CN116314439A - NiO in solar cell x Hole transport layer and preparation method and application thereof - Google Patents
NiO in solar cell x Hole transport layer and preparation method and application thereof Download PDFInfo
- Publication number
- CN116314439A CN116314439A CN202211724662.4A CN202211724662A CN116314439A CN 116314439 A CN116314439 A CN 116314439A CN 202211724662 A CN202211724662 A CN 202211724662A CN 116314439 A CN116314439 A CN 116314439A
- Authority
- CN
- China
- Prior art keywords
- nio
- silicon substrate
- transport layer
- hole transport
- crystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005525 hole transport Effects 0.000 title claims abstract description 88
- 238000002360 preparation method Methods 0.000 title claims description 12
- 229910021419 crystalline silicon Inorganic materials 0.000 claims abstract description 99
- 239000000758 substrate Substances 0.000 claims abstract description 87
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 239000012495 reaction gas Substances 0.000 claims abstract description 20
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 13
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000001301 oxygen Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 3
- 238000002161 passivation Methods 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 2
- 239000013077 target material Substances 0.000 claims description 2
- 239000003513 alkali Substances 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 6
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910005855 NiOx Inorganic materials 0.000 description 3
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/129—Passivating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明的至少一种实施例涉及一种太阳电池,尤其涉及一种应用于太阳电池中的NiOx空穴传输层及其制备方法、应用。At least one embodiment of the present invention relates to a solar cell, in particular to a NiO x hole transport layer applied in a solar cell and its preparation method and application.
背景技术Background technique
晶硅异质结太阳电池凭借高光电转换效率、稳定性好等特点成为光伏行业的一大重要支柱。掺杂非晶硅材料作为一种常用的窗口层材料,为高效晶硅异质结电池的诞生做出突出贡献,但是其材料本身带隙较小的特性阻碍了光电转换效率的进一步提升。因此,需要寻找宽带隙材料来作为窗口层以减小寄生吸收现象,从而提高器件效率。而氧化镍作为一种宽带隙p型半导体材料,具有极大的发展前景。NiOx材料的光电特性跟其中的Ni空位密切相关,通过调节O含量能有效改变薄膜内Ni空位数量,从而影响薄膜的透过率以及费米能级位置。NiOx薄膜的能带结构极大地影响着太阳电池器件的性能,随着薄膜内氧含量的增大,NiOx薄膜的价带位置逐渐降低,与晶硅的价带位置靠近以形成较小的价带带阶,利于空穴的传输。但是氧含量增大时,薄膜内Ni空位增加,载流子浓度升高,光通过薄膜后散射现象变严重,因此薄膜带隙会随着氧含量的增加而减小,这对光的利用造成严重阻碍,也是阻碍器件性能提升的一个重大因素。Crystalline silicon heterojunction solar cells have become an important pillar of the photovoltaic industry due to their high photoelectric conversion efficiency and good stability. Doped amorphous silicon material, as a commonly used window layer material, has made outstanding contributions to the birth of high-efficiency crystalline silicon heterojunction cells, but the small band gap of the material itself hinders the further improvement of photoelectric conversion efficiency. Therefore, it is necessary to find a wide bandgap material as a window layer to reduce parasitic absorption, thereby improving device efficiency. Nickel oxide, as a wide bandgap p-type semiconductor material, has great development prospects. The photoelectric properties of NiO x materials are closely related to the Ni vacancies in it. By adjusting the O content, the number of Ni vacancies in the film can be effectively changed, thereby affecting the transmittance of the film and the position of the Fermi level. The energy band structure of NiO x film greatly affects the performance of solar cell devices. With the increase of oxygen content in the film, the valence band position of NiO x film gradually decreases, and is close to the valence band position of crystalline silicon to form a smaller The valence band band order is conducive to the transport of holes. However, when the oxygen content increases, the Ni vacancies in the film increase, the carrier concentration increases, and the light scattering phenomenon becomes more serious after passing through the film, so the band gap of the film will decrease with the increase of the oxygen content, which affects the utilization of light. It is also a major factor hindering the improvement of device performance.
发明内容Contents of the invention
有鉴于此,本发明提供一种太阳电池中的NiOx空穴传输层,通过形成一种能带位置渐变可调的NiOx薄膜,使NiOx空穴传输层与晶硅衬底之间形成良好选择性传输结构,且与透明导电氧化物电极形成良好的欧姆接触,同时兼顾其光学特性。In view of this, the present invention provides a NiO x hole transport layer in a solar cell, by forming a NiO x thin film with an adjustable energy band position gradient, forming a gap between the NiO x hole transport layer and the crystalline silicon substrate. It has a good selective transmission structure, and forms a good ohmic contact with the transparent conductive oxide electrode, while taking into account its optical properties.
本发明提供一种太阳电池中的NiOx空穴传输层的制备方法,包括:将晶硅衬底置于磁控溅射设备的真空反应腔室中,并将晶硅衬底加热至反应温度;向真空反应腔室中通入反应气体,反应气体中氧流量呈线性速率变化,以在晶硅衬底的一侧生长带隙渐变的NiOx空穴传输层;其中,NiOx空穴传输层的带隙自太阳电池中的透明导电层向晶硅衬底的方向逐渐升高,透明导电层位于NiOx空穴传输层远离晶硅衬底的一侧,以使NiOx空穴传输层靠近透明导电层一侧的能带与透明导电层的能带匹配,且NiOx空穴传输层靠近晶硅衬底一侧的能带与晶硅衬底的能带匹配。The invention provides a method for preparing a NiO x hole transport layer in a solar cell, comprising: placing a crystalline silicon substrate in a vacuum reaction chamber of a magnetron sputtering device, and heating the crystalline silicon substrate to a reaction temperature ; Feed reaction gas into the vacuum reaction chamber, and the oxygen flow rate in the reaction gas changes at a linear rate, so as to grow a NiO x hole transport layer with a gradual change in band gap on one side of the crystalline silicon substrate; wherein, NiO x hole transport The band gap of the layer increases gradually from the transparent conductive layer in the solar cell to the direction of the crystalline silicon substrate, and the transparent conductive layer is located on the side of the NiO x hole transport layer away from the crystalline silicon substrate, so that the NiO x hole transport layer The energy band on the side close to the transparent conductive layer matches the energy band of the transparent conductive layer, and the energy band on the side of the NiO x hole transport layer close to the crystalline silicon substrate matches the energy band of the crystalline silicon substrate.
本发明还提供一种利用上述的制备方法制备得到的太阳电池中的NiOx空穴传输层。The present invention also provides a NiO x hole transport layer in a solar cell prepared by the above preparation method.
本发明还提供一种上述的太阳电池中的NiOx空穴传输层在太阳电池中的应用,太阳电池从下而上依次包括:金属背电极、电子传输层、第一钝化层、晶硅衬底、第二钝化层、NiOx空穴传输层、透明导电层、栅线电极;其中,NiOx空穴传输层的带隙自透明导电层向晶硅衬底的方向逐渐升高。The present invention also provides an application of the above-mentioned NiO x hole transport layer in a solar cell. The solar cell comprises from bottom to top: a metal back electrode, an electron transport layer, a first passivation layer, a crystalline silicon A substrate, a second passivation layer, a NiO x hole transport layer, a transparent conductive layer, and a grid line electrode; wherein, the band gap of the NiO x hole transport layer gradually increases from the transparent conductive layer to the crystal silicon substrate.
根据本发明的实施例,采用磁控溅射的方法制备NiOx空穴传输层,通过调节反应气体中的氧氩流量比,使制备得到的NiOx空穴传输层的价带位置从透明导电层至晶硅衬底方向逐渐升高,以使NiOx空穴传输层靠近晶硅衬底一侧的能带与晶硅衬底的能带匹配,且使NiOx空穴传输层靠近透明导电层一侧的能带与透明导电层的能带匹配,有利于空穴的传输;由于NiOx空穴传输层与晶硅衬底和透明导电层的能带匹配,使NiOx空穴传输层与透明导电层和晶硅衬底之间具有较小的接触电阻,从而减小了晶硅异质结太阳电池的串联电阻,提升填充因子,有利于得到高效的晶硅异质结太阳电池。According to an embodiment of the present invention, the NiO x hole transport layer is prepared by magnetron sputtering, and the valence band position of the prepared NiO x hole transport layer is changed from transparent to conductive by adjusting the flow ratio of oxygen and argon in the reaction gas. layer to the crystalline silicon substrate, so that the energy band of the NiO x hole transport layer close to the crystalline silicon substrate matches the energy band of the crystalline silicon substrate, and the NiO x hole transport layer is close to the transparent and conductive The energy band on one side of the layer matches the energy band of the transparent conductive layer, which is beneficial to the transport of holes; because the NiO x hole transport layer matches the energy bands of the crystalline silicon substrate and the transparent conductive layer, the NiO x hole transport layer It has a small contact resistance with the transparent conductive layer and the crystalline silicon substrate, thereby reducing the series resistance of the crystalline silicon heterojunction solar cell, increasing the filling factor, and is conducive to obtaining a highly efficient crystalline silicon heterojunction solar cell.
根据本发明上述实施例提供的NiOx空穴传输层的制备方法,通过调节反应气体中的氩氧流量比,改变NiOx空穴传输层中的氧镍比,使制备得到的NiOx空穴传输层薄膜的带隙从透明导电层至晶硅衬底方向逐渐升高,优化了NiOx空穴传输层薄膜的透光性能,兼顾了能带结构与光学性能,减小为了与晶硅衬底能带匹配而造成的光学损失,使制备得到的NiOx空穴传输层兼顾了宽带隙和低接触电阻率的特点。According to the preparation method of the NiO x hole transport layer provided by the above-mentioned embodiments of the present invention, by adjusting the argon-oxygen flow ratio in the reaction gas, changing the oxygen-nickel ratio in the NiO x hole transport layer, the prepared NiO x holes The band gap of the transport layer film gradually increases from the transparent conductive layer to the crystalline silicon substrate, which optimizes the light transmission performance of the NiO x hole transport layer film, taking into account the energy band structure and optical properties, and reduces the gap between the substrate and the crystalline silicon substrate. The optical loss caused by the bottom energy band matching makes the prepared NiO x hole transport layer take into account the characteristics of wide band gap and low contact resistivity.
附图说明Description of drawings
图1为根据本发明实施例的太阳电池中的NiOx空穴传输层的制备方法的流程图;Fig. 1 is the flowchart of the preparation method of the NiO x hole transport layer in the solar cell according to the embodiment of the present invention;
图2为根据本发明实施例的太阳电池的截面示意图;2 is a schematic cross-sectional view of a solar cell according to an embodiment of the present invention;
图3为相关技术中的太阳电池和本发明实施例的太阳电池的J-V曲线对比图;以及Fig. 3 is the J-V curve comparison diagram of the solar cell in the related art and the solar cell of the embodiment of the present invention; And
图4为相关技术中的c-Si/NiOx/ITO接触电阻和本发明实施例的c-Si/NiOx/ITO接触电阻的测试结果对比图。FIG. 4 is a comparison chart of the test results of the c-Si/NiO x /ITO contact resistance in the related art and the c-Si/NiO x /ITO contact resistance of the embodiment of the present invention.
【附图标记说明】[Description of Reference Signs]
1-金属背电极;1- metal back electrode;
2-电子传输层;2 - Electron transport layer;
31-第一钝化层;31 - a first passivation layer;
32-第二钝化层;32 - second passivation layer;
4-晶硅衬底;4-crystalline silicon substrate;
5-NiOx空穴传输层;5-NiO x hole transport layer;
6-透明导电层;6- Transparent conductive layer;
7-栅线电极。7-Grid electrodes.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。但是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使发明彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大,自始至终相同附图标记表示相同元件。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings. However, this invention may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this invention will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity, and like reference numerals designate like elements throughout.
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本发明。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting of the invention. The terms "comprising", "comprising", etc. used herein indicate the presence of stated features, steps, operations and/or components, but do not exclude the presence or addition of one or more other features, steps, operations or components.
图1为根据本发明实施例的太阳电池中的NiOx空穴传输层的制备方法的流程图。图2为根据本发明实施例的太阳电池的截面示意图。FIG. 1 is a flowchart of a method for preparing a NiO x hole transport layer in a solar cell according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a solar cell according to an embodiment of the present invention.
根据本发明的一种示例性实施例,本发明提供一种太阳电池中的NiOx空穴传输层的制备方法,参考图1及图2所示,包括:步骤S01~S02。According to an exemplary embodiment of the present invention, the present invention provides a method for preparing a NiO x hole transport layer in a solar cell, as shown in FIG. 1 and FIG. 2 , comprising: steps S01-S02.
在步骤S01,将晶硅衬底4置于磁控溅射设备的真空反应腔室中,并将晶硅衬底4加热至反应温度。In step S01, the
根据本发明的实施例,上述的制备方法还包括:在将晶硅衬底4置于真空反应腔室之前,在晶硅衬底4的两侧分别形成第一钝化层31和第二钝化层32,以减小晶硅衬底4和NiOx空穴传输层5的界面缺陷,以及晶硅衬底4和电子传输层2的界面缺陷,进而减少载流子在界面缺陷处的复合。According to an embodiment of the present invention, the above-mentioned preparation method further includes: before placing the
根据本发明的实施例,晶硅衬底4可以为绒面结构或者平面结构。According to an embodiment of the present invention, the
根据本发明的实施例,若晶硅衬底4为绒面结构,上述的制备方法还包括:在晶硅衬底4的两侧分别形成第一钝化层31和第二钝化层32之前,利用碱溶液和制绒剂腐蚀晶硅衬底4,碱溶液例如可以为KOH溶液,以在晶硅衬底4的表面形成绒面结构,进而在晶硅衬底4的表面形成陷光结构,提高光利用率。According to an embodiment of the present invention, if the
根据本发明的实施例,对晶硅衬底4进行预处理,以得到洁净且两侧生长有钝化层的晶硅衬底。具体而言,利用RCA标准清洗液将晶硅衬底4的表面清洗干净后,用碱溶液对晶硅衬底4的表面刻蚀形成绒面结构,利用氮气将晶硅衬底4的表面吹干。将干燥后的晶硅衬底4放入20wt%H2O2溶液中浸泡30min,以在晶硅衬底4的两侧形成第一钝化层31和第二钝化层32,其中第一钝化层31和第二钝化层32的材料为SiOx。在晶硅衬底4的两侧形成钝化层后,利用氮气吹干,以得到洁净且两侧生长有钝化层的晶硅衬底。According to an embodiment of the present invention, the
根据本发明的实施例,利用磁控溅射法在第二钝化层32的远离晶硅衬底4的一侧沉积NiOx空穴传输层5采用的设备为射频磁控溅射设备,所用靶材为高纯度NiOx陶瓷靶,例如可以为纯度大于99.9%的NiOx陶瓷靶;真空反应腔室的本底真空度为10-3~10-4Pa。According to an embodiment of the present invention, the equipment used to deposit the NiO x
根据本发明的实施例,将晶硅衬底4加热至反应温度,反应温度为100~200℃,反应温度例如可以为100℃、120℃、150℃、170℃、200℃。According to an embodiment of the present invention, the
在步骤S02,向真空反应腔室中通入反应气体,反应气体中氧流量呈线性速率变化,以在晶硅衬底4的一侧生长带隙渐变的NiOx空穴传输层5。In step S02 , a reaction gas is introduced into the vacuum reaction chamber, and the flow rate of oxygen in the reaction gas changes at a linear rate, so as to grow a NiO x
根据本发明的实施例,反应气体中的O2流量按照公式(1)呈线性速率变化:According to an embodiment of the present invention, the O flow in the reaction gas changes at a linear rate according to formula (1):
F(t) = F0+Ct (1)F(t) = F0+Ct (1)
其中,F(t)表示t时刻的O2流量,F0表示O2的初始流量,C表示O2流量的线性变化速率,t表示从反应气体初始通入时刻至t时刻的溅射时长。Among them, F(t) represents the O 2 flow rate at time t, F 0 represents the initial flow rate of O 2 , C represents the linear change rate of O 2 flow rate, and t represents the sputtering time from the moment when the reaction gas is initially introduced to time t.
根据本发明的实施例,NiOx空穴传输层(0<x<1.5)的厚度为5~40nm。需要说明的是,O2流量由F0 sccm逐渐增大;溅射时长t由所需薄膜厚度以及溅射速率决定。According to an embodiment of the present invention, the thickness of the NiO x hole transport layer (0<x<1.5) is 5-40 nm. It should be noted that the flow rate of O 2 increases gradually with F 0 sccm; the sputtering time t is determined by the required film thickness and sputtering rate.
根据本发明的实施例,在制备NiOx空穴传输层的过程中,通入的反应气体的压强为0.2~1.0Pa,反应气体为Ar和O2的混合气体;通入真空反应腔室的初始氧氩的流量比例如可以为4.4%。According to an embodiment of the present invention, in the process of preparing the NiO x hole transport layer, the pressure of the reaction gas introduced is 0.2-1.0 Pa, and the reaction gas is a mixed gas of Ar and O 2 ; The initial flow ratio of oxygen and argon may be 4.4%, for example.
根据本发明的实施例,利用磁控溅射法在第二钝化层32的远离晶硅衬底4的一侧沉积NiOx空穴传输层5。将形成有第一钝化层31和第二钝化层32的晶硅衬底4置于磁控溅射设备的真空反应腔室中,待反应腔室的本底真空抽至3×10-3Pa后,将晶硅衬底4加热至150℃,通入包括Ar和O2的反应气体,其中Ar流量恒定,例如可以为18sccm,而O2流量呈线性增加,例如O2流量按照公式F(t)=2+0.1t所示的增长速率由2sccm增加至4sccm,最终在第二钝化层32上沉积得到约20nm厚的NiOx空穴传输层5。其中,F(t)表示t时刻的O2流量,t表示从反应气体初始通入时刻至t时刻的溅射时长。According to an embodiment of the present invention, the NiO x
根据本发明的实施例,通过调节反应气体中的氩氧流量比,改变NiOx空穴传输层中的氧镍比(即x的值,0<x<1.5),使NiOx空穴传输层的价带能级范围大约为-5.1eV~-5.4eV,且NiOx空穴传输层5的价带位置从入光面(透明导电层6)至晶硅衬底4方向逐渐升高,以使NiOx空穴传输层5与晶硅衬底4和透明导电层6的能带匹配,其中晶硅衬底4的价带约为-5.17eV,ITO透明导电层6的价带约为-6.8eV;光学带隙为3.6eV~4.0eV,以提高NiOx空穴传输层5的光透过率。需要说明的是,NiOx空穴传输层的光透过率越大,寄生吸收越小,对光的吸收减少,更多的光可以被晶硅衬底4吸收,提升短路电流密度,提升填充因子,进而提升太阳电池的光电转换效率。According to an embodiment of the present invention, by adjusting the argon-oxygen flow ratio in the reaction gas, the oxygen-nickel ratio in the NiOx hole-transport layer is changed (that is, the value of x, 0<x<1.5), so that the NiOx hole-transport layer The energy level range of the valence band is about -5.1eV~-5.4eV, and the valence band position of the NiO x
根据本发明的实施例,磁控溅射的溅射功率为140~160W,例如可以为140W、145W、150W、155W、160W。According to an embodiment of the present invention, the sputtering power of the magnetron sputtering is 140-160W, such as 140W, 145W, 150W, 155W, 160W.
本发明还提供一种利用上述的制备方法制备得到的太阳电池中的NiOx空穴传输层。The present invention also provides a NiO x hole transport layer in a solar cell prepared by the above preparation method.
根据本发明的一种示例性实施例,本发明提供一种上述的太阳电池中的NiOx空穴传输层在太阳电池中的应用,参考图2所示,该太阳电池从下而上依次包括:金属背电极1、电子传输层2、第一钝化层31、晶硅衬底4、第二钝化层32、NiOx空穴传输层5、透明导电层6、栅线电极7;其中,NiOx空穴传输层5的带隙自透明导电层6向所述晶硅衬底4的方向逐渐升高。According to an exemplary embodiment of the present invention, the present invention provides an application of the above-mentioned NiO x hole transport layer in a solar cell, as shown in FIG. 2 , the solar cell includes from bottom to top : metal back electrode 1,
根据本发明的实施例,在沉积NiOx空穴传输层5结束后,将沉积有NiOx空穴传输层5的晶硅衬底4放置在等离子体增强化学的气相沉积法(PECVD)设备中,在第一钝化层31远离晶硅衬底4的一侧沉积n型重掺杂的电子传输层2。利用磁控溅射法在NiOx空穴传输层5上沉积透明导电层(TCO)6作为入光面,TCO例如可以为ITO(铟锡氧化物半导体透明导电膜),厚度例如可以为80~100nm。According to an embodiment of the present invention, after the deposition of the NiO
根据本发明的实施例,利用电子束蒸发法在入光面沉积栅线电极7,栅线电极7的材料例如可以为Al,厚度例如可以为1μm,在电子传输层2远离第一钝化层31的一侧沉积金属背电极1,金属背电极1的材料例如可以为Al,厚度例如可以为5000nm。According to an embodiment of the present invention, the
根据本发明的实施例,上述的太阳电池还包括减反层(图中未示出),位于透明导电层6和栅线电极7之间,减反层的材料例如可以为SiNx,适用于减少光的反射。According to an embodiment of the present invention, the above-mentioned solar cell further includes an anti-reflection layer (not shown in the figure), located between the transparent conductive layer 6 and the
需要说明的是,n型晶硅衬底4和p型NiOx空穴传输层5形成晶硅异质结。It should be noted that the n-type
根据本发明的实施例,本发明提供的NiOx空穴传输层可以应用在晶硅异质结太阳电池(HJT)中,也可以应用在Top-Con(隧穿氧化层钝化接触)电池、DASH(免掺杂、非对称异质接触)电池、PERC(钝化发射器和后部接触)、PERL(钝化发射极背部局域扩散)或PERT(发射结钝化全背场扩散)电池。According to the embodiments of the present invention, the NiO x hole transport layer provided by the present invention can be applied in crystalline silicon heterojunction solar cells (HJT), and can also be applied in Top-Con (tunneling oxide layer passivation contact) cells, DASH (Doping Free, Asymmetric Heterocontact) cells, PERC (Passivated Emitter and Rear Contact), PERL (Passivated Emitter Back Localized) or PERT (Emitter Junction Passivated Full Back Field Diffused) cells .
图3为相关技术中的太阳电池和本发明实施例的太阳电池的J-V曲线对比图。FIG. 3 is a comparison diagram of J-V curves of a solar cell in the related art and a solar cell in an embodiment of the present invention.
参考图3所示,本发明实施例的采用O2流量由2sccm至4sccm渐变制备得到的NiOx空穴传输层形成的太阳电池的开路电压高于采用O2流量为2sccm和4sccm制备得到的NiOx空穴传输层形成的太阳电池的开路电压;本发明实施例采用O2流量由2sccm至4sccm渐变制备得到的NiOx空穴传输层形成的太阳电池的短路电流密度高于采用O2流量为2sccm和4sccm制备得到的NiOx空穴传输层形成的太阳电池的短路电流密度。其中,Voc表示开路电压,Jsc表示短路电流密度。Referring to Fig. 3, the open circuit voltage of the solar cell formed by the NiO x hole transport layer prepared by the O flow rate from 2sccm to 4sccm is higher than that of the NiO prepared by the O flow rate of 2sccm and 4sccm. The open-circuit voltage of the solar cell formed by the hole transport layer; the embodiment of the present invention adopts O 2 The flow rate is gradually changed from 2sccm to 4sccm, and the short-circuit current density of the solar cell formed by the NiOx hole transport layer is higher than that of using O 2 The flow rate is The short-circuit current densities of the solar cells formed by the NiO x hole transport layer prepared at 2sccm and 4sccm. Among them, Voc represents the open circuit voltage, and Jsc represents the short circuit current density.
图4为相关技术中的c-Si/NiOx/ITO接触电阻和本发明实施例的c-Si/NiOx/ITO接触电阻的测试结果对比图。FIG. 4 is a comparison chart of the test results of the c-Si/NiO x /ITO contact resistance in the related art and the c-Si/NiO x /ITO contact resistance of the embodiment of the present invention.
参考图4所示,利用TLM测试法(Transfer Length Method)分别检测相关技术中的c-Si/NiOx/ITO接触电阻和本发明实施例的c-Si/NiOx/ITO接触电阻。测试结果表明,本发明实施例的采用O2流量由2sccm至4sccm渐变制备得到的NiOx空穴传输层形成的太阳电池的c-Si/NiOx/ITO接触电阻小于采用O2流量为2sccm和4sccm制备得到的NiOx空穴传输层形成的太阳电池的c-Si/NiOx/ITO接触电阻。NiOx空穴传输层5与晶硅衬底4和透明导电层6的接触电阻小,有利于提升填充因子。其中,横坐标表示O2流量,纵坐标表示c-Si/NiOx/ITO接触电阻的阻值。Referring to FIG. 4 , the c-Si/NiO x /ITO contact resistance in the related art and the c-Si/NiO x /ITO contact resistance in the embodiment of the present invention were respectively detected by TLM test method (Transfer Length Method). The test results show that the c-Si/NiO x /ITO contact resistance of the solar cell formed by the NiO x hole transport layer prepared by the O flow rate from 2sccm to 4sccm in the embodiment of the present invention is less than the O flow rate of 2sccm and The c-Si/NiO x /ITO contact resistance of the solar cell formed by the NiO x hole transport layer prepared at 4sccm. The contact resistance between the NiO x
需要说明的是,光入射到太阳电池中,在晶硅衬底4中产生电子-空穴对,电子-空穴对在晶硅衬底4和NiOx空穴传输层5形成的内建电场的作用下分离,空穴被栅线电极7收集,电子被金属背电极1收集,进而产生光电流。It should be noted that light incident into the solar cell generates electron-hole pairs in the
根据本发明的实施例,采用磁控溅射的方法制备NiOx空穴传输层,通过调节反应气体中的氧氩流量比,使制备得到的NiOx空穴传输层的价带位置从入光面(透明导电层)至晶硅衬底方向逐渐升高,以使NiOx空穴传输层靠近晶硅衬底一侧的能带与晶硅衬底的能带匹配,且使NiOx空穴传输层靠近透明导电层一侧的能带与透明导电层的能带匹配,有利于空穴的传输;由于NiOx空穴传输层与晶硅衬底和透明导电层的能带匹配,使NiOx空穴传输层与透明导电层和晶硅衬底之间具有较小的接触电阻,从而减小了晶硅异质结太阳电池的串联电阻,提升填充因子,有利于得到高效的晶硅异质结太阳电池。According to an embodiment of the present invention, the NiO x hole transport layer is prepared by magnetron sputtering, and the valence band position of the prepared NiO x hole transport layer is changed from the incident light to surface (transparent conductive layer) to the direction of the crystalline silicon substrate gradually rises, so that the energy band of the side of the NiO x hole transport layer close to the crystalline silicon substrate matches the energy band of the crystalline silicon substrate, and the NiO x hole The energy band on the side of the transport layer close to the transparent conductive layer matches the energy band of the transparent conductive layer, which is conducive to the transmission of holes; because the NiO x hole transport layer matches the energy bands of the crystalline silicon substrate and the transparent conductive layer, NiO There is a small contact resistance between the x hole transport layer and the transparent conductive layer and the crystalline silicon substrate, thereby reducing the series resistance of the crystalline silicon heterojunction solar cell and improving the fill factor, which is conducive to obtaining efficient crystalline silicon heterojunction solar cells. Mass junction solar cells.
需要说明的是,NiOx空穴传输层中的氧镍比越小,NiOx空穴传输层材料的带隙越宽,透光率越大,寄生吸收越小,对光的吸收减少,可以使更多的光被晶硅衬底吸收,提升太阳电池的短路电流密度,进而提升太阳电池的光电转换效率。It should be noted that the smaller the oxygen-nickel ratio in the NiO hole transport layer, the wider the band gap of the NiO hole transport layer material, the greater the light transmittance, the smaller the parasitic absorption, and the reduced absorption of light, which can Make more light absorbed by the crystalline silicon substrate, increase the short-circuit current density of the solar cell, and then improve the photoelectric conversion efficiency of the solar cell.
根据本发明上述实施例提供的NiOx空穴传输层的制备方法,通过调节反应气体中的氩氧流量比,改变NiOx空穴传输层中的氧镍比,使制备得到的NiOx空穴传输层薄膜的带隙从入光面至晶硅衬底方向逐渐升高,优化了NiOx空穴传输层薄膜的透光性能,兼顾了能带结构与光学性能,减小为了与晶硅衬底能带匹配而造成的光学损失,使制备得到的NiOx空穴传输层兼顾了宽带隙和低接触电阻率的特点,因此是晶硅异质结太阳电池空穴传输层的理想选择。According to the preparation method of the NiO x hole transport layer provided by the above-mentioned embodiments of the present invention, by adjusting the argon-oxygen flow ratio in the reaction gas, changing the oxygen-nickel ratio in the NiO x hole transport layer, the prepared NiO x holes The band gap of the transport layer film gradually increases from the light incident surface to the crystalline silicon substrate, which optimizes the light transmission performance of the NiO x hole transport layer film, takes into account the energy band structure and optical performance, and reduces the The optical loss caused by the bottom energy band matching makes the prepared NiO x hole transport layer take into account the characteristics of wide band gap and low contact resistivity, so it is an ideal choice for the hole transport layer of crystalline silicon heterojunction solar cells.
根据本发明的实施例,采用磁控溅射的方法,在O2气氛下使溅射的Ni原子直接与O2反应,其具有高活性、反应充分、制备得到的薄膜致密的特点,并且具有制备工艺简单、重复性好、成本低廉、适用于大面积生产的特点。According to an embodiment of the present invention, the method of magnetron sputtering is adopted, and the sputtered Ni atoms are directly reacted with O in an O atmosphere, which has the characteristics of high activity, sufficient reaction, and dense film prepared, and has The preparation process is simple, the repeatability is good, the cost is low, and it is suitable for large-scale production.
说明书与权利要求中所使用的序数例如“第一”、“第二”、“第三”等的用词,以修饰相应的元件,其本身并不意味着该元件有任何的序数,也不代表某一元件与另一元件的顺序、或是制造方法上的顺序,该些序数的使用仅用来使具有某命名的一元件得以和另一具有相同命名的元件能做出清楚区分。Words such as "first", "second", "third" and the like used in the description and claims to modify the corresponding elements do not in themselves mean that the elements have any ordinal numbers, nor The use of these ordinal numbers to represent the sequence of an element with respect to another element, or the order of manufacturing methods, is only used to clearly distinguish one element with a certain designation from another element with the same designation.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211724662.4A CN116314439A (en) | 2022-12-30 | 2022-12-30 | NiO in solar cell x Hole transport layer and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211724662.4A CN116314439A (en) | 2022-12-30 | 2022-12-30 | NiO in solar cell x Hole transport layer and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116314439A true CN116314439A (en) | 2023-06-23 |
Family
ID=86836677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211724662.4A Pending CN116314439A (en) | 2022-12-30 | 2022-12-30 | NiO in solar cell x Hole transport layer and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116314439A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118574434A (en) * | 2024-07-31 | 2024-08-30 | 正泰新能科技股份有限公司 | Hole transport layer with gradient optical band gap, preparation method thereof and perovskite solar cell |
WO2025030670A1 (en) * | 2023-08-04 | 2025-02-13 | 横店集团东磁股份有限公司 | Solar cell and preparation method therefor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104393121A (en) * | 2014-10-27 | 2015-03-04 | 中国科学院上海微系统与信息技术研究所 | Oxygen-doped amorphous silicon germanium film, heterojunction crystalline silicon solar cell and manufacturing method |
CN108010973A (en) * | 2017-12-04 | 2018-05-08 | 河北工业大学 | A kind of preparation method of low-defect-density amorphous oxide molybdenum hole transmission layer |
CN112701182A (en) * | 2020-12-29 | 2021-04-23 | 北京工业大学 | Solar cell with double-sided light incidence structure |
CN114094019A (en) * | 2021-10-28 | 2022-02-25 | 浙江浙能技术研究院有限公司 | A method for improving the adsorption density of self-assembled monomolecular carrier transport layers |
-
2022
- 2022-12-30 CN CN202211724662.4A patent/CN116314439A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104393121A (en) * | 2014-10-27 | 2015-03-04 | 中国科学院上海微系统与信息技术研究所 | Oxygen-doped amorphous silicon germanium film, heterojunction crystalline silicon solar cell and manufacturing method |
CN108010973A (en) * | 2017-12-04 | 2018-05-08 | 河北工业大学 | A kind of preparation method of low-defect-density amorphous oxide molybdenum hole transmission layer |
CN112701182A (en) * | 2020-12-29 | 2021-04-23 | 北京工业大学 | Solar cell with double-sided light incidence structure |
CN114094019A (en) * | 2021-10-28 | 2022-02-25 | 浙江浙能技术研究院有限公司 | A method for improving the adsorption density of self-assembled monomolecular carrier transport layers |
Non-Patent Citations (1)
Title |
---|
李银龙: "磁控溅射法制备NiO_x及单面晶硅异质结太阳电池", 《中国科学》, vol. 66, no. 32, 20 April 2021 (2021-04-20), pages 4197 - 4204 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025030670A1 (en) * | 2023-08-04 | 2025-02-13 | 横店集团东磁股份有限公司 | Solar cell and preparation method therefor |
CN118574434A (en) * | 2024-07-31 | 2024-08-30 | 正泰新能科技股份有限公司 | Hole transport layer with gradient optical band gap, preparation method thereof and perovskite solar cell |
CN118574434B (en) * | 2024-07-31 | 2025-02-18 | 正泰新能科技股份有限公司 | A hole transport layer with gradient optical band gap and preparation method thereof and perovskite solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240194812A1 (en) | High-efficiency silicon heterojunction solar cell and manufacturing method thereof | |
CN218788382U (en) | A high-efficiency heterojunction solar cell | |
CN110444611A (en) | A kind of solar battery and preparation method thereof of oxide passivation contact | |
CN101232030A (en) | Method and apparatus for forming a semiconductor structure with at least one via | |
CN112768549B (en) | HJT battery with high photoelectric conversion efficiency and preparation method thereof | |
CN116130558B (en) | Preparation method of novel all-back electrode passivation contact battery and product thereof | |
CN116487448B (en) | Film and preparation method thereof, solar cell and preparation method thereof, and photovoltaic module | |
CN116314439A (en) | NiO in solar cell x Hole transport layer and preparation method and application thereof | |
CN113707735A (en) | Novel double-sided undoped heterojunction solar cell and preparation method thereof | |
CN110416328A (en) | A kind of HJT battery and preparation method thereof | |
CN113921661B (en) | Methods for manufacturing heterojunction solar cells and heterojunction solar cells | |
WO2024060933A1 (en) | Solar cell and manufacturing method therefor | |
CN117317069A (en) | Indium-free heterojunction battery and preparation method thereof | |
CN116779693A (en) | A high-efficiency heterojunction solar cell and its manufacturing method | |
CN102569481B (en) | Nano silicon window layer with gradient band gap characteristic and preparation method thereof | |
CN117317068A (en) | Heterojunction battery and preparation method thereof | |
CN108321240A (en) | A kind of solar energy hetero-junction solar cell and preparation method thereof | |
CN116779696A (en) | High-efficiency heterojunction solar cell and manufacturing method thereof | |
CN211654834U (en) | High-efficiency P-type crystalline silicon solar cell | |
CN118571992A (en) | Preparation method of heterojunction battery | |
CN207529943U (en) | A kind of solar energy hetero-junction solar cell | |
CN217606831U (en) | High-efficiency heterojunction solar cell | |
CN119212411B (en) | Perovskite semiconductor device and preparation method thereof | |
CN118630073B (en) | Battery cell | |
CN117276360B (en) | A new type of crystalline silicon heterojunction solar cell structure, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |