CN116110945A - A kind of TSS semiconductor discharge tube and preparation method thereof - Google Patents
A kind of TSS semiconductor discharge tube and preparation method thereof Download PDFInfo
- Publication number
- CN116110945A CN116110945A CN202310396353.7A CN202310396353A CN116110945A CN 116110945 A CN116110945 A CN 116110945A CN 202310396353 A CN202310396353 A CN 202310396353A CN 116110945 A CN116110945 A CN 116110945A
- Authority
- CN
- China
- Prior art keywords
- region
- area
- discharge tube
- diffusion
- semiconductor discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 140
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 73
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 73
- 239000010703 silicon Substances 0.000 claims abstract description 73
- 239000010410 layer Substances 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 239000011241 protective layer Substances 0.000 claims abstract description 30
- 238000009792 diffusion process Methods 0.000 claims description 102
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 77
- 229910052796 boron Inorganic materials 0.000 claims description 77
- 238000009826 distribution Methods 0.000 claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims description 18
- 239000011574 phosphorus Substances 0.000 claims description 18
- 238000001259 photo etching Methods 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 238000003786 synthesis reaction Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 4
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 4
- 229910001882 dioxygen Inorganic materials 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 238000001465 metallisation Methods 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 238000000206 photolithography Methods 0.000 claims description 4
- 235000012431 wafers Nutrition 0.000 description 42
- 230000007423 decrease Effects 0.000 description 15
- 239000012535 impurity Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 230000007547 defect Effects 0.000 description 9
- 238000005468 ion implantation Methods 0.000 description 7
- 230000007480 spreading Effects 0.000 description 7
- 238000003892 spreading Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 229910001316 Ag alloy Inorganic materials 0.000 description 3
- QQMBHAVGDGCSGY-UHFFFAOYSA-N [Ti].[Ni].[Ag] Chemical compound [Ti].[Ni].[Ag] QQMBHAVGDGCSGY-UHFFFAOYSA-N 0.000 description 3
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 3
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
- H10D18/01—Manufacture or treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开了一种TSS半导体放电管及其制备方法,涉及半导体电子器件技术领域,所述TSS半导体放电管包括N型硅片,所述N型硅片的两面分别并位设有P+区和P#区以及P‑区,所述P#区设于所述P+区和所述P‑区之间,所述P+区的深度大于所述P#区的深度,所述P#区的深度大于所述P‑区的深度;所述P#区于远离所述N型硅片的一侧光刻有若干N+区,所述P#区于远离所述N型硅片的一侧上设有金属层,所述金属层的两侧分别设有保护层,本发明能够有效地提高TSS半导体放电管的浪涌能力,降低残压和电容。
The invention discloses a TSS semiconductor discharge tube and a preparation method thereof, and relates to the technical field of semiconductor electronic devices. The TSS semiconductor discharge tube includes an N-type silicon chip, and two sides of the N-type silicon chip are respectively provided with P + regions. And P # area and P ‑ area, the P # area is set between the P + area and the P ‑ area, the depth of the P + area is greater than the depth of the P # area, and the P # The depth of the region is greater than the depth of the P - region; the P # region is photoetched with some N + regions on the side far away from the N-type silicon wafer, and the P # region is located on the side far away from the N-type silicon wafer. A metal layer is provided on one side, and protective layers are respectively provided on both sides of the metal layer. The invention can effectively improve the surge capacity of the TSS semiconductor discharge tube and reduce residual voltage and capacitance.
Description
技术领域technical field
本发明涉及半导体电子器件技术领域,具体涉及一种TSS半导体放电管及其制备方法。The invention relates to the technical field of semiconductor electronic devices, in particular to a TSS semiconductor discharge tube and a preparation method thereof.
背景技术Background technique
半导体放电管是一种用于设备输入端的过压防护元器件,基于晶闸管原理制成,依托PN结的击穿电流触发器件导通放电,使很大的浪涌电流或脉冲电流可以都从中通过。半导体放电管击穿电压的范围,形成了过压保护的范围。它广泛用于通信终端、调制解调器、配线架等信息传输设备或系统等领域。The semiconductor discharge tube is an overvoltage protection component used at the input end of the equipment. It is made based on the principle of the thyristor. The breakdown current of the PN junction triggers the device to conduct and discharge, so that a large surge current or pulse current can pass through it. . The range of the breakdown voltage of the semiconductor discharge tube forms the range of overvoltage protection. It is widely used in information transmission equipment or systems such as communication terminals, modems, and distribution frames.
在TSS半导体放电管开启时,都会产生一个较大的残压(过冲电压),残压越高,器件越容易烧坏失效,也就是器件的抗浪涌能力会下降,相反,残压越低,器件的抗浪涌能力就会越强;防护器件还有另外一个重要参数就是电容,电容是决定信号传输频率的重要参数,较低的电容更适合应用于高频场合,因此如何降低残压、降低电容也是各家研究的重点,常规方式是通过直接降低衬底材料电阻率来降低残压的,但是是以电容变大为代价,同样,降低电容的方式是提高衬底的电阻率,但会增加残压,这些方式均不能够满足客户的需求,如何保证高的浪涌能力、低残压、低电容,一直是技术人员研究的方向。When the TSS semiconductor discharge tube is turned on, a large residual voltage (overshoot voltage) will be generated. The higher the residual voltage, the easier it is for the device to burn out and fail, that is, the anti-surge capability of the device will decrease. On the contrary, the higher the residual voltage The lower the surge resistance of the device, the stronger the anti-surge capability of the device; another important parameter of the protective device is capacitance, which is an important parameter that determines the signal transmission frequency. Lower capacitance is more suitable for high-frequency applications, so how to reduce residual Voltage and capacitance reduction are also the focus of various studies. The conventional method is to reduce the residual voltage by directly reducing the resistivity of the substrate material, but at the cost of increasing the capacitance. Similarly, the way to reduce capacitance is to increase the resistivity of the substrate. , but will increase the residual voltage, none of these methods can meet the needs of customers. How to ensure high surge capacity, low residual voltage, and low capacitance has always been the research direction of technicians.
发明内容Contents of the invention
针对现有技术的不足,本发明的目的在于提供一种TSS半导体放电管及其制备方法,旨在提高TSS半导体放电管的浪涌能力,降低残压和电容。Aiming at the deficiencies of the prior art, the object of the present invention is to provide a TSS semiconductor discharge tube and a preparation method thereof, aiming at improving the surge capability of the TSS semiconductor discharge tube and reducing residual voltage and capacitance.
本发明的一方面在于提供一种TSS半导体放电管,包括N型硅片,所述N型硅片的两面分别并位设有P+区和P#区以及P-区,所述P#区设于所述P+区和所述P-区之间,所述P+区的深度大于所述P#区的深度,所述P#区的深度大于所述P-区的深度;One aspect of the present invention is to provide a TSS semiconductor discharge tube, including an N-type silicon chip, the two sides of the N-type silicon chip are respectively provided with a P + region, a P# region and a P- region , and the P # region Located between the P + area and the P - area, the depth of the P + area is greater than the depth of the P # area, and the depth of the P # area is greater than the depth of the P - area;
所述P#区于远离所述N型硅片的一侧光刻有若干N+区,所述P#区于远离所述N型硅片的一侧上设有金属层,所述金属层的两侧分别设有保护层。The P # area is photoetched with several N + areas on the side far away from the N-type silicon chip, and the P # area is provided with a metal layer on the side far away from the N-type silicon chip, and the metal layer Protective layers are provided on both sides.
与现有技术相比,本发明的有益效果在于:通过本发明提供的一种TSS半导体放电管,能有效地降低电容,增加浪涌能力,具体为,TSS半导体放电管,包括N型硅片,N型硅片的两面分别并位设有P+区和P#区以及P-区,所述P#区设于所述P+区和所述P-区之间,所述P+区的深度大于所述P#区的深度,所述P#区的深度大于所述P-区的深度;所述P#区于远离所述N型硅片的一侧光刻有若干N+区,所述P#区于远离所述N型硅片的一侧上设有金属层,所述金属层的两侧分别设有保护层,P+区、P#区和N+区与N型硅片形成PN结,上凹下凸结构,通过结构的优化,于局部形成击穿,使TSS半导体放电管具备极低的电容,良好的可靠性,浪涌能力更强,P-区的设置将减少漏电流的产生,提高半导体放电管的IPP流通能力,从而提高TSS半导体放电管的浪涌能力,降低残压和电容。Compared with the prior art, the beneficial effect of the present invention is that: the TSS semiconductor discharge tube provided by the present invention can effectively reduce the capacitance and increase the surge capacity, specifically, the TSS semiconductor discharge tube includes an N-type silicon chip , the two sides of the N-type silicon wafer are respectively provided with a P + area, a P # area and a P - area, and the P # area is arranged between the P + area and the P - area, and the P + area The depth of the P # area is greater than the depth of the P # area, and the depth of the P # area is greater than the depth of the P - area; the P # area is photoetched with several N + areas on the side away from the N-type silicon wafer , the P # area is provided with a metal layer on the side away from the N-type silicon chip, and the two sides of the metal layer are respectively provided with protective layers, and the P + area, the P # area and the N + area and the N-type The silicon wafer forms a PN junction, with a concave-convex-convex-convex-convex-convex-convex-convex-convex-convex structure. By optimizing the structure, a breakdown is formed locally, so that the TSS semiconductor discharge tube has extremely low capacitance, good reliability, and stronger surge capability. The setting of the P - region It will reduce the generation of leakage current, improve the IPP flow capacity of the semiconductor discharge tube, thereby improving the surge capacity of the TSS semiconductor discharge tube, and reducing the residual voltage and capacitance.
根据上述技术方案的一方面,所述N型硅片包括第一N型部以及与所述第一N型部连接的第二N型部,所述第一N型部的两面分别并位设有所述P+区和所述P#区以及所述P-区,所述第二N型部设于所述P+区远离所述P#区的一侧。According to one aspect of the above technical solution, the N-type silicon chip includes a first N-type portion and a second N-type portion connected to the first N-type portion, and the two sides of the first N-type portion are arranged side by side. There are the P + area, the P # area and the P - area, and the second N-type part is provided on the side of the P + area away from the P # area.
根据上述技术方案的一方面,所述保护层包括第一保护子层和第二保护子层,所述第一保护子层设于所述P-区上,所述第二保护子层设于所述第二N型部上。According to one aspect of the above technical solution, the protection layer includes a first protection sublayer and a second protection sublayer, the first protection sublayer is disposed on the P - region, and the second protection sublayer is disposed on on the second N-type portion.
根据上述技术方案的一方面,所述P+区的结深为50-70μm,所述P#区的结深为15-40μm,所述N+区的直径为8-12μm,所述P-区的结深为20-30μm。According to one aspect of the above technical solution, the junction depth of the P + region is 50-70 μm, the junction depth of the P # region is 15-40 μm, the diameter of the N + region is 8-12 μm, and the P - The junction depth of the region is 20-30 μm.
本发明的另一方面在于提供一种TSS半导体放电管的制备方法,所述制备方法用于制备上述任一项所述的TSS半导体放电管,所述制备方法包括:Another aspect of the present invention is to provide a kind of preparation method of TSS semiconductor discharge tube, described preparation method is used for preparing the TSS semiconductor discharge tube described in any one of above-mentioned, and described preparation method comprises:
选择N型硅片;Select N-type silicon wafer;
在所述N型硅片两面分别生长氧化层;growing oxide layers on both sides of the N-type silicon wafer;
在所述N型硅片的两面光刻P+阱区,对所述P+阱区进行硼预扩散和硼再扩散分布,形成P#区和P+区;On both sides of the N-type silicon chip, photoetching the P + well area, performing boron pre-diffusion and boron re-diffusion distribution on the P + well area, forming a P # area and a P + area;
在所述N型硅片的两面光刻P-阱区,对所述P-阱区进行硼预扩散和硼再扩散分布,形成P-区;On both sides of the N-type silicon chip, photoetching the P - well region, performing boron pre-diffusion and boron re-diffusion distribution on the P - well region to form a P - region;
在所述P+区于远离所述N型硅片的一侧光刻N+阱区,对所述N+阱区进行磷预扩散和磷再扩散分布,形成N+区;Photoetching an N + well region on the side of the P + region away from the N-type silicon wafer, performing phosphorus pre-diffusion and phosphorus re-diffusion distribution on the N + well region, to form an N + region;
在所述N型硅片两面沉积保护层;Depositing protective layers on both sides of the N-type silicon wafer;
金属淀积、光刻、刻蚀,保护层间隙形成电极,N型硅片两面形成金属层;Metal deposition, photolithography, etching, electrodes are formed in the protective layer gap, and metal layers are formed on both sides of the N-type silicon wafer;
合金。alloy.
根据上述技术方案的一方面,对所述P-阱区进行硼预扩散和硼再扩散分布,形成P-区的步骤,具体包括:According to one aspect of the above-mentioned technical solution, the step of performing boron pre-diffusion and boron re-diffusion distribution on the P - well region to form a P - region specifically includes:
在所述P-阱区表面均匀涂上硼源并且通入氮气和氧气,预扩散温度为1000-1250℃,时间为2-30h;再扩散温度为1100-1275℃,时间为5-10h,形成结深为20-30μm的P-区。The surface of the P - well area is evenly coated with a boron source and nitrogen and oxygen are introduced, the pre-diffusion temperature is 1000-1250°C, and the time is 2-30h; the re-diffusion temperature is 1100-1275°C, and the time is 5-10h, Form a P - region with a junction depth of 20-30 µm.
根据上述技术方案的一方面,对所述P+阱区进行硼预扩散和硼再扩散分布,形成P#区和P+区的步骤,具体包括:According to one aspect of the above-mentioned technical solution, the step of performing boron pre-diffusion and boron re-diffusion distribution on the P + well region to form a P # region and a P + region specifically includes:
在所述P+阱区表面均匀涂上硼源并且通入氮气和氧气,预扩散温度为1000-1250℃,时间为2-30h;再扩散温度为1200-1275℃,时间为9-120h,形成结深为50-70μm的P+区。Uniformly coat the boron source on the surface of the P + well region and pass nitrogen and oxygen gas, the pre-diffusion temperature is 1000-1250°C, the time is 2-30h; the re-diffusion temperature is 1200-1275°C, the time is 9-120h, Form a P + region with a junction depth of 50-70 μm.
根据上述技术方案的一方面,在P#区表面均匀涂上硼源并且通入氮气和氧气,硼预扩温度为1000-1250℃,时间2-30h;再扩散温度为1200-1275℃,时间为9-120h,形成结深为15-40μm的P#区。According to one aspect of the above technical solution, the surface of P # area is evenly coated with boron source and nitrogen and oxygen are introduced, the boron pre-diffusion temperature is 1000-1250°C, time 2-30h; re-diffusion temperature is 1200-1275°C, time For 9-120h, a P # area with a junction depth of 15-40μm is formed.
根据上述技术方案的一方面,在所述N+阱区通入POCl3,预扩散温度为1000-1100℃,时间为1-2h;再扩散温度为1100-1250℃,时间为1-6h,形成N+区。According to one aspect of the above technical solution, POCl 3 is introduced into the N + well region, the pre-diffusion temperature is 1000-1100°C, and the time is 1-2h; the re-diffusion temperature is 1100-1250°C, and the time is 1-6h, N + region is formed.
根据上述技术方案的一方面,所述合金的合成温度为400-530℃,合成时间为10-30min,真空度为5×10-4-5×10-3Pa。According to one aspect of the above technical solution, the synthesis temperature of the alloy is 400-530° C., the synthesis time is 10-30 min, and the vacuum degree is 5×10 -4 -5×10 -3 Pa.
附图说明Description of drawings
本发明的上述与/或附加的方面与优点从结合下面附图对实施例的描述中将变得明显与容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easily understood from the description of the embodiments in conjunction with the following drawings, wherein:
图1为本发明第一实施例中的TSS半导体放电管的结构示意图;Fig. 1 is the structural representation of the TSS semiconductor discharge tube in the first embodiment of the present invention;
图2为本发明第二实施例中的TSS半导体放电管的制备方法的流程图;Fig. 2 is the flow chart of the preparation method of the TSS semiconductor discharge tube in the second embodiment of the present invention;
附图元器件符号说明:Explanation of symbols of attached parts and components:
N型硅片100,第一N型部101,第二N型部102,P+区200,P#区300,P-区400,N+区500,保护层600,第一保护子层601,第二保护子层602,金属层700。N-
具体实施方式Detailed ways
为使本发明的目的、特征与优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。In order to make the purpose, features and advantages of the present invention more obvious and understandable, the specific implementation manners of the present invention will be described in detail below in conjunction with the accompanying drawings. Several embodiments of the invention are shown in the drawings. However, the present invention can be embodied in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that the disclosure of the present invention will be thorough and complete.
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”以及类似的表述只是为了说明的目的,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造与操作,因此不能理解为对本发明的限制。It should be noted that when an element is referred to as being “fixed on” another element, it may be directly on the other element or there may be an intervening element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or intervening elements may also be present. As used herein, the terms "vertical", "horizontal", "left", "right", "upper", "lower" and similar expressions are for the purpose of description only and do not indicate or imply the device or Elements must have certain orientations, be constructed and operate in certain orientations, and therefore should not be construed as limitations on the invention.
在本发明中,除非另有明确的规定与限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的与所有的组合。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
请参阅图1,所示为本发明提供的一种TSS半导体放电管,该TSS半导体放电管包括N型硅片100;其中,制作N型硅片100的材料可以为半导体材料SOI、碳化硅、氮化镓、砷化镓、磷化铟以及锗硅等材料,该N型硅片100的厚度150-300μm,电阻率为0.009-0.012Ω·cm。N型硅片100的少子寿命高、弱光性能好、对金属杂质容忍度高,形成的PN结结构性能优异。Please refer to Fig. 1, it is shown that a kind of TSS semiconductor discharge tube provided by the present invention, this TSS semiconductor discharge tube comprises N-
N型硅片100的两面分别并位设有P+区200和P#区300以及P-区400,P#区300设于P+区200和P-区400之间,P+区200的深度大于P#区300的深度,P#区300的深度大于P-区400的深度。The two sides of the N-
进一步地,N型硅片100包括第一N型部101以及与第一N型部101连接的第二N型部102,第一N型部101的两面分别并位设有P+区200和P#区300以及P-区400,第二N型部102设于P+区200远离P#区300的一侧。Further, the N-
其中,P+区200和P#区300以及P-区400都是通过硼预扩和硼再扩将一定数量的杂质掺入N型硅片100中,以形成P+区200和P#区300以及P-区400。需要说明的是,目前比较常见的杂质掺杂方法为离子注入方式,即将杂质电离成离子并聚焦成离子束,在电场中加速获得极高的动能注入到硅片中实现掺杂,通常离子注入所需的能量E>50KeV,但是离子注入会引起大量空位和间隙原子等缺陷,以及空位与其它杂质结合而形成的复合缺陷;而本实施例采用扩散方式进行杂质掺杂,能有效地减少空位和缺陷,并且扩散工艺可以获得很深的结深,浪涌承受能力更强,形成的芯片响应速度快,浪涌能力强,高可靠性,此外扩散工艺的周期较短,易于封装,能有效地减少封装对芯片产出应力的影响。Among them, the P + region 200, the P # region 300 and the P - region 400 are all doped with a certain amount of impurities into the N-
进一步地,P+区200为深硼区,P+区200的结深为50-70μm,结深越深,抗封装应力更强。Further, the P + region 200 is a deep boron region, and the junction depth of the P + region 200 is 50-70 μm. The deeper the junction depth, the stronger the resistance to packaging stress.
进一步地,P#区300为淡硼区,用于调节半导体放电管的电压,P#区300的结深为15-40μm。Further, the P # region 300 is a light boron region, which is used to adjust the voltage of the semiconductor discharge tube, and the junction depth of the P # region 300 is 15-40 μm.
进一步地,P-区400为阻挡层,防止电流从P-区400漏出,减少漏电流的产生,提高半导体放电管的IPP流通能力,P-区400的结深为20-30μm。Further, the P - region 400 is a barrier layer, preventing current from leaking from the P - region 400, reducing leakage current generation, and improving the IPP flow capacity of the semiconductor discharge tube. The junction depth of the P - region 400 is 20-30 μm.
另外,P#区300于远离N型硅片100的一侧光刻有若干N+区500,P#区300于远离N型硅片100的一侧上设有金属层700,金属层700的两侧分别设有保护层600。保护层600包括第一保护子层601和第二保护子层602,第一保护子层601设于P-区400上,第二保护子层602设于第二N型部102上。In addition, the P # region 300 is photoetched with a number of N + regions 500 on the side far away from the N-
其中,N+区500为击穿区,N+区500是通过磷预扩和磷再扩形成的,用于调节半导体放电管的电流作用,N+区500的直径为8-12μm。Wherein, the N + region 500 is a breakdown region, and the N + region 500 is formed by phosphorus pre-expansion and phosphorus re-expansion, and is used to adjust the current effect of the semiconductor discharge tube. The diameter of the N + region 500 is 8-12 μm.
N型硅片100的两面均设有N+区500、P+区200、P#区300,P+区200、P#区300和N+区500与N型硅片100形成PN结,上凹下凸结构。另外,N+区500、P+区200、P#区300、P-区400以及第二N型部102的上方形成一个平整的界面,以便于后续保护层600以及金属层700的附着和沉积,提高后续保护层600以及金属层700的致密度和平整度,防止缺陷的产生,并且平整的界面能有效地防止在震动情况下中金属粉末的脱落,提高器件稳定性,可靠性,避免P-区形成沟槽状,沉积于该沟槽里的保护层600或金属层700稳定性和平整度差,导致保护层600或金属层700脱落,器件稳定性差。Both sides of the N-
进一步地,保护层600为二氧化硅,厚度为20000-25000Å,保护层600用于保护PN结,由于N+区500、P+区200、P#区300、P-区400以及第二N型部102的上方形成一个平整的界面,其界面容易通过热氧化而覆盖一层保护层600来保护PN结,提升器件的稳定性和可靠性。Further, the
进一步地,金属层700为钛-镍-银合金,厚度为8000-15000Å,金属层700用于提高可靠性及浪涌能力以及芯片与封装之间焊接。Further, the
另外,请参阅图2,所示为本发明提供的一种TSS半导体放电管的制备方法,所述制备方法包括步骤S10-S17:In addition, please refer to Fig. 2, which shows a preparation method of a TSS semiconductor discharge tube provided by the present invention, the preparation method includes steps S10-S17:
步骤S10,选择N型硅片;Step S10, selecting an N-type silicon wafer;
其中,制作N型硅片的材料可以为半导体材料SOI、碳化硅、氮化镓、砷化镓、磷化铟以及锗硅等材料,该N型硅片的厚度150-300μm,电阻率为0.009-0.012Ω·cm。N型硅片的少子寿命高、弱光性能好、对金属杂质容忍度高,形成的PN结结构性能优异。Among them, the material for making the N-type silicon wafer can be semiconductor materials such as SOI, silicon carbide, gallium nitride, gallium arsenide, indium phosphide, and silicon germanium. The thickness of the N-type silicon wafer is 150-300 μm, and the resistivity is 0.009 -0.012Ω·cm. N-type silicon wafers have high minority carrier lifetime, good low-light performance, high tolerance to metal impurities, and excellent performance of the formed PN junction structure.
所述N型硅片包括第一N型部以及与所述第一N型部连接的第二N型部,所述第一N型部的两面分别并位设有所述P+区和所述P#区以及所述P-区,所述第二N型部设于所述P+区远离所述P#区的一侧。The N-type silicon chip includes a first N-type portion and a second N-type portion connected to the first N-type portion, and the two sides of the first N-type portion are respectively provided with the P + region and the The P # area and the P - area, the second N-type part is provided on the side of the P + area away from the P # area.
步骤S11,在所述N型硅片两面分别生长氧化层;Step S11, growing oxide layers on both sides of the N-type silicon wafer;
步骤S12,在所述N型硅片的两面光刻P+阱区,对所述P+阱区进行硼预扩散和硼再扩散分布,形成P#区和P+区;Step S12, photoetching the P + well area on both sides of the N-type silicon wafer, performing boron pre-diffusion and boron re-diffusion distribution on the P + well area to form a P # area and a P + area;
其中,对所述P+阱区进行硼预扩散和硼再扩散分布,形成P#区和P+区的步骤,具体包括:Wherein, the step of performing boron pre-diffusion and boron re-diffusion distribution on the P + well region to form a P # region and a P + region specifically includes:
在所述P+阱区表面均匀涂上硼源并且通入氮气和氧气,预扩散温度为1000-1250℃,时间为2-30h;再扩散温度为1200-1275℃,时间为9-120h,形成结深为50-70μm的P+区。Uniformly coat the boron source on the surface of the P + well region and pass nitrogen and oxygen gas, the pre-diffusion temperature is 1000-1250°C, the time is 2-30h; the re-diffusion temperature is 1200-1275°C, the time is 9-120h, Form a P + region with a junction depth of 50-70 μm.
在P#区表面均匀涂上硼源并且通入氮气和氧气,硼预扩温度为1000-1250℃,时间2-30h;再扩散温度为1200-1275℃,时间为9-120h,形成结深为15-40μm的P#区。Coat the boron source uniformly on the surface of P # area and pass nitrogen and oxygen gas, boron pre-diffusion temperature is 1000-1250℃, time is 2-30h; re-diffusion temperature is 1200-1275℃, time is 9-120h, forming deep junction P # area for 15-40μm.
进一步地,所述P+区为深硼区,P+区的结深为50-70μm,结深越深,抗封装应力更强。Further, the P + region is a deep boron region, and the junction depth of the P + region is 50-70 μm, and the deeper the junction depth, the stronger the resistance to packaging stress.
进一步地,所述P#区为淡硼区,用于调节半导体放电管的电压,P#区的结深为15-40μm。Further, the P # area is a light boron area, which is used to adjust the voltage of the semiconductor discharge tube, and the junction depth of the P # area is 15-40 μm.
步骤S13,在所述N型硅片的两面光刻P-阱区,对所述P-阱区进行硼预扩散和硼再扩散分布,形成P-区;Step S13, photoetching P - well regions on both sides of the N-type silicon wafer, performing boron pre-diffusion and boron re-diffusion distribution on the P - well regions to form P - regions;
具体为,在所述P-阱区表面均匀涂上硼源并且通入氮气和氧气,预扩散温度为1000-1250℃,时间为2-30h;再扩散温度为1100-1275℃,时间为5-10h,形成结深为20-30μm的P-区。Specifically, a boron source is evenly coated on the surface of the P - well region and nitrogen and oxygen are introduced, the pre-diffusion temperature is 1000-1250°C, and the time is 2-30h; the re-diffusion temperature is 1100-1275°C, and the time is 5 hours. -10h, forming a P - region with a junction depth of 20-30μm.
所述P-区为阻挡层,防止电流从P-区漏出,减少漏电流的产生,提高半导体放电管的IPP流通能力,P-区的结深为20-30μm。The P - region is a barrier layer, which prevents current from leaking from the P - region, reduces leakage current generation, and improves the IPP flow capacity of the semiconductor discharge tube. The junction depth of the P - region is 20-30 μm.
此外,P+区和P#区以及P-区都是通过硼预扩和硼再扩将一定数量的杂质掺入N型硅片中,以形成P+区和P#区以及P-区。需要说明的是,目前比较常见的杂质掺杂方法为离子注入方式,即将杂质电离成离子并聚焦成离子束,在电场中加速获得极高的动能注入到硅片中实现掺杂,通常离子注入所需的能量E>50KeV,但是离子注入会引起大量空位和间隙原子等缺陷,以及空位与其它杂质结合而形成的复合缺陷;而本发明采用扩散方式进行杂质掺杂,能有效地减少空位和缺陷,并且扩散工艺可以获得很深的结深,浪涌承受能力更强,形成的芯片响应速度快,浪涌能力强,高可靠性,此外扩散工艺的周期较短,易于封装,能有效地减少封装对芯片产出应力的影响。In addition, the P + area, P # area and P - area are all doped with a certain amount of impurities into the N-type silicon wafer through boron pre-expansion and boron re-expansion to form the P + area, P # area and P - area. It should be noted that the current relatively common impurity doping method is ion implantation, that is, the impurity is ionized into ions and focused into an ion beam, which is accelerated in an electric field to obtain extremely high kinetic energy and implanted into the silicon wafer for doping. Usually, ion implantation The required energy E>50KeV, but ion implantation will cause a large number of defects such as vacancies and interstitial atoms, as well as composite defects formed by the combination of vacancies and other impurities; and the present invention adopts a diffusion method for impurity doping, which can effectively reduce vacancies and interstitial atoms. Defects, and the diffusion process can obtain a deep junction depth, stronger surge withstand capability, the formed chip has a fast response speed, strong surge capability, and high reliability. In addition, the diffusion process has a short cycle and is easy to package, which can effectively Reduce the impact of packaging on chip output stress.
同时,P-区的预扩散和再扩散的温度小于或等于P#区的预扩散和再扩散的温度,P#区的预扩散和再扩散的温度小于或等于P+区的预扩散和再扩散的温度,将会提高器件的浪涌能力,避免后一道的预扩散和再扩散的温度大于前一道的预扩散和再扩散的温度,导致前一道的硼掺杂浓度再一次经高温变化,导致硼掺杂浓度分布不均匀,造成器件的浪涌能力下降。At the same time, the temperature of pre - diffusion and re-diffusion in P-area is less than or equal to the temperature of pre-diffusion and re-diffusion in P # area, and the temperature of pre-diffusion and re-diffusion in P # area is less than or equal to the pre-diffusion and re-diffusion in P + area. The temperature of diffusion will improve the surge capability of the device, avoiding that the temperature of pre-diffusion and re-diffusion in the latter step is higher than the temperature of pre-diffusion and re-diffusion in the previous step, causing the boron doping concentration in the previous step to change again through high temperature. As a result, the distribution of boron doping concentration is uneven, resulting in a decrease in the surge capability of the device.
步骤S14,在所述P+区于远离所述N型硅片的一侧光刻N+阱区,对所述N+阱区进行磷预扩散和磷再扩散分布,形成N+区;Step S14, photoetching an N + well region on the side of the P + region far away from the N-type silicon wafer, and performing phosphorus pre-diffusion and phosphorus re-diffusion distribution on the N + well region to form an N + region;
具体为,在所述N+阱区通入POCl3,预扩散温度为1000-1100℃,时间为1-2h;再扩散温度为1100-1250℃,时间为1-6h,形成N+区。Specifically, POCl 3 is introduced into the N + well region, the pre-diffusion temperature is 1000-1100°C, and the time is 1-2h; the re-diffusion temperature is 1100-1250°C, and the time is 1-6h, to form the N + region.
N+区为击穿区,N+区是通过磷预扩和磷再扩形成的,用于调节半导体放电管的电流作用,N+区的直径为8-12μm。The N + region is the breakdown region. The N + region is formed by phosphorus pre-expansion and phosphorus re-expansion, and is used to adjust the current action of the semiconductor discharge tube. The diameter of the N + region is 8-12 μm.
步骤S15,在所述N型硅片两面沉积保护层;Step S15, depositing protective layers on both sides of the N-type silicon wafer;
其中,保护层为二氧化硅,厚度为20000-25000Å,保护层用于保护PN结。Wherein, the protective layer is silicon dioxide with a thickness of 20000-25000Å, and the protective layer is used to protect the PN junction.
步骤S16,金属淀积、光刻、刻蚀,保护层间隙形成电极,N型硅片两面形成金属层;Step S16, metal deposition, photolithography, etching, electrodes are formed in the protective layer gap, and metal layers are formed on both sides of the N-type silicon wafer;
步骤S17,合金。Step S17, alloy.
所述合金的合成温度为400-530℃,合成时间为10-30min,真空度为5×10-4-5×10-3Pa,金属层为钛-镍-银合金,厚度为8000-15000Å,金属层用于提高可靠性及浪涌能力以及芯片与封装之间焊接。The synthesis temperature of the alloy is 400-530°C, the synthesis time is 10-30min, the degree of vacuum is 5×10 -4 -5×10 -3 Pa, the metal layer is a titanium-nickel-silver alloy, and the thickness is 8000-15000Å , the metal layer is used to improve reliability and surge capability, as well as soldering between the chip and the package.
下面以具体实施例进一步说明本发明:Further illustrate the present invention with specific embodiment below:
实施例1Example 1
本发明的第一实施例提供了一种TSS半导体放电管,该TSS半导体放电管包括N型硅片;该N型硅片的厚度200μm,电阻率为0.009-0.012Ω·cm。The first embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube includes an N-type silicon chip; the N-type silicon chip has a thickness of 200 μm and a resistivity of 0.009-0.012 Ω·cm.
N型硅片的两面分别并位设有P+区和P#区以及P-区,P#区设于P+区和P-区之间,P+区的深度大于P#区的深度,P#区的深度大于P-区的深度。The two sides of the N-type silicon wafer are respectively provided with a P + area, a P # area and a P - area, and the P # area is arranged between the P + area and the P - area, and the depth of the P + area is greater than the depth of the P # area. The depth of the P # area is greater than the depth of the P- area.
进一步地,N型硅片包括第一N型部以及与第一N型部连接的第二N型部,第一N型部的两面分别并位设有P+区和P#区以及P-区,第二N型部设于P+区远离P#区的一侧。Further, the N-type silicon wafer includes a first N-type portion and a second N-type portion connected to the first N-type portion, and the two sides of the first N-type portion are respectively provided with a P + region, a P # region and a P − region, the second N-type portion is located on the side of the P + region away from the P # region.
在本实施例中,P+区的结深为60μm,P#区的结深为30μm,P-区的结深为25μm。In this embodiment, the junction depth of the P + region is 60 μm, the junction depth of the P # region is 30 μm, and the junction depth of the P − region is 25 μm.
另外,P#区于远离N型硅片的一侧光刻有若干N+区,P#区于远离N型硅片的一侧上设有金属层,金属层的两侧分别设有保护层。保护层包括第一保护子层和第二保护子层,第一保护子层设于P-区上,第二保护子层设于第二N型部上。In addition, the P # area is photoetched with several N + areas on the side away from the N-type silicon wafer, and the P # area is provided with a metal layer on the side away from the N-type silicon wafer, and the two sides of the metal layer are respectively provided with protective layers. . The protective layer includes a first protective sublayer and a second protective sublayer, the first protective sublayer is arranged on the P - region, and the second protective sublayer is arranged on the second N-type portion.
在本实施例中,N+区的直径为10μm,保护层为二氧化硅,厚度为22000Å,金属层为钛-镍-银合金,厚度为11000Å。In this embodiment, the N + region has a diameter of 10 μm, the protective layer is silicon dioxide with a thickness of 22000 Å, and the metal layer is a titanium-nickel-silver alloy with a thickness of 11000 Å.
本实施例中TSS半导体放电管的制备方法包括以下步骤:The preparation method of TSS semiconductor discharge tube comprises the following steps in the present embodiment:
步骤S10,选择N型硅片;Step S10, selecting an N-type silicon wafer;
步骤S11,在所述N型硅片两面分别生长氧化层;Step S11, growing oxide layers on both sides of the N-type silicon wafer;
步骤S12,在所述N型硅片的两面光刻P+阱区,对所述P+阱区进行硼预扩散和硼再扩散分布,形成P#区和P+区;Step S12, photoetching the P + well area on both sides of the N-type silicon wafer, performing boron pre-diffusion and boron re-diffusion distribution on the P + well area to form a P # area and a P + area;
其中,在所述P+阱区表面均匀涂上硼源并且通入氮气和氧气,预扩散温度为1150℃,时间为4h;再扩散温度为1260℃,时间为10h,形成P+区。Wherein, a boron source is evenly coated on the surface of the P + well area and nitrogen and oxygen are passed through, the pre-diffusion temperature is 1150°C, and the time is 4h; the re-diffusion temperature is 1260°C, and the time is 10h, forming a P + area.
在P#区表面均匀涂上硼源并且通入氮气和氧气,硼预扩温度为1100℃,时间3h;再扩散温度为1230℃,时间为20h,形成P#区。Coat the boron source evenly on the surface of the P # area and pass nitrogen and oxygen. The boron pre-diffusion temperature is 1100°C for 3h; the re-diffusion temperature is 1230°C for 20h to form the P # area.
步骤S13,在所述N型硅片的两面光刻P-阱区,对所述P-阱区进行硼预扩散和硼再扩散分布,形成P-区;Step S13, photoetching P - well regions on both sides of the N-type silicon wafer, performing boron pre-diffusion and boron re-diffusion distribution on the P - well regions to form P - regions;
具体为,在所述P-阱区表面均匀涂上硼源并且通入氮气和氧气,预扩散温度为1040℃,时间为2h;再扩散温度为1230℃,时间为5h,形成P-区。Specifically, a boron source is uniformly coated on the surface of the P - well region and nitrogen and oxygen are introduced, the pre-diffusion temperature is 1040°C, and the time is 2h; the re-diffusion temperature is 1230°C, and the time is 5h, to form a P - region.
步骤S14,在所述P+区于远离所述N型硅片的一侧光刻N+阱区,对所述N+阱区进行磷预扩散和磷再扩散分布,形成N+区;Step S14, photoetching an N + well region on the side of the P + region far away from the N-type silicon wafer, and performing phosphorus pre-diffusion and phosphorus re-diffusion distribution on the N + well region to form an N + region;
具体为,在所述N+阱区通入POCl3,预扩散温度为1045℃,时间为1.5h;再扩散温度为1150℃,时间为2.5h,形成N+区。Specifically, POCl 3 is introduced into the N + well region, the pre-diffusion temperature is 1045°C, and the time is 1.5h; the re-diffusion temperature is 1150°C, and the time is 2.5h, to form the N + region.
步骤S15,在所述N型硅片两面沉积保护层;Step S15, depositing protective layers on both sides of the N-type silicon wafer;
步骤S16,金属淀积、光刻、刻蚀,保护层间隙形成电极,N型硅片两面形成金属层;Step S16, metal deposition, photolithography, etching, electrodes are formed in the protective layer gap, and metal layers are formed on both sides of the N-type silicon wafer;
步骤S17,合金。Step S17, alloy.
所述合金的合成温度为510℃,合成时间为30min,真空度为10-3Pa。The synthesis temperature of the alloy is 510° C., the synthesis time is 30 min, and the vacuum degree is 10 −3 Pa.
实施例2Example 2
本发明第二实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided in the second embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P+区的结深为50μm。The junction depth of the P + region is 50 μm.
实施例3Example 3
本发明第三实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided in the third embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P+区的结深为70μm。The junction depth of the P + region is 70 μm.
实施例4Example 4
本发明第四实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided by the fourth embodiment of the present invention, the difference between the TSS semiconductor discharge tube in this embodiment and the TSS semiconductor discharge tube in the first embodiment is:
P-区的结深为20μm。The junction depth of the P - region is 20µm.
实施例5Example 5
本发明第五实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided in the fifth embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P-区的结深为30μm。The junction depth of the P - region is 30µm.
实施例6Example 6
本发明第六实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided in the sixth embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P#区的结深为15μm。The junction depth of the P # region is 15 μm.
实施例7Example 7
本发明第七实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The seventh embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P#区的结深为25μm。The junction depth of the P # region is 25μm.
实施例8Example 8
本发明第八实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The eighth embodiment of the present invention provides a TSS semiconductor discharge tube. The difference between the TSS semiconductor discharge tube in this embodiment and the TSS semiconductor discharge tube in the first embodiment is:
P#区的结深为40μm。The junction depth of the P # region is 40μm.
实施例9Example 9
本发明第九实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided by the ninth embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
N+区的直径为8μm。The diameter of the N + region is 8 μm.
实施例10Example 10
本发明第十实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The tenth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
N+区的直径为12μm。The diameter of the N + region is 12 μm.
实施例11Example 11
本发明第十一实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The eleventh embodiment of the present invention provides a TSS semiconductor discharge tube. The differences between the TSS semiconductor discharge tube in this embodiment and the TSS semiconductor discharge tube in the first embodiment are:
保护层的厚度为20000Å。The thickness of the protective layer is 20000Å.
实施例12Example 12
本发明第十二实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided by the twelfth embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
保护层的厚度为25000Å。The thickness of the protective layer is 25000Å.
实施例13Example 13
本发明第十三实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided by the thirteenth embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
金属层的厚度为8000Å。The thickness of the metal layer is 8000Å.
实施例14Example 14
本发明第十四实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The fourteenth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
金属层的厚度为15000Å。The thickness of the metal layer is 15000Å.
实施例15Example 15
本发明第十五实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The fifteenth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P+区的硼预扩温度为1000℃。The boron pre-expansion temperature in the P + region is 1000°C.
实施例16Example 16
本发明第十六实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The sixteenth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P+区的硼预扩温度为1250℃。The boron pre-expansion temperature in the P + region is 1250°C.
实施例17Example 17
本发明第十七实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The seventeenth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P+区的硼再扩温度为1200℃。The boron re-expansion temperature in the P + region is 1200°C.
实施例18Example 18
本发明第十八实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The eighteenth embodiment of the present invention provides a TSS semiconductor discharge tube. The differences between the TSS semiconductor discharge tube in this embodiment and the TSS semiconductor discharge tube in the first embodiment are:
P+区的硼再扩温度为1275℃。The boron re-expansion temperature in the P + region is 1275°C.
实施例19Example 19
本发明第十九实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided by the nineteenth embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P#区的硼预扩温度为1000℃。The boron pre-expansion temperature in P # area is 1000℃.
实施例20Example 20
本发明第二十实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided by the twentieth embodiment of the present invention, the TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P#区的硼预扩温度为1250℃。The boron pre-expansion temperature in P # area is 1250℃.
实施例21Example 21
本发明第二十一实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-first embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P#区的硼再扩温度为1200℃。The boron re-expansion temperature in P # area is 1200℃.
实施例22Example 22
本发明第二十二实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-second embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P#区的硼再扩温度为1275℃。The boron re-expansion temperature in P # area is 1275℃.
实施例23Example 23
本发明第二十三实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-third embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P-区的硼预扩散温度为1000℃。The boron pre-diffusion temperature in the P - region is 1000°C.
实施例24Example 24
本发明第二十四实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-fourth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P-区的硼预扩散温度为1275℃。The boron pre-diffusion temperature of the P - region is 1275°C.
实施例25Example 25
本发明第二十五实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-fifth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P-区的硼再扩散温度为1100℃。The boron rediffusion temperature of the P - region is 1100°C.
实施例26Example 26
本发明第二十六实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-sixth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
P-区的硼再扩散温度为1275℃。The boron rediffusion temperature of the P - region is 1275°C.
实施例27Example 27
本发明第二十七实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-seventh embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
N+区的磷预扩散温度为1000℃。The phosphorus pre-diffusion temperature in the N + region is 1000°C.
实施例28Example 28
本发明第二十八实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-eighth embodiment of the present invention provides a TSS semiconductor discharge tube. The difference between the TSS semiconductor discharge tube in this embodiment and the TSS semiconductor discharge tube in the first embodiment is:
N+区的磷预扩散温度为1100℃。The phosphorus pre-diffusion temperature in the N + region is 1100°C.
实施例29Example 29
本发明第二十九实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The twenty-ninth embodiment of the present invention provides a TSS semiconductor discharge tube. The TSS semiconductor discharge tube in this embodiment is different from the TSS semiconductor discharge tube in the first embodiment in that:
N+区的磷再扩散温度为1100℃。The phosphorus rediffusion temperature in the N + region is 1100°C.
实施例30Example 30
本发明第三十实施例提供的一种TSS半导体放电管,本实施例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:The thirtieth embodiment of the present invention provides a TSS semiconductor discharge tube. The difference between the TSS semiconductor discharge tube in this embodiment and the TSS semiconductor discharge tube in the first embodiment is:
N+区的磷再扩散温度为1250℃。The phosphorus rediffusion temperature in the N + region is 1250°C.
对比例1Comparative example 1
本发明第一对比例提供的一种TSS半导体放电管,本对比例中的TSS半导体放电管与第一实施例中的TSS半导体放电管的不同之处在于:A TSS semiconductor discharge tube provided in the first comparative example of the present invention, the difference between the TSS semiconductor discharge tube in this comparative example and the TSS semiconductor discharge tube in the first embodiment is:
整体采用离子注入方式掺杂硼。The whole is doped with boron by ion implantation.
请参阅下表1,所示为不同实施例和对比例下制备的TSS半导体放电管的各项性能测试结果。Please refer to Table 1 below, which shows the performance test results of the TSS semiconductor discharge tubes prepared in different embodiments and comparative examples.
表1Table 1
结合实施例1至实施例30以及对比例1的数据可知,通过结构的优化,能有效地提高TSS半导体放电管的浪涌能力,降低残压和电容。Combining the data of Example 1 to Example 30 and Comparative Example 1, it can be seen that the surge capability of the TSS semiconductor discharge tube can be effectively improved, and the residual voltage and capacitance can be reduced by optimizing the structure.
结合实施例1至实施例3数据可知,当P+区结深过浅时,浪涌能力越弱,达不到器件所需的浪涌能力,当P+区结深达到60μm时,已达到浪涌峰值,当P+区结深过深时,N型硅片将会击穿,造成器件性能下降。Combining the data of Examples 1 to 3, it can be seen that when the junction depth of the P + region is too shallow, the surge capability is weaker and cannot reach the surge capability required by the device. When the junction depth of the P + region reaches 60 μm, it has reached Surge peak, when the junction depth of the P + region is too deep, the N-type silicon chip will break down, resulting in a decrease in device performance.
结合实施例1、实施例4、实施例5数据可知,当P-区结深过浅时,浪涌能力越弱,当P-区结深过深时,将会影响P+区和P#区的流通能力,造成峰值脉冲电流的下降。Combining the data of Example 1, Example 4, and Example 5, it can be seen that when the junction depth of the P - region is too shallow, the surge capability is weaker, and when the junction depth of the P - region is too deep, it will affect the P + region and P # The flow capacity of the area, resulting in a drop in peak pulse current.
结合实施例1、实施例6至实施例8数据可知,当P#区结深过浅时,浪涌能力越弱,当P#区结深过深时,将会影响P+区的流通能力,造成峰值脉冲电流的下降。Combining the data of Example 1, Example 6 to Example 8, it can be seen that when the junction depth of the P # area is too shallow, the surge capability will be weaker, and when the junction depth of the P # area is too deep, it will affect the flow capacity of the P + area , resulting in a drop in peak pulse current.
结合实施例1、实施例9、实施例10数据可知,N+区的直径大小会影响产品的通流能力,当N+区的直径过大时,流通能力变弱,维持电流变大,造成峰值脉冲电流的下降;N+区的直径过小时,形成不了维持电流,流通能力变弱,造成峰值脉冲电流的下降。Combining the data of Example 1, Example 9, and Example 10, it can be known that the diameter of the N + region will affect the flow capacity of the product. When the diameter of the N + area is too large, the flow capacity will become weaker, and the sustaining current will become larger, resulting in The decrease of the peak pulse current; the diameter of the N + region is too small, the maintenance current cannot be formed, and the flow capacity becomes weak, resulting in a decrease of the peak pulse current.
结合实施例1、实施例11、实施例12数据可知,当保护层的厚度过薄时,PN结的边缘将会存在载流子漂移,产生暗电流,影响器件的浪涌能力,当保护层的厚度过厚时,不会影响器件的各项参数,会造成时间成本以及物料成本增加。Combining the data of Example 1, Example 11, and Example 12, it can be seen that when the thickness of the protective layer is too thin, there will be carrier drift at the edge of the PN junction, which will generate dark current and affect the surge capability of the device. When the thickness is too thick, it will not affect the parameters of the device, but will increase the time cost and material cost.
结合实施例1、实施例13、实施例14数据可知,当金属层的厚度过薄时,封装容易脱焊,导致浪涌能力变弱,通流能力变低,电容变大;当金属层的厚度过厚时,不会影响器件的性能,会造成时间成本以及物料成本增加。Combining the data of Example 1, Example 13, and Example 14, it can be seen that when the thickness of the metal layer is too thin, the package is easy to desolder, resulting in weaker surge capability, lower flow capacity, and larger capacitance; when the thickness of the metal layer When the thickness is too thick, the performance of the device will not be affected, but the time cost and material cost will be increased.
结合实施例1、实施例15、实施例16数据可知,当P+区的预扩温度过低时,硼掺杂扩散不均匀,浪涌能力下降;当P+区的预扩温度过高时,硼扩散过快,表面的缺陷变多,均匀性变差,浪涌能力下降。Combining the data of Example 1, Example 15, and Example 16, it can be seen that when the pre-spreading temperature of the P + region is too low, the boron doping diffusion is uneven, and the surge capability decreases; when the pre-spreading temperature of the P + region is too high , Boron diffusion is too fast, more surface defects, poorer uniformity, and lower surge capability.
结合实施例1、实施例17、实施例18数据可知,当P+区的再扩温度过低时,硼掺杂扩散不均匀,浪涌能力下降;当P+区的再扩温度过高时,硼扩散过快,表面的缺陷变多,均匀性变差,浪涌能力下降。Combining the data of Example 1, Example 17, and Example 18, it can be seen that when the respreading temperature of the P + region is too low, the boron doping diffusion is uneven and the surge capability decreases; when the respreading temperature of the P + region is too high , Boron diffusion is too fast, more surface defects, poorer uniformity, and lower surge capability.
结合实施例1、实施例19、实施例20数据可知,当P#区的预扩温度过低时,掺杂扩散不均匀,浪涌能力下降;当P#区的预扩温度过高时,超过了P+区的预扩散温度,将会影响P+区的硼的浓度分布,造成P+区的硼的均匀性变差,浪涌能力下降。In conjunction with the data of Example 1, Example 19, and Example 20, it can be seen that when the pre-spreading temperature of the P # district was too low, the dopant diffusion was uneven, and the surge capability decreased; when the pre-spreading temperature of the P # district was too high, Exceeding the pre-diffusion temperature of the P + region will affect the concentration distribution of boron in the P + region, causing the uniformity of boron in the P + region to deteriorate and the surge capability to decrease.
结合实施例1、实施例21、实施例22数据可知,当P#区的再扩温度过低时,掺杂扩散不均匀,浪涌能力下降;当P#区的再扩温度过高时,超过了P+区的再扩散温度,将会影响P+区的硼的浓度分布,造成P+区的硼的均匀性变差,浪涌能力下降。In conjunction with the data of Example 1, Example 21, and Example 22, it can be seen that when the re-expansion temperature of the P # district is too low, the dopant diffusion is uneven, and the surge capacity declines; when the re-expansion temperature of the P # district is too high, Exceeding the re-diffusion temperature of the P + region will affect the concentration distribution of boron in the P + region, causing the uniformity of boron in the P + region to deteriorate and the surge capability to decrease.
结合实施例1、实施例23、实施例24数据可知,当P-区的预扩温度过低时,掺杂扩散不均匀,浪涌能力下降;当P-区的预扩温度过高时,超过了P#区的预扩散温度,将会影响P#区的硼的浓度分布,造成P+区的硼的均匀性变差,浪涌能力下降。Combined with the data of Example 1, Example 23, and Example 24, it can be seen that when the pre-spreading temperature of the P - region is too low, the dopant diffusion is uneven, and the surge capability decreases; when the pre-spreading temperature of the P - region is too high, Exceeding the pre-diffusion temperature of the P # area will affect the concentration distribution of boron in the P # area, resulting in poor uniformity of boron in the P + area and a decrease in surge capability.
结合实施例1、实施例25、实施例26数据可知,当P-区的再扩温度过低时,掺杂扩散不均匀,浪涌能力下降;当P-区的再扩温度过高时,超过了P#区的再扩散温度,将会影响P#区的硼的浓度分布,造成P+区的硼的均匀性变差,浪涌能力下降。In conjunction with the data of Example 1, Example 25, and Example 26, it can be seen that when the re-expansion temperature of the P - region is too low, the dopant diffusion is uneven, and the surge capability decreases; when the re-expansion temperature of the P - region is too high, Exceeding the re-diffusion temperature of the P # area will affect the concentration distribution of boron in the P # area, causing the uniformity of boron in the P + area to deteriorate and the surge capability to decrease.
结合实施例1、实施例27、实施例28数据可知,N+区的预扩温度过低或过高将会影响通流能力,造成峰值脉冲电流的下降。Combining the data of Example 1, Example 27, and Example 28, it can be seen that the pre-spreading temperature of the N + region is too low or too high, which will affect the flow capacity and cause a decrease in the peak pulse current.
结合实施例1、实施例29、实施例30数据可知,N+区的再扩温度过低或过高将会影响浪涌能力,造成浪涌能力下降。Combining the data of Example 1, Example 29, and Example 30, it can be seen that the re-expansion temperature of the N + region is too low or too high, which will affect the surge capability and cause a decrease in the surge capability.
综上,通过结构的优化,能有效地提高TSS半导体放电管的浪涌能力,降低残压和电容。To sum up, through the optimization of the structure, the surge capability of the TSS semiconductor discharge tube can be effectively improved, and the residual voltage and capacitance can be reduced.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、 “示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, reference to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" means that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310396353.7A CN116110945A (en) | 2023-04-14 | 2023-04-14 | A kind of TSS semiconductor discharge tube and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310396353.7A CN116110945A (en) | 2023-04-14 | 2023-04-14 | A kind of TSS semiconductor discharge tube and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116110945A true CN116110945A (en) | 2023-05-12 |
Family
ID=86260199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310396353.7A Pending CN116110945A (en) | 2023-04-14 | 2023-04-14 | A kind of TSS semiconductor discharge tube and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116110945A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020030199A1 (en) * | 2000-07-27 | 2002-03-14 | Mitsubishi Denki Kabushiki Kaisha | Reverse conducting thyristor |
US6489666B1 (en) * | 2000-02-23 | 2002-12-03 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with improved heat suppression in peripheral regions |
CN113161347A (en) * | 2021-06-02 | 2021-07-23 | 江苏韦达半导体有限公司 | Low-capacitance low-residual-voltage high-power overvoltage protection device chip and manufacturing process thereof |
-
2023
- 2023-04-14 CN CN202310396353.7A patent/CN116110945A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6489666B1 (en) * | 2000-02-23 | 2002-12-03 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device with improved heat suppression in peripheral regions |
US20020030199A1 (en) * | 2000-07-27 | 2002-03-14 | Mitsubishi Denki Kabushiki Kaisha | Reverse conducting thyristor |
CN113161347A (en) * | 2021-06-02 | 2021-07-23 | 江苏韦达半导体有限公司 | Low-capacitance low-residual-voltage high-power overvoltage protection device chip and manufacturing process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101794182B1 (en) | Semiconductor device and method for manufacturing semiconductor device | |
JP6237915B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
EP2426728B1 (en) | Solar cell element, solar cell module and electronic appliance with this solar cell element | |
JP2007158320A (en) | Semiconductor device and manufacturing method thereof | |
EP4131420A1 (en) | Insulated gate bipolar transistor and preparation method, and electronic device | |
CN102592995A (en) | Manufacture method of Zener diode | |
US20180090564A1 (en) | Semiconductor device, method for manufacturing the same, and power conversion system | |
US9837275B2 (en) | Fabrication method of fast recovery diode | |
CN110729344B (en) | A kind of bidirectional semiconductor discharge tube and its preparation method | |
CN106611797A (en) | Power device with local metal service life control and manufacturing method thereof | |
CN116110945A (en) | A kind of TSS semiconductor discharge tube and preparation method thereof | |
CN210575963U (en) | Silicon controlled rectifier device | |
KR100868022B1 (en) | Transient Voltage Suppression Element and Manufacturing Method Thereof | |
CN113161347B (en) | Low capacitance, low residual voltage, high power overvoltage protection device chip and its manufacturing process | |
CN112397566A (en) | Silicon carbide device and preparation method thereof | |
CN106558624B (en) | A fast recovery diode and its manufacturing method | |
CN115483104A (en) | A method of manufacturing a variable capacitance diode | |
CN115632056A (en) | A lateral punch-through SiC-TVS device with optional clamping voltage | |
CN210403737U (en) | Silicon controlled rectifier device | |
KR100945626B1 (en) | Transient voltage suppressor | |
CN112038411A (en) | Vertical aluminum nitride PN junction diode based on silicon carbide substrate and preparation method | |
CN111276547A (en) | High-surge-capability low-residual-voltage TVS anti-surge device and manufacturing method thereof | |
CN110690280A (en) | Silicon controlled rectifier device and preparation method thereof | |
CN204991719U (en) | Fast recovery diode | |
CN205177855U (en) | Power device with control of local metal life -span |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230512 |
|
RJ01 | Rejection of invention patent application after publication |