diameter of the particles used in bead peening can be 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm and so on.
例如,采用直径为0.1~0.5mm的颗粒珠击之前,元件的表面粗糙度可以为2.0μm、2.2μm、2.4μm、2.5μm、2.8μm、3μm、3.1μm、3.5μm、3.8μm、4μm、4.1μm、4.2μm、4.6μm等等;可以理解的是,选用的颗粒可以是单一的直径,也可以是具有多个直径的颗粒的组合。For example, the surface roughness of the component can be 2.0 μm, 2.2 μm, 2.4 μm, 2.5 μm, 2.8 μm, 3 μm, 3.1 μm, 3.5 μm, 3.8 μm, 4 μm, 4.1 μm, 4.2 μm, 4.6 μm, etc.; it can be understood that the selected particles can be a single diameter, or a combination of particles with multiple diameters.
需要说明的是,可以采用其他方式获取工作表面粗糙度为4.2~8.2μm的元件,例如进行市购。It should be noted that other methods can be used to obtain components with a working surface roughness of 4.2-8.2 μm, such as commercially available.
在本申请的实施例中,就获取表面粗糙度可以为2.0μm~4.6μm的元件的方法提供示例,例如,采用直径为1.0~3.0mm的颗粒对表面粗糙度为0.8-1.2μm的元件进行珠击。In the embodiments of this application, an example is provided for the method of obtaining components with a surface roughness of 2.0 μm to 4.6 μm, for example, using particles with a diameter of 1.0 to 3.0 mm to process components with a surface roughness of 0.8 to 1.2 μm beading.
采用表面粗糙度为0.8-1.2μm的元件,然后采用直径为1.0~3.0mm的颗粒对其进行珠击得到表面粗糙度可以为2.0μm~4.6μm的元件。A component with a surface roughness of 0.8-1.2 μm is used, and then bead peened with particles with a diameter of 1.0-3.0 mm to obtain a component with a surface roughness of 2.0-4.6 μm.
例如,珠击采用的颗粒的直径可以为1.0mm、1.2mm、1.5mm、1.8mm、2.1mm、2.3mm、2.5mm、2.8mm、2.9mm、3mm等等。同上,选用的颗粒可以是单一的直径,也可以是具有多个直径的颗粒的组合。For example, the diameter of the particles used in bead peening can be 1.0mm, 1.2mm, 1.5mm, 1.8mm, 2.1mm, 2.3mm, 2.5mm, 2.8mm, 2.9mm, 3mm and so on. As above, the selected particles may be of a single diameter, or a combination of particles with multiple diameters.
采用直径为1.0~3.0mm的颗粒珠击之前,元件的表面粗糙度可以为0.8μm、0.9μm、1.0μm、1.1μm、1.2μm等等。The surface roughness of the component can be 0.8 μm, 0.9 μm, 1.0 μm, 1.1 μm, 1.2 μm, etc. before bead peening with particles with a diameter of 1.0-3.0 mm.
需要说明的是,可以采用其他方式获取工作表面的表面粗糙度为2.0μm~4.6μm的元件,例如进行市购。It should be noted that other methods can be used to obtain components with a surface roughness of 2.0 μm to 4.6 μm on the working surface, such as commercially available.
获取工作表面的表面粗糙度为4.2~8.2μm的元件之后进行步骤S2。Step S2 is performed after obtaining the element whose working surface has a surface roughness of 4.2-8.2 μm.
具体地,步骤S2包括:于工作表面上形成表面粗糙度为7.0~9.2μm的第一涂层。Specifically, step S2 includes: forming a first coating with a surface roughness of 7.0-9.2 μm on the working surface.
例如,第一涂层的表面粗糙度可以为7.0μm、7.1μm、7.3μm、7.5μm、7.8μm、8.2μm、8.5μm、8.8μm、8.9μm、9.0μm、9.2μm等等。For example, the surface roughness of the first coating may be 7.0 μm, 7.1 μm, 7.3 μm, 7.5 μm, 7.8 μm, 8.2 μm, 8.5 μm, 8.8 μm, 8.9 μm, 9.0 μm, 9.2 μm, and so on.
需要说明的是,第一涂层每个部位的表面粗糙度可以均为一个数值,或者,第一涂层每个部位的表面粗糙度也可以不完全相同,在7.0~9.2μm范围内即可。It should be noted that the surface roughness of each part of the first coating can be the same value, or the surface roughness of each part of the first coating can be different, and it can be within the range of 7.0-9.2 μm .
例如,在本申请的一些实施例中,采用第一原料于工作表面上形成第一涂层,其中,第一原料包括按照质量百分比计的以下组分:20%~50%的粒径为500μm~1000μm的类球形钢砂、10%~30%的粒径为500μm~1000μm的圆柱形钢砂以及10%~20%的粒径为400~800μm棱角形钢砂。For example, in some embodiments of the present application, the first raw material is used to form the first coating on the working surface, wherein the first raw material includes the following components in terms of mass percentage: 20% to 50% of the particles have a particle size of 500 μm ~1000μm quasi-spherical steel grit, 10%~30% cylindrical steel grit with a particle size of 500μm~1000μm, and 10%~20% angular steel grit with a particle size of 400~800μm.
例如,在第一原料中,类球形钢砂的粒径可以为500μm、550μm、600μm、620μm、650μm、700μm、720μm、760μm、800μm、850μm、880μm、950μm、1000μm等等,在第一原料中,类球形钢砂可以是单一粒径,可以是500μm~1000μm范围内多种粒径的组合。For example, in the first raw material, the particle size of the quasi-spherical steel sand can be 500 μm, 550 μm, 600 μm, 620 μm, 650 μm, 700 μm, 720 μm, 760 μm, 800 μm, 850 μm, 880 μm, 950 μm, 1000 μm, etc., in the first raw material , The quasi-spherical steel grit can be a single particle size, or a combination of various particle sizes within the range of 500 μm to 1000 μm.
类球形钢砂占第一原料的质量百分比可以为20%、22%、25%、30%、34%、38%、43%、48%、49%、50%等等。The mass percentage of the quasi-spherical steel grit in the first raw material can be 20%, 22%, 25%, 30%, 34%, 38%, 43%, 48%, 49%, 50% and so on.
圆柱形钢砂的粒径可以为500μm、550μm、600μm、620μm、650μm、700μm、720μm、760μm、800μm、850μm、880μm、950μm、1000μm等等。在第一原料中,圆柱形钢砂可以是单一粒径,可以是500μm~1000μm范围内多种粒径的组合。The particle size of cylindrical steel grit can be 500 μm, 550 μm, 600 μm, 620 μm, 650 μm, 700 μm, 720 μm, 760 μm, 800 μm, 850 μm, 880 μm, 950 μm, 1000 μm and so on. In the first raw material, the cylindrical steel grit may have a single particle size, or may be a combination of various particle sizes within the range of 500 μm to 1000 μm.
圆柱形钢砂占第一原料的质量百分比可以为10%、12%、15%、16%、19%、20%、23%、26%、29%、30%等等。The mass percentage of cylindrical steel grit in the first raw material can be 10%, 12%, 15%, 16%, 19%, 20%, 23%, 26%, 29%, 30% and so on.
棱角形钢砂的粒径可以为400μm、430μm、480μm、500μm、520μm、590μm、600μm、630μm、680μm、700μm、760μm、780μm、800μm等等。在第一原料中,棱角形钢砂占第一原料的质量百分比可以为10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%等等。The particle size of angular steel grit can be 400 μm, 430 μm, 480 μm, 500 μm, 520 μm, 590 μm, 600 μm, 630 μm, 680 μm, 700 μm, 760 μm, 780 μm, 800 μm and so on. In the first raw material, the mass percentage of the angular steel grit in the first raw material can be 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20% %etc.
在本实施例中,第一涂层是采用热喷涂工艺形成的,可以理解的是,在本申请的其他实施例中,可以采用其他工艺形成;此外,表面粗糙度为7.0~9.2μm的第一涂层也可以不采用上述第一原料形成,可以选用其他原料。In this embodiment, the first coating is formed by a thermal spraying process. It can be understood that in other embodiments of the application, other processes can be used; in addition, the first coating with a surface roughness of 7.0-9.2 μm A coating can also be formed without using the above-mentioned first raw material, and other raw materials can be selected.
可以理解的是,在本申请的一些实施例中,前述的第一涂层可以仅覆盖于工作表面;可以理解的是,在其他实施例中,基于制备工艺、制备过程中的成本等,第一涂层除了覆盖工作表面之外还可以覆盖元件的其余位置。It can be understood that, in some embodiments of the present application, the aforementioned first coating can only cover the working surface; A coating may cover the rest of the component in addition to the working surface.
制备完第一涂层之后进行步骤S2。Step S2 is performed after the first coating is prepared.
具体地,步骤S2包括:于第一涂层远离工作表面的一面形成表面粗糙度为8.3~11.5μm的第二涂层。Specifically, step S2 includes: forming a second coating with a surface roughness of 8.3-11.5 μm on the side of the first coating away from the working surface.
作为示例性地,第二涂层的表面粗糙度可以为8.3μm、8.5μm、9μm、9.2μm、9.7μm、10μm、10.3μm、10.5μm、10.9μm、11μm、11.2μm、11.5μm等等。Exemplarily, the surface roughness of the second coating may be 8.3 μm, 8.5 μm, 9 μm, 9.2 μm, 9.7 μm, 10 μm, 10.3 μm, 10.5 μm, 10.9 μm, 11 μm, 11.2 μm, 11.5 μm and so on.
需要说明的是,第二涂层每个部位的表面粗糙度可以为一个数值,或者,第二涂层每个部位的表面粗糙度也可以不完全相同,在8.3~11.5μm范围内即可。It should be noted that the surface roughness of each part of the second coating may be a value, or the surface roughness of each part of the second coating may not be completely the same, and may be within the range of 8.3-11.5 μm.
作为示例性地,第二涂层可以通过以下方法制得:采用第二原料与第一涂层远离工作表面的一面形成第二涂层,第二原料包括按照质量百分比计的以下组分:10%~30%的粒径为200μm~500μm的类球形钢砂、10%~40%的粒径为100μm~500μm的圆柱形钢砂以及10%~40%的粒径为100μm~500μm的棱角形钢砂。As an example, the second coating can be prepared by the following method: using the second raw material and the side of the first coating away from the working surface to form the second coating, the second raw material includes the following components in terms of mass percentage: 10 %~30% of the spherical steel sand with a particle size of 200 μm to 500 μm, 10% to 40% of the cylindrical steel sand with a particle size of 100 μm to 500 μm, and 10% to 40% of the angular steel sand with a particle size of 100 μm to 500 μm steel grit.
例如,在第二原料中,类球形钢砂的粒径可以为200μm、220μm、260μm、290μm、300μm、360μm、400μm、420μm、460μm、480μm、500μm等等。类球形钢砂的粒径可以是单一的数值,粒径也可以是100μm~500μm中的多个值。For example, in the second raw material, the particle size of the quasi-spherical steel grit can be 200 μm, 220 μm, 260 μm, 290 μm, 300 μm, 360 μm, 400 μm, 420 μm, 460 μm, 480 μm, 500 μm, etc. The particle size of the quasi-spherical steel grit may be a single value, or may be a plurality of values in the range of 100 μm to 500 μm.
例如,类球形钢砂在第二原料中的质量占比可以为10%、12%、15%、18%、20%、22%、25%、28%、30%等等。For example, the mass proportion of the quasi-spherical steel grit in the second raw material can be 10%, 12%, 15%, 18%, 20%, 22%, 25%, 28%, 30% and so on.
在第二原料中,圆柱形钢砂的粒径可以为100μm、160μm、200μm、240μm、300μm、340μm、400μm、450μm、500μm等等。圆柱形钢砂的粒径可以是单一的数值,粒径也可以是100μm~500μm中的多个值。In the second raw material, the particle size of the cylindrical steel grit may be 100 μm, 160 μm, 200 μm, 240 μm, 300 μm, 340 μm, 400 μm, 450 μm, 500 μm or the like. The particle size of the cylindrical steel grit may be a single value, or may be a plurality of values in the range of 100 μm to 500 μm.
例如,圆柱形钢砂在第二原料中的质量占比可以为10%、12%、16%、20%、23%、24%、27%、30%、32%、35%、40%等等。For example, the mass proportion of cylindrical steel grit in the second raw material can be 10%, 12%, 16%, 20%, 23%, 24%, 27%, 30%, 32%, 35%, 40%, etc. wait.
在第二原料中,棱角形钢砂的粒径可以为100μm、160μm、200μm、240μm、300μm、340μm、400μm、450μm、500μm等等。棱角形钢砂的粒径可以是单一的数值,粒径也可以是100μm~500μm中的多个值。In the second raw material, the particle size of the angular steel grit may be 100 μm, 160 μm, 200 μm, 240 μm, 300 μm, 340 μm, 400 μm, 450 μm, 500 μm, or the like. The particle size of the angular steel grit may be a single value, or may be a plurality of values in the range of 100 μm to 500 μm.
例如,棱角形钢砂在第二原料中的质量占比可以为10%、12%、16%、20%、23%、24%、27%、30%、32%、35%、40%等等。For example, the mass proportion of angular steel sand in the second raw material can be 10%, 12%, 16%, 20%, 23%, 24%, 27%, 30%, 32%, 35%, 40%, etc. wait.
在本申请的一些实施例中,第二涂层采用热喷涂的工艺制备形成,可以理解的是,在本申请的其他实施例中,第二涂层也可以采用其他工艺形成;制备第二涂层的原料也不限于上述原料。In some embodiments of the present application, the second coating is formed by thermal spraying. It can be understood that, in other embodiments of the present application, the second coating can also be formed by other processes; preparing the second coating The raw material of the layer is also not limited to the above-mentioned raw materials.
需要说明的是,在本申请中,工作表面的表面粗糙度小于第一涂层的表面粗糙度,第一涂层的表面粗糙度小于第二涂层的表面粗糙度。It should be noted that, in the present application, the surface roughness of the working surface is smaller than the surface roughness of the first coating, and the surface roughness of the first coating is smaller than the surface roughness of the second coating.
本申请实施例提供的用于PVD腔室内的元件的处理方法至少具有以下优点:The processing method for the components in the PVD chamber provided by the embodiment of the present application has at least the following advantages:
通过在粗糙度为4.2~8.2μm的工作表面形成表面粗糙度为7.0~9.2μm的第一涂层,然后再在第一涂层的表面形成表面粗糙度为8.3~11.5μm的第二涂层;且工作表面、第一涂层以及第二涂层的表面粗糙度逐渐增大,可以使元件的整个表层结构更加致密,后续材料源不会进入到元件的内部,方便后续的回收,同时表层结构与元件结合强度高,降低其使因用场景的温度、湿度变化对表层结构粘附能力的影响。上述的表层结构可以提供较大的附着力,为材料源提供附着力。By forming a first coating with a surface roughness of 7.0 to 9.2 μm on a working surface with a roughness of 4.2 to 8.2 μm, and then forming a second coating with a surface roughness of 8.3 to 11.5 μm on the surface of the first coating ; and the surface roughness of the working surface, the first coating and the second coating gradually increases, which can make the entire surface structure of the element more compact, and the subsequent material source will not enter the interior of the element, which is convenient for subsequent recycling. The combination strength of the structure and the components is high, which reduces the influence of temperature and humidity changes in the application scene on the adhesion ability of the surface structure. The above-mentioned surface layer structure can provide greater adhesion and provide adhesion for the material source.
对于采用第一原料制备第一涂层,以及第二原料制备第二涂层的实施例而言,第一原料和第二原料的钢砂可以提高PVD腔室内材料源和元件表层结构的附着能力和接触面积,避免材料源的浪费。For the embodiment of using the first raw material to prepare the first coating, and the second raw material to prepare the second coating, the steel grit of the first raw material and the second raw material can improve the adhesion ability of the material source and the surface layer structure of the element in the PVD chamber and contact area to avoid waste of material sources.
本申请还提供一种用于PVD腔室内的元件,用于PVD腔室内的元件的至少一个表面采用前述的用于PVD腔室内的元件的处理方法处理得到。The present application also provides an element used in a PVD chamber, at least one surface of the element used in the PVD chamber is processed by the aforementioned processing method for the element in the PVD chamber.
承上所述,该用于PVD腔室内的元件具有表面粗糙度大,比表面积大,吸附能力好等优点,可以延长PVD腔室内的元件的使用寿命,可以从现有的70万片电池片的使用周期延长至100万~120万片电池片的使用周期;PVD腔室清理的使用周期也可以延长至350万片电池片。Based on the above, the components used in the PVD chamber have the advantages of large surface roughness, large specific surface area, and good adsorption capacity, which can prolong the service life of the components in the PVD chamber. The service life of the PVD chamber can also be extended to 3.5 million cells.
本申请还提供一种用于PVD腔室内的挡板,挡板的表面经过前述的用于PVD腔室内的元件的处理方法处理得到。The present application also provides a baffle used in the PVD chamber, the surface of the baffle is obtained through the aforementioned processing method for components in the PVD chamber.
该挡板具有上述PVD腔室内的元件的优点。This baffle has the advantages of the elements in the PVD chamber described above.
以下结合实施例对本申请的特征和性能作进一步的详细描述。The characteristics and performance of the present application will be described in further detail below in conjunction with the examples.
实施例1Example 1
本实施例提供一种PVD腔室内挡板的处理方法,主要包括以下步骤:This embodiment provides a method for processing a baffle in a PVD chamber, which mainly includes the following steps:
a、预处理:对挡板表面进行去油、去污等清洁处理,获得洁净的表面。a. Pretreatment: Carry out degreasing and decontamination treatment on the surface of the baffle to obtain a clean surface.
b、喷砂处理:对清洁后的挡板前表面进行喷砂处理,主要包括两步:①平整表面粗糙化:使用大直径钢丸(钢丸直径为1.5mm)对挡板表面进行喷射,使平整表面凹凸化;②凹凸化后的面继续粗糙化:使用小直径钢丸(钢丸直径在0.2mm)对挡板表面进行喷射。b. Sandblasting treatment: sandblasting treatment on the front surface of the cleaned baffle, mainly including two steps: ① smooth surface roughening: use large-diameter steel shots (the diameter of the steel shot is 1.5mm) to spray the surface of the baffle, Make the flat surface concave-convex; ②Continue to roughen the surface after concave-convex: use small-diameter steel shots (the diameter of the steel shot is 0.2mm) to spray on the surface of the baffle.
c、对喷砂处理后的表面热喷涂处理制备第一涂层:第一涂层的原料包括按照重量百分比计的以下组分:50%的类球形钢砂(平均粒径800μm),30%的圆柱形钢砂(平均粒径600μm)和20%的棱角形钢砂(平均粒径400μm)。c, the surface thermal spraying treatment after sandblasting treatment prepares the first coating: the raw material of the first coating comprises the following components by weight percentage: 50% quasi-spherical steel sand (average particle diameter 800 μ m), 30% Cylindrical steel grit (average particle size 600 μm) and 20% angular steel grit (average particle size 400 μm).
d、对第一涂层表面热喷涂处理制备第二涂层:第二涂层的原料包括按照重量百分比计的以下组分:50%的类球形钢砂(平均粒径在350μm),30%的圆柱形钢砂(平均粒径250μm)和20%的棱角形钢砂(平均粒径150μm)。D, the thermal spraying treatment on the surface of the first coating prepares the second coating: the raw material of the second coating comprises the following components by weight percentage: 50% spherical steel sand (average particle diameter at 350 μm), 30% Cylindrical steel grit (average particle size 250 μm) and 20% angular steel grit (average particle size 150 μm).
e、涂层磨砂处理:最后对挡板涂层表面进行磨砂处理,最终粗糙度为10.2μm。e. Coating frosting treatment: Finally, the coating surface of the baffle is frosted, and the final roughness is 10.2 μm.
实施例2Example 2
本实施例提供一种PVD腔室内挡板的处理方法,主要包括以下步骤:This embodiment provides a method for processing a baffle in a PVD chamber, which mainly includes the following steps:
a、预处理:对挡板表面进行去油、去污等清洁处理,获得洁净的表面。a. Pretreatment: Carry out degreasing and decontamination treatment on the surface of the baffle to obtain a clean surface.
b、喷砂处理:对清洁后的挡板前表面进行喷砂处理,主要包括两步:①平整表面粗糙化:使用大直径钢丸(钢丸直径为2.0mm)对挡板表面进行喷射,使平整表面被凹凸化;②凹凸化后的面继续粗糙化:使用小直径钢丸(钢丸直径为0.5mm)对挡板表面进行喷射。b. Sandblasting treatment: sandblasting treatment on the front surface of the cleaned baffle, mainly including two steps: ① smooth surface roughening: use large-diameter steel shots (the diameter of the steel shot is 2.0mm) to spray the surface of the baffle, Make the flat surface concave-convex; ② Continue to roughen the surface after concave-convex: use small-diameter steel shots (the diameter of the steel shot is 0.5mm) to spray on the surface of the baffle.
c、对喷砂处理后的表面热喷涂处理制备第一涂层:第一涂层的原料包括按照重量百分比计的以下组分:40%的类球形钢砂(平均粒径为900μm),35%的圆柱形钢砂(平均粒径为600μm)、25%的棱角形钢砂(平均粒径为300μm)。c, the surface thermal spraying treatment after sandblasting treatment prepares the first coating: the raw material of the first coating comprises the following components by weight percentage: 40% quasi-spherical steel sand (average particle diameter is 900 μ m), 35 % cylindrical steel grit (average particle size is 600 μm), 25% angular steel grit (average particle size is 300 μm).
d、对第一涂层表面热喷涂处理制备第二涂层:第二涂层的原料包括按照重量百分比计的以下组分:40%的类球形钢砂(平均粒径为500μm),35%的圆柱形钢砂(平均粒径为300μm)和25%的棱角形钢砂(平均粒径为100μm)。D, the thermal spraying treatment of the first coating surface prepares the second coating: the raw material of the second coating comprises the following components by weight percentage: 40% spherical steel sand (average particle diameter is 500 μ m), 35% Cylindrical steel grit (average particle size is 300 μm) and 25% angular steel grit (average particle size is 100 μm).
e、涂层磨砂处理:最后对挡板涂层表面进行磨砂处理。通过本方法制作的载板、挡板的表面粗糙度可以达到11.0μm。e. Coating frosting treatment: Finally, frosting treatment is carried out on the coating surface of the baffle. The surface roughness of the carrier and baffle produced by the method can reach 11.0 μm.
对比例1Comparative example 1
本对比例提供一种PVD腔室内挡板的处理方法,主要包括以下步骤:This comparative example provides a method for processing the baffle in a PVD chamber, which mainly includes the following steps:
a、预处理:对挡板表面进行去油、去污等清洁处理,获得洁净的表面。a. Pretreatment: Carry out degreasing and decontamination treatment on the surface of the baffle to obtain a clean surface.
b、喷砂处理:对清洁后的挡板前表面进行喷砂处理,使用直径为2.0mm的钢丸,对挡板表面进行喷射,使平整表面凹凸化。b. Sandblasting treatment: sandblasting the cleaned front surface of the baffle, using steel shots with a diameter of 2.0mm to spray the surface of the baffle to make the flat surface concave-convex.
c、对喷砂处理后的表面热喷涂处理制备涂层:涂层的原料是球形钢砂(平均粒径为600μm)。c. Preparation of coating by thermal spraying treatment on the surface after sandblasting: the raw material of the coating is spherical steel grit (average particle size is 600 μm).
e、涂层磨砂处理:最后对挡板涂层表面进行磨砂处理。通过本方法制作的载板、挡板的表面粗糙度可以达到6.50μm。e. Coating frosting treatment: Finally, frosting treatment is carried out on the coating surface of the baffle. The surface roughness of the carrier board and the baffle made by the method can reach 6.50 μm.
对比例2Comparative example 2
本对比例提供一种PVD腔室内挡板的处理方法,其与实施例1的区别在于:对比例2在步骤c、步骤d对于钢砂搭配比例以及粒径尺寸方面存在差异,其所起到的作用是改变了载板表面的粗糙度;主要包括以下步骤:This comparative example provides a processing method for baffles in a PVD chamber. The difference between it and Example 1 is that there are differences in step c and step d for steel grit matching ratio and particle size in comparative example 2. The effect is to change the roughness of the surface of the carrier board; it mainly includes the following steps:
a、预处理:对挡板表面进行去油、去污等清洁处理,获得洁净的表面。a. Pretreatment: Carry out degreasing and decontamination treatment on the surface of the baffle to obtain a clean surface.
b、喷砂处理:对清洁后的挡板前表面进行喷砂处理,主要包括两步:①平整表面粗糙化:使用大直径钢丸(钢丸直径为2.0mm)对挡板表面进行喷射,使平整表面凹凸化;②凹凸化后的面继续粗糙化:使用小直径钢丸(钢丸直径在0.5mm)对挡板表面进行喷射。b. Sandblasting treatment: sandblasting treatment on the front surface of the cleaned baffle, mainly including two steps: ① smooth surface roughening: use large-diameter steel shots (the diameter of the steel shot is 2.0mm) to spray the surface of the baffle, Make the flat surface concave-convex; ②Continue to roughen the surface after concave-convex: use small-diameter steel shots (the diameter of the steel shot is 0.5mm) to spray on the surface of the baffle.
c、对喷砂处理后的表面热喷涂处理制备第一涂层:第一涂层的原料包括按照重量百分比计的以下组分:80%的类球形钢砂(平均粒径为1200μm)、10%的圆柱形钢砂(平均粒径为600μm)和10%的棱角形钢砂(平均粒径为200μm)。c, prepare the first coating on the surface thermal spraying treatment after the blasting treatment: the raw material of the first coating comprises the following components by weight percentage: 80% quasi-spherical steel sand (average particle diameter is 1200 μ m), 10 % cylindrical steel grit (average particle size is 600 μm) and 10% angular steel grit (average particle size is 200 μm).
d、对第一涂层表面热喷涂处理制备第二涂层:第二涂层的原料包括按照重量百分比计的以下组分:30%的类球形钢砂(平均粒径为700μm)、35%的圆柱形钢砂(平均粒径为400μm)和35%的棱角形钢砂(平均粒径为100μm)。D, the thermal spraying treatment of the first coating surface prepares the second coating: the raw material of the second coating comprises the following components by weight percentage: 30% quasi-spherical steel sand (average particle diameter is 700 μ m), 35% Cylindrical steel grit (average particle size is 400 μm) and 35% angular steel grit (average particle size is 100 μm).
e、涂层磨砂处理:最后对挡板涂层表面进行磨砂处理。通过本方法制作的载板、挡板的表面粗糙度可以达到8.12μm。e. Coating frosting treatment: Finally, frosting treatment is carried out on the coating surface of the baffle. The surface roughness of the carrier and baffle produced by the method can reach 8.12 μm.
将实施例1、对比例1、对比例2提供的挡板用于PVD腔室内,采用磁控溅射PVD进行镀膜,通过氩离子轰击ITO靶材可以将ITO原子轰击下来,从靶材上面轰击下来的ITO原材料大约30%被沉积在硅片上,另外大约70%被沉积在载板、挡板或者腔室内部其他的元部件上。挡板需要尽可能地吸附ITO粉尘颗粒,避免粉尘会在腔室内部随机飘散,不利于回收。在相同的生产周期(生产相同数量的电池片)内,测量对比实施例与对比例两种方法所制作的载板挡板的收回率。The baffles provided in Example 1, Comparative Example 1, and Comparative Example 2 are used in the PVD chamber, and the magnetron sputtering PVD is used for coating, and the ITO atoms can be bombarded by bombarding the ITO target with argon ions, and bombarded from the target. About 30% of the ITO raw material that comes down is deposited on the silicon wafer, and another about 70% is deposited on the carrier plate, baffle plate or other components inside the chamber. The baffle needs to absorb the ITO dust particles as much as possible to prevent the dust from randomly floating inside the chamber, which is not conducive to recycling. In the same production cycle (production of the same number of cells), the recovery rate of the carrier and baffle made by the two methods of the comparative example and the comparative example was measured.
实施例1的挡板回收的ITO粉末为靶材上面轰击下来的ITO原材料的35~40%;对比例1的挡板回收的ITO粉末为靶材上面轰击下来的ITO原材料的22~25%。The ITO powder recovered by the baffle of Example 1 is 35-40% of the ITO raw material bombarded on the target; the ITO powder recovered by the baffle of Comparative Example 1 is 22-25% of the ITO raw material bombarded off the target.
对比例2的挡板回收的ITO粉末为靶材上面轰击下来的ITO原材料的25~30%。对比例2的挡板的使用寿命大约为90万片电池片。The ITO powder recovered by the baffle in Comparative Example 2 is 25-30% of the ITO raw material bombarded from the target. The service life of the baffle in Comparative Example 2 is about 900,000 cells.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111592571.5A CN116334529A (en) | 2021-12-23 | 2021-12-23 | Handling method, baffles and components for components in a PVD chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111592571.5A CN116334529A (en) | 2021-12-23 | 2021-12-23 | Handling method, baffles and components for components in a PVD chamber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116334529A true CN116334529A (en) | 2023-06-27 |
Family
ID=86877640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111592571.5A Pending CN116334529A (en) | 2021-12-23 | 2021-12-23 | Handling method, baffles and components for components in a PVD chamber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116334529A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030155235A1 (en) * | 2000-08-25 | 2003-08-21 | Hirohita Miyashita | Sputtering target producing few particles |
JP2005314732A (en) * | 2004-04-28 | 2005-11-10 | Densho Engineering Co Ltd | Manufacturing method of anti-adhesion jig |
US20060110620A1 (en) * | 2004-11-24 | 2006-05-25 | Applied Materials, Inc. | Process chamber component with layered coating and method |
CN102011085A (en) * | 2010-10-29 | 2011-04-13 | 宁波江丰电子材料有限公司 | Method for processing surface of attachment-resisting plate |
CN105274465A (en) * | 2015-11-17 | 2016-01-27 | 沈阳仪表科学研究院有限公司 | Regeneration method for clean rough surface of part in vacuum coating cavity |
JP2021127499A (en) * | 2020-02-14 | 2021-09-02 | アルバックテクノ株式会社 | Alloy sprayed coating and film deposition apparatus |
-
2021
- 2021-12-23 CN CN202111592571.5A patent/CN116334529A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030155235A1 (en) * | 2000-08-25 | 2003-08-21 | Hirohita Miyashita | Sputtering target producing few particles |
JP2005314732A (en) * | 2004-04-28 | 2005-11-10 | Densho Engineering Co Ltd | Manufacturing method of anti-adhesion jig |
US20060110620A1 (en) * | 2004-11-24 | 2006-05-25 | Applied Materials, Inc. | Process chamber component with layered coating and method |
CN102011085A (en) * | 2010-10-29 | 2011-04-13 | 宁波江丰电子材料有限公司 | Method for processing surface of attachment-resisting plate |
CN105274465A (en) * | 2015-11-17 | 2016-01-27 | 沈阳仪表科学研究院有限公司 | Regeneration method for clean rough surface of part in vacuum coating cavity |
JP2021127499A (en) * | 2020-02-14 | 2021-09-02 | アルバックテクノ株式会社 | Alloy sprayed coating and film deposition apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI457455B (en) | Method for manufacturing backing plate, backing plate, sputter cathode, sputtering apparatus, and method for cleaning backing plate | |
CN110055496B (en) | Preparation process for preparing Cr coating on surface of nuclear zirconium alloy substrate | |
US6875325B2 (en) | Sputtering target producing few particles | |
CN106558479B (en) | Target material assembly and its processing method | |
CN107532288B (en) | Reactive sputtering method and method for producing laminated film | |
CN107779839A (en) | DLC film plating process based on anode technology | |
CN107937877B (en) | DLC coating device based on anode technology | |
CN110818280A (en) | Production process of multilayer coated glass | |
CN106637207A (en) | Method for coating high temperature-resistant diamond on graphite substrate | |
TW201202456A (en) | Sputtering device | |
US8637142B2 (en) | Coated article and method for manufacturing same | |
CN116334529A (en) | Handling method, baffles and components for components in a PVD chamber | |
CN110578124B (en) | Method for preparing rigid film on flexible substrate and related products | |
US20120171416A1 (en) | Coated article and method for making the same | |
JP2004315931A (en) | Sputtering target | |
CN109825806B (en) | PET (polyethylene terephthalate) non-conductive film and preparation method thereof | |
CN101067195A (en) | Metallising using thin seed layer deposited using plasma-assisted process | |
CN117448827A (en) | Low-roughness titanium nitride coating for artificial joint friction surface and preparation method thereof | |
CN111850469A (en) | In-situ preparation method of DLC resistive electrode for large-area microstructure gas detector | |
JP2013072099A (en) | Sputter cleaning method | |
US8808853B2 (en) | Coated article and method for making same | |
US8545990B2 (en) | Coated article and method for manufacturing | |
JP2010248580A (en) | Method for manufacturing substrate with functional film | |
CN101241854A (en) | A wafer production technology | |
JP2694058B2 (en) | Arc vapor deposition equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20241105 Address after: 610299 Chengdu High tech Comprehensive Bonded Zone, Shuangliu District, Chengdu City, Sichuan Province, China Applicant after: TONGWEI SOLAR (CHENGDU) Co.,Ltd. Country or region after: China Address before: 230088 southwest corner of the intersection of Changning Avenue and Xiyou Road, high tech Zone, Hefei City, Anhui Province Applicant before: TONGWEI SOLAR ENERGY (ANHUI) Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right |