CN116288131A - Method for strengthening inner and outer surfaces of high-brittleness semiconductor component with thin-wall structure - Google Patents
Method for strengthening inner and outer surfaces of high-brittleness semiconductor component with thin-wall structure Download PDFInfo
- Publication number
- CN116288131A CN116288131A CN202310585001.6A CN202310585001A CN116288131A CN 116288131 A CN116288131 A CN 116288131A CN 202310585001 A CN202310585001 A CN 202310585001A CN 116288131 A CN116288131 A CN 116288131A
- Authority
- CN
- China
- Prior art keywords
- thin
- brittleness
- semiconductor component
- coating
- wall structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 163
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000005728 strengthening Methods 0.000 title claims abstract description 25
- 238000000576 coating method Methods 0.000 claims abstract description 96
- 239000011248 coating agent Substances 0.000 claims abstract description 89
- 238000000151 deposition Methods 0.000 claims description 59
- 230000008021 deposition Effects 0.000 claims description 48
- 238000005507 spraying Methods 0.000 claims description 35
- 239000000843 powder Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 14
- 239000010453 quartz Substances 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000007921 spray Substances 0.000 claims description 13
- 238000005137 deposition process Methods 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 230000007547 defect Effects 0.000 claims description 8
- 238000010408 sweeping Methods 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 230000003746 surface roughness Effects 0.000 claims description 6
- 229910002601 GaN Inorganic materials 0.000 claims description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 12
- 238000012986 modification Methods 0.000 abstract description 7
- 230000004048 modification Effects 0.000 abstract description 7
- 239000002245 particle Substances 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000009825 accumulation Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000011863 silicon-based powder Substances 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
本发明公开了一种薄壁结构高脆性半导体元器件内外表面强化方法,包括以下步骤:步骤一、将薄壁结构高脆性半导体元器件固定在宝塔型弹性紧固装置,得到待加工组件;步骤二、将步骤一中得到的待加工组件中的高脆性半导体元器件的内外壁沉积涂层,完成对薄壁结构高脆性半导体元器件的性能提升。本发明通过表面改性技术,在高脆性半导体元器件的内外壁沉积涂层,提升薄壁结构高脆性半导体元器件性能和拓展应用范围,通过对制备工艺和涂层均匀化的协同设计,成功在薄壁结构高脆性半导体元器件表面沉积均匀、致密的功能涂层。
The invention discloses a method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component, comprising the following steps: step 1, fixing the thin-walled highly brittle semiconductor component on a pagoda-shaped elastic fastening device to obtain a component to be processed; step 2. Deposit a coating on the inner and outer walls of the highly brittle semiconductor components in the component to be processed obtained in step 1, so as to improve the performance of the thin-walled highly brittle semiconductor components. The present invention deposits coatings on the inner and outer walls of highly brittle semiconductor components through surface modification technology, improves the performance of thin-walled highly brittle semiconductor components and expands the application range, and successfully achieves Deposit a uniform and dense functional coating on the surface of thin-walled highly brittle semiconductor components.
Description
技术领域technical field
本发明属于半导体元器件表面改性技术领域,具体涉及一种薄壁结构高脆性半导体元器件内外表面强化方法。The invention belongs to the technical field of surface modification of semiconductor components, in particular to a method for strengthening the inner and outer surfaces of semiconductor components with thin-walled structures and high brittleness.
背景技术Background technique
近年来,电子工业已经成为发展世界上最大的工业种类,半导体器件作为电子工业的核心更是得到了快速的发展。研究发现,以硅基和锗基为代表的第一代“元素半导体”目前依然被大量应用于制造半导体器件和集成电路;以砷化镓、磷化铟为代表的第二代化合物半导体则主要应用于光通信领域;以氮化镓和碳化硅为主的材料是当下第三代半导体材料的研究热点,其拥有更强的光电转化能力和更高的微波信号传输效率,能够很好满足高频、高温、大功率及抗辐射电子器件的要求,在新一代移动通信、新能源汽车、快充以及LED等领域均有广阔的应用前景。In recent years, the electronics industry has become the largest industrial category in the world, and semiconductor devices, as the core of the electronics industry, have developed rapidly. Studies have found that the first generation of "elemental semiconductors" represented by silicon-based and germanium-based are still widely used in the manufacture of semiconductor devices and integrated circuits; the second-generation compound semiconductors represented by gallium arsenide and indium phosphide are mainly Applied in the field of optical communication; GaN and SiC-based materials are the research hotspots of the third-generation semiconductor materials, which have stronger photoelectric conversion capabilities and higher microwave signal transmission efficiency, and can well meet high High frequency, high temperature, high power and radiation-resistant electronic devices have broad application prospects in the fields of new generation mobile communications, new energy vehicles, fast charging and LED.
在半导体材料飞速发展的同时,表面改性技术也逐渐被引用在半导体领域,该技术通过在半导体元器件表面沉积功能性涂层可以大幅提升或拓展半导体元器件的工作寿命和应用领域,实现电子产品整体性能的跃迁级提升。然而,表面改性技术在半导体领域的发展存在一定的局限性,这主要是由于大部分半导体元器件脆性大并且为简单几何结构,在沉积涂层过程中往往会发生热应力累积导致的体积快速膨胀和高冲击应力引发的微裂纹萌生现象,导致元器件局部出现裂纹甚至碎裂。低温区半导体器件石英环是发生上述现象的典型案例,当光刻机在硅基晶元表面进行“光刻”和“刻蚀”工艺过程中,石英环可以与石英闸门的组合可实现对腔体的密闭防护,有效防止芯片制造过程中的各类污染。然而,石英环在使用过程中很容易会与石英闸门之间发生磨损产生间隙、密封效果失效,这大大影响了晶元的刻蚀效率。经研究发现,采用热喷涂技术在石英环表面沉积一层微米级别与晶面材质一致的高纯涂层是一个经济、高效的解决途径。热喷涂技术是利用热源将喷涂材料加热至熔化或半熔化状态,并以一定的速度喷射沉积到经过预处理的基体表面形成涂层的方法,具备对基体温度影响小、不受基体材质限制、热源温度可调并且范围大、操作便捷以及无环境污染等优势。采用热喷涂技术在石英环表面沉积致密均匀的高纯涂层可以大幅降低石英环磨损速率、提高晶元刻蚀速度,使芯片的生产效率得到显著提升。然而,如何制定喷涂工艺规程和关键参数、设计相关辅助装置是降低热应力累积和飞行颗粒的冲击应力,保证石英环以及其它高脆性半导体元器件表面涂层高质量稳定沉积的关键。With the rapid development of semiconductor materials, surface modification technology is gradually being used in the semiconductor field. This technology can greatly improve or expand the working life and application fields of semiconductor components by depositing functional coatings on the surface of semiconductor components. A leap-level improvement in the overall performance of the product. However, the development of surface modification technology in the semiconductor field has certain limitations. This is mainly due to the fact that most semiconductor components are brittle and have simple geometric structures. During the process of depositing coatings, thermal stress accumulation often leads to rapid volume loss. The phenomenon of micro-crack initiation caused by expansion and high impact stress leads to local cracks or even fragmentation of components. The quartz ring of semiconductor devices in the low-temperature region is a typical case of the above phenomenon. When the lithography machine performs "lithography" and "etching" processes on the surface of silicon-based wafers, the combination of the quartz ring and the quartz gate can realize cavity alignment. The airtight protection of the body can effectively prevent various types of pollution during the chip manufacturing process. However, during use, the quartz ring is prone to wear and tear between the quartz gate, resulting in a gap, and the sealing effect fails, which greatly affects the etching efficiency of the wafer. After research, it is found that it is an economical and efficient solution to deposit a layer of high-purity coating at the micron level on the surface of the quartz ring by thermal spraying technology that is consistent with the material of the crystal plane. Thermal spraying technology is a method that uses a heat source to heat the sprayed material to a molten or semi-molten state, and sprays and deposits it on the surface of the pretreated substrate at a certain speed to form a coating. It has little influence on the substrate temperature and is not limited by the substrate material. The temperature of the heat source is adjustable and has a large range, convenient operation and no environmental pollution. Using thermal spraying technology to deposit a dense and uniform high-purity coating on the surface of the quartz ring can greatly reduce the wear rate of the quartz ring, increase the etching speed of the wafer, and significantly improve the production efficiency of the chip. However, how to formulate spraying process regulations and key parameters, and design related auxiliary devices is the key to reducing thermal stress accumulation and impact stress of flying particles, and ensuring high-quality and stable deposition of quartz rings and other highly brittle semiconductor components.
因此,需要一种薄壁结构高脆性半导体元器件内外表面强化方法。Therefore, there is a need for a method for strengthening the inner and outer surfaces of semiconductor components with thin-walled structures and high brittleness.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种薄壁结构高脆性半导体元器件内外表面强化方法。该方法通过表面改性技术,在高脆性半导体元器件的内外壁沉积涂层,提升薄壁结构高脆性半导体元器件性能和拓展应用范围,通过对制备工艺和涂层均匀化的协同设计,成功在薄壁结构高脆性半导体元器件表面沉积均匀、致密的功能涂层。The technical problem to be solved by the present invention is to provide a method for strengthening the inner and outer surfaces of thin-walled highly brittle semiconductor components for the above-mentioned deficiencies in the prior art. This method uses surface modification technology to deposit coatings on the inner and outer walls of highly brittle semiconductor components to improve the performance of thin-walled highly brittle semiconductor components and expand the application range. Through the collaborative design of the preparation process and coating homogenization, it has successfully Deposit a uniform and dense functional coating on the surface of thin-walled highly brittle semiconductor components.
为解决上述技术问题,本发明采用的技术方案是:一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,该方法包括以下步骤:In order to solve the above-mentioned technical problems, the technical solution adopted in the present invention is: a method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component, characterized in that the method includes the following steps:
步骤一、将薄壁结构高脆性半导体元器件固定在宝塔型弹性紧固装置,得到待加工组件;
步骤二、将步骤一中得到的待加工组件中的高脆性半导体元器件的内外壁沉积涂层,完成对薄壁结构高脆性半导体元器件的性能提升;所述沉积利用高能等离子熔喷法将功能性粉末原料全覆盖式的沉积在高脆性半导体元器件的内外壁。
本发明利用高能等离子熔喷法将功能性粉末原料全覆盖式的沉积在高脆性半导体元器件内外壁,从而实现元器件性能的高效提升。The present invention utilizes a high-energy plasma meltblown method to fully cover and deposit functional powder raw materials on the inner and outer walls of highly brittle semiconductor components, thereby realizing efficient improvement of the performance of the components.
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,步骤一中所述宝塔型弹性紧固装置包括圆盘状的底座,所述底座的侧壁开设有若干个销孔,每个所述销孔中均设有用于固定薄壁结构高脆性半导体元器件的弹簧销,所述底座的底部中心开设有通孔,所述通孔中插入有固定轴,所述底座下部还设置有供固定轴穿过的轴套,所述轴套上安装有对固定轴进行固定的锁紧螺栓,所述固定轴上部固定有圆盘状的上压盘,所述上压盘的侧壁开设有若干个销孔,每个所述销孔中均设有用于固定薄壁结构高脆性半导体元器件的弹簧销。The above-mentioned method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that the pagoda-shaped elastic fastening device in
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,所述弹簧销包括外壳,所述外壳中依次安装有弹簧和顶杆,所述顶杆远离外壳一端设置有顶板,所述顶板为瓦状,所述弹簧销外部设置有与销孔配合的螺纹。The above-mentioned method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that the spring pin includes a casing, and a spring and a push rod are sequentially installed in the casing, and a top plate is provided at the end of the push rod far away from the casing , the top plate is in the shape of a shoe, and the outside of the spring pin is provided with a thread that matches the pin hole.
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,所述底座上开设有与弹簧销对应的腰型孔,所述腰型孔中装卡有工字型的移动板,所述移动板上设置有与顶板配合的挡板。The above-mentioned method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that a waist-shaped hole corresponding to the spring pin is opened on the base, and an I-shaped mobile device is clamped in the waist-shaped hole. The moving plate is provided with a baffle matched with the top plate.
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,步骤一中所述薄壁结构高脆性半导体元器件和步骤二中所述功能性粉末原料的材质均为高脆性材料,所述高脆性材料为玻璃、石英、碳化硅、硅、氮化镓、氮化硅、氧化锌、金刚石、氮化铝。本发明适用于在多种材质的薄壁结构高脆性半导体元器件根据使用需求制备不同的高脆性材料涂层。The above-mentioned method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that the materials of the thin-walled highly brittle semiconductor component described in
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,步骤一中所述薄壁结构高脆性半导体元器件的形状为环形或片状。本发明适用于多种形状和尺寸的薄壁结构高脆性半导体元器件,其中的环形包括圆环、方环和多边形环。The above-mentioned method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that the shape of the thin-walled highly brittle semiconductor component in
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,步骤二中所述高能等离子熔喷法中喷涂功率为35kW~50kW,主气流量为50L/min~100L/min,喷涂距离为150mm~250mm,送粉率为10g/min~15g/min,辅助机械手扫略速度为300mm/s~500mm/s,喷枪与喷涂面呈30°~60°夹角,宝塔型弹性紧固装置的自转速率为1000r/min~1500r/min。本发明根据热喷涂技术热源温度、粉末温度和速度大范围可调、对基体温度影响小以的特性以及沉积涂层厚度(十几到几百微米)符合间隙配合要求等特性,控制高能等离子熔喷法的参数,使高能等离子射流赋予了本发明保护粉末原料(石英、纯硅、氮化镓、氮化硅、氧化锌、金刚石、氮化铝等高脆性材料)高的表面温度1800℃~2500℃和飞行速度300mm/s~800mm/s,高的颗粒温度和温度能在保证粉末颗粒充分熔化的同时还能使其撞击基体后发生充分塑性变形并横向铺展,大幅提高涂层的致密性、抗拉强度以及内聚强度,本发明保护工艺参数的作用具体为:高喷涂功率提高等离子焰流温度,保证粉末充分熔化;低氩气流量适当抑制飞行颗粒速度,减小熔融的飞行颗粒对半导体元器件的冲击应力;高的喷涂距离和低的送粉率不仅有利于降低熔融态粉末沉积在基体表面的瞬时温度、减缓热应力累积,而且会进一步降低飞行颗粒的冲击应力;辅助机械手的扫略速度和喷枪夹角是为了保证涂层沉积的均匀性。The above method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that the spraying power in the high-energy plasma melt blowing method described in
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,步骤二中所述沉积的过程为:对薄壁结构高脆性半导体元器件的外表面、内表面、内表面、外表面依次沉积,完成1个沉积循环,然后将薄壁结构高脆性半导体元器件翻转180°后再进行1个沉积循环,重复以上过程且每10个沉积循环测量涂层厚度,直至涂层厚度达到要求后停止沉积,两个所述沉积循环的间隔时间不低于2min。本发明通过对薄壁结构高脆性半导体元器件的外表面、内表面、内表面、外表面依次沉积,保证了沉积的均匀性,通过在完成1个沉积循环后将薄壁结构高脆性半导体元器件从夹具取下后翻转180°,即将薄壁结构高脆性半导体元器件的最下部调换至最上,目的是保证各个面实现涂层均匀沉积,也实现了“间歇性沉积”,通过重复沉积过程保证了涂层的厚度,通过在每10个沉积循环测量涂层厚度,在厚度达到要求后停止沉积,控制涂层的厚度;本发明还采用“间歇性沉积”方式降低了扁平粒子间层间裂纹的形成,提高了涂层致密性,通过控制等离子射流发生器二维扫掠速度300mm/s~500mm/s和冷却间隔时间,即两个沉积循环间隔时间不低2min等关键参数可以使元器件已沉积涂层表面已沉积、但未凝固扁平颗粒的放热特性得到充分发挥,降低涂层表面二次加热几率,使元器件整体温度均匀分布并且维持在50℃~80℃的安全温度范围,在此基础上,结合本发明保护工艺参数和紧固装置的弹簧销设计,最终实现了涂层的稳定制备。The above method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that the deposition process described in
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,步骤二中所述沉积前对高脆性半导体元器件进行预热,所述预热的温度为50℃~80℃,所述沉积过程中高脆性半导体元器件的温度不超过80℃。本发明通过预热保证了后续的沉积效果,通过控制温度不超过80℃,降低涂层表面二次加热几率,使元器件整体温度均匀分布并且维持在安全温度范围,最终实现了涂层的稳定制备。The above-mentioned method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that the high brittle semiconductor component is preheated before the deposition in
上述的一种薄壁结构高脆性半导体元器件内外表面强化方法,其特征在于,步骤二中所述涂层完全覆盖薄壁结构高脆性半导体元器件表面,所述涂层的颜色均匀,无裂纹、薄层等缺陷,所述涂层的厚度为5μm~200μm、均匀性误差低于5%,表面粗糙度小于2μm。The above-mentioned method for strengthening the inner and outer surfaces of a thin-walled highly brittle semiconductor component is characterized in that the coating in
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明通过表面改性技术,在高脆性半导体元器件的内外壁沉积涂层,提升薄壁结构高脆性半导体元器件性能和拓展应用范围,通过对制备工艺和涂层均匀化的协同设计,成功在薄壁结构高脆性半导体元器件表面沉积均匀、致密的功能涂层。1. The present invention deposits coatings on the inner and outer walls of highly brittle semiconductor components through surface modification technology, improves the performance of thin-walled high-brittle semiconductor components and expands the scope of application, and through the collaborative design of the preparation process and coating homogenization , and successfully deposited a uniform and dense functional coating on the surface of thin-walled highly brittle semiconductor components.
2、本发明选用高能等离子熔射技术,并控制工艺参数,高喷涂功率提高等离子焰流温度,保证粉末充分熔化;低氩气流量适当抑制飞行颗粒速度,减小熔融的飞行颗粒对半导体元器件的冲击应力;高的喷涂距离和低的送粉率不仅有利于降低熔融态粉末沉积在基体表面的瞬时温度、减缓热应力累积,而且会进一步降低飞行颗粒的冲击应力;辅助机械手的扫略速度和喷枪夹角是为了保证涂层沉积的均匀性。2. The present invention selects high-energy plasma spraying technology and controls process parameters. High spraying power increases the temperature of plasma flame flow to ensure that the powder is fully melted; low argon flow rate properly suppresses the speed of flying particles and reduces the impact of molten flying particles on semiconductor components. impact stress; high spraying distance and low powder feeding rate not only help to reduce the instantaneous temperature of molten powder deposited on the surface of the substrate, slow down the accumulation of thermal stress, but also further reduce the impact stress of flying particles; assist the sweeping speed of the manipulator The angle with the spray gun is to ensure the uniformity of coating deposition.
3、本发明提供了一套缓释热应力累积的薄壁结构高脆性半导体元器件紧固装置,根据薄壁型元器件 “环形和薄壁”的共性结构设计了宝塔型弹性紧固装置,在该装置中,一方面采用多个对称分布的可伸缩弹簧销紧固元器件,弹簧销自身的可伸缩性设计可以充分缓释喷涂过程中的冲击应力,降低元器件的变形几率,另一方面,装置中上压盘和底座中的弹簧销方向是相反的,并且两部件之间可实现滑动接触,在此设计基础上,将宝塔型弹性紧固装置在1000r/min~1500r/min范围的转速下旋转,并采用高能等离子熔射技术以此从元器件外表面-内表面-内表面-外表面沉积,随后将元器件翻转180°后再进行下一个循环,有效保证可元器件内外表面涂层的均匀性。3. The present invention provides a set of fastening devices for thin-walled highly brittle semiconductor components that slow down the accumulation of thermal stress. According to the common structure of "ring and thin-walled" thin-walled components, a pagoda-shaped elastic fastening device is designed. In this device, on the one hand, a plurality of symmetrically distributed retractable spring pins are used to fasten the components. The elastic design of the spring pins can fully relieve the impact stress during the spraying process and reduce the deformation probability of the components. On the one hand, the directions of the spring pins in the upper pressure plate and the base of the device are opposite, and sliding contact can be realized between the two parts. Rotate at a certain speed, and use high-energy plasma spraying technology to deposit from the outer surface-inner surface-inner surface-outer surface of the component, and then turn the component 180° before proceeding to the next cycle, effectively ensuring that the components can be inside and outside Uniformity of surface coating.
4、本发明采用“间歇性沉积”方式降低了扁平粒子间层间裂纹的形成,提高了涂层致密性,通过控制等离子射流发生器二维扫掠速度和冷却间隔时间等关键参数可以使元器件已沉积涂层表面已沉积、但未凝固扁平颗粒的放热特性得到充分发挥,降低涂层表面二次加热几率,使元器件整体温度均匀分布并且维持在安全温度范围,最终实现了涂层的稳定制备。4. The present invention uses the "intermittent deposition" method to reduce the formation of interlayer cracks between flat particles and improve the compactness of the coating. By controlling key parameters such as the two-dimensional sweep speed and cooling interval time of the plasma jet generator, the element can be made The exothermic characteristics of the deposited but unsolidified flat particles on the surface of the deposited coating on the device are fully utilized, reducing the probability of secondary heating on the coating surface, making the overall temperature of the component evenly distributed and maintained in a safe temperature range, and finally realizing the coating stable preparation.
下面通过附图和实施例对本发明的技术方案作进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the drawings and embodiments.
附图说明Description of drawings
图1是本发明宝塔型弹性紧固装置的结构示意图。Fig. 1 is a structural schematic diagram of a pagoda-shaped elastic fastening device of the present invention.
图2是本发明宝塔型弹性紧固装置的底座和上压盘的连接关系示意图。Fig. 2 is a schematic diagram of the connection relationship between the base and the upper pressure plate of the pagoda-shaped elastic fastening device of the present invention.
图3是本发明宝塔型弹性紧固装置的底座的结构示意图。Fig. 3 is a structural schematic view of the base of the pagoda-shaped elastic fastening device of the present invention.
图4是本发明宝塔型弹性紧固装置的上压盘的结构示意图。Fig. 4 is a schematic structural view of the upper platen of the pagoda-shaped elastic fastening device of the present invention.
图5是本发明宝塔型弹性紧固装置的弹簧销的结构示意图。Fig. 5 is a schematic structural view of the spring pin of the pagoda-shaped elastic fastening device of the present invention.
图6是本发明实施例1沉积涂层后的圆环形薄壁结构高脆性半导体元器件的实物图。Fig. 6 is a physical view of the annular thin-walled highly brittle semiconductor component after the coating is deposited in Example 1 of the present invention.
图7是本发明实施例1沉积涂层后的圆环形薄壁结构高脆性半导体元器件的涂层截面形貌图。Fig. 7 is a cross-sectional view of the coating of the annular thin-walled highly brittle semiconductor component after the coating is deposited in Example 1 of the present invention.
图8是本发明实施例2沉积涂层后的方片形薄壁结构高脆性半导体元器件的实物图。Fig. 8 is a physical diagram of a square sheet-shaped thin-walled highly brittle semiconductor component after depositing a coating in Example 2 of the present invention.
图9是图8的A处放大图。FIG. 9 is an enlarged view of A in FIG. 8 .
图10是本发明实施例2沉积涂层后的方片形薄壁结构高脆性半导体元器件的涂层截面形貌图。Fig. 10 is a cross-sectional topography diagram of the coating of the square sheet-shaped thin-walled highly brittle semiconductor component after the coating is deposited in Example 2 of the present invention.
附图标记说明:Explanation of reference signs:
1—底座;1-1—腰型孔;1-2—移动板;1-3—挡板;2—弹簧销;2-1—外壳;2-2—弹簧;1—base; 1-1—waist hole; 1-2—moving plate; 1-3—baffle; 2—spring pin; 2-1—shell; 2-2—spring;
2-3—顶杆;2-4—顶板;2-5—螺纹;3—固定轴;4—轴套;5—锁紧螺栓;6—上压盘。2-3—Jump; 2-4—Top plate; 2-5—Thread; 3—Fixed shaft; 4—Axle sleeve; 5—Locking bolt; 6—Upper pressure plate.
具体实施方式Detailed ways
如图1~图5所示,本发明的宝塔型弹性紧固装置包括圆盘状的底座1,所述底座1的侧壁开设有若干个销孔,每个所述销孔中均设有用于固定薄壁结构高脆性半导体元器件的弹簧销2,所述底座1的底部中心开设有通孔,所述通孔中插入有固定轴3,所述底座1下部还设置有供固定轴3穿过的轴套4,所述轴套4上安装有对固定轴3进行固定的锁紧螺栓5,所述固定轴3上部固定有圆盘状的上压盘6,所述上压盘6的侧壁开设有若干个销孔,每个所述销孔中均设有用于固定薄壁结构高脆性半导体元器件的弹簧销2。As shown in Figures 1 to 5, the pagoda-shaped elastic fastening device of the present invention includes a disc-shaped
需要说明的是,通过设计圆盘状的底座1并在底座1的侧壁开设有若干个销孔,便于安装多个弹簧销2,通过多个朝向底座1内部的弹簧销2,对薄壁结构高脆性半导体元器件进行装卡,便于对半导体元器件内侧进行喷涂;通过在底座1的底部中心开设有通孔并在下部设置对应的轴套4,供固定轴3穿过,便于固定轴3上下移动,实现底座1和上压盘6的相对移动,通过在固定轴3上部设置有圆盘状的上压盘6并在上压盘6侧壁开设有若干个销孔,便于安装多个弹簧销2,通过多个朝向上压盘6外部的弹簧销2,对薄壁结构高脆性半导体元器件进行装卡,便于对半导体元器件外侧进行喷涂,同时通过调整固定轴3的位置调整上压盘6的高度,在对半导体元器件内侧进行喷涂时,将上压盘6升起,防止上压盘6对喷涂造成影响,在半导体元器件需要切换到外侧喷涂时,将上压盘6下降,由底座1装卡转为下压盘装卡,再将上压盘6升起,防止底座1对喷涂造成影响,通过在轴套4上安装有对固定轴3进行固定的锁紧螺栓5,在需要固定上压盘6的位置时对固定轴3进行固定,保证了喷涂时的稳定性。It should be noted that by designing the disc-shaped
需要说明的是,紧固圆环形的薄壁结构高脆性半导体元器件时,均匀设置六个弹簧销2实现固定,紧固方环形的薄壁结构高脆性半导体元器件时,均匀设置四个弹簧销2实现固定,紧固多边形的薄壁结构高脆性半导体元器件时,根据多边形的边设置对应的弹簧销2实现固定,通过弹簧销2数量的设置实现不同形状环形件的喷涂,紧固片形的薄壁结构高脆性半导体元器件时,将上压盘6的弹簧销2与底座1的弹簧销2调整至相同高度,对片形的薄壁结构高脆性半导体元器件进行装夹。It should be noted that, when fastening circular thin-walled semiconductor components with high brittleness, six
如图6所示,本发明中弹簧销2包括外壳2-1,所述外壳2-1中依次安装有弹簧2-2和顶杆2-3,所述顶杆2-3远离外壳2-1一端设置有顶板2-4,所述顶板2-4为瓦状,所述弹簧销2外部设置有与销孔配合的螺纹2-5。As shown in Figure 6, the
需要说明的是,通过在外壳2-1中安装弹簧2-2,对顶杆2-3进行弹性支撑,使用时通过瓦状顶板2-4按压顶杆2-3,放入半导体元器件后放开,弹簧销2自动顶在半导体元器件上,在弹簧2-2压缩时装卡半导体元器件,通过弹簧2-2提供的力对半导体元器件装卡,通过在弹簧销2外部设置有与销孔配合的螺纹2-5,便于弹簧销2与底座1或上压盘6稳定连接,同时通过旋转弹簧销2也便于调整弹簧销2的位置。It should be noted that by installing the spring 2-2 in the casing 2-1, the ejector rod 2-3 is elastically supported, and the ejector rod 2-3 is pressed by the tile-shaped top plate 2-4 during use, and after semiconductor components are placed Let go, and the
如图1所示,本发明中底座1上开设有与弹簧销2对应的腰型孔1-1,所述腰型孔1-1中装卡有工字型的移动板1-2,所述移动板1-2上设置有与顶板2-4配合的挡板1-3。As shown in Figure 1, a waist-shaped hole 1-1 corresponding to the
需要说明的是,挡板1-3是在使用上压盘6固定半导体元器件后,将底座1的弹簧销2紧固在按压状态,避免其对工件喷涂过程中产生干扰。It should be noted that the baffles 1-3 fasten the spring pins 2 of the
需要说明的是,上压盘6的圆环外径为120mm~160mm、侧壁的壁厚为5mm~20mm、固定轴3的直径为10mm~40mm、长度为100mm~150mm,底座1的圆环外径为250mm~400mm、侧壁的壁厚为5mm~20mm、通孔的直径为10mm~40mm、轴套4的长度为50mm~80mm、挡板1-3的长度为30mm~60mm、宽度为5mm~10mm、高度为30mm~60mm,弹簧销2的外径为10mm~20mm,长度为100mm~150mm、顶板2-4的宽度为30mm~60mm、锁紧螺栓5的长度为20mm~50mm。It should be noted that the outer diameter of the ring of the
实施例1Example 1
本实施例包括以下步骤:This embodiment includes the following steps:
步骤一、将玻璃材质的圆环形薄壁结构高脆性半导体元器件进行除油去污和打磨除锈,然后用丙酮超声波清洗后放入烘干箱烘干,再固定在宝塔型弹性紧固装置上,得到待加工组件;所述薄壁结构高脆性半导体元器件的直径为220mm,高度为20mm,壁厚为5mm;
步骤二、将步骤一中得到的待加工组件中的高脆性半导体元器件采用喷枪在50℃下进行预热,然后在内外壁沉积涂层,完成对薄壁结构高脆性半导体元器件的性能提升;所述沉积利用高能等离子熔喷法将粒径为10μm~45μm,质量纯度大于99.99%的球形碳化硅粉末全覆盖式的沉积在高脆性半导体元器件的内外壁;所述高能等离子熔喷法中喷涂功率为40kW,主气流量为70L/min,喷涂距离为220mm,送粉率为12g/min,辅助机械手扫略速度为500mm/s,喷枪与喷涂面呈45°夹角,宝塔型弹性紧固装置的自转速率为1300r/min;所述沉积的过程为:对薄壁结构高脆性半导体元器件的外表面、内表面、内表面、外表面依次沉积,完成1个沉积循环,然后将薄壁结构高脆性半导体元器件翻转180°后再进行1个沉积循环,重复以上过程且每10个沉积循环测量涂层厚度,直至涂层厚度达到5μm后停止沉积,两个所述沉积循环的间隔时间不低于2min;所述沉积过程中高脆性半导体元器件的温度不超过80℃。
图6是本实施例沉积涂层后的圆环形薄壁结构高脆性半导体元器件的实物图,从图6中可以看出,沉积涂层后的圆环形薄壁结构高脆性半导体元器件表面沉积的涂层沉积均匀、颜色一致,无过熔点颗粒、裂纹和剥落等现象,涂层沉积质量良好。Fig. 6 is the actual picture of the high brittle semiconductor components of the annular thin-walled structure after depositing the coating in this embodiment, as can be seen from Fig. 6, the highly brittle semiconductor components of the annular thin-walled structure after the coating is deposited The coating deposited on the surface has uniform deposition, consistent color, no over-melting point particles, cracks and peeling, etc., and the coating deposition quality is good.
图7是本实施例沉积涂层后的圆环形薄壁结构高脆性半导体元器件的涂层截面形貌图,从图7中可以看出,沉积涂层后的圆环形薄壁结构高脆性半导体元器件的涂层结构致密、孔隙和裂纹等微观缺陷少,厚度为5μm、均匀性误差低于5 %,涂层沉积质量良好。Fig. 7 is the coating cross-sectional topography figure of the annular thin-walled structure high brittle semiconductor component after depositing the coating in this embodiment, as can be seen from Fig. 7, the annular thin-walled structure after depositing the coating is high The coating structure of brittle semiconductor components is compact, with few microscopic defects such as pores and cracks, the thickness is 5 μm, the uniformity error is less than 5%, and the coating deposition quality is good.
经检测,本实施例涂层完全覆盖薄壁结构高脆性半导体元器件表面,所述涂层的颜色均匀,无裂纹、薄层等缺陷,所述涂层的厚度为5μm、均匀性误差低于5%,表面粗糙度为1.5μm,沉积涂层质量良好。After testing, the coating of this embodiment completely covers the surface of the thin-walled highly brittle semiconductor component. The color of the coating is uniform without defects such as cracks and thin layers. The thickness of the coating is 5 μm, and the uniformity error is less than 5%, the surface roughness is 1.5μm, and the quality of the deposited coating is good.
实施例2Example 2
本实施例包括以下步骤:This embodiment includes the following steps:
步骤一、将钠钙玻璃材质的方片形薄壁结构高脆性半导体元器件进行除油去污和打磨除锈,然后用丙酮超声波清洗后放入烘干箱烘干,再固定在宝塔型弹性紧固装置上,得到待加工组件;所述薄壁结构高脆性半导体元器件的长为120mm,宽为80mm,厚为3mm;
步骤二、将步骤一中得到的待加工组件中的高脆性半导体元器件采用喷枪在50℃下进行预热,然后在内外壁沉积涂层,完成对薄壁结构高脆性半导体元器件的性能提升;所述沉积利用高能等离子熔喷法将将粒径为10μm~60μm,质量纯度大于99.99%的球形硅粉末全覆盖式的沉积在高脆性半导体元器件的内外壁;所述高能等离子熔喷法中喷涂功率为35kW,主气流量为50L/min,喷涂距离为150mm,送粉率为10g/min,辅助机械手扫略速度为300mm/s,喷枪与喷涂面呈30°夹角,宝塔型弹性紧固装置的自转速率为1000r/min;所述沉积的过程为:对薄壁结构高脆性半导体元器件的外表面、内表面、内表面、外表面依次沉积,完成1个沉积循环,然后将薄壁结构高脆性半导体元器件翻转180°后再进行1个沉积循环,重复以上过程且每10个沉积循环测量涂层厚度,直至涂层厚度达到20μm后停止沉积,两个所述沉积循环的间隔时间不低于2min;所述沉积过程中高脆性半导体元器件的温度不超过80℃。
图8是本实施例沉积涂层后的方片形薄壁结构高脆性半导体元器件的实物图,图9是图8的A处放大图,从图8和图9中可以看出,沉积涂层后的方片形薄壁结构高脆性半导体元器件完好、未产生局部碎裂,并且涂层沉积均匀、颜色一致,无过熔点颗粒、裂纹和剥落等现象。Fig. 8 is the physical figure of the high brittle semiconductor component of the square thin-walled structure after depositing the coating in this embodiment, and Fig. 9 is the enlarged view of the A place of Fig. 8, as can be seen from Fig. 8 and Fig. 9, the deposited coating The thin-walled square plate-shaped semiconductor components with high brittleness after the layer are intact, without local fragmentation, and the coating is deposited uniformly, with consistent color, and no over-melting point particles, cracks, and peeling off.
图10是本实施例沉积涂层后的方片形薄壁结构高脆性半导体元器件的涂层截面形貌图,从图10中可以看出,沉积涂层后的方片形薄壁结构高脆性半导体元器件的涂层结构致密、孔隙和裂纹等微观缺陷少,厚度为20μm、均匀性误差低于1 %,涂层沉积质量良好。Fig. 10 is the cross-sectional topography of the coating of the square sheet-shaped thin-walled structure highly brittle semiconductor components after the coating is deposited in this embodiment. As can be seen from Fig. 10, the square-shaped thin-walled structure after the deposition coating is highly The coating structure of brittle semiconductor components is compact, with few microscopic defects such as pores and cracks, the thickness is 20 μm, the uniformity error is less than 1%, and the coating deposition quality is good.
经检测,本实施例涂层完全覆盖薄壁结构高脆性半导体元器件表面,所述涂层的颜色均匀,无裂纹、薄层等缺陷,所述涂层的厚度为20μm、均匀性误差低于1%,表面粗糙度为1.8μm,沉积涂层质量良好。After testing, the coating of this embodiment completely covers the surface of the thin-walled highly brittle semiconductor component. The color of the coating is uniform without defects such as cracks and thin layers. The thickness of the coating is 20 μm, and the uniformity error is less than 1%, the surface roughness is 1.8μm, and the quality of the deposited coating is good.
实施例3Example 3
本实施例包括以下步骤:This embodiment includes the following steps:
步骤一、将石英材质的圆环形薄壁结构高脆性半导体元器件进行除油去污和打磨除锈,然后用丙酮超声波清洗后放入烘干箱烘干,再固定在宝塔型弹性紧固装置上,得到待加工组件;所述薄壁结构高脆性半导体元器件的直径为75mm,高度为25mm,壁厚为3mm;
步骤二、将步骤一中得到的待加工组件中的高脆性半导体元器件采用喷枪在80℃下进行预热,然后在内外壁沉积涂层,完成对薄壁结构高脆性半导体元器件的性能提升;所述沉积利用高能等离子熔喷法将将粒径为10μm~60μm,质量纯度大于99.99%的球形硅粉末全覆盖式的沉积在高脆性半导体元器件的内外壁;所述高能等离子熔喷法中喷涂功率为50kW,主气流量为100L/min,喷涂距离为250mm,送粉率为15g/min,辅助机械手扫略速度为500mm/s,喷枪与喷涂面呈60°夹角,宝塔型弹性紧固装置的自转速率为1500r/min;所述沉积的过程为:对薄壁结构高脆性半导体元器件的外表面、内表面、内表面、外表面依次沉积,完成1个沉积循环,然后将薄壁结构高脆性半导体元器件翻转180°后再进行1个沉积循环,重复以上过程且每10个沉积循环测量涂层厚度,直至涂层厚度达到200μm后停止沉积,两个所述沉积循环的间隔时间不低于2min;所述沉积过程中高脆性半导体元器件的温度不超过80℃。
经检测,本实施例涂层完全覆盖薄壁结构高脆性半导体元器件表面,所述涂层的颜色均匀,无裂纹、薄层等缺陷,所述涂层的厚度为200μm、均匀性误差低于3%,表面粗糙度为1.1μm,沉积涂层质量良好。After testing, the coating of this embodiment completely covers the surface of the thin-walled highly brittle semiconductor component. The color of the coating is uniform without defects such as cracks and thin layers. The thickness of the coating is 200 μm, and the uniformity error is less than 3%, the surface roughness is 1.1 μm, and the quality of the deposited coating is good.
实施例4Example 4
本实施例包括以下步骤:This embodiment includes the following steps:
步骤一、将玻璃材质的圆环形薄壁结构高脆性半导体元器件进行除油去污和打磨除锈,然后用丙酮超声波清洗后放入烘干箱烘干,再固定在宝塔型弹性紧固装置上,得到待加工组件;所述薄壁结构高脆性半导体元器件的直径为220mm,高度为30mm,壁厚为5mm;
步骤二、将步骤一中得到的待加工组件中的高脆性半导体元器件采用喷枪在70℃下进行预热,然后在内外壁沉积涂层,完成对薄壁结构高脆性半导体元器件的性能提升;所述沉积利用高能等离子熔喷法将将粒径为10μm~60μm,质量纯度大于99.99%的球形硅粉末全覆盖式的沉积在高脆性半导体元器件的内外壁;所述高能等离子熔喷法中喷涂功率为45kW,主气流量为80L/min,喷涂距离为200mm,送粉率为12g/min,辅助机械手扫略速度为400mm/s,喷枪与喷涂面呈45°夹角,宝塔型弹性紧固装置的自转速率为1200r/min;所述沉积的过程为:对薄壁结构高脆性半导体元器件的外表面、内表面、内表面、外表面依次沉积,完成1个沉积循环,然后将薄壁结构高脆性半导体元器件翻转180°后再进行1个沉积循环,重复以上过程且每10个沉积循环测量涂层厚度,直至涂层厚度达到70μm后停止沉积,两个所述沉积循环的间隔时间不低于2min;所述沉积过程中高脆性半导体元器件的温度不超过80℃。
经检测,本实施例涂层完全覆盖薄壁结构高脆性半导体元器件表面,所述涂层的颜色均匀,无裂纹、薄层等缺陷,所述涂层的厚度为70μm、均匀性误差低于5%,表面粗糙度为1.5μm,沉积涂层质量良好。After testing, the coating of this embodiment completely covers the surface of the thin-walled highly brittle semiconductor component. The color of the coating is uniform without defects such as cracks and thin layers. The thickness of the coating is 70 μm, and the uniformity error is less than 5%, the surface roughness is 1.5μm, and the quality of the deposited coating is good.
实施例5Example 5
本实施例与实施例4的不同之处在于,所述薄壁结构高脆性半导体元器件的直径为150mm,高度为10mm,壁厚为0.5mm。The difference between this embodiment and
实施例6Example 6
本实施例与实施例4的不同之处在于,所述薄壁结构高脆性半导体元器件的直径为350mm,高度为50mm,壁厚为5mm。The difference between this embodiment and
实施例7Example 7
本实施例与实施例4的不同之处在于,所述薄壁结构高脆性半导体元器件的直径为250mm,高度为30mm,壁厚为3mm。The difference between this embodiment and
实施例8Example 8
本实施例与实施例4的不同之处在于,圆环形薄壁结构高脆性半导体元器件和功能性粉末原料的材质均为质量纯度大于99.99%的纯硅。The difference between this embodiment and
实施例9Example 9
本实施例与实施例4的不同之处在于,圆环形薄壁结构高脆性半导体元器件和功能性粉末原料的材质均为质量纯度大于99.99%的氮化镓。The difference between this embodiment and
实施例10Example 10
本实施例与实施例4的不同之处在于,圆环形薄壁结构高脆性半导体元器件和功能性粉末原料的材质均为质量纯度大于99.99%的氮化硅。The difference between this embodiment and
实施例11Example 11
本实施例与实施例4的不同之处在于,圆环形薄壁结构高脆性半导体元器件和功能性粉末原料的材质均为质量纯度大于99.99%的氧化锌。The difference between this embodiment and
实施例12Example 12
本实施例与实施例4的不同之处在于,圆环形薄壁结构高脆性半导体元器件和功能性粉末原料的材质均为质量纯度大于99.99%的金刚石。The difference between this embodiment and
实施例13Example 13
本实施例与实施例4的不同之处在于,圆环形薄壁结构高脆性半导体元器件和功能性粉末原料的材质均为质量纯度大于99.99%的氮化铝。The difference between this embodiment and
实施例14Example 14
本实施例与实施例4的不同之处在于,圆环形薄壁结构高脆性半导体元器件和功能性粉末原料的材质均为质量纯度大于99.99%的碳化硅。The difference between this embodiment and
实施例15Example 15
本实施例与实施例4的不同之处在于,薄壁结构高脆性半导体元器件为方片形。The difference between this embodiment and
实施例16Example 16
本实施例与实施例4的不同之处在于,薄壁结构高脆性半导体元器件为六边形。The difference between this embodiment and
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any way. All simple modifications, changes and equivalent changes made to the above embodiments according to the technical essence of the invention still belong to the protection scope of the technical solution of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310585001.6A CN116288131B (en) | 2023-05-23 | 2023-05-23 | A method for strengthening the inner and outer surfaces of thin-walled highly brittle semiconductor components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310585001.6A CN116288131B (en) | 2023-05-23 | 2023-05-23 | A method for strengthening the inner and outer surfaces of thin-walled highly brittle semiconductor components |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116288131A true CN116288131A (en) | 2023-06-23 |
CN116288131B CN116288131B (en) | 2023-08-08 |
Family
ID=86785480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310585001.6A Active CN116288131B (en) | 2023-05-23 | 2023-05-23 | A method for strengthening the inner and outer surfaces of thin-walled highly brittle semiconductor components |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116288131B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW448529B (en) * | 1999-01-08 | 2001-08-01 | Tokyo Electron Ltd | Wafer coating apparatus clamp ring warp preventing method and apparatus |
EP1304726A2 (en) * | 2001-10-18 | 2003-04-23 | Infineon Technologies AG | Device and method for receiving and for processing a thin wafer |
CN101469752A (en) * | 2008-03-19 | 2009-07-01 | 北京市三一重机有限公司 | Shock-absorbing pin roll component |
CN102628153A (en) * | 2011-12-07 | 2012-08-08 | 兰州理工大学 | Continuous wire feed tube constrained wire explosion spraying device |
CN107740031A (en) * | 2017-12-12 | 2018-02-27 | 苏州炻原新材料科技有限公司 | A kind of shell structure Zirconium oxide powder used for hot spraying |
CN207267172U (en) * | 2017-09-12 | 2018-04-24 | 西安北方光电科技防务有限公司 | A kind of auxiliary processing device for being used to clamp the thin-wall special-shaped part of brittleness |
US20180163295A1 (en) * | 2016-12-13 | 2018-06-14 | Shibaura Mechatronics Corporation | Film formation apparatus |
CN209257632U (en) * | 2018-12-11 | 2019-08-16 | 昆山芮智吉和精密机械有限公司 | A kind of bus crest slab pressing device |
CN110459501A (en) * | 2019-05-30 | 2019-11-15 | 中国电子科技集团公司第五十五研究所 | A kind of reinforcing holding structure and preparation method thereof for disk to be thinned |
CN113053795A (en) * | 2021-04-15 | 2021-06-29 | 王翠平 | Supporting and positioning device for microelectronic device packaging and using method thereof |
CN114015968A (en) * | 2021-11-11 | 2022-02-08 | 北京星航机电装备有限公司 | High-temperature-resistant composite coating for thin-wall cover part and preparation method thereof |
-
2023
- 2023-05-23 CN CN202310585001.6A patent/CN116288131B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW448529B (en) * | 1999-01-08 | 2001-08-01 | Tokyo Electron Ltd | Wafer coating apparatus clamp ring warp preventing method and apparatus |
EP1304726A2 (en) * | 2001-10-18 | 2003-04-23 | Infineon Technologies AG | Device and method for receiving and for processing a thin wafer |
CN101469752A (en) * | 2008-03-19 | 2009-07-01 | 北京市三一重机有限公司 | Shock-absorbing pin roll component |
CN102628153A (en) * | 2011-12-07 | 2012-08-08 | 兰州理工大学 | Continuous wire feed tube constrained wire explosion spraying device |
US20180163295A1 (en) * | 2016-12-13 | 2018-06-14 | Shibaura Mechatronics Corporation | Film formation apparatus |
CN207267172U (en) * | 2017-09-12 | 2018-04-24 | 西安北方光电科技防务有限公司 | A kind of auxiliary processing device for being used to clamp the thin-wall special-shaped part of brittleness |
CN107740031A (en) * | 2017-12-12 | 2018-02-27 | 苏州炻原新材料科技有限公司 | A kind of shell structure Zirconium oxide powder used for hot spraying |
CN209257632U (en) * | 2018-12-11 | 2019-08-16 | 昆山芮智吉和精密机械有限公司 | A kind of bus crest slab pressing device |
CN110459501A (en) * | 2019-05-30 | 2019-11-15 | 中国电子科技集团公司第五十五研究所 | A kind of reinforcing holding structure and preparation method thereof for disk to be thinned |
CN113053795A (en) * | 2021-04-15 | 2021-06-29 | 王翠平 | Supporting and positioning device for microelectronic device packaging and using method thereof |
CN114015968A (en) * | 2021-11-11 | 2022-02-08 | 北京星航机电装备有限公司 | High-temperature-resistant composite coating for thin-wall cover part and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
机械电子部机械科技成果办公室: "《1985-1990年全国机械工业科技成果精选集》", 机械工业出版社, pages: 173 * |
Also Published As
Publication number | Publication date |
---|---|
CN116288131B (en) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100367457C (en) | Island-shaped protrusion modification component, method of manufacturing the same, and device using the same | |
CN100585794C (en) | Method for replacing electrode assembly of plasma reaction chamber | |
KR20220061090A (en) | Method for manufacturing the surface protection coating layer of core parts of IC equipment based on plasma spraying and cold spraying technology | |
CN104388910B (en) | High power microwave plasma reaction unit for chemistry for gas phase depositing diamond film | |
CN103194715B (en) | Preparation of amorphous Y by atmospheric plasma spraying technology3Al5O12Method for coating | |
CN105474363A (en) | Slurry plasma spray of plasma resistant ceramic coating | |
CN1897784B (en) | Reducing electrostatic charge by roughening the susceptor | |
CN109082623B (en) | Method for manufacturing salient points on surface of lower electrode by dry etching | |
WO2012021321A2 (en) | Composite substrates for direct heating and increased temperature uniformity | |
US20070065678A1 (en) | Electro-static chuck with non-sintered aln and a method of preparing the same | |
KR20080050304A (en) | Plasma reactor substrate with surface texturing | |
CN116288131B (en) | A method for strengthening the inner and outer surfaces of thin-walled highly brittle semiconductor components | |
CN107630184A (en) | A kind of method for preparing niobium silicide coating in niobium or niobium alloy surface | |
CN111848222B (en) | A kind of gradient environment barrier coating formed on base material and preparation method thereof | |
CN103132002B (en) | Black Y2O3Method for preparing ceramic coating | |
CN103132007B (en) | Y prepared by low-pressure plasma spraying technology2O3Method for coating ceramic | |
CN103132003B (en) | Black Y in semiconductor equipment2O3Method for producing ceramic coating | |
TWI807383B (en) | Plasma-resistant semiconductor component, method for forming same, and plasma reaction device | |
CN105118767B (en) | Plasma etching equipment | |
CN103540889A (en) | Method for preparing boron carbide coating by low-pressure plasma spraying technology | |
CN113584420A (en) | Amorphous Y2SiO5Method for producing a coating | |
CN114657549A (en) | Preparation method of silver layer on inner surface of reduction furnace bell, reduction furnace bell and reduction furnace | |
CN114150311A (en) | A kind of ceramic/copper composite substrate and preparation method thereof | |
CN201503845U (en) | Internal component for plasma processing chamber and gas spray nozzle component | |
JP7645819B2 (en) | Sealant coating for plasma processing chamber components - Patents.com |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250219 Address after: 710200 Building 14, Jingwei Small and Medium Industrial Park, No.1 Middle Section of Jinggao North Road, Jingwei New City, Xi'an Economic and Technological Development Zone, Shaanxi Province Patentee after: XI'AN SURFACE MATERIAL PROTECTION Co.,Ltd. Country or region after: China Address before: 710000 Floor 2, Building C, Xi'an National Digital Publishing Base, No. 996, Tiangu 7th Road, Hi tech Zone, Xi'an, Shaanxi Patentee before: XI'AN RARE METAL MATERIAL RESEARCH INSTITUTE Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |