CN116317574A - Method and device for power conversion - Google Patents
Method and device for power conversion Download PDFInfo
- Publication number
- CN116317574A CN116317574A CN202310156211.3A CN202310156211A CN116317574A CN 116317574 A CN116317574 A CN 116317574A CN 202310156211 A CN202310156211 A CN 202310156211A CN 116317574 A CN116317574 A CN 116317574A
- Authority
- CN
- China
- Prior art keywords
- time
- signal
- moment
- control signal
- reference voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 111
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000000630 rising effect Effects 0.000 claims abstract description 72
- 230000003111 delayed effect Effects 0.000 claims description 17
- 238000010586 diagram Methods 0.000 description 34
- 230000005540 biological transmission Effects 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 7
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000005669 field effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 241001124569 Lycaenidae Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/38—Means for preventing simultaneous conduction of switches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本申请实施例涉及电子技术领域,并且更具体地,涉及一种功率转换方法和装置。The embodiments of the present application relate to the field of electronic technology, and more specifically, to a power conversion method and device.
背景技术Background technique
直流电源(direct current-direct current,DC-DC)转换器(converter)为在直流电路中将一个电压值的电能变为另一个电压值的电能的装置。DC-DC芯片涉及多种芯片控制技术,其中包括能够用于产生固定的时间脉冲的控制技术,例如,恒定导通时间(constant on time,COT)控制、恒定关断时间控制等。A DC power supply (direct current-direct current, DC-DC) converter (converter) is a device that converts electrical energy of one voltage value into electrical energy of another voltage value in a DC circuit. The DC-DC chip involves a variety of chip control technologies, including control technologies that can be used to generate fixed time pulses, for example, constant on time (constant on time, COT) control, constant off time control, and the like.
以COT控制为例,由芯片电路控制DC-DC的电源开关的恒定的导通时间。一般由功率开关管作为电源开关,通过功率开关管的导通和关断,将输入电压转换为输出电压以驱动负载。目前,用于COT控制的芯片电路控制的电源开关的实际的导通时间比根据该芯片的电路参数确定的预设导通时间更长,从而使得开关频率精度降低。开关频率精度的降低很有可能降低负载芯片的性能,甚至使得负载芯片重启。Taking COT control as an example, the constant on-time of the DC-DC power switch is controlled by the chip circuit. Generally, a power switch tube is used as a power switch, and the input voltage is converted into an output voltage by turning on and off the power switch tube to drive a load. Currently, the actual turn-on time of the power switch controlled by the chip circuit used for COT control is longer than the preset turn-on time determined according to the circuit parameters of the chip, thereby reducing the accuracy of the switching frequency. The reduction of switching frequency accuracy is likely to reduce the performance of the load chip, and even cause the load chip to restart.
因此,如何提高电源开关的频率精度,是亟待解决的问题。Therefore, how to improve the frequency accuracy of the power switch is an urgent problem to be solved.
发明内容Contents of the invention
本申请提供一种功率转换的方法和装置,能够提高电源开关的频率精度。The present application provides a power conversion method and device, which can improve the frequency accuracy of a power switch.
第一方面,提供了一种功率转换设备,功率转换设备包括控制器与功率转换电路,控制器与功率转换电路的功率开关管连接;控制器,还用于向功率开关管发送控制信号,控制信号用于控制功率开关管按照恒定的时间段周期性地导通,控制信号的一个脉冲的上升沿对应的第一时刻,与脉冲的下降沿对应的第二时刻之间的时间段,为功率开关管在一个周期内实际导通的时间;其中,第二时刻在脉冲对应的预设导通时间的结束时刻之后,第一时刻在预设导通时间的开始时刻之后,预设导通时间是根据控制器和功率转换电路的电路参数确定的功率开关管在一个周期内理论上导通的时间。In the first aspect, a power conversion device is provided, the power conversion device includes a controller and a power conversion circuit, the controller is connected to the power switch tube of the power conversion circuit; the controller is also used to send a control signal to the power switch tube, and control The signal is used to control the power switch to conduct periodically according to a constant time period. The time period between the first moment corresponding to the rising edge of a pulse of the control signal and the second moment corresponding to the falling edge of the pulse is the power The actual conduction time of the switch tube in one cycle; wherein, the second moment is after the end moment of the preset conduction time corresponding to the pulse, the first moment is after the start moment of the preset conduction time, and the preset conduction time It is the theoretical conduction time of the power switch tube in one cycle determined according to the circuit parameters of the controller and the power conversion circuit.
上述方案,在第二时刻在预设导通时间的结束时刻之后情况下,相比于第一时刻与预设导通时间的开始时刻相同的情况,上述方案通过第一时刻在预设导通时间的开始时刻之后,能够减少实际导通的时间的长度,使得实际导通的时间的长度更接近预设导通时间的长度,减少第二时刻在预设导通时间的结束时刻之后对导通时间的长度的影响,从而提升开关频率精度。In the above scheme, when the second moment is after the end moment of the preset conduction time, compared with the case where the first moment is the same as the start time of the preset conduction time, the above scheme passes the preset conduction at the first moment After the start moment of the time, the length of the actual conduction time can be reduced, so that the length of the actual conduction time is closer to the length of the preset conduction time, and the influence of the second moment on the conduction after the end of the preset conduction time is reduced. The influence of the length of the on-time, thereby improving the switching frequency accuracy.
一种可能的实现方式中,所述第二时刻与所述结束时刻之间的时间段为第一时间段,所述第一时刻与所述开始时刻之间的时间段为第二时间段,第一时间段的长度与第二时间段的长度的差值≤预设值。或者,第二时间段的长度相对于第一时间段的误差≤预设值。In a possible implementation manner, the time period between the second moment and the end moment is a first time period, and the time period between the first moment and the start moment is a second time period, The difference between the length of the first time period and the length of the second time period≤the preset value. Or, the error of the length of the second time period relative to the first time period≤a preset value.
上述方案,通过限制第一时间段的长度和第二时间段的长度的差值≤预设值,能够使得第一时间段和第二时间的长度更加接近,使得导通时间进一步接近预设导通时间,进一步减少第二时刻在预设导通时间的结束时刻之后对导通时间的长度的影响,从而进一步提升开关频率精度。The above scheme can make the lengths of the first time period and the second time closer by limiting the difference between the length of the first time period and the length of the second time period to be less than or equal to the preset value, so that the conduction time is further close to the preset conduction time. The on-time further reduces the influence of the second moment on the length of the on-time after the end of the preset on-time, thereby further improving the accuracy of the switching frequency.
一种可能的实现方式中,控制器,还用于将输出电压反馈信号转换为误差信号,并将误差信号转换为第一预控制信号和第二预控制信号,第一预控制信号的上升沿对应的时刻与预设导通时间的开始时刻相同;控制器,还用于将第二预控制信号转换为第一预补偿信号,其中,将第二预控制信号转换为第一预补偿信号的时间为第二时间段;控制器,还用于基于第一预控制信号和第一预补偿信号确定第一时刻。In a possible implementation manner, the controller is further configured to convert the output voltage feedback signal into an error signal, and convert the error signal into a first pre-control signal and a second pre-control signal, and the rising edge of the first pre-control signal The corresponding moment is the same as the start moment of the preset conduction time; the controller is also used to convert the second pre-control signal into the first pre-compensation signal, wherein the second pre-control signal is converted into the first pre-compensation signal Time is the second time period; the controller is further configured to determine the first moment based on the first pre-control signal and the first pre-compensation signal.
一种可能的实现方式中,第二时间段包括第一补偿时间段和第二补偿时间段,控制单元,具体用于基于第二预控制信号和第一参考电压确定第二预补偿信号,其中,第二预补偿信号的上升沿对应的时刻,与第二预控制信号和第一基准信号交越的时刻之间的时间,为第一补偿时间段;控制单元,具体用于将第二预补偿信号转换为第一预补偿信号,将第二预补偿信号转换为第一预补偿信号的时间为第二补偿时间段。In a possible implementation manner, the second time period includes a first compensation time period and a second compensation time period, and the control unit is specifically configured to determine the second pre-compensation signal based on the second pre-control signal and the first reference voltage, wherein , the time between the time corresponding to the rising edge of the second pre-compensation signal and the time when the second pre-control signal crosses the first reference signal is the first compensation period; the control unit is specifically used to set the second pre-compensation signal to The compensation signal is converted into the first pre-compensation signal, and the time for converting the second pre-compensation signal into the first pre-compensation signal is the second compensation time period.
一种可能的实现方式中,第二预控制信号为上升型斜坡电压信号的情况下,0V≤第一参考电压≤第一阈值;或者,第二预控制信号为下降型斜坡电压信号的情况下,第二阈值≤第一参考电压≤供电电压。In a possible implementation, when the second pre-control signal is a rising ramp voltage signal, 0V≤the first reference voltage≤the first threshold; or, when the second pre-control signal is a falling ramp voltage signal , the second threshold ≤ the first reference voltage ≤ the power supply voltage.
一种可能的实现方式中,控制器,用于将输出电压反馈信号转换为第一控制信号,并根据第一控制信号和第二参考电压确定第一时刻,以及根据第一控制信号和第三参考电压确定第二时刻;其中,第二参考电压与第三参考电压不同,第一时刻相对于第一控制信号和第二参考电压交越的时刻延迟第二时间段,第二时刻相对于第一控制信号和第三参考电压交越的时刻延迟第一时间段。In a possible implementation manner, the controller is configured to convert the output voltage feedback signal into a first control signal, determine the first moment according to the first control signal and the second reference voltage, and determine the first moment according to the first control signal and the third The reference voltage determines the second moment; wherein, the second reference voltage is different from the third reference voltage, the first moment is delayed by a second time period relative to the moment when the first control signal crosses the second reference voltage, and the second moment is relative to the first A time when the control signal crosses the third reference voltage is delayed by the first time period.
一种可能的实现方式中,在第一时刻之前,用于与第一控制信号进行比较的参考电压为第二参考电压;在第一时刻之后且第二时刻之前,用于与第一控制信号进行比较的参考电压为第三参考电压。In a possible implementation manner, before the first moment, the reference voltage used for comparison with the first control signal is the second reference voltage; after the first moment and before the second moment, the reference voltage used for comparison with the first control signal The reference voltage for comparison is the third reference voltage.
一种可能的实现方式中,第一控制信号为上升型斜坡电压信号的情况下,0V≤第二参考电压≤第一阈值,第三参考电压>第二参考电压;或者,第一控制信号为下降型斜坡电压信号的情况下,第二阈值≤第二参考电压≤供电电压,第三参考电压<第二参考电压。In a possible implementation, when the first control signal is a rising ramp voltage signal, 0V≤second reference voltage≤first threshold, and the third reference voltage>second reference voltage; or, the first control signal is In the case of a falling ramp voltage signal, the second threshold ≤ the second reference voltage ≤ the power supply voltage, and the third reference voltage < the second reference voltage.
第二方面,提供了一种功率转换的方法,应用于功率转换设备中的控制器,所述功率转换设备还包括功率转换电路,所述控制器与所述功率转换电路的功率开关管连接,包括:接收功率转换电路的输出电压反馈信号;向功率开关管发送控制信号,控制信号用于控制功率开关管按照恒定的时间段周期性地导通,控制信号的一个脉冲的上升沿对应的第一时刻,与脉冲的下降沿对应的第二时刻之间的时间段,为功率开关管在一个周期内实际导通的时间;其中,第二时刻在脉冲对应的预设导通时间的结束时刻之后,第一时刻在预设导通时间的开始时刻之后,预设导通时间是根据控制器和功率转换电路的电路参数确定的功率开关管在一个周期内理论上导通的时间。In a second aspect, a power conversion method is provided, which is applied to a controller in a power conversion device, where the power conversion device further includes a power conversion circuit, and the controller is connected to a power switch tube of the power conversion circuit, Including: receiving the output voltage feedback signal of the power conversion circuit; sending a control signal to the power switch tube, the control signal is used to control the power switch tube to conduct periodically according to a constant time period, and the rising edge of a pulse of the control signal corresponds to the first At one moment, the time period between the second moment corresponding to the falling edge of the pulse is the actual conduction time of the power switch tube in one cycle; wherein, the second moment is at the end of the preset conduction time corresponding to the pulse After that, the first moment is after the start moment of the preset conduction time, which is the theoretical conduction time of the power switch tube in one cycle determined according to the circuit parameters of the controller and the power conversion circuit.
第二方面的有益效果可以参照第一方面。The beneficial effect of the second aspect can refer to the first aspect.
上述方案,通过第二时间段对第一时间段进行补偿,可以减少第一时间段对导通时间的影响,从而提升开关频率精度。在一种可能的实现方式中,第一时间段的长度等于第二时间段的长度。从而,由第二时间段补偿后的实际导通时间能够尽可能地接近预设导通时间。In the above solution, the first time period is compensated by the second time period, which can reduce the influence of the first time period on the conduction time, thereby improving the switching frequency accuracy. In a possible implementation manner, the length of the first time period is equal to the length of the second time period. Therefore, the actual conduction time compensated by the second time period can be as close as possible to the preset conduction time.
一种可能的实现方式中,所述第二时刻与所述结束时刻之间的时间段为第一时间段,所述第一时刻与所述开始时刻之间的时间段为第二时间段,第一时间段的长度与第二时间段的长度的差值≤预设值。或者,第二时间段的长度相对于第一时间段的误差≤预设值。In a possible implementation manner, the time period between the second moment and the end moment is a first time period, and the time period between the first moment and the start moment is a second time period, The difference between the length of the first time period and the length of the second time period≤the preset value. Or, the error of the length of the second time period relative to the first time period≤a preset value.
一种可能的实现方式中,方法还包括:将输出电压反馈信号转换为误差信号,并将误差信号转换为第一预控制信号和第二预控制信号,第一预控制信号的脉冲宽度对应的时段等于功率开关管的预设导通时间;将第二预控制信号转换为第一预补偿信号,其中,将第二预控制信号转换为第一预补偿信号的时间为第二时间段;基于第一预控制信号和第一预补偿信号确定控制信号。In a possible implementation manner, the method further includes: converting the output voltage feedback signal into an error signal, and converting the error signal into a first pre-control signal and a second pre-control signal, the pulse width of the first pre-control signal corresponds to The period is equal to the preset conduction time of the power switch tube; the second pre-control signal is converted into the first pre-compensation signal, wherein the time for converting the second pre-control signal into the first pre-compensation signal is the second time period; based on The first pre-control signal and the first pre-compensation signal define a control signal.
一种可能的实现方式中,第二时间段包括第一补偿时间段和第二补偿时间段,方法还包括:基于第二预控制信号和第一参考电压确定第二预补偿信号,其中,第二预补偿信号的上升沿对应的时刻,与第二预控制信号和第一基准信号交越的时刻之间的时间,为第一补偿时间段;将第二预补偿信号转换为第一预补偿信号,将第二预补偿信号转换为第一预补偿信号的时间为第二补偿时间段。In a possible implementation manner, the second time period includes the first compensation time period and the second compensation time period, and the method further includes: determining the second pre-compensation signal based on the second pre-control signal and the first reference voltage, wherein the first The time between the time corresponding to the rising edge of the two pre-compensation signals and the time when the second pre-control signal crosses the first reference signal is the first compensation period; convert the second pre-compensation signal into the first pre-compensation signal, the time for converting the second pre-compensation signal into the first pre-compensation signal is the second compensation time period.
一种可能的实现方式中,第二预控制信号为上升型斜坡电压信号的情况下,0V≤第一参考电压≤第一阈值;或者,第二预控制信号为下降型斜坡电压信号的情况下,第二阈值≤第一参考电压≤供电电压。In a possible implementation, when the second pre-control signal is a rising ramp voltage signal, 0V≤the first reference voltage≤the first threshold; or, when the second pre-control signal is a falling ramp voltage signal , the second threshold ≤ the first reference voltage ≤ the power supply voltage.
一种可能的实现方式中,方法还包括:将输出电压反馈信号转换为第一控制信号,并根据第一控制信号和第二参考电压确定第一时刻,以及根据第一控制信号和第三参考电压确定第二时刻;其中,第二参考电压与第三参考电压不同,第一时刻相对于第一控制信号和第二参考电压交越的时刻延迟第二时间段,第二时刻相对于第一控制信号和第三参考电压交越的时刻延迟第一时间段。In a possible implementation, the method further includes: converting the output voltage feedback signal into a first control signal, determining the first moment according to the first control signal and the second reference voltage, and determining the first moment according to the first control signal and the third reference voltage The voltage determines the second moment; wherein, the second reference voltage is different from the third reference voltage, the first moment is delayed by a second time period relative to the moment when the first control signal crosses the second reference voltage, and the second moment is relative to the first The timing at which the control signal crosses the third reference voltage is delayed by a first period of time.
一种可能的实现方式中,在第一时刻之前,用于与第一控制信号进行比较的参考电压为第二参考电压;在第一时刻之后且第二时刻之前,用于与第一控制信号进行比较的参考电压为第三参考电压。In a possible implementation manner, before the first moment, the reference voltage used for comparison with the first control signal is the second reference voltage; after the first moment and before the second moment, the reference voltage used for comparison with the first control signal The reference voltage for comparison is the third reference voltage.
一种可能的实现方式中,第一控制信号为上升型斜坡电压信号的情况下,0V≤第二参考电压≤第一阈值,第三参考电压>第二参考电压;或者,第一控制信号为下降型斜坡电压信号的情况下,第二阈值≤第二参考电压≤供电电压,第三参考电压<第二参考电压。In a possible implementation, when the first control signal is a rising ramp voltage signal, 0V≤second reference voltage≤first threshold, and the third reference voltage>second reference voltage; or, the first control signal is In the case of a falling ramp voltage signal, the second threshold ≤ the second reference voltage ≤ the power supply voltage, and the third reference voltage < the second reference voltage.
第三方面,提供了一种电源芯片,应用于功率转换设备,所述功率转换设备还包括由功率开关管组成的功率转换电路,电源芯片,用于接收所述功率转换电路的输出电压反馈信号;电源芯片,还用于向所述功率开关管发送导通时间控制信号,所述导通时间控制信号用于控制所述功率开关管在恒定的导通时间内导通,所述导通时间控制信号的脉冲宽度对应的时段为所述功率开关管的导通时间,其中,所述导通时间控制信号的下降沿对应的第一时刻相对于所述功率开关管的设计导通时间的结束时刻延迟第一时间段,所述导通时间控制信号的上升沿对应的第二时刻,相对于所述功率开关管的设计导通时间的开始时刻延迟第二时间段,所述第二时间段用于补偿所述第一时间段。In the third aspect, a power chip is provided, which is applied to a power conversion device, and the power conversion device further includes a power conversion circuit composed of a power switch tube, and a power chip is used to receive an output voltage feedback signal of the power conversion circuit ; The power supply chip is also used to send a turn-on time control signal to the power switch tube, the turn-on time control signal is used to control the power switch tube to be turned on within a constant turn-on time, and the turn-on time The period corresponding to the pulse width of the control signal is the turn-on time of the power switch tube, wherein the first moment corresponding to the falling edge of the turn-on time control signal is relative to the end of the designed turn-on time of the power switch tube The moment is delayed by the first time period, and the second time period corresponding to the rising edge of the conduction time control signal is delayed by the second time period relative to the start time of the design conduction time of the power switch tube, and the second time period used to compensate for the first time period.
附图说明Description of drawings
图1示出了使用的固定脉冲控制的DC-DC转换器的示意性框图。Figure 1 shows a schematic block diagram of a fixed pulse controlled DC-DC converter used.
图2示出了产生固定的时间脉冲控制的芯片电路架构图以及对应的时序图。FIG. 2 shows a circuit architecture diagram of a chip for generating fixed time pulse control and a corresponding timing diagram.
图3示出了本申请提供的功率转换方法100的示意图。FIG. 3 shows a schematic diagram of a power conversion method 100 provided in the present application.
图4是本申请提供的功率转换设备的一例的示意性框图。Fig. 4 is a schematic block diagram of an example of a power conversion device provided by the present application.
图5示出了本申请提供的用于功率转换设备的控制电路1的示意性框图。Fig. 5 shows a schematic block diagram of a
图6示出了本申请提供的用于功率转换设备的控制电路1-1的示意性框图以及对应的时序图。Fig. 6 shows a schematic block diagram of a control circuit 1-1 for a power conversion device provided in the present application and a corresponding timing diagram.
图7示出了本申请提供的用于功率转换设备的控制电路1-2的示意性框图以及对应的时序图。FIG. 7 shows a schematic block diagram of a control circuit 1-2 for a power conversion device provided in the present application and a corresponding timing diagram.
图8示出了本申请提供的用于功率转换设备的控制电路2的示意性框图。FIG. 8 shows a schematic block diagram of a
图9示出了本申请提供的用于功率转换设备的控制电路2-1的示意性框图以及对应的时序图。Fig. 9 shows a schematic block diagram of a control circuit 2-1 for a power conversion device provided in the present application and a corresponding timing diagram.
图10示出了本申请提供的控制电路2-2的示意性框图以及对应的时序图。FIG. 10 shows a schematic block diagram of the control circuit 2-2 provided in the present application and a corresponding timing diagram.
图11示出了本申请提供的控制电路2-1以及控制电路2-2中的时序逻辑模块的一个示例的示意性框图以及对应的时序图。FIG. 11 shows a schematic block diagram and a corresponding timing diagram of an example of the control circuit 2 - 1 and the sequential logic module in the control circuit 2 - 2 provided in the present application.
具体实施方式Detailed ways
DC-DC芯片涉及多种芯片控制技术,其中包括能够用于产生固定的时间脉冲的控制技术,例如,COT控制、恒定关断时间控制等。The DC-DC chip involves a variety of chip control technologies, including control technologies that can be used to generate fixed time pulses, such as COT control, constant off-time control, and so on.
图1示出了使用的固定脉冲控制的DC-DC转换器的示意性框图。图1所示的DC-DC转换器适用于多种不同功率转换拓扑,例如降压(Buck)、升压(Boost)、升压-降压(Buck-Boost)、转换器(Inverter)等不同功率转换拓扑。本申请中以使用COT控制的DC-DC转换器为例进行说明,本申请也适用于恒定关断时间控制和其他利用固定脉冲控制的DC-DC架构。Figure 1 shows a schematic block diagram of a fixed pulse controlled DC-DC converter used. The DC-DC converter shown in Figure 1 is suitable for many different power conversion topologies, such as buck (Buck), boost (Boost), boost-buck (Buck-Boost), converter (Inverter), etc. power conversion topologies. In this application, a DC-DC converter using COT control is taken as an example for illustration, and this application is also applicable to constant off-time control and other DC-DC architectures using fixed pulse control.
如图1所示,恒定导通时间控制开关电源的控制电路中,方框中为恒定导通时间控制电路,方框以外的为功率转换电路。在功率转换电路中,由功率管(功率管上管Q1和功率管下管Q2)作为开关,功率转换电路通过功率管的导通与关断将输入电压VIN转换为输出电压VO以驱动负载(load)。其中,Q1的导通时间为Ton,Iripple为电感电流ILo的纹波,Vripple为输出电压VO的纹波,Vref为芯片内部参考电压,Iload为负载电流,与电容Co串联的为等效串联电阻(equivalent series resistance,ESR)。在恒定导通时间控制电路中,高速比较器的反向输入端接收的反馈为Vripple,正相输入端的电压为Vref。高速比较器输出误差信号。该误差信号与屏蔽时间单元输出的信号一起经过与门后传输给开关逻辑单元。开关逻辑单元还接收来自单触发电路的脉冲信号。开关逻辑单元根据接收到信号确定输出驱动高电平(driving high,DRVH)或驱动低电平(driving low,DRVL)。在开关逻辑单元输出DRVH的情况下,Q1导通,Q2关闭;在开关逻辑单元输出DRVL的情况下,Q2导通,Q1关闭。As shown in Figure 1, in the control circuit of the constant on-time control switching power supply, the constant on-time control circuit is in the box, and the power conversion circuit is outside the box. In the power conversion circuit, the power tube (upper power tube Q1 and power tube lower tube Q2) is used as a switch, and the power conversion circuit converts the input voltage VIN into an output voltage V O to drive the load by turning on and off the power tube (load). Among them, the conduction time of Q1 is T on , I ripple is the ripple of the inductor current I Lo , V ripple is the ripple of the output voltage V O , V ref is the internal reference voltage of the chip, I load is the load current, and the capacitor C oThe series connection is the equivalent series resistance (ESR). In the constant on-time control circuit, the feedback received by the inverting input terminal of the high-speed comparator is V ripple , and the voltage at the non-inverting input terminal is V ref . The high-speed comparator outputs an error signal. The error signal and the signal output by the masking time unit pass through the AND gate and then are transmitted to the switching logic unit. The switching logic unit also receives the pulse signal from the one-shot circuit. The switching logic unit determines whether to output driving high level (driving high, DRVH) or driving low level (driving low, DRVL) according to the received signal. When the switching logic unit outputs DRVH, Q1 is turned on and Q2 is turned off; when the switching logic unit outputs DRVL, Q2 is turned on and Q1 is turned off.
此COT控制技术由固定的Ton,Q1的导通时间为一个周期的起点,该导通时间结束后,则由Vripple纹波大小和内部参考电压Vref的交越,决定Q1的关断时间,完成一个Q1导通、关断的周期。This COT control technology uses a fixed T on , and the on-time of Q1 is the starting point of a cycle. After the on-time is over, the turn-off of Q1 is determined by the crossover of the V ripple and the internal reference voltage V ref Time to complete a cycle of Q1 on and off.
图2示出了产生固定的时间脉冲控制的芯片电路架构图以及对应的时序图。如图2中的(a)所示,功率开关管可以理解为图1中的Q1和Q2。图2中的(a)中除功率开关管以外的单元或模块与图1中方框内的单元或模块对应。具体地,图2中的(a)中的逻辑#1单元与图1中的开关逻辑#1单元对应,由逻辑#1单元输出的脉冲宽度调制(pulse width modulation,PWM)信号驱动功率开关管,由PWM信号控制功率开关管的导通或关闭。图2中的(a)中的误差比较器与图1中的高速比较器对应,误差比较器的反相输入端接收Vripple,正向输入端压为Vref,输出端输出误差信号(ERR)。图2中的(a)中的虚线框中的电路与图1中的单触发电路对应。虚线框中的电路包括反相器、N型金氧半场效晶体管(metal-oxide-semiconductorfield-effect transistor,MOSFET)、电容C、电路的供电电压(voltage commoncollector,VCC)、电流源以及Ton比较器#1。图2中的(b)示出了PWM信号的一个时间脉冲,该时间脉冲的宽度即为PWM信号维持高电位需要的时间,或者可以理解为Ton。其中,该时间脉冲的宽度即为该时间脉冲的上升沿对应的时刻与该时间脉冲的下降沿对应的时刻之间的时间段。FIG. 2 shows a circuit architecture diagram of a chip for generating fixed time pulse control and a corresponding timing diagram. As shown in (a) in FIG. 2 , the power switch can be understood as Q1 and Q2 in FIG. 1 . The units or modules in (a) in FIG. 2 other than the power switch tube correspond to the units or modules in the box in FIG. 1 . Specifically, the
结合图2中的(a)和(b),可以理解的是,电路架构中的误差比较器输出误差信号,误差信号经过逻辑#1单元处理后输出PWM信号。逻辑#1单元还用于产生PWM信号的时间脉冲的上升沿和下降沿。数字电路中,数字电平从低电平(数字“0”)跳变为高电平(数字“1”)的那一瞬间(时刻)叫做上升沿。数字电路中,数字电平从高电平(数字“1”)跳变为低电平(数字“0”)的那一瞬间(时刻)叫做下降沿。其中,逻辑#1单元的处理时延为Td2,从图2中的(b)可以看出,PWM信号的上升沿对应的时刻与ERR信号的上升沿对应的时刻之间相差Td2。一方面,PWM信号用于控制功率开关管的导通或关闭;另一方面,虚线框中的电路接收PWM信号后产生根据固定斜率线性上升或下降的信号,Ton_RAMP。图2中的(a)中的Ton_RAMP以上升型斜坡信号为例进行说明。Ton_RAMP开始上升的时刻也是PWM信号的上升沿对应的时刻。Ton_RAMP与Ton_REF的交越触发虚线框中的电路输出Ton_pulse信号。从虚线框的电路输出Ton_pulse信号的时刻到逻辑#1单元接收到Ton_pulse的时刻之间的延迟为Td2,或者,逻辑#1单元处理Ton_pulse信号的时延为Td2。从图2中的(b)可以看出,Ton_pulse的上升沿对应的时刻与PWM信号的下降沿对应的时刻之间相差Td2。具体的,在虚线框的电路中,需要由Ton比较器#1对于Ton_RAMP与Ton_REF的电位进行比较,确定Ton_RAMP与Ton_REF是否交越。Ton比较器#1的延迟为Td1。从图2中的(b)可以看出,Ton_RAMP与Ton_REF交越的时刻与Ton_pulse的上升沿对应的时刻之间相差Td1。其中,Ton_REF满足以下公式:Combining (a) and (b) in FIG. 2 , it can be understood that the error comparator in the circuit architecture outputs an error signal, and the error signal outputs a PWM signal after being processed by the
Ton_REF=Vref·Duty Cycle(公式1)。其中,Duty Cycle为具体地,在虚线框的电路中,PWM信号经过反相器后生成重置信号。N型金氧半场效晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)与电容C并联,N型MOS管接收重置信号,电容C的电压VC根据固定斜率线性上升。Ton比较器#1的正向输入端的输入信号为Ton_RAMP,Ton_RAMP即为电容C的电压信号,呈现为上升型斜坡信号。电流源提供的电路I=Vref/R,R为电流源的电阻值;图2中的VCC的电压值为VVCC。一种可能的实现方式中,本申请中的VCC可以替换为芯片的工作电压,例如漏极电源电压(drain power voltage,VDD),芯片的工作电压的电压值为VVDD,相应地,本申请中的VVCC可以替换为VVDD。T on_REF = V ref · Duty Cycle (formula 1). Among them, Duty Cycle is Specifically, in the circuit in the dotted line box, the reset signal is generated after the PWM signal passes through the inverter. An N-type metal-oxide-semiconductor field-effect transistor (MOSFET) is connected in parallel with the capacitor C, and the N-type MOS transistor receives the reset signal, and the voltage V C of the capacitor C rises linearly according to a fixed slope. The input signal of the positive input terminal of the T on comparator #1 is T on_RAMP , and T on_RAMP is the voltage signal of the capacitor C, presenting a rising ramp signal. The circuit provided by the current source is I=V ref /R, where R is the resistance value of the current source; the voltage value of VCC in FIG. 2 is V VCC . In a possible implementation manner, VCC in the present application can be replaced by the working voltage of the chip, such as the drain power voltage (drain power voltage, VDD), and the voltage value of the working voltage of the chip is V VDD , correspondingly, the present application V VCC in can be replaced by V VDD .
基于图2所示的电路架构,预设导通时间,即Tideal,满足下列公式:Tideal=R·C·Duty Cycle(公式2)。其中,R为电流源的电阻值,C为产生Ton_RAMP的电容值,R和C均为芯片内部预设的固定值,Duty Cycle为可以理解的是,在设计上述电路架构时,对于设计者来说,该电路架构的电路参数是已知的。电路参数包括但不限于电阻、电容、电感、VIN、VO。如公式2所示,预设导通时间可以根据R、C、以及VIN、VO计算获得。预设导通时间可以理解为电路处于理想状态下(例如不存在时延)PWM信号的维持为高电位的时间。另外,PWM信号的一个或多个脉冲对应的预设导通时间的开始时刻和结束时刻也可以通过计算或仿真获得。Based on the circuit architecture shown in FIG. 2 , the preset on-time, ie T ideal , satisfies the following formula: T ideal =R·C·Duty Cycle (Formula 2). Among them, R is the resistance value of the current source, C is the capacitance value that generates T on_RAMP , both R and C are preset fixed values inside the chip, and Duty Cycle is It can be understood that, when designing the above circuit architecture, the circuit parameters of the circuit architecture are known to the designer. Circuit parameters include but not limited to resistance, capacitance, inductance, V IN , V O . As shown in
在上述电路架构中,导通时间,即Ton,满足下列公式:Ton=R·C·Duty Cycle+Td1+Td2(公式3)。其中,R为电流源的电阻值,C为产生Ton_RAMP的电容值,R和C均为芯片内部预设的固定值,Duty Cycle为所以根据VO和VIN发送变化,Ton的值也会随之变化。导通时间可以理解为具体实现中PWM信号的维持为高电位的时间。In the above circuit architecture, the on-time, ie T on , satisfies the following formula: T on =R·C·Duty Cycle+Td1+Td2 (Formula 3). Among them, R is the resistance value of the current source, C is the capacitance value that generates T on_RAMP , both R and C are preset fixed values inside the chip, and Duty Cycle is So according to V O and V IN changes, the value of T on will also change accordingly. The conduction time can be understood as the time during which the PWM signal is maintained at a high potential in a specific implementation.
结合公式2和公式3可知,导通时间受延迟时间Td1和Td2的影响,会比预设导通时间更长,从而导致DC-DC的开关频率精度降低。另外,开关频率精度还随温度、工艺等变化。开关频率精度过低很可能造成DC-DC产品的纹波过大、效率和热表现波动大、或对电源后级(对频率精度敏感的)负载电路产生负面影响。Combining
有鉴于此,本申请提供的功率转换的方法和装置,能够提高开关频率精度。In view of this, the method and device for power conversion provided by the present application can improve switching frequency accuracy.
图3示出了本申请提供的功率转换方法100的示意图。该方法可应用于功率转换设备,该功率转换设备包括控制器与功率转换电路,具体的,控制器与功率转换电路的功率开关管连接。一种可能的实现方式中,这里的功率转换设备可以理解为DC-DC转换器。FIG. 3 shows a schematic diagram of a power conversion method 100 provided in the present application. The method can be applied to power conversion equipment, and the power conversion equipment includes a controller and a power conversion circuit, specifically, the controller is connected to a power switch tube of the power conversion circuit. In a possible implementation manner, the power conversion device here can be understood as a DC-DC converter.
S101,功率转换电路向控制器发送输出电压反馈信号,相应的,控制器接收来自功率转换电路的输出电压反馈信号。S101, the power conversion circuit sends an output voltage feedback signal to the controller, and correspondingly, the controller receives the output voltage feedback signal from the power conversion circuit.
一种可能的实现方式中,输出电压反馈信号可以理解为上文涉及的Vripple。In a possible implementation manner, the output voltage feedback signal can be understood as V ripple mentioned above.
S102,控制器向功率开关管发送控制信号,相应的,功率开关管接收来自控制器的控制信号。S102, the controller sends a control signal to the power switch tube, and correspondingly, the power switch tube receives the control signal from the controller.
其中,控制信号用于控制功率开关管按照恒定的时间段周期性地导通。控制信号的一个脉冲的上升沿对应的第一时刻,与该脉冲的下降沿对应的第二时刻之间的时间段,为功率开关管在一个周期内实际导通的时间。其中,第二时刻在脉冲对应的预设导通时间的结束时刻之后,第一时刻在预设导通时间的开始时刻之后,预设导通时间是根据控制器和功率转换电路的电路参数确定的功率开关管在一个周期内理论上导通的时间。例如预设导通时间的确定方式可以参见公式2。第二时刻和预设导通时间的结束时刻之间的时间段可以称为第一时间段。一种可能的实现方式中,第二时刻可以理解为图2中的(b)中PWM信号的下降沿对应的时刻。第一时间段可以理解为图2中的(b)中的Td1和Td2。第一时刻在预设导通时间的开始时刻之后。可以理解的是,该第一时刻与图2中的(b)中的PWM信号的上升沿对应的时刻不同。具体的,图2中的(b)中的PWM信号的上升沿对应的时刻与预设导通时间的开始时刻相同,该情况下功率开关管的导通时间(下面为了方便说明,称为导通时间#1)长于预设导通时间。而第一时刻在预设导通时间的开始时刻之后,该情况下功率开关管的导通时间(即上述实际导通的时间,下面为了方便说明,称为导通时间#2)短于导通时间#1,并且能够减少第一时间段对于功率开关管的实际导通的时间的影响,从而提高开关频率精度。第一时刻与预设导通时间的开始时刻之间的时间段可以称为第二时间段。换句话说,第二时间段能够部分或完全弥补第一时间段对实际导通的时间的影响。Wherein, the control signal is used to control the power switch to conduct periodically according to a constant time period. The time period between the first moment corresponding to the rising edge of a pulse of the control signal and the second moment corresponding to the falling edge of the pulse is the actual turn-on time of the power switch tube in one cycle. Wherein, the second moment is after the end moment of the preset conduction time corresponding to the pulse, and the first moment is after the start moment of the preset conduction time, and the preset conduction time is determined according to the circuit parameters of the controller and the power conversion circuit The theoretical conduction time of the power switch tube in one cycle. For example, reference may be made to
在一种可能的实现方式中,第一时间段的长度与第二时间段的长度的差值≤预设值。例如预设值为5ms,第二时间段=第一时间段±5ms,或者预设值还可以是其他具体的值,本申请对此不做限定。另一种可能的实现方式中,第二时间段的长度相对于第一时间段的误差≤预设值。这里的误差可以理解为相对误差,例如预设值为5%,第二时间段与第一时间段的绝对误差占第一时间段的比例≤5%,或者预设值还可以是其他具体的值,本申请对此不做限定。通过限制第一时间段的长度和第二时间段的长度的大小关系,能够使得第一时间段和第二时间的长度更加接近,使得功率开关管实际导通的时间的长度进一步接近预设导通时间的长度,进一步减少第二时刻在预设导通时间的结束时刻之后对实际导通的时间的长度的影响,从而进一步提升开关频率精度。In a possible implementation manner, the difference between the length of the first time period and the length of the second time period is ≤ a preset value. For example, the preset value is 5ms, and the second time period=the first time period±5ms, or the preset value can also be other specific values, which are not limited in this application. In another possible implementation manner, the error of the length of the second time period relative to the first time period is ≤ a preset value. The error here can be understood as a relative error, for example, the preset value is 5%, the ratio of the absolute error between the second time period and the first time period to the first time period is ≤5%, or the preset value can also be other specific value, which is not limited in this application. By limiting the size relationship between the length of the first time period and the length of the second time period, the lengths of the first time period and the second time can be made closer, so that the length of the actual conduction time of the power switch tube is further closer to the preset conduction time. The length of the on-time further reduces the influence of the second moment on the length of the actual on-time after the end of the preset on-time, thereby further improving the accuracy of the switching frequency.
下面针对方法100给出两种可能的实现方式。Two possible implementations of the method 100 are given below.
实现方式一:Implementation method one:
步骤a1,控制器将输出电压反馈信号转换为误差信号,并将误差信号转换为第一预控制信号和第二预控制信号,第一预控制信号的上升沿对应的时刻与所述预设导通时间的开始时刻相同。Step a1, the controller converts the output voltage feedback signal into an error signal, and converts the error signal into a first pre-control signal and a second pre-control signal, and the time corresponding to the rising edge of the first pre-control signal is the same as the preset lead The start time of the pass time is the same.
步骤a2,控制器将第二预控制信号转换为第一预补偿信号。Step a2, the controller converts the second pre-control signal into the first pre-compensation signal.
其中,将第二预控制信号转换为第一预补偿信号所花费的时间为第二时间段。Wherein, the time spent converting the second pre-control signal into the first pre-compensation signal is the second time period.
步骤a3,控制器基于第一预控制信号和第一预补偿信号确定第一时刻。Step a3, the controller determines the first moment based on the first pre-control signal and the first pre-compensation signal.
可以理解的是,控制器先获取第二预控制信号,并在第二时间段后获取第一预补偿信号,随后基于第一预控制信号和第一预补偿信号确定第一时刻。具体的,第一时刻即为相对于第一预控制信号的上升沿对应的时刻延迟第二时间段的时刻。It can be understood that the controller acquires the second pre-control signal first, and acquires the first pre-compensation signal after a second time period, and then determines the first moment based on the first pre-control signal and the first pre-compensation signal. Specifically, the first moment is a moment delayed by a second time period relative to the moment corresponding to the rising edge of the first pre-control signal.
一种可能的实现方式中,第二时间段包括第一补偿时间段和第二补偿时间段,步骤a3可以按照如下步骤实施。In a possible implementation manner, the second time period includes the first compensation time period and the second compensation time period, and step a3 may be implemented according to the following steps.
步骤a3-1,控制器基于第二预控制信号和第一参考电压确定第二预补偿信号。Step a3-1, the controller determines the second pre-compensation signal based on the second pre-control signal and the first reference voltage.
其中,第二预补偿信号的上升沿对应的时刻,与第二预控制信号和第一基准信号交越的时刻之间的时间,为第一补偿时间段。Wherein, the time between the moment corresponding to the rising edge of the second pre-compensation signal and the moment when the second pre-control signal crosses the first reference signal is the first compensation time period.
步骤a3-2,控制器将第二预补偿信号转换为第一预补偿信号,将第二预补偿信号转换为第一预补偿信号所花费的时间为第二补偿时间段。In step a3-2, the controller converts the second pre-compensation signal into the first pre-compensation signal, and the time taken to convert the second pre-compensation signal into the first pre-compensation signal is the second compensation time period.
在该种可能的实现方式中,第二预控制信号为上升型斜坡电压信号的情况下,0V≤第一参考电压≤第一阈值(条件1)。例如,这里的第一阈值可以是一个接近0V的参考电压。可选地,0<第一参考电压≤第一阈值。例如,第一参考电压可以是0.01V或0.02V或0.015V等,或者还可以是其他满足条件1的电压值。或者,第二预控制信号为下降型斜坡电压信号的情况下,第二阈值≤第一参考电压≤供电电压(条件2)。可选地,第二阈值≤第一参考电压<供电电压。例如,第一参考电压可以是供电电压-0.01V或供电电压-0.02V或供电电压-0.015V等,或者还可以是其他满足条件2的电压值。In this possible implementation manner, when the second pre-control signal is a rising ramp voltage signal, 0V≤the first reference voltage≤the first threshold (condition 1). For example, the first threshold here can be a reference voltage close to 0V. Optionally, 0<the first reference voltage≤the first threshold. For example, the first reference voltage may be 0.01V, 0.02V, or 0.015V, etc., or other voltage
实现方式二:Implementation method two:
步骤b1,控制器将输出电压反馈信号转换为第一控制信号,并根据第一控制信号和第二参考电压确定第一时刻,以及根据第一控制信号和第三参考电压确定第二时刻。In step b1, the controller converts the output voltage feedback signal into a first control signal, and determines the first moment according to the first control signal and the second reference voltage, and determines the second moment according to the first control signal and the third reference voltage.
其中,第二参考电压与第三参考电压不同。第一时刻相对于第一控制信号和第二参考电压交越的时刻延迟第二时间段。第二时刻相对于第一控制信号和第三参考电压交越的时刻延迟第一时间段。Wherein, the second reference voltage is different from the third reference voltage. The first instant is delayed by a second time period relative to the instant at which the first control signal crosses the second reference voltage. The second instant is delayed by a first period of time relative to the instant at which the first control signal crosses the third reference voltage.
一种可能的实现方式中,在第一时刻之前,用于与第一控制信号进行比较的参考电压为第二参考电压。在第一时刻之后且第二时刻之前,用于与第一控制信号进行比较的参考电压为第三参考电压。例如,由控制器控制参考电压的切换。In a possible implementation manner, before the first moment, the reference voltage used for comparison with the first control signal is the second reference voltage. After the first moment and before the second moment, the reference voltage used for comparison with the first control signal is the third reference voltage. For example, the switching of the reference voltage is controlled by the controller.
在该种可能的实现方式中,第一控制信号为上升型斜坡电压信号的情况下,0V≤第二参考电压≤第一阈值,第三参考电压>第二参考电压。或者,第一控制信号为下降型斜坡电压信号的情况下,第二阈值≤第二参考电压≤供电电压,第三参考电压<第二参考电压。其中,第一阈值和第二阈值的说明可以参见实现方式一中的描述。In this possible implementation manner, when the first control signal is a rising ramp voltage signal, 0V≤second reference voltage≤first threshold, and third reference voltage>second reference voltage. Alternatively, when the first control signal is a falling ramp voltage signal, the second threshold ≤ the second reference voltage ≤ the power supply voltage, and the third reference voltage < the second reference voltage. For descriptions of the first threshold and the second threshold, reference may be made to the description in
图4是本申请提供的功率转换设备的一例的示意性框图。如图10所示,功率转换设备包括控制器和功率转换电路。这里的控制器可以用于执行上文介绍的方法100。Fig. 4 is a schematic block diagram of an example of a power conversion device provided by the present application. As shown in FIG. 10 , the power conversion device includes a controller and a power conversion circuit. The controller here can be used to execute the method 100 introduced above.
示例性地,该功率转换设备可以是应用于消费类、移动载体、信息与通信技术等不同领域的产品。例如移动载体可以为车辆,该车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。再如,移动载体可以为飞机、或轮船等交通工具。Exemplarily, the power conversion device may be a product applied in different fields such as consumption, mobile carrier, information and communication technology, and the like. For example, the mobile carrier can be a vehicle, which is a vehicle in a broad sense, and can be a means of transportation (such as commercial vehicles, passenger cars, motorcycles, flying cars, trains, etc.), industrial vehicles (such as: forklifts, trailers, tractors, etc.) etc.), engineering vehicles (such as excavators, bulldozers, cranes, etc.), agricultural equipment (such as lawn mowers, harvesters, etc.), amusement equipment, toy vehicles, etc., the embodiment of the present application does not specifically limit the type of vehicles. For another example, the mobile carrier may be a vehicle such as an airplane or a ship.
示例性地,可以由电源芯片执行上文介绍的方法100。可选地,该电源芯片可以是未经封装的电源芯片裸晶。示例性地,这里的电源芯片还可以替换为电源封装模块,或者电源管理单元。Exemplarily, the method 100 introduced above can be executed by a power chip. Optionally, the power chip may be an unpackaged power chip die. Exemplarily, the power chip here can also be replaced by a power packaging module, or a power management unit.
下面分别针对上述实现方式一和实现方式二给出上述控制器对应的控制电路的可能的示例。具体地,图5至图7与实现方式一对应,图8至图10与实现方式二对应。Possible examples of control circuits corresponding to the above-mentioned controllers are given below for the above-mentioned
图5示出了本申请提供的用于功率转换设备的控制电路1的示意性框图。如图5所示,控制电路1与功率转换电路连接。控制电路1主要包括补偿单元11。补偿单元11,用于接收功率转换电路的输出电压反馈信号。补偿单元11的输出端与功率转换电路的功率开关管连接,用于向功率开关管发送控制信号。其中,控制信号用于控制功率开关管在恒定的导通时间内导通,控制信号的脉冲宽度对应的时段为功率开关管的导通时间#2。功率开关管的导通时间包括第一时间段Td,具体的,所述控制信号的下降沿对应的第二时刻#1相对于所述功率开关管的预设导通时间的结束时刻延迟第一时间段。例如,这里的第一时间段可以理解为上述Td1和Td2。补偿单元11,还用于根据输出电压反馈信号得到第二时间段Tc,第二时间段Tc用于补偿第一时间段Td。具体地,将控制信号的上升沿对应的第一时刻#1往后推迟Tc。换句话说,补偿单元发送的控制信号的上升沿对应的第一时刻#1,在预设导通时间的开始时刻之后,且第一时刻#1与预设导通时间的开始时刻之间相差的时间长度等于第二时间段Tc。Fig. 5 shows a schematic block diagram of a
从而,Ton=Tideal+Td-Tc。其中,Ton为导通时间#2,Tideal为设计的导通时间或预设导通时间。Thus, T on = T ideal + Td - Tc. Wherein, T on is the on-
上述方案,通过第二时间段对第一时间段的部分或全部进行抵消,可以减少第一时间段对实际导通的时间的影响,从而提升开关频率精度。在一种可能的实现方式中,第二时间段的长度等于第一时间段的长度,即Tc=Td。从而,导通时间#2的长度能够尽可能的接近设计的导通时间(或者说预设导通时间)的长度。In the above solution, by offsetting part or all of the first time period by the second time period, the influence of the first time period on the actual conduction time can be reduced, thereby improving the accuracy of the switching frequency. In a possible implementation manner, the length of the second time period is equal to the length of the first time period, that is, Tc=Td. Therefore, the length of the on-
一种可能的实现方式中,补偿单元11包括预控制单元111、预补偿单元112和时序逻辑单元113。本申请涉及的时序逻辑单元可以是利用时序逻辑电路,实现时序相关的逻辑功能的逻辑单元,如复位-置位(set-reset,S-R)触发器(latch)、D型触发器、单触发电路等。In a possible implementation manner, the compensation unit 11 includes a
其中,预控制单元111,用于接收误差信号,以及向时序逻辑单元113发送第一预控制信号,向预补偿单元112发送第二预控制信号。其中,误差信号是根据输出电压反馈信号得到的。例如,补偿单元11还包括误差处理模块,误差处理模块从功率转换电路接收输出电压反馈信号,向预控制单元111发送误差信号。第一预控制信号为补偿前的控制信号,例如可以理解为图2中涉及的PWM信号。Wherein, the
预补偿单元112,用于接收第二预控制信号,并处理第二预控制信号得到第一预补偿信号,以及向时序逻辑单元113发送第一预补偿信号。其中,预补偿单元112处理第二预控制信号的时间为第二时间段,第一预控制信号的上升沿对应的时刻与预设导通时间的开始时刻相同。The
可选地,第二时间段Tc包括第一补偿时间段Tc1和第二补偿时间段Tc2。预补偿单元112包括第一预补偿模块1121和第二预补偿模块1122。第一预补偿模块1121,用于接收第二预控制信号,并在第二预控制信号和第一参考电压交越后,向第二预补偿模块1122发送第二预补偿信号。其中,第一预补偿模块1121发送第二预补偿信号的时刻,与第二预控制信号和第一基准信号交越的时刻之间的时间,为第一补偿时间段Tc1。第二预补偿模块1122,用于处理第二预补偿信号得到第一预补偿信号,第二预补偿模块处理第二预补偿信号的时间为第二补偿时间段Tc2。可选地,Td1=Tc1,Td2=Tc2。Optionally, the second time period Tc includes a first compensation time period Tc1 and a second compensation time period Tc2. The
从而,Ton=Tideal+Td1+Td2-Tc1-Tc2。其中,Ton为导通时间#2,Tideal为设计的导通时间或预设导通时间。Thus, T on = T ideal + Td1 + Td2 - Tc1 - Tc2. Wherein, T on is the on-
时序逻辑单元113,用于接收第一预控制信号,以及在第二时间段之后接收第一预补偿信号,并向所述功率开关管发送控制信号。时序逻辑单元113还根据第一预控制信号的上升沿对应的时刻和第二时间段得到控制信号的上升沿对应的时刻。时序逻辑单元的输出端与功率转换电路连接。The
下面分别结合图6和图7,给出图5的两种可能的具体示例。其中,图6中以第二预控制信号为上升型斜坡信号为例进行说明,图7中以第二预控制信号为下降型斜坡信号为例进行说明。Two possible specific examples of FIG. 5 are given below with reference to FIG. 6 and FIG. 7 respectively. Wherein, FIG. 6 takes the second pre-control signal as an example of a rising ramp signal for illustration, and FIG. 7 takes the second pre-control signal as an example of a falling ramp signal for illustration.
图6示出了本申请提供的用于功率转换设备的控制电路1-1的示意性框图以及对应的时序图。如图6中的(a)所示,用于功率转换设备的控制电路1-1可以理解为时延补偿单元1的一个具体示例。其中,在用于功率转换设备的控制电路1-1中,用于功率转换设备的控制电路1中的时序逻辑单元113以S-R锁存器为例进行说明,用于功率转换设备的控制电路1中的预控制单元111以虚线框中的电路为例进行说明,用于功率转换设备的控制电路1中的预补偿单元112以Ton比较器#2和逻辑#2单元为例进行说明。具体地,用于功率转换设备的控制电路1中第一预补偿单元1121和第二预补偿单元1122分别以Ton比较器#2和逻辑#2单元为例进行说明。另外,用于功率转换设备的控制电路1中的误差处理单元以误差比较器进行说明。如图6中的(b)所示,ERR、PWMold、Ton_pulse、Ton_REF#1和Ton_RAMP等信号分别可以参见图2对应的说明中对于ERR、PWM、Ton_pulse、Ton_REF和Ton_RAMP等信号的描述。Fig. 6 shows a schematic block diagram of a control circuit 1-1 for a power conversion device provided in the present application and a corresponding timing diagram. As shown in (a) of FIG. 6 , the control circuit 1 - 1 for the power conversion device can be understood as a specific example of the
如图6中的(a)所示,在用于功率转换设备的控制电路1-1中,除S-R锁存器、Ton比较器#2和逻辑#2单元以外的单元或模块,均可以参见图2所示的固定的时间脉冲控制的芯片电路的相关描述。下面主要针对Ton比较器#2、逻辑#2单元和S-R锁存器进行详细介绍。As shown in (a) in Fig. 6, in the control circuit 1-1 for power conversion equipment, the units or modules except the SR latch, the T on comparator #2 and the
Ton比较器#2和Ton比较器#1使用同样的电路和版图设计,从而这两个比较器能够产生相互匹配的延迟时间。Ton比较器#2的延迟时间为Tc1,Ton比较器#1的延迟时间为Td1,Td1=Tc1。Ton比较器#2和Ton比较器#1的正相输入端均输入Ton_RAMP,Ton比较器#2的阈值和Ton比较器#1的阈值不同,即Ton比较器#2和Ton比较器#1的反相输入端的电压不同。具体地,Ton比较器#1的阈值,即输入反向输入端的Ton_REF#1根据公式3确定。而Ton比较器#2的阈值,即输入反向输入端的第一参考电压(即,Ton_REF#2)满足:0≤第一参考电压≤第一阈值(条件1)。一种可能的实现方式中,这里的第一阈值可以小于或等于Ton_REF#1。例如,第一参考电压可以是小于或等于Ton_REF#1的电压。另一种可能的实现方式中,第一参考电压可以是一个接近0V的参考电压。可选地,0<第一参考电压≤第一阈值。可以理解的是,Ton比较器#2在实际使用中可能存在偏移,第一参考电压>0V能够避免由于偏移导致Ton比较器#2不能准确的确定Ton_RAMP与Ton_REF#2交越的时刻,换句话说,第一参考电压>0V能够提高Ton比较器#2确定Ton_RAMP与Ton_REF#2交越的时刻的准确度。例如,第一参考电压可以是0.01V或0.02V或0.015V等,或者还可以是其他满足条件1的电压值。T on comparator #2 and T on comparator #1 use the same circuit and layout design, so that the two comparators can generate delay times that match each other. The delay time of the T on comparator #2 is Tc1, the delay time of the T on comparator #1 is Td1, and Td1=Tc1. Both the positive phase inputs of T on comparator #2 and T on comparator #1 input T on_RAMP , the threshold of T on comparator #2 is different from the threshold of T on comparator #1, that is, T on comparator #2 and T on The voltage at the inverting input of
逻辑#2单元和逻辑#1单元使用同样的电路和版图设计,从而两个逻辑单元能够产生相互匹配的延迟时间。逻辑#2单元的延迟时间为Tc2,逻辑#1单元的延迟时间为Td2,Tc2=Td2。
S-R锁存器接收来自逻辑#1单元的重置输入(reset input)信号,以及来自逻辑#2单元的设置输入(set input)信号,并根据reset input信号和set input信号确定输出的PWMnew的时间脉冲。S-R锁存器的时序的功能表如表1所示,S-R锁存器Reset input和Setinput的不同的输入时序,决定输出为0或1。下面详细介绍表1。表1中重置闩(reset bar,RB)相较于设置闩(set bar,SB)的优先级更高。例如表1中的第二行和第三行,RB为低位reset或者为低电位,或者说RB输入为0,则S-R锁存器的Q端输出(output)为0。表1中第四行,RB为高电位,SB为低位set或者低电位,则S-R锁存器的Q端输出为1。表1的第五行,RB和SB输入均为高电位,Q端输出保持前一个状态(previous state)。The SR latch receives the reset input (reset input) signal from the
表1Table 1
可以理解的是,S-R锁存器并不仅仅根据RB输入的时间脉冲确定PWMnew的上升沿,而是在结合RB和SB输入的信号确定PWMnew信号的上升沿。RB输入的信号是逻辑#1单元输出的PWMold信号。SB输入的信号是由包括Ton比较器#2和逻辑#2单元的预补偿单元11接收PWMold信号之后,由逻辑#2单元输出的信号。由于Ton比较器#2和逻辑#2单元的延迟时间为Tc1和Tc2,由逻辑#2单元输出的信号相比于PWMold信号延迟的时间为Tc1+Tc2。可以理解的是,Ton比较器#2和逻辑#2单元决定PWMnew信号的上升沿。如图6中的(b)所示,PWMnew信号的上升沿对应的时刻在Ton_RAMP与Ton_REF#2交越的时刻之后,且这两个时刻相差Tc1+Tc2。It can be understood that the SR latch does not only determine the rising edge of PWM new according to the time pulse input by RB, but determines the rising edge of PWM new signal by combining the signals input by RB and SB. The signal input by RB is the PWM old signal output by
还可以理解的是,Ton_RAMP与Ton_REF#2的交越触发PWMnew信号的下降沿,换句话说,Ton比较器#1和逻辑#1单元决定PWMnew信号的下降沿。Ton比较器#1和逻辑#1单元的处理时延为Td1+Td2。It can also be understood that the crossing of T on_RAMP and T on_REF#2 triggers the falling edge of the PWM new signal, in other words, the T on comparator #1 and
从而,Tc1+Tc2用于抵消Td1+Td2中的部分或全部时间,能够使得PWMnew对应的Ton_new的长度尽可能地接近预设导通时间Tideal的长度。具体地,藉由Ton比较器#1和Ton比较器#2的延迟时间匹配,则可以消除Ton比较器#1延迟造成的影响。藉逻辑#1单元和逻辑#2单元的延迟时间匹配,则可以消除逻辑#1单元延迟造成的影响。Therefore, Tc1+Tc2 is used to offset part or all of the time in Td1+Td2, so that the length of T on_new corresponding to PWM new can be as close as possible to the length of the preset on-time T ideal . Specifically, by matching the delay times of the T on comparator #1 and the T on comparator #2, the influence caused by the delay of the T on comparator #1 can be eliminated. By matching the delay times of the
另外,由于逻辑#2单元和逻辑#1单元使用相同的电路和版图设计,Ton比较器#2和Ton比较器#1使用同样的电路和版图设计,从而使得用于功率转换设备的控制电路的补偿效果具有高度的一致性,不会随着电压、温度或工艺等影响而波动。并且,本申请提供的时延补偿单元也没有引入额外的工程手段(例如调成内部参数值,例如电阻值、电容值或电压值等)或电路(例如锁频环路等),设计复杂度和电路处理复杂度更低。In addition, since the
图7示出了本申请提供的用于功率转换设备的控制电路1-2的示意性框图以及对应的时序图。如图7中的(a)所示,用于功率转换设备的控制电路1-2可以理解为时延补偿单元1的一个具体示例。其中,在时延补偿单元1-2中,用于功率转换设备的控制电路1中的时序逻辑单元以S-R锁存器为例进行说明,用于功率转换设备的控制电路1中的预控制单元以图7的虚线框中的电路为例进行说明,用于功率转换设备的控制电路1中的预补偿单元以Ton比较器#2和逻辑#2单元为例进行说明。具体地,用于功率转换设备的控制电路1中第一预补偿单元和第二预补偿单元分别以Ton比较器#2和逻辑#2单元为例进行说明。另外,用于功率转换设备的控制电路1中的误差处理单元以误差比较器进行说明。如图7中的(b)所示,ERR、PWMold、Ton_pulse、Ton_REF#1和Ton_RAMP等信号分别可以参见图2对应的说明中对于ERR、PWM、Ton_pulse、Ton_REF和Ton_RAMP等信号的描述。FIG. 7 shows a schematic block diagram of a control circuit 1-2 for a power conversion device provided in the present application and a corresponding timing diagram. As shown in (a) of FIG. 7 , the control circuit 1 - 2 for the power conversion device can be understood as a specific example of the
用于功率转换设备的控制电路1-2与用于功率转换设备的控制电路1-1的区别在于:The difference between the control circuit 1-2 for power conversion equipment and the control circuit 1-1 for power conversion equipment is:
用于功率转换设备的控制电路1-1中,Ton_RAMP为低电位到高电位的上升型斜坡信号,Ton_RAMP的电压值=VC,从而Ton_RAMP的电压初始值为0V。用于功率转换设备的控制电路1-2中,Ton_RAMP为高电位到低电位的下降型斜坡信号,Ton_RAMP的电压值=VVCC–VC,从而Ton_RAMP的电压初始值为VVCC。In the control circuit 1-1 for power conversion equipment, T on_RAMP is a rising ramp signal from low potential to high potential, and the voltage value of T on_RAMP =V C , so the initial value of the voltage of T on_RAMP is 0V. In the control circuit 1-2 for power conversion equipment, T on_RAMP is a falling ramp signal from high potential to low potential, and the voltage value of T on_RAMP =V VCC −V C , so the initial value of the voltage of T on_RAMP is V VCC .
用于功率转换设备的控制电路1-1中,电容C和N型MOS管接地,电流源连接到VCC;用于功率转换设备的控制电路1-2中,电容C和N型MOS管连接到VCC,电流源接地。In the control circuit 1-1 for power conversion equipment, the capacitor C and the N-type MOS tube are grounded, and the current source is connected to VCC; in the control circuit 1-2 for the power conversion device, the capacitor C and the N-type MOS tube are connected to VCC, current source ground.
用于功率转换设备的控制电路1-2相比于用于功率转换设备的控制电路1-1,修改了Ton比较器#1的极性。用于功率转换设备的控制电路1-2中,Ton比较器#1的反相输入端用于接收Ton_RAMP,正相输入端的电压为Ton_REF#1。Ton_REF#1可以根据公式3确定。The control circuit 1-2 for the power conversion device modifies the polarity of the T on comparator #1 compared to the control circuit 1-1 for the power conversion device. In the control circuit 1-2 for power conversion equipment, the inverting input terminal of the T on comparator #1 is used to receive T on_RAMP , and the voltage of the non-inverting input terminal is T on_REF#1 . T on_REF#1 can be determined according to
用于功率转换设备的控制电路1-2相比于用于功率转换设备的控制电路1-1,修改了Ton比较器#2的极性。用于功率转换设备的控制电路1-2中,Ton比较器#2的反相输入端用于接收Ton_RAMP,正相输入端的电压为第一参考电压Ton_REF#2,Ton_REF#2满足:第二阈值≤Ton_REF#2≤VVCC(条件2)。一种可能的实现方式中,这里的第二阈值可以大于或等于Ton_REF#1。例如,第一参考电压可以是大于或等于Ton_REF#1的电压。另一种可能的实现方式中,Ton_REF#2可以是一个接近VVCC的参考电压。可选地,第二阈值≤Ton_REF#2<VVCC。可以理解的是,Ton比较器#2在实际使用中可能存在偏移,第一参考电压<VVCC能够避免由于偏移导致Ton比较器#2不能准确的确定Ton_RAMP与Ton_REF#2交越的时刻,换句话说,第一参考电压<VVCC能够提高Ton比较器#2确定Ton_RAMP与Ton_REF#2交越的时刻的准确度。例如,第一参考电压可以是VVCC-0.01V或VVCC-0.02V或VVCC-0.015V等,或者还可以是其他满足条件2的电压值。The control circuit 1-2 for the power conversion device modifies the polarity of the T on comparator #2 compared to the control circuit 1-1 for the power conversion device. In the control circuit 1-2 for power conversion equipment, the inverting input terminal of the T on comparator #2 is used to receive T on_RAMP , the voltage of the non-inverting input terminal is the first reference voltage T on_REF#2 , T on_REF#2 satisfies : Second threshold ≤T on_REF#2 ≤V VCC (condition 2). In a possible implementation manner, the second threshold here may be greater than or equal to T on_REF#1 . For example, the first reference voltage may be a voltage greater than or equal to T on_REF#1 . In another possible implementation, T on_REF#2 can be a reference voltage close to V VCC . Optionally, the second threshold ≦T on_REF#2 <V VCC . It can be understood that the T on comparator #2 may have an offset in actual use, and the first reference voltage <V VCC can prevent the T on comparator #2 from being unable to accurately determine T on_RAMP and T on_REF#2 due to the offset The timing of the crossover, in other words, the first reference voltage < V VCC can improve the accuracy of the T on comparator #2 in determining the timing of the crossover of T on_RAMP and T on_REF #2 . For example, the first reference voltage may be V VCC -0.01V or V VCC -0.02V or V VCC -0.015V, etc., or may be other voltage
图8示出了本申请提供的用于功率转换设备的控制电路2的示意性框图。如图8所示,控制电路2与功率转换电路连接。控制电路2主要包括控制单元21。控制单元21,用于接收功率转换电路的输出电压反馈信号。控制单元21,与功率转换电路的功率开关管连接,还用于向功率开关管发送控制信号。其中,控制信号用于控制功率开关管在恒定的导通时间内导通,控制信号的脉冲宽度对应的时段为功率开关管的导通时间。控制单元21,还用于根据输出电压反馈信号确定控制信号的上升沿对应的第一时刻#2以及控制信号的下降沿对应的第二时刻#2。其中,控制单元21确定第二时刻#2时产生的第一时间段的长度,与控制单元21确定第一时刻#2时产生的第二时间段的长度相等。可以理解的是,这里的第二时间段可以理解为控制单元21确定控制信号的上升沿时需要的处理时间。这里的第一时间段可以理解为控制单元21确定控制信号的下降沿时需要的处理时间。由于同一个控制单元21的处理时间是固定的,因此第一时间段=第二时间段。FIG. 8 shows a schematic block diagram of a
从而,Ton=Tideal。其中,Ton为导通时间#2,Tideal为设计的导通时间或预设导通时间。或者,这里的“=”可以替换为“≈”。Therefore, T on =T ideal . Wherein, T on is the on-
上述方案,通过同一个控制单元21确定控制信号的上升沿对应的第一时刻#2和下降沿对应的第二时刻#2,使得确定第一时刻#2和确定第二时刻#2时产生的延迟时间相同。从而,导通时间的长度能够尽可能的接近设计的导通时间(或者说预设导通时间)的长度,从而能够避免导通时间过长而导致开关频率精度降低的情况。In the above solution, the
控制单元21,用于根据输出电压反馈信号得到第一控制信号。具体地,控制单元21,用于在第一控制信号与第二参考电压交越后经过第二时间段,得到第一时刻#2。示例性地,第二时间段包括第一延迟时间段和第二延迟时间段。控制单元21包括第一控制模块211和第二控制模块212。第一控制模块211,用于根据输出电压反馈信号得到第一控制信号,并根据第一控制信号发送第二控制信号。具体的,在第一控制信号和第二参考电压交越的时刻后经过第一延迟时间段的时刻为第二控制信号的第i个脉冲的上升沿对应的时刻,i≥1且i为整数。可以理解的是,第一延迟时间段为第一控制模块211确定第一控制信号和第二参考电压交越所需的时间。第二控制模块212,用于接收第二控制信号,并根据第二控制信号发送控制信号。其中,在第二控制信号的第i个脉冲的上升沿对应的时刻后经过第二延迟时间段的时刻为第一时刻#2。可以理解的是,第二延迟时间段为第一控制模块211确定第一时刻#2所需的时间。The
控制单元21,还用于在第一控制信号与第三参考电压交越后经过第一时间段,得到第二时刻#2。具体地,第一时间段包括第三延迟时间段和第四延迟时间段。控制单元21包括第一控制模块211和第二控制模块212。第一控制模块211,用于根据输出电压反馈信号得到第一控制信号,并根据第一控制信号发送第二控制信号。具体的,在第一控制信号和第三参考电压交越的时刻后经过第三延迟时间段的时刻为第二控制信号的第i+1个脉冲的上升沿对应的时刻,i≥1且i为整数。可以理解的是,第三延迟时间段为第一控制模块211确定第一控制信号和第三参考电压交越所需的时间。第二控制模块212,用于接收第二控制信号,并根据第二控制信号发送控制信号。其中,第二控制信号的第i+1个脉冲的上升沿对应的时刻后经过第四延迟时间段后的时刻为第二时刻#2。可以理解的是,第四延迟时间段为第一控制模块211确定第二时刻#2所需的时间。可选地,第一延迟时间段的时间长度与第三延迟时间段的时间长度相等;第二延迟时间段的时间长度与第四延迟时间段的时间长度相等。The
可以理解的是,上述第二参考电压与上述第三参考电压不同。可选地,控制单元21还包括用于为第一控制模块提供第二参考电压或第三参考电压的第三控制模块。具体地,第三控制模块,用于在第一时刻#2之前,为第一控制模块211提供第二参考电压;第三控制模块,还用于在第一时刻#2之后且在第二时刻#2之前,为第一控制模块211提供第三参考电压。It can be understood that the above-mentioned second reference voltage is different from the above-mentioned third reference voltage. Optionally, the
图9示出了本申请提供的用于功率转换设备的控制电路2-1的示意性框图以及对应的时序图。如图9中的(a)所示,控制电路2-1可以理解为控制电路2的一个具体示例。其中,在控制电路2-1中,控制电路2中的控制单元21以虚线框中的电路为例进行说明。具体地,控制电路2中第一控制模块211和第二控制模块212分别以Ton比较器#3和时序逻辑模块为例进行说明。可选地,控制电路2中包括第三控制模块的情况下,第三控制模块以虚线框中的两个传输门为例进行说明。如图9中的(b)所示,ERR、PWMold和Ton_RAMP等信号分别可以参见图2对应的说明中对于ERR、PWM和Ton_RAMP等信号的描述。控制电路2中涉及的第二控制信号以图9中的Ton_pulse为例进行说明,第二控制信号的第i个时间脉冲为Ton_pulse#1,第二控制信号的第i+1个时间脉冲为Ton_pulse#2。控制电路2中涉及的第二参考电压以Ton_REF#4为例进行说明,控制电路2中涉及的第三参考电压以Ton_REF#3为例进行说明。Fig. 9 shows a schematic block diagram of a control circuit 2-1 for a power conversion device provided in the present application and a corresponding timing diagram. As shown in (a) of FIG. 9 , the control circuit 2 - 1 can be understood as a specific example of the
如图9中的(a)所示,在控制电路2-1中,除Ton比较器#3、时序逻辑模块和两个传输门以外的单元或模块,均可以参见图2所示的固定的时间脉冲控制的芯片电路的相关描述。下面主要针对Ton比较器#3、时序逻辑模块和两个传输门进行详细介绍。As shown in (a) in Figure 9, in the control circuit 2-1, the units or modules except the T on comparator #3, the sequential logic module and the two transmission gates can refer to the fixed The relevant description of the chip circuit controlled by the time pulse. The following mainly introduces in detail the T on comparator #3, the sequential logic module and the two transmission gates.
Ton比较器#3的正相输入端均输入Ton_RAMP,Ton比较器#3的反相输入端可设置多个不同的阈值,或者说,Ton比较器#3的反向输入端可以输入多个不同的电压。图9中的(a)中以Ton比较器#3的可以输入两个不同的电压,即Ton_REF#3和Ton_REF#4为例进行说明。第一时段内,Ton比较器#3的反向输入端输入的电压为Ton_REF#4。Ton_REF#4满足:0≤Ton_REF#4≤第一阈值(条件3)。关于Ton_REF#4、条件3和第一阈值的介绍具体可以参见控制电路1-1中对于Ton_REF#2、条件1和第一阈值的描述,区别在于:将Ton_REF#2替换为Ton_REF#4,将条件1替换为条件3。该第一时段的起始时刻可以是图9中的(b)中的PWMnew的前一个周期的时间脉冲的下降沿对应的时刻,或者在该时刻之后。该第一时段的结束时刻为图9中的(b)中的PWMnew的当前周期的时间脉冲的上升沿对应的时刻,即第一时刻#2。第二时间段内,Ton比较器#3的反向输入端输入的电压为Ton_REF#3。Ton_REF#3满足:第二阈值≤Ton_REF#3≤VVCC(条件4)。关于Ton_REF#3、条件4和第二阈值的介绍具体可以参见控制电路1-2中对于Ton_REF#2、条件2和第二阈值的描述,区别在于:将Ton_REF#2替换为Ton_REF#3,将条件2替换为条件4。该第二时段的起始时刻为第一时刻#2。该第二时段的结束时刻为图9中的(b)中的PWMnew的当前周期的时间脉冲的下降沿对应的时刻,即第二时刻#2。以Ton比较器#3与图2中的Ton比较器采用相同的电路和版图设计为例,Ton比较器#3的处理时延为Td1。另外,Ton_REF#3和Ton_REF#4满足:Ton_REF#3>Ton_REF#4(条件5)。The non-inverting input of T on comparator #3 is input to T on_RAMP , and the inverting input of T on comparator #3 can be set with multiple different thresholds, or in other words, the inverting input of T on comparator #3 can be Input multiple different voltages. In (a) of FIG. 9 , the T on comparator #3 can input two different voltages, that is, T on_REF #3 and T on_REF #4 as an example for illustration. During the first period, the voltage input to the inverting input terminal of the T on comparator #3 is T on_REF #4 . T on_REF#4 satisfies: 0≦T on_REF#4 ≦the first threshold (condition 3). For the introduction of T on_REF#4 ,
时序逻辑模块主要的功能是针对Ton比较器#3输出的脉冲做逻辑的判断,确定第一时刻#2和第二时刻#2。时序逻辑模块的处理时延为Td3。下文将结合图11针对时序逻辑模块的逻辑实现方式做说明。The main function of the sequential logic module is to make a logical judgment on the pulse output by the T on comparator #3, and determine the
控制电路2-1中,通过两个传输门为Ton比较器#3提供Ton_REF#4和Ton_REF#3,实现在PWMnew的上升沿和下降沿来切换不同的参考电压。示例性地,该两个传输门由时序逻辑模块触发切换不同的参考电压。例如在PWMnew的上升沿时序逻辑模块触发用于提供Ton_REF#4的传输门导通,再例如在PWMnew的下降沿时序逻辑模块触发用于提供Ton_REF#3的传输门导通。图9中的(a)中虚线框中的电路中,反向器能够保证在同一时刻该两个传输门中最多只有一个传输门导通。In the control circuit 2-1, T on_REF#4 and T on_REF#3 are provided to the T on comparator #3 through two transmission gates, so as to switch different reference voltages at the rising and falling edges of PWM new . Exemplarily, the two transmission gates are triggered by a sequential logic module to switch between different reference voltages. For example, the timing logic module triggers the transmission gate for providing T on_REF#4 to be turned on at the rising edge of PWM new , and for example, the timing logic module triggers the transmission gate for providing T on_REF#3 to be turned on at the falling edge of PWM new . In the circuit in the dotted line box in (a) of FIG. 9 , the inverter can ensure that at most one of the two transmission gates is turned on at the same time.
另外,在图9中的(a)中,逻辑#1单元不与功率开关管连接,且逻辑#1单元与时序逻辑模块连接。逻辑#1单元输出PWMold信号和PWMRB信号。其中,PWMold信号用于控制Ton_RAMP信号的时间脉冲的开始和结束。具体地,逻辑#1单元对误差比较器输出的误差信号进行处理确定Ton_RAMP信号的时间脉冲的开始,即PWMold信号的上升沿对应的时刻为Ton_RAMP信号开始上升的时刻。时序逻辑模块向逻辑#1单元发送Ton_Reset信号,逻辑#1单元根据Ton_Reset信号确定PWMold信号的下降沿,从而确定Ton_RAMP信号结束的时刻。逻辑#1单元向时序逻辑模块发送PWMRB,PWMRB可以与PWMold是同一个信号,或者,PWMRB可以是PWMold经过误差处理后得到的信号。在PWMold信号处于低电位时,PWMRB信号用于对时序逻辑模块进行复位。In addition, in (a) of FIG. 9 , the
图10示出了本申请提供的控制电路2-2的示意性框图以及对应的时序图。如图10中的(a)所示,控制电路2-2可以理解为控制电路2的一个具体示例。其中,在控制电路2-2中,控制电路2中的控制单元21以虚线框中的电路为例进行说明。具体地,控制电路2中第一控制模块211和第二控制模块212分别以Ton比较器#3和时序逻辑模块为例进行说明。可选地,控制电路2中包括第三控制模块的情况下,第三控制模块以虚线框中的两个传输门为例进行说明。如图10中的(b)所示,ERR、PWMold和Ton_RAMP等信号分别可以参见图2对应的说明中对于ERR、PWM和Ton_RAMP等信号的描述。控制电路2中涉及的第二控制信号以图9中的Ton_pulse为例进行说明,第二控制信号的第i个时间脉冲为Ton_pulse#1,第二控制信号的第i+1个时间脉冲为Ton_pulse#2。控制电路2中涉及的第二参考电压以Ton_REF#4为例进行说明,控制电路2中涉及的第三参考电压以Ton_REF#3为例进行说明。FIG. 10 shows a schematic block diagram of the control circuit 2-2 provided in the present application and a corresponding timing diagram. As shown in (a) of FIG. 10 , the control circuit 2 - 2 can be understood as a specific example of the
控制电路2-2与控制电路1-1的区别在于:The difference between the control circuit 2-2 and the control circuit 1-1 is:
控制电路2-1中,Ton_RAMP为低电位到高电位的上升型斜坡信号,Ton_RAMP的电压值=VC,从而Ton_RAMP的电压初始值为0V。控制电路2-2中,Ton_RAMP为高电位到低电位的下降型斜坡信号,Ton_RAMP的电压值=VVCC–VC,从而Ton_RAMP的电压初始值为VVCC。In the control circuit 2-1, T on_RAMP is a rising ramp signal from low potential to high potential, and the voltage value of T on_RAMP =V C , so the initial value of the voltage of T on_RAMP is 0V. In the control circuit 2-2, T on_RAMP is a falling ramp signal from high potential to low potential, and the voltage value of T on_RAMP =V VCC −V C , so the initial value of the voltage of T on_RAMP is V VCC .
控制电路2-1中,电容C和N型MOS管接地,电流源连接到VCC;控制电路2-2中,电容C和N型MOS管连接到VCC,电流源接地。In the control circuit 2-1, the capacitor C and the N-type MOS tube are connected to the ground, and the current source is connected to VCC; in the control circuit 2-2, the capacitor C and the N-type MOS tube are connected to VCC, and the current source is connected to the ground.
控制电路2-2相比于控制电路2-1,修改了Ton比较器#3的极性。控制电路2-2中,Ton比较器#3的反相输入端用于接收Ton_RAMP,正相输入端的电压为Ton_REF#3或Ton_REF#4。控制电路2-2中的Ton_REF#3满足条件4,Ton_REF#4满足条件3,Ton_REF#3和Ton_REF#4满足:Ton_REF#3<Ton_REF#4(条件6)。Control circuit 2-2 modifies the polarity of T on comparator #3 compared to control circuit 2-1. In the control circuit 2-2, the inverting input terminal of the T on comparator #3 is used to receive T on_RAMP , and the voltage of the non-inverting input terminal is T on_REF#3 or T on_REF#4 . T on_REF#3 in the control circuit 2-2 satisfies
图11示出了本申请提供的控制电路2-1以及控制电路2-2中的时序逻辑模块的一个示例的示意性框图以及对应的时序图。FIG. 11 shows a schematic block diagram and a corresponding timing diagram of an example of the control circuit 2 - 1 and the sequential logic module in the control circuit 2 - 2 provided in the present application.
如图11中的(a)所示,时序逻辑模块可以包括3个D触发器和一个S-R锁存器。时序逻辑模块的两个输入端分别接收PWMRB信号和Ton_pulse信号,时序逻辑模块的两个输出端分别输出PWMnew信号和Ton_Reset信号。为了方便说明,从左往右的3个D触发器分别称为D触发器#1、D触发器#2和D触发器#3。对于3个D触发器,数据(data,D)端的输入V为逻辑上的高电位,即V=1,例如可以是芯片上的电源电压。As shown in (a) of FIG. 11 , the sequential logic module may include three D flip-flops and one SR latch. The two input terminals of the sequential logic module respectively receive the PWM RB signal and the T on_pulse signal, and the two output terminals of the sequential logic module respectively output the PWM new signal and the T on_Reset signal. For the convenience of description, the three D flip-flops from left to right are called D flip-
D触发器#1的时间脉冲(clock pulse,CP)输入端输入Ton_pulse信号,在Ton_pulse#1的上升沿对应的时刻,D触发器#1的输出Q也为逻辑上的高电位,Q1=1,D触发器#1的输出为低电位,Q1B=0。D触发器#2的CP输入端输入Ton_pulse信号,在Ton_pulse#1的上升沿对应的时刻,由于D触发器#2还未接收到来自D触发器#1的Q1信号,因此D触发器#2的D端仍为低电位,即输入为0;从而D触发器#2的输出Q也为逻辑上的低电位,Q2=0,Q2B=1。D触发器#3的CP输入端输入Ton_pulse信号经反相器处理之后的信号,在Ton_pulse#1的上升沿对应的时刻,D触发器#3的Q端输出为逻辑上的低电位,Q3=0。或非门的输入为Q1B、Q2和Q3,输出为Set信号。由上可知,在Ton_pulse#1的上升沿对应的时刻,Q1B=0,Q2=0,Q3=0,从而或非门输出的Set信号为逻辑上的高电平。与门的输入为Q2和PWMRB,输出为Reset信号。由上可知,在Ton_pulse#1的上升沿对应的时刻,Q2=0,从而Reset信号为逻辑上的低电平。如图11中的(b)所示,Ton_pulse#1的上升沿与Set信号的上升沿对应同一时刻。对于S-R锁存器,S端输入Set信号,R端输入Reset信号,Q端输出PWMnew信号。Set信号为高电平,Reset信号为低电平,PWMnew信号为高电平。如图11中的(b)所示,PWMnew信号的上升沿对应的时刻在Ton_pulse#1的上升沿对应的时刻之间相差Td3,Td3可以理解为S-R锁存器的处理时延。The time pulse (clock pulse, CP) input terminal of D flip-
在Ton_pulse#2的上升沿对应的时刻,D触发器#2已经接收到Q1,即D端输入为高电平,Q2输出也为高电平,Q2=1。或非门的输入为Q1B、Q2和Q3,输出为Set信号。在Q2=1的情况下,Set信号为低电平。与门的输入为Q2和PWMRB,输出为Reset信号。由于PWMRB此时为高电平,则Reset信号为高电平。对于S-R锁存器,S端输入Set信号,R端输入Reset信号,Q端输出PWMnew信号。Set信号为低电平,Reset信号为高电平,PWMnew信号为低电平。如图11中的(b)所示,PWMnew信号的下降沿对应的时刻在Ton_pulse#2的上升沿对应的时刻之间相差Td3,Td3可以理解为S-R锁存器的处理时延。At the moment corresponding to the rising edge of T on_pulse#2 , D flip-
与门的输出端还输出Ton_Reset信号,Ton_Reset信号用于触发PWMold信号的下降沿。由PWMold信号得到的PWRB信号用于对该3个D触发器进行重置。The output terminal of the AND gate also outputs a T on_Reset signal, and the T on_Reset signal is used to trigger the falling edge of the PWM old signal. The PW RB signal obtained from the PWM old signal is used to reset the 3 D flip-flops.
需要说明的是,控制电路2-1以及控制电路2-2中的时序逻辑模块还可以通过达到类似功能的其他设计方式实现,本申请对此不做限定。It should be noted that the control circuit 2-1 and the sequential logic modules in the control circuit 2-2 can also be implemented by other design methods to achieve similar functions, which is not limited in this application.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310156211.3A CN116317574A (en) | 2023-02-16 | 2023-02-16 | Method and device for power conversion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310156211.3A CN116317574A (en) | 2023-02-16 | 2023-02-16 | Method and device for power conversion |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116317574A true CN116317574A (en) | 2023-06-23 |
Family
ID=86817847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310156211.3A Pending CN116317574A (en) | 2023-02-16 | 2023-02-16 | Method and device for power conversion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116317574A (en) |
-
2023
- 2023-02-16 CN CN202310156211.3A patent/CN116317574A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2019367448B9 (en) | Flying capacitor charging method and apparatus | |
US11011991B1 (en) | Regulation loop circuit | |
US8278897B2 (en) | Power supply converter and method | |
US10389237B1 (en) | Light-load efficiency improvement of hybrid switched capacitor converter | |
CN103151920B (en) | The self adaptation dead time controls | |
CN102969874B (en) | Control circuit with deep burst mode for power converter | |
CN203562949U (en) | Converter and dc-dc converter | |
CN101981794B (en) | Method for regulating an output voltage | |
US20120112719A1 (en) | Rectifier circuit | |
CN100574066C (en) | DC-DC converter and control device and method, supply unit and electronic equipment | |
CN105207480B (en) | The synchronous buck type DC DC converters of output ripple and low during a kind of underloading | |
CN102299626A (en) | Method and device for converting direct current into direct current | |
TW201351861A (en) | Method of controlling a power converting device and related circuit | |
CN105340166A (en) | Dc-dc converter | |
CN103813587A (en) | LED drive circuit with digital-analog hybrid dimming function | |
US7423415B2 (en) | DC-DC converter and its control method, and switching regulator and its control method | |
CN102904443A (en) | DC-to-DC converter and its voltage conversion method | |
CN108432105A (en) | Gate driving circuit and the power-converting device for having the gate driving circuit | |
CN101860240A (en) | Feedback circuit with feedback impedance modulation | |
TWI784455B (en) | Buck-Boost Converter Control System | |
CN103929060B (en) | Step-down conversion circuit | |
US8344762B2 (en) | Gate driving circuit | |
IT202300004365A1 (en) | DRIVER CIRCUIT WITH DISCHARGE CONTROL, CORRESPONDING ELECTRONIC SYSTEM AND VEHICLE | |
CN109980931B (en) | Method for eliminating dead zone of non-reverse Buck-Boost converter operation | |
CN115549469A (en) | Switch converter and control circuit thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |