[go: up one dir, main page]

CN1161002C - An organic electroluminescent device - Google Patents

An organic electroluminescent device Download PDF

Info

Publication number
CN1161002C
CN1161002C CNB031210635A CN03121063A CN1161002C CN 1161002 C CN1161002 C CN 1161002C CN B031210635 A CNB031210635 A CN B031210635A CN 03121063 A CN03121063 A CN 03121063A CN 1161002 C CN1161002 C CN 1161002C
Authority
CN
China
Prior art keywords
layer
organic
quantum well
transport layer
hole transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB031210635A
Other languages
Chinese (zh)
Other versions
CN1457105A (en
Inventor
勇 邱
邱勇
高裕弟
魏鹏
张德强
王立铎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Beijing Visionox Technology Co Ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN02116537A external-priority patent/CN1409412A/en
Priority claimed from CN 02125484 external-priority patent/CN1398146A/en
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB031210635A priority Critical patent/CN1161002C/en
Publication of CN1457105A publication Critical patent/CN1457105A/en
Application granted granted Critical
Publication of CN1161002C publication Critical patent/CN1161002C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种有机电致发光器件。该器件的空穴传输层(4)采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机材料B两种材料层交替重叠组成,两种有机材料的能级互相匹配(即材料A的能带能实现对材料B的能带的包裹),在量子阱界面处形成空穴的势垒。本发明在空穴传输层采用的有机量子阱结构能够显著控制空穴载流子在空穴传输层中的迁移,实现了发光区域电子和空穴的注入平衡,从而提高了器件的发光效率和发光亮度。如果组成有机量子阱结构的有机材料B为染料C,器件随空穴传输层中的有机量子阱周期数不同而具有不同发光中心,即可以通过控制空穴传输层中的有机量子肼周期数来改变器件中电子和空穴的复合发光区域,进而调整器件的发光中心。

Figure 03121063

The invention relates to an organic electroluminescent device. The hole transport layer (4) of the device adopts an organic quantum well structure. This quantum well transport structure is composed of two material layers alternately overlapping, an organic material A with a wide energy band and an organic material B with a narrow energy band. The two organic materials The energy levels of the materials match each other (that is, the energy band of material A can realize the wrapping of the energy band of material B), and a potential barrier of holes is formed at the interface of the quantum well. The organic quantum well structure adopted in the hole transport layer of the present invention can significantly control the migration of hole carriers in the hole transport layer, and realize the injection balance of electrons and holes in the light-emitting region, thereby improving the luminous efficiency and efficiency of the device. Luminous brightness. If the organic material B that forms the organic quantum well structure is dye C, the device has different luminescent centers with the organic quantum well period number in the hole transport layer, that is, it can be controlled by the organic quantum hydrazine period number in the hole transport layer. Change the recombination light-emitting area of electrons and holes in the device, and then adjust the light-emitting center of the device.

Figure 03121063

Description

一种有机电致发光器件An organic electroluminescent device

技术领域technical field

本发明涉及一种有机电致发光器件,更具体的说,本发明涉及一种发光效率高、发光亮度大的有机电致发光器件,还涉及一种可调整发光中心的有机电致发光器件。The invention relates to an organic electroluminescent device, more specifically, the invention relates to an organic electroluminescent device with high luminous efficiency and high luminous brightness, and also relates to an organic electroluminescent device with adjustable luminescent center.

背景技术Background technique

当今,随着多媒体技术的发展和信息社会的来临,对平板显示器性能的要求越来越高。近年新出现的三种显示技术:等离子显示器、场发射显示器和有机电致发光显示器,均在一定程度上弥补了阴极射线管和液晶显示器的不足。其中,有机电致发光显示器具有自主发光、低电压直流驱动、全固化、视角宽、颜色丰富等一系列的优点,与液晶显示器相比,有机电致发光显示器不需要背光源,视角大,功率低,其响应速度可达液晶显示器的1000倍,其制造成本却低于同等分辨率的液晶显示器,因此,有机电致发光显示器具有广阔的应用前景。Today, with the development of multimedia technology and the advent of the information society, the requirements for the performance of flat panel displays are getting higher and higher. In recent years, three new display technologies: plasma display, field emission display and organic electroluminescent display have made up for the shortcomings of cathode ray tubes and liquid crystal displays to a certain extent. Among them, organic electroluminescent displays have a series of advantages such as self-illumination, low-voltage DC drive, full curing, wide viewing angle, and rich colors. Low, its response speed can reach 1000 times that of liquid crystal display, but its manufacturing cost is lower than the liquid crystal display of the same resolution, therefore, organic electroluminescent display has broad application prospects.

1987年,美国Kodak公司的C.W.TANG等人(C.W.Tang,S.A.Slyke,Appl.Phys.Lett.51,913(1987))首次采用双层结构,以芳香二胺类衍生物作为空穴传输材料,以一种荧光效率很高且能用真空镀膜法制成均匀致密的高质量薄膜的有机小分子材料——Alq3作为发光层材料,制备出较高量子效率(1%)、高发光效率(>1.51m/W)、高亮度(>1000cd/m2)和低驱动电压(<10V)的有机电致发光器件(Organic ElectroluminescentDevices,以下简称OLEDs),使得该领域的研究工作进入一个崭新的时代。1990年,英国Cambridge大学卡文迪许实验室的Burroughes和他的同事发现聚合物材料也具有良好的电致发光性能,这个重要的发现将有机电致发光材料的研究推广到聚合物领域。十余年来,人们不断地提高有机电致发光器件的制备工艺,其相关技术发展迅速。In 1987, CWTANG et al. (CWTang, SASlyke, Appl. Phys. Lett.51, 913 (1987)) of Kodak Company in the United States adopted a double-layer structure for the first time, using aromatic diamine derivatives as hole transport materials, and using a The organic small molecule material with high fluorescence efficiency and can be made into uniform and dense high-quality thin film by vacuum coating method——Alq 3 is used as the light-emitting layer material to prepare higher quantum efficiency (1%) and high luminous efficiency (>1.51m/ W), high brightness (>1000cd/m 2 ) and low driving voltage (<10V) organic electroluminescent devices (Organic Electroluminescent Devices, hereinafter referred to as OLEDs), making the research work in this field enter a new era. In 1990, Burroughes and his colleagues at the Cavendish Laboratory of Cambridge University in the United Kingdom discovered that polymer materials also have good electroluminescent properties. This important discovery extended the research on organic electroluminescent materials to the polymer field. For more than ten years, people have continuously improved the preparation process of organic electroluminescent devices, and its related technologies have developed rapidly.

OLEDs的内量子效率主要取决于载流子的注入、传输、复合效率,同时器件的发光效率也受到电子和空穴注入平衡的强烈影响。在传统的NPB/Alq3双层器件中,NPB的空穴传输能力远远大于Alq3对电子的传输能力,因此导致了在器件中载流子传输的严重不平衡,从而降低了器件的发光效率。人们发现,通过使用合适的空穴传输材料或者使用合适的器件结构来匹配器件中的电子传输材料(如Alq3等)是提高器件性能的有效办法。第一种方案是使用搀杂的办法在空穴传输层中添加rubrene材料,Y.Hamada和M.S.Jang等人(Y.Hamada,T.Sano,K.Shibata,and K.Kuroki,Jpn.J.Appl.Phys.,Part 234,L824(1995);M.S.Jang,S.Y.Song,H.K.Shim,T.Zyung,S.D.Jung,L.M.Do,Synth.Met.91,317(1997))都进行了类似的研究工作。Aziz等人(H.Aziz,Z.Popovic,N.X.Hu,A.M.Hor,and G.Xu,Science 283,1900(1999);H.Azizand Z.D.Popovic,Appl.Phys.Lett.80,2180(2002))认为其作用的机理在于通过搀杂rubrene材料,使得搀杂的rubrene分子担当空穴陷阱的作用,从而使得器件的性能得以提高。另外一种方法就是使用量子阱结构来提高器件效率。有机量子阱结构在帮助降低OLEDs发光光谱宽度,提高器件发光效率,转换器件发光颜色等方面取得了一些成功。但目前的研究中有机量子阱结构普遍用来提高发光层的电子和空穴的浓度,进而提高载流子的复合效率。比如,N.Tada等人(N.Tada,S.Tatsuhara,A.Fujii,Y.Ohmori and K.Yoshino,Jpn.J.Appl.Phys.36,421(1997))在OLEDs的发光层使用Alq3和TPD交替多层量子阱结构,器件的发光效率较传统结构(发光层仅使用Alq3)有所提高。类似的实验进一步证实,这种性能的改善,主要归功于发光层载流子浓度的提高。但在发光层采用有机量子阱结构,只是提高了发光层载流子的浓度,在发光区域仍不能使得电子和空穴达到注入平衡,过量的空穴仍会导致发光效率的下降。因此发光层采用这种结构提高载流子复合效率的能力还比较有限。The internal quantum efficiency of OLEDs mainly depends on the carrier injection, transport, and recombination efficiency, and the luminous efficiency of the device is also strongly affected by the balance of electron and hole injection. In traditional NPB/Alq 3 bilayer devices, the hole transport ability of NPB is much greater than that of Alq 3 for electrons, thus leading to a serious imbalance in carrier transport in the device, thereby reducing the luminescence of the device. efficiency. It has been found that using a suitable hole transport material or using a suitable device structure to match the electron transport material (such as Alq 3 ) in the device is an effective way to improve the performance of the device. The first scheme is to use the way of doping to add rubrene material in the hole transport layer, Y.Hamada and MSJang et al. (Y.Hamada, T.Sano, K.Shibata, and K.Kuroki, Jpn.J.Appl. Phys., Part 234, L824 (1995); MS Jang, SYSong, HK Shim, T. Zyung, SD Jung, LMDo, Synth. Met.91, 317 (1997)) have all carried out similar research work. Aziz et al. (H.Aziz, Z.Popovic, NXHu, AMHor, and G.Xu, Science 283, 1900 (1999); H.Azizand ZD Popovic, Appl. Phys. Lett. 80, 2180 (2002)) think its role The mechanism is that by doping the rubrene material, the doped rubrene molecules act as hole traps, thereby improving the performance of the device. Another approach is to use quantum well structures to improve device efficiency. The organic quantum well structure has achieved some success in helping to reduce the emission spectrum width of OLEDs, improve the luminous efficiency of the device, and convert the luminous color of the device. However, in the current research, the organic quantum well structure is generally used to increase the concentration of electrons and holes in the light-emitting layer, thereby improving the recombination efficiency of carriers. For example, N.Tada et al. (N.Tada, S.Tatsuhara, A.Fujii, Y.Ohmori and K.Yoshino, Jpn.J.Appl.Phys.36, 421 (1997)) use Alq in the light-emitting layer of OLEDs 3 and TPD alternating multi-layer quantum well structure, the luminous efficiency of the device is improved compared with the traditional structure (only Alq 3 is used in the light-emitting layer). Similar experiments further confirmed that this performance improvement is mainly due to the increase in the carrier concentration of the light-emitting layer. However, the use of an organic quantum well structure in the light-emitting layer only increases the concentration of carriers in the light-emitting layer, and the injection balance of electrons and holes cannot be achieved in the light-emitting region, and excessive holes will still lead to a decrease in luminous efficiency. Therefore, the ability of the light-emitting layer to improve the carrier recombination efficiency by adopting this structure is relatively limited.

发明内容Contents of the invention

本发明的目的是提供一种发光效率高、发光亮度大的有机电致发光器件。The object of the present invention is to provide an organic electroluminescent device with high luminous efficiency and high luminous brightness.

本发明的另一目的是提供一种可调整发光中心的有机电致发光器件。Another object of the present invention is to provide an organic electroluminescent device with adjustable luminescent center.

为实现上述目的,本发明的技术方案是提供一种有机电致发光器件,该器件包括透明基片、第一电极层和第二电极层,以及夹在所述第一电极层、第二电极层之间的空穴传输层和电子传输层,其特征在于:空穴传输层采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机材料B两种材料层以一定的周期数交替重叠组成,这两种有机材料的能级满足下列关系:To achieve the above object, the technical solution of the present invention is to provide an organic electroluminescent device, which comprises a transparent substrate, a first electrode layer and a second electrode layer, and The hole transport layer and the electron transport layer between the layers are characterized in that: the hole transport layer adopts an organic quantum well structure, and this quantum well transport structure is composed of an organic material A with a wide energy band and an organic material B with a narrow energy band. The material layers are alternately overlapped with a certain number of periods, and the energy levels of the two organic materials satisfy the following relationship:

(I)有机材料A的最高占有轨道能级低于有机材料B的最高占有轨道能级(以下简称HOMO能级),(1) The highest occupied orbital energy level of organic material A is lower than the highest occupied orbital energy level of organic material B (hereinafter referred to as HOMO energy level),

(II)有机材料A的最低空轨道能级高于有机材料B的最低空轨道能级(以下简称LUMO能级),其中有机量子阱结构的周期数为1~10的整数。(II) The lowest unoccupied orbital energy level of the organic material A is higher than the lowest unoccupied orbital energy level of the organic material B (hereinafter referred to as LUMO energy level), wherein the period number of the organic quantum well structure is an integer ranging from 1 to 10.

上述技术方案中的空穴传输层采用的两种有机材料的能级互相匹配(同时满足上述关系式(I)和(II)),即在有机量子阱结构中,材料A的能带能实现对材料B的能带的包裹。由于界面处载流子倾向于向能量较低位置移动,因此在材料A层和B层的界面处,空穴和电子都倾向于向材料B层移动,即材料A层对材料B层的能级势垒作用,使得电子和空穴的势阱都在材料B层中。当空穴经由有机量子阱结构传输时,空穴载流子大量分布在材料B层中,而在材料A层中分布的几率很小,在材料A层中只能通过隧穿方式传输,同时由于材料B层和材料A层界面处存在空穴的势垒,空穴隧穿A层需要克服势垒而损耗能量。从而可以得出:(1)界面的能级势垒越大,空穴载流子穿越界面需要消耗更多的能量,从而有更多的载流子因能量不够而被束缚在材料B层中,不能通过整个量子阱结构;(2)随着量子阱周期数的提高,载流子通过量子阱传输需要经过的界面随之增多,也会使得通过整个量子阱结构的空穴数量减少,起到阻挡空穴的作用。因此,选择组成量子阱结构的材料及其周期数可以很好的控制空穴载流子在空穴传输层中的迁移,实现了发光区域电子和空穴的注入平衡,从而提高了器件的发光效率和发光亮度。The energy levels of the two organic materials used in the hole transport layer in the above-mentioned technical solution match each other (satisfy the above-mentioned relational formulas (I) and (II) at the same time), that is, in the organic quantum well structure, the energy band of material A can realize Band wrapping to material B. Since the carriers at the interface tend to move to lower energy positions, at the interface between the material A layer and the B layer, both holes and electrons tend to move to the material B layer, that is, the energy of the material A layer to the material B layer The level potential barrier effect makes the potential wells of both electrons and holes in the material B layer. When holes are transported through the organic quantum well structure, a large number of hole carriers are distributed in the material B layer, but the probability of distribution in the material A layer is very small, and the material A layer can only be transported by tunneling. There is a potential barrier of holes at the interface between the material B layer and the material A layer, and holes need to overcome the potential barrier to lose energy when tunneling through the A layer. Therefore, it can be concluded that: (1) The larger the energy level barrier of the interface, the more energy the hole carriers need to consume to cross the interface, so more carriers are bound in the material B layer due to insufficient energy , cannot pass through the entire quantum well structure; (2) With the increase of the period number of quantum wells, the interfaces that carriers need to pass through through the quantum wells will increase, which will also reduce the number of holes passing through the entire quantum well structure. to block holes. Therefore, the choice of the material and its period number that make up the quantum well structure can well control the migration of hole carriers in the hole transport layer, and realize the injection balance of electrons and holes in the light-emitting region, thereby improving the light emission of the device. efficiency and luminous brightness.

在本发明的技术方案中所述的有机材料B可以是一种染料C。The organic material B described in the technical solution of the present invention may be a dye C.

研究表明:在量子阱传输层结构中,(1)界面的能级势垒越大,载流子穿越界面需要消耗更多的能量,从而有更多的载流子因能量不够而被束缚在材料C层中,不能通过整个量子阱结构;(2)随着周期数的提高,载流子通过量子阱传输需要经过的界面随之增多,也会使得通过量子阱结构的载流子数量减少,起到阻挡载流子的作用。因此,当量子阱界面处电子和空穴势垒很小时(<0.4eV),就可以使得大部分空穴被束缚在量子阱结构中,小部分空穴可以越过量子阱进一步传输。同时,电子在电子传输层中与传输到此的小部分空穴复合之后,剩余的电子也可以越过小的量子阱势垒,而传输进入量子阱结构的空穴传输层中,同束缚在量子阱中的空穴进一步复合,从而实现两个发光中心同时发光。通过调节有机量子阱结构的周期数,可以使得发光中心存在于电子传输层(此时周期数少,大部分空穴通过量子阱结构,发出电子传输层材料的EL光谱)或者空穴传输层(此时周期数多,空穴完全束缚在量子阱结构中,电子传输层电子传入量子阱结构和空穴复合,发出有机染料C的EL光谱),或者同时存在于电子传输层和空穴传输层中。那么,器件随空穴传输层中的有机量子阱周期数不同而具有不同的发光中心,也就是说可以通过控制空穴传输层中的有机量子阱周期数来改变器件中电子和空穴的复合发光区域,进而调整器件的发光中心。Studies have shown that: in the quantum well transport layer structure, (1) the greater the energy level barrier of the interface, the more energy is consumed for carriers to cross the interface, so more carriers are bound in the quantum well due to insufficient energy. In the material C layer, it cannot pass through the entire quantum well structure; (2) With the increase of the period number, the interfaces that carriers need to pass through the quantum well transmission will increase, which will also reduce the number of carriers passing through the quantum well structure , play the role of blocking carriers. Therefore, when the electron and hole barriers at the quantum well interface are small (<0.4eV), most of the holes can be trapped in the quantum well structure, and a small part of the holes can be further transported across the quantum well. At the same time, after the electrons recombine with a small part of the holes transported here in the electron transport layer, the remaining electrons can also cross the small quantum well barrier and transport into the hole transport layer of the quantum well structure, which is bound in the quantum well structure. The holes in the well are further recombined, so that the two luminescent centers emit light simultaneously. By adjusting the period number of the organic quantum well structure, the luminescent center can be made to exist in the electron transport layer (at this time, the period number is small, and most of the holes pass through the quantum well structure to emit the EL spectrum of the electron transport layer material) or the hole transport layer ( At this time, the number of cycles is large, the holes are completely bound in the quantum well structure, and the electrons in the electron transport layer are introduced into the quantum well structure and recombined with the holes, emitting the EL spectrum of the organic dye C), or exist in both the electron transport layer and the hole transport layer. Then, the device has different luminescent centers with different organic quantum well periods in the hole transport layer, that is to say, the recombination of electrons and holes in the device can be changed by controlling the organic quantum well period in the hole transport layer. The light-emitting area, and then adjust the light-emitting center of the device.

在本发明的技术方案中所述的第一电极层和空穴传输层之间可夹有一层缓冲层,所述的空穴传输层和电子传输层之间可夹有一层过渡层。In the technical solution of the present invention, a buffer layer may be sandwiched between the first electrode layer and the hole transport layer, and a transition layer may be sandwiched between the hole transport layer and the electron transport layer.

本发明提出的有机电致发光器件,具有以下优点:The organic electroluminescent device proposed by the present invention has the following advantages:

①在空穴传输层采用的有机量子阱结构能够显著控制空穴载流子在空穴传输层中的迁移,从而实现了发光区域电子和空穴的注入平衡,进而提高了器件的发光效率和发光亮度;①The organic quantum well structure used in the hole transport layer can significantly control the migration of hole carriers in the hole transport layer, thereby realizing the injection balance of electrons and holes in the light-emitting region, thereby improving the luminous efficiency and Luminous brightness;

②如果组成有机量子阱结构的窄能带的有机材料B为染料C,器件随空穴传输层中的有机量子阱周期数不同而具有不同发光中心,也就是说可以通过控制空穴传输层中的有机量子阱周期数来改变器件中电子和空穴的复合发光区域,进而调整器件的发光中心。②If the organic material B with a narrow energy band constituting the organic quantum well structure is a dye C, the device will have different luminescent centers depending on the number of periods of the organic quantum well in the hole transport layer, that is to say, it can be controlled by controlling the organic quantum well in the hole transport layer. The period number of the organic quantum well can be used to change the recombination light-emitting area of electrons and holes in the device, and then adjust the light-emitting center of the device.

附图说明Description of drawings

下面结合附图通过具体实施方式、实施例加以说明,本发明会变得更加清楚。The present invention will become clearer by describing the specific implementation modes and examples below in conjunction with the accompanying drawings.

图1是本发明提出的有机电致发光器件的结构示意图(示意图的器件结构中包括可有可无的缓冲层和过渡层),其中1是透明基片,2是第一电极层(阳极层),3是缓冲层,4是空穴传输层(具有有机量子阱结构),5是过渡层,6是电子传输层,7是第二电极层(阴极层),8是电源。Fig. 1 is the structural representation of the organic electroluminescent device that the present invention proposes (comprising dispensable buffer layer and transition layer in the device structure of schematic diagram), wherein 1 is transparent substrate, and 2 is the first electrode layer (anode layer ), 3 is a buffer layer, 4 is a hole transport layer (with an organic quantum well structure), 5 is a transition layer, 6 is an electron transport layer, 7 is a second electrode layer (cathode layer), and 8 is a power supply.

图2、图3是本发明提出的器件结构如结构式(1)所示的OLEDs的能级示意图,图3还表现出载流子在有机量子阱结构中的分布。Fig. 2 and Fig. 3 are schematic diagrams of energy levels of OLEDs with a device structure proposed by the present invention such as structural formula (1), and Fig. 3 also shows the distribution of carriers in the organic quantum well structure.

图4是本发明提出的具有不同周期数n的OLEDs的亮度—电流密度曲线(器件结构如结构式(1)所示)。Fig. 4 is the luminance-current density curves of OLEDs with different period numbers n proposed by the present invention (device structure is shown in structural formula (1)).

图5是本发明提出的具有不同周期数n的OLEDs的发光效率—电流密度曲线(器件结构如结构式(1)所示)。Fig. 5 is a luminous efficiency-current density curve of OLEDs with different period numbers n proposed by the present invention (device structure is shown in structural formula (1)).

图6是本发明提出的器件结构如结构式(2)所示的OLEDs的能级示意图。Fig. 6 is a schematic diagram of energy levels of OLEDs with a device structure proposed by the present invention, such as structural formula (2).

图7是本发明提出的具有不同周期数n的OLEDs的亮度—电流密度曲线(器件结构如结构式(2)所示)。Fig. 7 is the luminance-current density curves of OLEDs with different period numbers n proposed by the present invention (device structure is shown in structural formula (2)).

图8是本发明提出的具有不同周期数n的OLEDs的发光效率—电流密度曲线(器件结构如结构式(2)所示)。Fig. 8 is a luminous efficiency-current density curve of OLEDs with different period numbers n proposed by the present invention (device structure is shown in structural formula (2)).

图9是本发明提出的具有不同周期数n的OLEDs的EL光谱图(器件结构如结构式(2)所示)和具有结构式(5)的器件的EL光谱图(已归一化),其中曲线(a)的n=0,曲线(b)的n=2,曲线(c)的n=4,曲线(d)的n=6,曲线(e)对应的器件结构如结构式(5)。Fig. 9 is the EL spectrogram (device structure as shown in structural formula (2)) and the EL spectrogram (normalized) of the device with structural formula (5) that the present invention proposes to have the OLEDs of different period number n, wherein curve n=0 in (a), n=2 in curve (b), n=4 in curve (c), n=6 in curve (d), and the device structure corresponding to curve (e) is as structural formula (5).

下面结合附图和具体实施方式详细阐述本发明的内容,应该理解本发明并不局限于下述优选实施方式,优选实施方式仅仅作为本发明的说明性实施方案。The content of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the present invention is not limited to the following preferred embodiments, which are merely illustrative embodiments of the present invention.

具体实施方式Detailed ways

为参考起见,把本说明书中涉及的有机材料的缩写及全称对照表列示如下:For reference, the abbreviations and full names of the organic materials involved in this manual are listed as follows:

表1Table 1

Figure C0312106300101
Figure C0312106300101

为更清楚的阐述本发明的具体实施方式、实施例,现说明以下几点:In order to set forth the specific implementation mode and the embodiment of the present invention more clearly, the following points are now described:

①本发明提出的OLEDs的发光区域位于电子传输层或/和空穴传输层;① The light-emitting region of the OLEDs proposed by the present invention is located in the electron transport layer or/and the hole transport layer;

②本发明提出的OLEDs的空穴传输层、电子传输层以及可包含的缓冲层、过渡层都是OLEDs的有机功能层。② The hole transport layer, electron transport layer, buffer layer and transition layer of OLEDs proposed by the present invention are all organic functional layers of OLEDs.

本发明提出的有机电致发光器件的第一种结构如图1所示,其中:1为透明基片,可以是玻璃或是柔性基片,柔性基片采用聚酯类、聚酰亚胺类化合物中的一种材料;2为第一电极层(阳极层),可以采用无机材料或有机导电聚合物,无机材料一般为氧化铟锡(以下简称ITO)、氧化锌、氧化锡锌等金属氧化物或金、铜、银等功函数较高的金属,最优化的选择为ITO,有机导电聚合物优选为PEDOT、PANI中的一种材料;3为缓冲层,一般采用酞菁类、聚丙烯酸酯类、聚酰亚胺类、含氟聚合物、无机氟化盐、无机氧化物或金刚石中的一种材料,本发明优选为CuPc;4为空穴传输层,采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机材料B两种材料层交替重叠组成,这两种材料的能级互相匹配(即同时满足上述关系式(I)和(II),材料A的能带能实现对材料B的能带的包裹),并且由于材料A层对材料B层的能级势垒作用,使得电子和空穴的势阱在材料B层中,材料A是三苯胺类(如NPB、TPD、MTDATA)、咔唑类(如PVK、BCP、Bphen)、吡咯啉类或噁二唑类(如TPBi、PBD)化合物中的一种材料,材料B是酞菁类(如CuPc、H2Pc、VOPc)化合物中的一种材料,第一种结构优选为(NPB/CuPc)n的多层量子阱结构,NPB和CuPc的HOMO能级分别为-5.5eV、-4.8eV,LUMO分别为-2.5eV、-2.7eV,从该优选(NPB/CuPc)n作空穴传输层的器件的能级示意图(见图2、图3)可以看出,由于NPB层对CuPc层的势垒作用,在CuPc层中形成了电子和空穴的势阱;5为过渡层,采用与电子传输层材料能级相匹配的材料,如果空穴传输层的多层量子阱结构优选为(NPB/CuPc)n,过渡层优选为NPB;6为电子传输层,一般采用金属有机配合物或噁二唑类化合物中的一种材料,经过优选为Alq3、Al(Saph-q)、Ga(Saph-q)、Zn(Ac)2中的一种材料;7为第二电极层(阴极层、金属层),一般采用锂、镁、钙、锶、铝、铟等功函数较低的金属或它们与铜、金、银的合金,本发明优选为依次的Mg∶Ag合金层、Ag层;8为电源。The first structure of the organic electroluminescent device proposed by the present invention is shown in Figure 1, wherein: 1 is a transparent substrate, which can be glass or a flexible substrate, and the flexible substrate is made of polyester or polyimide One of the materials in the compound; 2 is the first electrode layer (anode layer), which can use inorganic materials or organic conductive polymers. Inorganic materials are generally metal oxides such as indium tin oxide (hereinafter referred to as ITO), zinc oxide, and tin zinc oxide. material or gold, copper, silver and other metals with higher work functions, the optimal choice is ITO, and the organic conductive polymer is preferably a material in PEDOT and PANI; 3 is a buffer layer, generally using phthalocyanines, polyacrylic acid A material in esters, polyimides, fluoropolymers, inorganic fluoride salts, inorganic oxides or diamonds, the present invention is preferably CuPc; 4 is a hole transport layer, using an organic quantum well structure, which A kind of quantum well transport structure is made up of the organic material A of wide energy band and the organic material B of narrow energy band two kinds of material layers alternately overlapping, and the energy level of these two kinds of materials matches each other (namely satisfying above-mentioned relationship formula (I) and ( II), the energy band of material A can realize the wrapping of the energy band of material B), and due to the energy level barrier effect of the material A layer on the material B layer, the potential wells of electrons and holes are in the material B layer, Material A is one of triphenylamines (such as NPB, TPD, MTDATA), carbazoles (such as PVK, BCP, Bphen), pyrrolines or oxadiazoles (such as TPBi, PBD) compounds, and material B It is a material in phthalocyanine (such as CuPc, H 2 Pc, VOPc) compounds. The first structure is preferably a multilayer quantum well structure of (NPB/CuPc) n . The HOMO energy levels of NPB and CuPc are respectively - 5.5eV, -4.8eV, LUMO are -2.5eV, -2.7eV respectively, from the energy level diagram of the device (see Figure 2, Figure 3) that preferably (NPB/CuPc) n is used as the hole transport layer, it can be seen that, Due to the barrier effect of the NPB layer on the CuPc layer, a potential well of electrons and holes is formed in the CuPc layer; 5 is the transition layer, which adopts a material that matches the energy level of the electron transport layer material. The layered quantum well structure is preferably (NPB/CuPc) n , and the transition layer is preferably NPB; 6 is the electron transport layer, which is generally a metal-organic complex or an oxadiazole compound, and is preferably Alq 3 , Al (Saph-q), Ga(Saph-q), Zn(Ac) 2 ; 7 is the second electrode layer (cathode layer, metal layer), generally lithium, magnesium, calcium, strontium, aluminum, For metals with lower work functions such as indium or their alloys with copper, gold, and silver, the present invention is preferably a sequential Mg:Ag alloy layer and Ag layer; 8 is a power supply.

上述第一种结构优选的OLEDs具有以下结构式(1):The preferred OLEDs of the above-mentioned first structure have the following structural formula (1):

Glass/ITO/CuPc/(NPB/CuPc)n/NPB/Alq3/Mg∶Ag/Ag                     (1)Glass/ITO/CuPc/(NPB/CuPc) n /NPB/Alq 3 /Mg:Ag/Ag (1)

其中n为NPB/CuPc量子阱的周期数,n值可为1~10的整数。根据上述结构式(1),结合器件的制备步骤详细实施方式阐述如下:Where n is the period number of the NPB/CuPc quantum well, and the value of n can be an integer of 1-10. According to the above structural formula (1), the detailed implementation of the preparation steps in conjunction with the device is set forth as follows:

①利用煮沸的洗涤剂超声和去离子水超声的方法对透明导电基片ITO玻璃进行清洗,并放置在红外灯下烘干,其中导电基片上面的ITO膜作为器件的阳极层,ITO膜的方块电阻为5Ω~100Ω,膜厚为80.0~280.0nm;① Clean the transparent conductive substrate ITO glass by using boiling detergent ultrasonic and deionized water ultrasonic method, and place it under the infrared lamp to dry, in which the ITO film on the conductive substrate is used as the anode layer of the device, and the ITO film The sheet resistance is 5Ω~100Ω, and the film thickness is 80.0~280.0nm;

②把上述清洗烘干后的ITO玻璃置于压力为1×10-5~5×10-3Pa的真空腔内,在上述ITO膜上蒸镀一层CuPc作为器件的缓冲层,薄膜的蒸镀速率为0.02~0.4nm/s,膜厚为0.5~20.0nm;② Put the cleaned and dried ITO glass in a vacuum chamber with a pressure of 1×10 -5 ~ 5×10 -3 Pa, evaporate a layer of CuPc on the above ITO film as the buffer layer of the device, and the evaporation of the film The plating rate is 0.02-0.4nm/s, and the film thickness is 0.5-20.0nm;

③在上述CuPc缓冲层之上继续蒸镀空穴传输层,该空穴传输层采用交替n周期的NPB/CuPc有机多量子阱结构,其中CuPc膜的蒸镀速率为0.02~0.4nm/s,量子阱结构中每一层CuPc的膜厚为0.5~10.0nm,NPB膜的蒸镀速率为0.1~0.6nm/s,量子阱结构中每一层NPB的膜厚为0.5~30.0nm;③ Continue to vapor-deposit a hole transport layer on the above-mentioned CuPc buffer layer. The hole transport layer adopts an alternating n-period NPB/CuPc organic multi-quantum well structure, wherein the vapor deposition rate of the CuPc film is 0.02-0.4nm/s, The film thickness of each layer of CuPc in the quantum well structure is 0.5-10.0nm, the evaporation rate of the NPB film is 0.1-0.6nm/s, and the film thickness of each layer of NPB in the quantum well structure is 0.5-30.0nm;

④在上述空穴传输层上继续蒸镀一层NPB作为器件的过渡层,薄膜的蒸镀速率为0.1~0.6nm/s,膜厚为10.0~45.0nm;④ Continue to vapor-deposit a layer of NPB on the above-mentioned hole transport layer as the transition layer of the device, the evaporation rate of the film is 0.1-0.6nm/s, and the film thickness is 10.0-45.0nm;

⑤在上述NPB过渡层之上继续蒸镀Alq3作为器件的电子传输层和电致发光层,薄膜的蒸镀速率为0.1~0.6nm/s,膜厚为40.0~100.0nm;⑤ Continue to vapor-deposit Alq 3 on the above-mentioned NPB transition layer as the electron transport layer and electroluminescent layer of the device, the evaporation rate of the film is 0.1-0.6nm/s, and the film thickness is 40.0-100.0nm;

⑥最后,在上述Alq3薄膜之上依次蒸镀Mg∶Ag合金层、Ag层作为器件的阴极层,其中合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为0.6~2.0nm/s,蒸镀总厚度为50.0~200.0nm,Ag层的蒸镀速率为0.3~0.8nm/s,厚度为40.0~200.0nm。⑥Finally, Mg:Ag alloy layer and Ag layer are sequentially vapor-deposited on the above-mentioned Alq 3 film as the cathode layer of the device, wherein the ratio of Mg and Ag vapor deposition rates in the alloy layer is 10:1, and the total vapor deposition rate is 0.6~ 2.0nm/s, the total evaporation thickness is 50.0-200.0nm, the evaporation rate of the Ag layer is 0.3-0.8nm/s, and the thickness is 40.0-200.0nm.

本发明提出的有机电致发光器件的第二种结构如图1所示(无缓冲层3),其中:1、2同上述第一种结构;4为空穴传输层,采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机染料C两种材料层交替重叠组成,这两种材料的能级互相匹配(即同时满足上述关系式(I)和(II),材料A的能带能实现对材料C的能带的包裹),并且由于材料A层对材料C层的能级势垒作用,使得电子和空穴的势阱在材料C层中,材料A是三苯胺类(如NPB、TPD、MTDATA)、咔唑类(如PVK、BCP、Bphen)、吡咯啉类或噁二唑类(如TPBi、PBD)化合物中的一种材料,材料C是聚苯类(如rubrene、pentacene)、香豆素类(如C545T)或双吡喃类(如DCJTB、DCM)化合物中的一种材料,第二种结构优选为(NPB/rubrene)n的多层量子阱结构,NPB和rubrene的HOMO能级分别为-5.5eV、-5.4eV,LUMO能级分别为-2.5eV、-3.2eV,从该优选(NPB/rubrene)n作空穴传输层的器件的能级示意图(见图6)可以看出,由于NPB层和rubrene层界面处的能级势垒,在器件中空穴载流子就可以在rubrene层中被富集和束缚;5为过渡层,采用与电子传输层的能级相匹配的材料,如果空穴传输层的多层量子阱结构优选为(NPB/rubrene)n,过渡层优选为NPB;6、7同上述第一种结构。The second structure of the organic electroluminescent device proposed by the present invention is as shown in Figure 1 (no buffer layer 3), wherein: 1, 2 are the same as the above-mentioned first structure; 4 is a hole transport layer, adopting an organic quantum well structure , this kind of quantum well transport structure is composed of two material layers, the organic material A with a wide energy band and the organic dye C with a narrow energy band. and (II), the energy band of material A can realize the wrapping of the energy band of material C), and due to the energy level barrier effect of the material A layer on the material C layer, the potential wells of electrons and holes are in the material C layer Among them, material A is a material in triphenylamines (such as NPB, TPD, MTDATA), carbazoles (such as PVK, BCP, Bphen), pyrrolines or oxadiazoles (such as TPBi, PBD) compounds, Material C is a material among polyphenylene (such as rubrene, pentacene), coumarin (such as C545T) or bispyran (such as DCJTB, DCM) compounds, and the second structure is preferably (NPB/rubrene) The multilayer quantum well structure of n, the HOMO energy levels of NPB and rubrene are -5.5eV, -5.4eV respectively, and the LUMO energy levels are -2.5eV, -3.2eV respectively, from the preferred (NPB/rubrene)n as holes The schematic diagram of the energy level of the device of the transport layer (see Figure 6) can be seen, due to the energy level barrier at the interface between the NPB layer and the rubrene layer, hole carriers in the device can be enriched and bound in the rubrene layer; 5 is the transition layer, adopting materials that match the energy level of the electron transport layer, if the multilayer quantum well structure of the hole transport layer is preferably (NPB/rubrene) n , the transition layer is preferably NPB; 6, 7 are the same as the above-mentioned first a structure.

上述第二种结构优选的OLEDs具有以下结构式(2):The preferred OLEDs of the above-mentioned second structure have the following structural formula (2):

Glass/ITO/(NPB/rubrene)n/NPB/Alq3/Mg∶Ag/Ag                      (2)Glass/ITO/(NPB/rubrene)n/NPB/Alq 3 /Mg:Ag/Ag (2)

其中n为NPB/rubrene量子阱的周期数,n值可为1~10的整数。根据上述结构式(2),结合器件的制备步骤详细实施方式阐述如下:Where n is the period number of the NPB/rubrene quantum well, and the value of n can be an integer of 1-10. According to the above structural formula (2), the detailed implementation of the preparation steps in conjunction with the device is set forth as follows:

①利用煮沸的洗涤剂超声和去离子水超声的方法对透明导电基片ITO玻璃进行清洗,并放置在红外灯下烘干,其中导电基片上面的ITO膜作为器件的阳极层,ITO膜的方块电阻为5Ω~100Ω,膜厚为80.0~280.0nm;① Clean the transparent conductive substrate ITO glass by using boiling detergent ultrasonic and deionized water ultrasonic method, and place it under the infrared lamp to dry, in which the ITO film on the conductive substrate is used as the anode layer of the device, and the ITO film The sheet resistance is 5Ω~100Ω, and the film thickness is 80.0~280.0nm;

②把上述清洗烘干后的ITO玻璃置于压力为1×10-5~5×10-3Pa的真空腔内,在上述ITO膜上蒸镀空穴传输层,该空穴传输层采用交替n周期的NPB/rubrene有机多量子阱结构,其中rubrene膜的蒸镀速率为0.02~0.4nm/s,量子阱结构中每一层rubrene的膜厚为0.5~10.0nm,NPB膜的蒸镀速率为0.1~0.6nm/s,量子阱结构中每一层NPB的膜厚为0.5~30.0nm;② Put the cleaned and dried ITO glass in a vacuum chamber with a pressure of 1×10 -5 ~ 5×10 -3 Pa, and evaporate a hole transport layer on the above ITO film. The hole transport layer adopts alternating The n-period NPB/rubrene organic multi-quantum well structure, in which the evaporation rate of the rubrene film is 0.02-0.4nm/s, the film thickness of each layer of rubrene in the quantum well structure is 0.5-10.0nm, and the evaporation rate of the NPB film 0.1-0.6nm/s, and the film thickness of each layer of NPB in the quantum well structure is 0.5-30.0nm;

③在上述空穴传输层上继续蒸镀一层NPB作为器件的过渡层,薄膜的蒸镀速率为0.1~0.6nm/s,膜厚为10.0~45.0nm;③Continue to vapor-deposit a layer of NPB on the above-mentioned hole transport layer as the transition layer of the device, the evaporation rate of the film is 0.1-0.6nm/s, and the film thickness is 10.0-45.0nm;

④在上述NPB过渡层之上继续蒸镀Alq3作为器件的电子传输层和电致发光层,薄膜的蒸镀速率为0.1~0.6nm/s,膜厚为40.0~100.0nm;④ Continue to vapor-deposit Alq3 on the above-mentioned NPB transition layer as the electron transport layer and electroluminescent layer of the device, the evaporation rate of the film is 0.1-0.6nm/s, and the film thickness is 40.0-100.0nm;

⑤最后,在上述Alq3薄膜之上依次蒸镀Mg∶Ag合金层、Ag层作为器件的阴极层,其中合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为0.6~2.0nm/s,蒸镀总厚度为50.0~200.0nm,Ag层的蒸镀速率为0.3~0.8nm/s,厚度为40.0~200.0nm。⑤Finally, Mg:Ag alloy layer and Ag layer are sequentially vapor-deposited on the above-mentioned Alq3 film as the cathode layer of the device, wherein the ratio of Mg and Ag vapor deposition rates in the alloy layer is 10:1, and the total vapor deposition rate is 0.6~ 2.0nm/s, the total evaporation thickness is 50.0-200.0nm, the evaporation rate of the Ag layer is 0.3-0.8nm/s, and the thickness is 40.0-200.0nm.

实施例1-3Example 1-3

用和上述制备结构式(1)所示器件相同的方法制备三个OLEDs。而且为了便于器件性能的对比,三个OLEDs的ITO层的厚度均为200.0nm,CuPc缓冲层的膜厚均为6.0nm,NPB过渡层的膜厚均为15.0nm,Alq3电子传输层的膜厚均为60.0nm,Mg∶Ag合金层和Ag层的厚度分别为100.0nm,三个OLEDs中交替的NPB/CuPc膜的每一层薄膜的膜厚随的周期数n不同而变化,n周期的NPB、CuPc薄膜的总膜厚分别为15.0nm、6.0nm。三个OLEDs的结构如下表2、3所示,器件的亮度—电流密度曲线、发光效率—电流密度曲线分别见图4、图5。Three OLEDs were prepared in the same manner as the device shown in formula (1) above. Moreover, in order to facilitate the comparison of device performance, the thickness of the ITO layer of the three OLEDs is 200.0nm, the film thickness of the CuPc buffer layer is 6.0nm, the film thickness of the NPB transition layer is 15.0nm, and the film thickness of the Alq 3 electron transport layer The thickness is 60.0nm, the thickness of the Mg:Ag alloy layer and the Ag layer are 100.0nm respectively, the film thickness of each layer of the alternating NPB/CuPc film in the three OLEDs varies with the number of periods n, and the n period The total film thicknesses of the NPB and CuPc thin films were 15.0 nm and 6.0 nm, respectively. The structures of the three OLEDs are shown in Tables 2 and 3 below. The brightness-current density curves and luminous efficiency-current density curves of the devices are shown in Figure 4 and Figure 5, respectively.

对比例1Comparative example 1

用和实施例1-3同样的方法制备一个传统的OLED,但该传统器件中没有制备交替的NPB/CuPc薄膜(n=0),下表3所示CuPc、NPB层的膜厚分别为12.0nm、30.0nm。该器件具有以下结构式(3):Prepare a traditional OLED with the same method as embodiment 1-3, but do not prepare alternate NPB/CuPc film (n=0) in this traditional device, the film thickness of CuPc shown in table 3 below, NPB layer is respectively 12.0 nm, 30.0nm. The device has the following structural formula (3):

Glass/ITO/CuPc/NPB/Alq3/Mg∶Ag/Ag                                    (3)Glass/ITO/CuPc/NPB/Alq 3 /Mg:Ag/Ag (3)

空穴传输层采用NPB/CuPc有机量子阱结构的OLEDs中,周期数n对器件性能的影响如下表3所示。In OLEDs with NPB/CuPc organic quantum well structure as the hole transport layer, the effect of the period number n on the device performance is shown in Table 3 below.

表2     n                              OLED结构 对比例1实施例1实施例2实施例3     0246     Glass/ITO/CuPc(12.0nm)/NPB(30.0nm)/Alq3(60.0nm)/Mg:Ag/AgGlass/ITO/CuPc(6.0nm)/[NPB(7.5nm)/CuPc(3.0nm)]2/NPB(15.0nm)/Alq3(60.0nm)/Mg∶Ag/AgGlass/ITO/CuPc(6.0nm)/[NPB(3.8nm)/CuPc(1.5nm)]4/NPB(15.0nm)/Alq3(60.0nm)/Mg∶Ag/AgGlass/ITO/CuPc(6.0nm)/[NPB(2.5nm)/CuPc(1.0nm)]6/NPB(15.0nm)/Alq3(60.0nm)/Mg∶Ag/Ag Table 2 no OLED structure Comparative example 1 embodiment 1 embodiment 2 embodiment 3 0246 Glass/ITO/CuPc(12.0nm)/NPB(30.0nm)/Alq 3 (60.0nm)/Mg:Ag/AgGlass/ITO/CuPc(6.0nm)/[NPB(7.5nm)/CuPc(3.0nm)] 2 /NPB(15.0nm)/Alq 3 (60.0nm)/Mg:Ag/AgGlass/ITO/CuPc(6.0nm)/[NPB(3.8nm)/CuPc(1.5nm)] 4 /NPB(15.0nm)/ Alq 3 (60.0nm)/Mg:Ag/AgGlass/ITO/CuPc(6.0nm)/[NPB(2.5nm)/CuPc(1.0nm)] 6 /NPB(15.0nm)/Alq 3 (60.0nm)/Mg : Ag/Ag

表3   对比例1   实施例1   实施例2   实施例3 周期数 0 2 4 6     层     材料                        膜厚/nm     阳极层     ITO                        200.0     缓冲层     CuPe     12.0     6.0     6.0     6.0 空穴传输层     NPB     0     7.5     3.8     2.5     CuPc     0     3.0     1.5     1.0     过渡层     NPB     30.0     15.0     15.0     15.0     电子传输层     Alq3                        60.0 阴极层     Mg:Ag                        100.0     Ag                        100.0 器件 电流密度/A/m2 400     亮度/cd/m2     1400     1960     3900     800     参数     发光效率/cd/A     3.8     4.3     9.8     2.3     初始亮度/cd/m2                       1000     T1/2/h     2.5     2.7     3.5     2     寿命/h     25     27     35     20 table 3 Comparative example 1 Example 1 Example 2 Example 3 number of cycles 0 2 4 6 layer Material Film thickness/nm Anode layer ITO 200.0 The buffer layer CuPe 12.0 6.0 6.0 6.0 hole transport layer NPB 0 7.5 3.8 2.5 CuPc 0 3.0 1.5 1.0 transition layer NPB 30.0 15.0 15.0 15.0 electron transport layer Alq 3 60.0 cathode layer Mg:Ag 100.0 Ag 100.0 device Current density/A/m 2 400 Brightness/cd/ m2 1400 1960 3900 800 parameter Luminous efficiency/cd/A 3.8 4.3 9.8 2.3 Initial brightness/cd/m 2 1000 T 1/2 /h 2.5 2.7 3.5 2 Life/h 25 27 35 20

由表3可以看出,在本发明的实验条件下,量子阱周期数为4时,器件性能最好。电流密度为34mA/cm2时,对应器件最高效率可达10.8cd/A,这是至今所见工作中Alq3不搀杂染料本体发光的效率的最高报道。同传统器件(n=0)相比,器件性能提高了近3倍。It can be seen from Table 3 that under the experimental conditions of the present invention, when the number of quantum well periods is 4, the device performance is the best. When the current density is 34mA/cm 2 , the highest efficiency of the corresponding device can reach 10.8cd/A, which is the highest reported efficiency of bulk luminescence of Alq 3 undoped dye in the work so far. Compared with the traditional device (n=0), the performance of the device is improved by nearly 3 times.

量子阱周期数为6时,由于量子阱中各层材料厚度太薄,成膜质量变差,从而降低了器件性能。从普遍意义上讲,随着周期数提高,而且如果量子阱中各层厚度不太低的话(成膜质量有保证的厚度),器件性能会有所增加。When the number of quantum well periods is 6, because the material thickness of each layer in the quantum well is too thin, the quality of the film formation becomes poor, thereby reducing the performance of the device. Generally speaking, as the number of cycles increases, and if the thickness of each layer in the quantum well is not too low (thickness with guaranteed film quality), the device performance will increase.

实施例4Example 4

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为15Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为180.0nm。把烘干后的ITO玻璃置于压力为1×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀CuPc缓冲薄膜,蒸镀速率为0.04nm/s,膜厚为6.0nm。在CuPc缓冲薄膜上继续蒸镀交替多层空穴传输层(NPB/CuPc)6,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为3.8nm,CuPc薄膜的蒸镀速率为0.04nm/s,膜厚为1.5nm。在该空穴传输层之上继续蒸镀15.0nm的NPB层作为过渡层,蒸镀速率为0.4nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为100.0nm;Ag的蒸镀速率为0.5nm/s,蒸镀厚度为100.0nm。器件启亮电压为2.5V,最大发光亮度为16000cd/m2,电流密度为36mA/cm2时,对应最大发光效率为10.8cd/A。The ITO glass with a square resistance of 15 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, where the film thickness of ITO was 180.0 nm. Place the dried ITO glass in a vacuum chamber with a pressure of 1×10 -3 Pa, and use thermal evaporation to evaporate a CuPc buffer film on the ITO film. The evaporation rate is 0.04nm/s and the film thickness is 6.0nm. . On the CuPc buffer film, continue to vapor-deposit alternating multi-layer hole transport layers (NPB/CuPc) 6 , where the evaporation rate of the NPB film is 0.2nm/s, the film thickness is 3.8nm, and the evaporation rate of the CuPc film is 0.04nm /s, the film thickness is 1.5nm. Continue to vapor-deposit a 15.0nm NPB layer as a transition layer on the hole transport layer at a vapor deposition rate of 0.4nm/s, and continue to vapor-deposit an organic functional layer Alq 3 at a vapor deposition rate of 0.2nm/s. The thickness is 60.0nm. Continue to vapor-deposit the metal layer on the Alq 3 layer, the metal layer is composed of Mg:Ag alloy layer and Ag layer in turn, the ratio of Mg and Ag vapor deposition rate in the alloy layer is 10:1, and the total vapor deposition rate is 1.5nm/s , the film thickness is 100.0nm; the evaporation rate of Ag is 0.5nm/s, and the evaporation thickness is 100.0nm. The turn-on voltage of the device is 2.5V, the maximum luminous brightness is 16000cd/m 2 , and when the current density is 36mA/cm 2 , the corresponding maximum luminous efficiency is 10.8cd/A.

实施例5Example 5

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为60Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为100.0nm。把烘干后的ITO玻璃置于压力为2×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀CuPc缓冲薄膜,蒸镀速率为0.06nm/s,薄膜厚度为8.0nm。在CuPc缓冲薄膜上继续蒸镀交替多层空穴传输层(NPB/CuPc)2,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为7.5nm,CuPc薄膜的蒸镀速率为0.06nm/s,膜厚为3.0nm。在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Al(Saph-q),蒸镀速率为0.2nm/s,膜厚为60.0nm。在Al(Saph-q)层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.8V,最大发光亮度为13000cd/m2The ITO glass with a square resistance of 60 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, where the film thickness of ITO was 100.0 nm. Place the dried ITO glass in a vacuum chamber with a pressure of 2×10 -3 Pa, and use thermal evaporation to evaporate a CuPc buffer film on the ITO film. The evaporation rate is 0.06nm/s, and the film thickness is 8.0nm. . Continuously vapor-deposit alternate multilayer hole transport layers (NPB/CuPc) 2 on the CuPc buffer film, wherein the evaporation rate of the NPB film is 0.2nm/s, the film thickness is 7.5nm, and the evaporation rate of the CuPc film is 0.06nm /s, the film thickness is 3.0nm. Continue to vapor-deposit a 20.0nm NPB layer on the hole transport layer as a transition layer, the evaporation rate is 0.2nm/s, and continue to evaporate the organic functional layer Al(Saph-q), and the evaporation rate is 0.2nm /s, the film thickness is 60.0nm. On the Al(Saph-q) layer, the metal layer is continuously evaporated. The metal layer is composed of Mg:Ag alloy layer and Ag layer in turn. The Mg and Ag evaporation rate ratio in the alloy layer is 10:1, and the total evaporation rate is 1.5nm/s, the film thickness is 150.0nm; the evaporation rate of Ag is 0.4nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.8V, and the maximum luminance is 13000cd/m 2 .

实施例6Example 6

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为30Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为140.0nm。把烘干后的ITO玻璃置于压力为1.5×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀CuPc缓冲薄膜,蒸镀速率为0.03nm/s,薄膜厚度为4.0nm。在CuPc缓冲薄膜上继续蒸镀交替多层空穴传输层(NPB/CuPc)8,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为2.0nm,CuPc薄膜的蒸镀速率为0.02nm/s,膜厚为0.75nm。在该传输层之上继续蒸镀20.0nm的NPB层作为过渡层结构,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Zn(Ac)2,蒸镀速率为0.2nm/s,膜厚为60.0nm。在Zn(Ac)2层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为180.0nm;Ag的蒸镀速率为0.5nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.9V,最大发光亮度为12000cd/m2The ITO glass with a square resistance of 30 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp. The film thickness of ITO was 140.0 nm. Place the dried ITO glass in a vacuum chamber with a pressure of 1.5×10 -3 Pa, and use thermal evaporation to evaporate a CuPc buffer film on the ITO film. The evaporation rate is 0.03nm/s, and the film thickness is 4.0nm. . On the CuPc buffer film, continue to vapor-deposit alternating multi-layer hole transport layers (NPB/CuPc) 8 , where the evaporation rate of the NPB film is 0.2nm/s, the film thickness is 2.0nm, and the evaporation rate of the CuPc film is 0.02nm /s, the film thickness is 0.75nm. Continue to vapor-deposit a 20.0nm NPB layer on the transport layer as a transition layer structure at a vapor deposition rate of 0.2nm/s, and continue to vapor-deposit an organic functional layer Zn(Ac) 2 at a vapor deposition rate of 0.2nm/s , the film thickness is 60.0nm. On the Zn(Ac) 2 layer, continue to vapor-deposit the metal layer. The metal layer is composed of Mg:Ag alloy layer and Ag layer in turn. nm/s, the film thickness is 180.0nm; the evaporation rate of Ag is 0.5nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.9V, and the maximum luminance is 12000cd/m 2 .

实施例7-9Example 7-9

用和上述制备结构式(2)所示器件相同的方法制备三个OLEDs。而且为了便于器件性能的对比,三个OLEDs的ITO层的厚度均为240.0nm,NPB薄膜(包括过渡层)的总膜厚均为40.0nm,n周期的rubrene薄膜的总膜厚均为8.0nm,Alq3电子传输层的膜厚均为60.0nm,Mg∶Ag合金层和Ag层的厚度分别为100.0nm,只是三个OLEDs中交替的NPB/rubrene膜的每一层rubrene薄膜的膜厚随周期数n的不同而变化,每一层NPB薄膜的膜厚均为5.0nm。三个OLEDs的结构如下表4、5所示,器件的亮度—电流密度曲线、发光效率—电流密度曲线分别见图7、图8。Three OLEDs were prepared in the same manner as the device shown in structural formula (2) above. And in order to facilitate the comparison of device performance, the thickness of the ITO layer of the three OLEDs is 240.0nm, the total film thickness of the NPB film (including the transition layer) is 40.0nm, and the total film thickness of the n-period rubrene film is 8.0nm , the film thickness of the Alq 3 electron transport layer is 60.0nm, the thickness of the Mg:Ag alloy layer and the Ag layer are 100.0nm respectively, but the film thickness of each rubrene film of the alternating NPB/rubrene film in the three OLEDs varies with The number of cycles n varies, and the film thickness of each layer of NPB film is 5.0nm. The structures of the three OLEDs are shown in Tables 4 and 5 below. The brightness-current density curves and luminous efficiency-current density curves of the devices are shown in Figure 7 and Figure 8, respectively.

对比例2Comparative example 2

用和实施例7-9同样的方法制备一个传统的OLED,该传统器件中没有制备交替的NPB/rubrene薄膜(n=0),下表4所示NPB层的膜厚为40.0nm。该器件具有以下结构式(4):A traditional OLED was prepared by the same method as in Examples 7-9, in which no alternate NPB/rubrene thin film (n=0) was prepared, and the film thickness of the NPB layer shown in Table 4 below was 40.0 nm. The device has the following structural formula (4):

Glass/ITO/NPB/Alq3/Mg∶Ag/Ag                                       (4)Glass/ITO/NPB/Alq 3 /Mg:Ag/Ag (4)

表4     n                                OLED结构 对比例2实施例7实施例8实施例9     0246   Glass/ITO/NPB(40.0nm)/Alq3(60.0nm)/Mg∶Ag/AgGlass/ITO/[NPB(5.0nm)/rubrene(4.0nm)]2/NPB(30.0nm)/Alq3(60.0nm)/Mg∶Ag/AgGlass/ITO/[NPB(5.0nm)/rubrene(2.0nm)]4/NPB(20.0nm)/Alq3(60.0nm)/Mg∶Ag/AgGlass/ITO/[NPB(5.0nm)/rubrene(1.3nm)]6/NPB(10.0nm)/Alq3(60.0nm)/Mg∶Ag/Ag Table 4 no OLED structure Comparative example 2 embodiment 7 embodiment 8 embodiment 9 0246 Glass/ITO/NPB(40.0nm)/Alq 3 (60.0nm)/Mg:Ag/AgGlass/ITO/[NPB(5.0nm)/rubrene(4.0nm)] 2 /NPB(30.0nm)/Alq 3 (60.0 nm)/Mg:Ag/AgGlass/ITO/[NPB(5.0nm)/rubrene(2.0nm)] 4 /NPB(20.0nm)/Alq 3 (60.0nm)/Mg:Ag/AgGlass/ITO/[NPB( 5.0nm)/rubrene(1.3nm)] 6 /NPB(10.0nm)/Alq 3 (60.0nm)/Mg:Ag/Ag

对比例3Comparative example 3

用和实施例7-9相同的方法制备一个传统的OLED,该传统器件中没有制备交替的NPB/rubrene薄膜(n=0),但电子传输层为60.0nm厚的搀杂了2wt%rubrene的Alq层,器件结构如下表5中所示,该器件具有以下结构式(5):Prepare a traditional OLED with the same method as embodiment 7-9, do not prepare alternating NPB/rubrene thin film (n=0) in this traditional device, but electron transport layer is the Alq of 60.0nm thick doping 2wt% rubrene layer, the device structure is shown in Table 5 below, and the device has the following structural formula (5):

Glass/ITO/NPB/Alq3:rubrene(2wt%)/Mg∶Ag/Ag                      (5)Glass/ITO/NPB/Alq 3 :rubrene(2wt%)/Mg:Ag/Ag (5)

图9所示为上述OLEDs的EL光谱图,曲线(a)、(b)、(c)、(d)分别对应具有量子阱周期数为0、2、4、6的有机电致发光器件,曲线(e)对应具有上述结构式(5)的器件(从rubrene发出黄色的光)。我们观察到随着周期数n的增加,本发明具有NPB/rubrene有机量子阱结构的器件的EL光谱有明显移动。n=0的器件(曲线a)发出520nm的Alq3的绿色发光,然而从n=2的器件(曲线b)和n=4的器件(曲线c)的EL光谱图上看到已经呈现了rubrene的发光,同时在520nm附近伴有Alq3材料的肩峰。值得指出的是,n=6的器件(曲线d)的发光已经基本上全部为rubrene的发光,几乎看不到Alq3的发光,和没有量子阱结构的传统器件(曲线e)的光谱峰基本吻合,这表示载流子只被限制在rubrene层中进行复合。Figure 9 shows the EL spectrograms of the OLEDs above, and curves (a), (b), (c), and (d) correspond to organic electroluminescent devices with quantum well periods of 0, 2, 4, and 6, respectively, Curve (e) corresponds to a device with formula (5) above (yellow light emission from rubrene). We observe that the EL spectrum of the device with the NPB/rubrene organic quantum well structure of the present invention moves significantly with the increase of the period number n. The device of n=0 (curve a) emits the green luminescence of Alq 3 at 520nm, but it can be seen from the EL spectra of the device of n=2 (curve b) and the device of n=4 (curve c) that rubrene has appeared The luminescence is accompanied by a shoulder peak of Alq 3 material near 520nm. It is worth pointing out that the luminescence of the n=6 device (curve d) is basically all rubrene luminescence, and the luminescence of Alq 3 is almost invisible, and the spectral peak of the traditional device without quantum well structure (curve e) is basically It is consistent, which means that the carriers are only confined in the rubrene layer for recombination.

上述工作证实,有机量子阱结构不仅能够调控空穴的传输,同时也可以通过改变有机量子阱周期数来控制器件的发光中心。The above work has confirmed that the organic quantum well structure can not only regulate the transport of holes, but also control the luminescent center of the device by changing the number of organic quantum well cycles.

在有机电致发光器件中引入有机量子阱空穴传输结构,能够有效的控制器件中空穴的传输,从而有助于获得电子和空穴的注入平衡,进而提高器件的发光效率。同时,由于有机量子阱结构中使用染料单独成层,EL光谱的研究表明,通过改变量子阱周期数能够有效的控制器件的发光中心,这为实现不同颜色的发光提供了有益的借鉴。The introduction of an organic quantum well hole transport structure in an organic electroluminescent device can effectively control the transport of holes in the device, thereby helping to obtain a balance between electron and hole injection, and then improve the luminous efficiency of the device. At the same time, due to the use of dyes in the organic quantum well structure to form separate layers, the study of EL spectroscopy shows that the luminescent center of the device can be effectively controlled by changing the period number of the quantum well, which provides a useful reference for realizing different colors of luminescence.

空穴传输层采用NPB/rubrene有机量子阱结构的OLEDs中,周期数n对器件性能的影响如下表5所示。In OLEDs with NPB/rubrene organic quantum well structure as the hole transport layer, the effect of the period number n on the device performance is shown in Table 5 below.

表5   对比例2   实施例7   实施例8   实施例9   对比例3     周期数     0     2     4     6     0     层     材料                             膜厚/nm     阳极层     ITO                             240.0 空穴传输层     NPB     0     5.0     5.0     5.0     0     rubrene     0     4.0     2.0     1.3     0     过渡层     NPB     40.0     30.0     20.0     10.0     40.0 电子传输层 Alq3 60.0 60.0 60.0 60.0     60.0(搀杂2wt%rubrene) 阴极层     Mg∶Ag                             100.0     Ag                             100.0 器件参数     电流密度/A/m2                      3000     亮度/cd/m2     6160     9000     17800     13500     发光效率/cd/A     2.01     3.03     6.00     4.46     发光波长/nm     528     548     556     560     564 table 5 Comparative example 2 Example 7 Example 8 Example 9 Comparative example 3 number of cycles 0 2 4 6 0 layer Material Film thickness/nm Anode layer ITO 240.0 hole transport layer NPB 0 5.0 5.0 5.0 0 rubrene 0 4.0 2.0 1.3 0 transition layer NPB 40.0 30.0 20.0 10.0 40.0 electron transport layer Alq 3 60.0 60.0 60.0 60.0 60.0 (doped with 2wt% rubrene) cathode layer Mg:Ag 100.0 Ag 100.0 Device parameters Current density/A/m 2 3000 Brightness/cd/ m2 6160 9000 17800 13500 Luminous efficiency/cd/A 2.01 3.03 6.00 4.46 Luminous wavelength/nm 528 548 556 560 564

由表5可以看出,在本发明的实验条件下,量子阱周期数n为4时,器件的亮度和发光效率最好。而当量子阱周期数为6时,由于量子阱内各层膜厚度太薄,不能形成高质量的连续薄膜,从而破坏了量子阱的结构,器件效率反而下降。因此,在不破坏量子阱结构的前提下,提高器件的周期数,可以进一步提高器件的效率。同时,我们还可以发现,随着周期数n的提高,rubrene发光在器件发光中占据的比例越来越高,从而EL光谱颜色红移,这充分证明器件的发光中心随着周期数的提高向rubrene层转移。而且,有机量子阱周期数n越高,越有利于向rubrene层发光转移。It can be seen from Table 5 that under the experimental conditions of the present invention, when the number of quantum well periods n is 4, the brightness and luminous efficiency of the device are the best. When the number of quantum well periods is 6, because the thickness of each layer in the quantum well is too thin to form a high-quality continuous film, the structure of the quantum well is destroyed, and the device efficiency decreases instead. Therefore, on the premise of not destroying the quantum well structure, increasing the period number of the device can further improve the efficiency of the device. At the same time, we can also find that with the increase of the period number n, the proportion of rubrene luminescence in the luminescence of the device is getting higher and higher, so that the color of the EL spectrum is red-shifted, which fully proves that the luminescence center of the device moves toward rubrene layer transfer. Moreover, the higher the period number n of the organic quantum well is, the more favorable it is to transfer light to the rubrene layer.

实施例10-13Examples 10-13

用和实施例7-9同样的方法制备实施例10-13的器件,各器件的周期数均为4,器件的结构如下表6所示。空穴传输层采用NPB/rubrene有机量子阱结构的OLEDs中,NPB膜厚对器件性能的影响也如下表6所示。The devices of Examples 10-13 were prepared in the same manner as in Examples 7-9, and the number of cycles of each device was 4, and the structures of the devices were shown in Table 6 below. In OLEDs with NPB/rubrene organic quantum well structure as the hole transport layer, the influence of NPB film thickness on device performance is also shown in Table 6 below.

表6    实施例10   实施例11   实施例12   实施例13     周期数                            4     层     材料                            膜厚/nm     阳极层     ITO     240.0     240.0     240.0     240.0 空穴传输层     NPB     1.0     3.0     5.0     7.0     rubrene                            2.0     过渡层     NPB     36.0     28.0     20.0     12.0     电子传输层     Alq3                            60.0 阴极层     Mg:Ag                            100.0     Ag                            100.0     器件参数     电流密度/A/m2                            3000     亮度/cd/m2     15000     24000     18000     17400     发光效率/cd/A     5.00     8.00     6.00     5.80 Table 6 Example 10 Example 11 Example 12 Example 13 number of cycles 4 layer Material Film thickness/nm Anode layer ITO 240.0 240.0 240.0 240.0 hole transport layer NPB 1.0 3.0 5.0 7.0 rubrene 2.0 transition layer NPB 36.0 28.0 20.0 12.0 electron transport layer Alq 3 60.0 cathode layer Mg:Ag 100.0 Ag 100.0 Device parameters Current density/A/m 2 3000 Brightness/cd/ m2 15000 24000 18000 17400 Luminous efficiency/cd/A 5.00 8.00 6.00 5.80

由表6可以看出,当NPB层厚度为3.0nm时候,器件性能最好。而当厚度为1.0nm时,器件因为量子阱结构被破坏导致器件性能下降。因此,NPB层厚度越薄,越有利于提高器件性能。It can be seen from Table 6 that when the thickness of the NPB layer is 3.0nm, the performance of the device is the best. However, when the thickness is 1.0 nm, the performance of the device is degraded due to the destruction of the quantum well structure. Therefore, the thinner the NPB layer is, the more beneficial it is to improve device performance.

实施例14-17Examples 14-17

用和实施例7-9同样的方法制备实施例14-17的器件,各器件的周期数均为4,器件的结构如下表7所示。空穴传输层采用NPB/rubrene有机量子阱结构的OLEDs中,rubrene膜厚对器件性能的影响也如下表7所示。The devices of Examples 14-17 were prepared by the same method as in Examples 7-9, and the number of cycles of each device was 4, and the structures of the devices were shown in Table 7 below. In OLEDs whose hole transport layer adopts NPB/rubrene organic quantum well structure, the effect of rubrene film thickness on device performance is also shown in Table 7 below.

表7   实施例14   实施例15   实施例16   实施例17     周期数                           4     层     材料                           膜厚/nm     阳极层     ITO                           240.0 空穴传输层     NPB                           5.0     rubrene     1.0     2.0     4.0     6.0     过渡层     NPB                           20.0     电子传输层     Alq3                           60.0 阴极层     Mg∶Ag                           100.0     Ag                           100.0     器件参数     电流密度/A/m2                           3000     亮度/cd/m2     10500     18000     15000     15000     发光效率/cd/A     3.50     6.00     5.00     5.00 Table 7 Example 14 Example 15 Example 16 Example 17 number of cycles 4 layer Material Film thickness/nm Anode layer ITO 240.0 hole transport layer NPB 5.0 rubrene 1.0 2.0 4.0 6.0 transition layer NPB 20.0 electron transport layer Alq 3 60.0 cathode layer Mg:Ag 100.0 Ag 100.0 Device parameters Current density/A/m 2 3000 Brightness/cd/ m2 10500 18000 15000 15000 Luminous efficiency/cd/A 3.50 6.00 5.00 5.00

由表7可以看出,改变rubrene层厚度对器件性能影响较小。除1.0nm破坏量子阱结构外,可以根据工艺的条件,选择比较薄的厚度。本发明优选为2.0nm。It can be seen from Table 7 that changing the thickness of the rubrene layer has little effect on the device performance. In addition to destroying the quantum well structure at 1.0nm, a relatively thin thickness can be selected according to process conditions. The present invention is preferably 2.0 nm.

实施例18-21Examples 18-21

用和实施例7-9相同的方法制备实施例18-21的器件,各器件的周期数均为4,器件的结构如下表8所示。空穴传输层采用有机量子阱结构的OLEDs中,电子传输层材料和量子阱结构中材料变化对器件性能的影响也如下表8中所示。The devices of Examples 18-21 were prepared in the same manner as in Examples 7-9, and the number of cycles of each device was 4. The structures of the devices are shown in Table 8 below. In the OLEDs whose hole transport layer adopts the organic quantum well structure, the influence of the electron transport layer material and the material change in the quantum well structure on the device performance is also shown in Table 8 below.

表8   实施例18   实施例19   实施例20   实施例21     层     材料                           膜厚/nm     周期数                           4     阳极层     ITO                           240.0     空穴传输层     NPB势垒     5.0     5.0     5.0     5.0 势阱   材料     CuPc     rubrene     rubrene     DCJTB     2.0     2.0     2.0     2.0     过渡层     NPB     20.0     20.0     20.0     20.0 电子传输层     材料     Alq3     Alq3     Al(Saph-q)     Ga(Saph-q)     60.0     60.0     60.0     60.0 阴极层     Mg∶Ag                           100.0     Ag                           100.0 器件参数     电流密度/A/m2                           3000     亮度/cd/m2     22000     17800     25800     9500     发光效率/cd/A     7.03     5.90     8.60     3.17     发光波长/nm     528     550     560     620 Table 8 Example 18 Example 19 Example 20 Example 21 layer Material Film thickness/nm number of cycles 4 Anode layer ITO 240.0 hole transport layer NPB barrier 5.0 5.0 5.0 5.0 potential well Material CuPc rubrene rubrene DCJTB 2.0 2.0 2.0 2.0 transition layer NPB 20.0 20.0 20.0 20.0 electron transport layer Material Alq 3 Alq 3 Al(Saph-q) Ga(Saph-q) 60.0 60.0 60.0 60.0 cathode layer Mg:Ag 100.0 Ag 100.0 Device parameters Current density/A/m 2 3000 Brightness/cd/ m2 22000 17800 25800 9500 Luminous efficiency/cd/A 7.03 5.90 8.60 3.17 Luminous wavelength/nm 528 550 560 620

实施例22-24Examples 22-24

用和实施例7-9相同的方法制备实施例22-24的器件,器件的结构如下表9所示。The devices of Examples 22-24 were prepared in the same manner as in Examples 7-9, and the structures of the devices are shown in Table 9 below.

对比例4Comparative example 4

用和实施例22-24相同的方法制备一个OLED,该器件中没有制备交替的NPB/rubrene薄膜(n=0),器件结构如下表9中所示,An OLED was prepared in the same manner as in Examples 22-24. In this device, alternate NPB/rubrene films (n=0) were not prepared. The device structure is shown in Table 9 below,

空穴传输层采用NPB/rubrene有机量子阱结构的OLEDs中,周期数n对器件寿命的影响如下表9所示。In OLEDs with NPB/rubrene organic quantum well structure as the hole transport layer, the effect of the period number n on the device lifetime is shown in Table 9 below.

表9   对比例4   实施例22   实施例23   实施例24     周期数     0     1     4     6     层     材料                         膜厚/nm     阳极层     ITO                         240.0 空穴传输层     NPB     0     5.0     5.0     5.0     rubrene     0     8.0     2.0     1.3     过渡层     NPB     40.0     35.0     20.0     10.0     电子传输层     Alq3                          60.0 阴极层     Mg∶Ag                          100.0     Ag                          100.0     器件参数     初始亮度/cd/m2                          1000     T12/h     2.5     2.4     2.6     1.5     寿命/h     25     24     26     15 Table 9 Comparative example 4 Example 22 Example 23 Example 24 number of cycles 0 1 4 6 layer Material Film thickness/nm Anode layer ITO 240.0 hole transport layer NPB 0 5.0 5.0 5.0 rubrene 0 8.0 2.0 1.3 transition layer NPB 40.0 35.0 20.0 10.0 electron transport layer Alq 3 60.0 cathode layer Mg:Ag 100.0 Ag 100.0 Device parameters Initial brightness/cd/m 2 1000 T 12 /h 2.5 2.4 2.6 1.5 Life/h 25 twenty four 26 15

实施例25Example 25

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为60Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为100.0nm。把烘干后的ITO玻璃置于压力为2×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(NPB/rubrene)4,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,rubrene薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Al(Saph-q),蒸镀速率为0.2nm/s,膜厚为60.0nm。在Al(Saph-q)层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm,Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.8V,最大发光亮度为16000cd/m2The ITO glass with a square resistance of 60 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, where the film thickness of ITO was 100.0 nm. The dried ITO glass was placed in a vacuum chamber with a pressure of 2×10 -3 Pa, and alternately multi-layered hole transport layers (NPB/rubrene) 4 were evaporated on the ITO film by thermal evaporation, in which the NPB film The evaporation rate is 0.2nm/s, the film thickness is 5.0nm, the evaporation rate of the rubrene thin film is 0.1nm/s, and the film thickness is 2.0nm. Continue to vapor-deposit a 20.0nm NPB layer on the hole transport layer as a transition layer, the evaporation rate is 0.2nm/s, and continue to evaporate the organic functional layer Al(Saph-q), and the evaporation rate is 0.2nm /s, the film thickness is 60.0nm. On the Al(Saph-q) layer, the metal layer is continuously evaporated. The metal layer is composed of Mg:Ag alloy layer and Ag layer in turn. The Mg and Ag evaporation rate ratio in the alloy layer is 10:1, and the total evaporation rate is 1.5nm/s, the film thickness is 150.0nm, the evaporation rate of Ag is 0.4nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.8V, and the maximum luminance is 16000cd/m 2 .

实施例26Example 26

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为15Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为260.0nm。把烘干后的ITO玻璃置于压力为1×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀10.0nm的CuPc缓冲层,蒸镀速率为0.02nm/s。其后,在上面蒸镀交替多层空穴传输层(NPB/rubrene)3,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,rubrene薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Al(Saph-q),蒸镀速率为0.2nm/s,膜厚为60.0nm。在Al(Saph-q)层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.5V,最大发光亮度为26000cd/m2The ITO glass with a square resistance of 15 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, and the film thickness of ITO was 260.0nm. The dried ITO glass was placed in a vacuum chamber with a pressure of 1×10 -3 Pa, and a 10.0nm CuPc buffer layer was evaporated on the ITO film by thermal evaporation with an evaporation rate of 0.02nm/s. Thereafter, alternate multi-layer hole transport layers (NPB/rubrene) 3 were evaporated on it, wherein the evaporation rate of the NPB thin film was 0.2nm/s, the film thickness was 5.0nm, and the evaporation rate of the rubrene thin film was 0.1nm/s s, the film thickness is 2.0 nm. Continue to vapor-deposit a 20.0nm NPB layer on the hole transport layer as a transition layer, the evaporation rate is 0.2nm/s, and continue to evaporate the organic functional layer Al(Saph-q), and the evaporation rate is 0.2nm /s, the film thickness is 60.0nm. On the Al(Saph-q) layer, the metal layer is continuously evaporated. The metal layer is composed of Mg:Ag alloy layer and Ag layer in turn. The Mg and Ag evaporation rate ratio in the alloy layer is 10:1, and the total evaporation rate is 1.5nm/s, the film thickness is 150.0nm; the evaporation rate of Ag is 0.4nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.5V, and the maximum luminance is 26000cd/m 2 .

实施例27Example 27

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为100Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为60.0nm。把烘干后的ITO玻璃置于压力为2×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(MTDATA/rubrene)10,其中MTDATA薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,rubrene薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。在该空穴传输层之上继续蒸镀5.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.8V,最大发光亮度为14000cd/m2The ITO glass with a square resistance of 100 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, where the film thickness of ITO was 60.0 nm. The dried ITO glass was placed in a vacuum chamber with a pressure of 2×10 -3 Pa, and the alternate multi-layer hole transport layer (MTDATA/rubrene) 10 was evaporated on the ITO film by thermal evaporation, in which the MTDATA film The evaporation rate is 0.2nm/s, the film thickness is 5.0nm, the evaporation rate of the rubrene thin film is 0.1nm/s, and the film thickness is 2.0nm. Continue to vapor-deposit a 5.0nm NPB layer as a transition layer on the hole transport layer at a vapor deposition rate of 0.2nm/s, and continue to vapor-deposit an organic functional layer Alq 3 at a vapor deposition rate of 0.2nm/s. The thickness is 60.0nm. Continue to vapor-deposit the metal layer on the Alq 3 layer, the metal layer is composed of Mg:Ag alloy layer and Ag layer in turn, the ratio of Mg and Ag vapor deposition rate in the alloy layer is 10:1, and the total vapor deposition rate is 1.5nm/s , the film thickness is 150.0nm; the evaporation rate of Ag is 0.4nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.8V, and the maximum luminance is 14000cd/m 2 .

实施例28Example 28

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为60Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为100.0nm。把烘干后的ITO玻璃置于压力为2×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(TPD/DCJTB)4,其中TPD薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,DCJTB薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。在该空穴传输层之上继续蒸镀20.0nm的TPD层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.8V,最大发光亮度为12000cd/m2The ITO glass with a square resistance of 60 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, where the film thickness of ITO was 100.0 nm. The dried ITO glass was placed in a vacuum chamber with a pressure of 2×10 -3 Pa, and the alternate multi-layer hole transport layer (TPD/DCJTB) 4 was evaporated on the ITO film by thermal evaporation, in which the TPD film The evaporation rate is 0.2nm/s, the film thickness is 5.0nm, the evaporation rate of the DCJTB thin film is 0.1nm/s, and the film thickness is 2.0nm. Continue to vapor-deposit a 20.0nm TPD layer on the hole transport layer as a transition layer at a vapor deposition rate of 0.2nm/s, and continue to vapor-deposit an organic functional layer Alq 3 at a vapor deposition rate of 0.2nm/s. The thickness is 60.0nm. Continue to vapor-deposit the metal layer on the Alq 3 layer, the metal layer is composed of Mg:Ag alloy layer and Ag layer in turn, the ratio of Mg and Ag vapor deposition rate in the alloy layer is 10:1, and the total vapor deposition rate is 1.5nm/s , the film thickness is 150.0nm; the evaporation rate of Ag is 0.4nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.8V, and the maximum luminance is 12000cd/m 2 .

实施例29Example 29

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为40Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为150.0nm。把烘干后的ITO玻璃置于压力为1×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(MTDATA/rubrene)4,其中MTDATA薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,rubrene薄膜的蒸镀速率为0.2nm/s,膜厚为2.0nm。在该空穴传输层之上继续蒸镀20.0nm的MTDATA层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.8V,最大发光亮度为18000cd/m2The ITO glass with a square resistance of 40 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, where the film thickness of ITO was 150.0 nm. The dried ITO glass was placed in a vacuum chamber with a pressure of 1×10 -3 Pa, and the alternate multilayer hole transport layer (MTDATA/rubrene) 4 was evaporated on the ITO film by thermal evaporation, in which the MTDATA film The evaporation rate is 0.2nm/s, and the film thickness is 5.0nm. The evaporation rate of the rubrene film is 0.2nm/s, and the film thickness is 2.0nm. Continue to vapor-deposit a 20.0nm MTDATA layer on the hole transport layer as a transition layer at a vapor deposition rate of 0.2nm/s, and continue to vapor-deposit an organic functional layer Alq 3 at a vapor deposition rate of 0.2nm/s. The thickness is 60.0nm. Continue to vapor-deposit the metal layer on the Alq 3 layer, the metal layer is composed of Mg:Ag alloy layer and Ag layer in turn, the ratio of Mg and Ag vapor deposition rate in the alloy layer is 10:1, and the total vapor deposition rate is 1.5nm/s , the film thickness is 150.0nm; the evaporation rate of Ag is 0.4nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.8V, and the maximum luminance is 18000cd/m 2 .

实施例30Example 30

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为10Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为280.0nm。把烘干后的ITO玻璃置于压力为4×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(NPB/C545T)4,其中NPB薄膜的蒸镀速率为0.2nm/s,膜厚为5.0nm,C545T薄膜的蒸镀速率为0.1nm/s,膜厚为2.0nm。在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Alq3,蒸镀速率为0.2nm/s,膜厚为60.0nm。在Alq3层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150.0nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.5V,最大发光亮度为28000cd/m2The ITO glass with a square resistance of 10 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, and the film thickness of ITO was 280.0nm. Place the dried ITO glass in a vacuum chamber with a pressure of 4×10 -3 Pa, and use thermal evaporation to vapor-deposit alternate multilayer hole transport layers (NPB/C545T) 4 on the ITO film, in which the NPB film The evaporation rate is 0.2nm/s, and the film thickness is 5.0nm. The evaporation rate of the C545T film is 0.1nm/s, and the film thickness is 2.0nm. Continue to vapor-deposit a 20.0nm NPB layer on the hole transport layer as a transition layer at a vapor deposition rate of 0.2nm/s, and continue to vapor-deposit an organic functional layer Alq 3 at a vapor deposition rate of 0.2nm/s. The thickness is 60.0nm. Continue to vapor-deposit the metal layer on the Alq 3 layer, the metal layer is composed of Mg:Ag alloy layer and Ag layer in turn, the ratio of Mg and Ag vapor deposition rate in the alloy layer is 10:1, and the total vapor deposition rate is 1.5nm/s , the film thickness is 150.0nm; the evaporation rate of Ag is 0.4nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.5V, and the maximum luminance is 28000cd/m 2 .

实施例31Example 31

利用煮沸的洗涤剂超声和去离子水超声的方法对方块电阻为20Ω的ITO玻璃进行清洗,并放置在红外灯下烘干,其中ITO的膜厚为220.0nm。把烘干后的ITO玻璃置于压力为3×10-3Pa的真空腔内,利用热蒸发方法向ITO膜上蒸镀交替多层空穴传输层(MTDATA/DCM)5,其中MTDATA薄膜的蒸镀速率为0.1nm/s,膜厚为5.0nm,DCM薄膜的蒸镀速率为0.05nm/s,膜厚为2.0nm。在该空穴传输层之上继续蒸镀20.0nm的NPB层作为过渡层,蒸镀速率为0.2nm/s,之上继续蒸镀有机功能层Bphen,蒸镀速率为0.2nm/s,膜厚为60.0nm。在Bphen层之上继续蒸镀金属层,金属层依次由Mg∶Ag合金层和Ag层组成,合金层中Mg、Ag蒸镀速率比为10∶1,蒸镀总速率为1.5nm/s,膜厚为150nm;Ag的蒸镀速率为0.4nm/s,蒸镀厚度为50.0nm。器件启亮电压为2.5V,最大发光亮度为28000cd/m2The ITO glass with a square resistance of 20 Ω was cleaned by boiling detergent ultrasonic and deionized water ultrasonically, and dried under an infrared lamp, where the film thickness of ITO was 220.0nm. The dried ITO glass was placed in a vacuum chamber with a pressure of 3×10 -3 Pa, and the alternate multilayer hole transport layer (MTDATA/DCM) 5 was evaporated on the ITO film by thermal evaporation, in which the MTDATA film The evaporation rate is 0.1nm/s, the film thickness is 5.0nm, the evaporation rate of the DCM thin film is 0.05nm/s, and the film thickness is 2.0nm. Continue to vapor-deposit a 20.0nm NPB layer as a transition layer on the hole transport layer, and the evaporation rate is 0.2nm/s, and continue to evaporate the organic functional layer Bphen on the top, the evaporation rate is 0.2nm/s, and the film thickness is 0.2nm/s. 60.0nm. On the Bphen layer, the vapor deposition metal layer is continued, and the metal layer is successively composed of Mg: Ag alloy layer and Ag layer. The ratio of Mg and Ag vapor deposition rate in the alloy layer is 10: 1, and the total vapor deposition rate is 1.5nm/s. The film thickness is 150nm; the evaporation rate of Ag is 0.4nm/s, and the evaporation thickness is 50.0nm. The turn-on voltage of the device is 2.5V, and the maximum luminance is 28000cd/m 2 .

尽管结合优选实施例对本发明进行了说明,但本发明并不局限于上述实施例和附图,应当理解,在本发明构思的引导下,本领域技术人员可进行各种修改和改进,所附权利要求概括了本发明的范围。Although the present invention has been described in conjunction with preferred embodiments, the present invention is not limited to the above-mentioned embodiments and accompanying drawings. It should be understood that under the guidance of the inventive concept, those skilled in the art can make various modifications and improvements, and the appended The claims outline the scope of the invention.

Claims (13)

1.一种有机电致发光器件,该器件包括透明基片(1)、第一电极层(2)和第二电极层(7),以及夹在所述第一电极层(2)、第二电极层(7)之间的空穴传输层(4)和电子传输层(6),其特征在于:空穴传输层(4)采用有机量子阱结构,这种量子阱传输结构由宽能带的有机材料A和窄能带的有机材料B两种材料层以一定的周期数交替重叠组成,这两种有机材料的能级满足下列关系:1. An organic electroluminescence device, which device comprises a transparent substrate (1), a first electrode layer (2) and a second electrode layer (7), and is sandwiched between the first electrode layer (2), the second electrode layer The hole transport layer (4) and the electron transport layer (6) between the two electrode layers (7) are characterized in that: the hole transport layer (4) adopts an organic quantum well structure, and this quantum well transport structure consists of a wide energy The organic material A with a band and the organic material B with a narrow energy band overlap alternately with a certain number of periods, and the energy levels of these two organic materials satisfy the following relationship: (I)有机材料A的最高占有轨道能级低于有机材料B的最高占有轨道能级,(1) The highest occupied orbital energy level of organic material A is lower than the highest occupied orbital energy level of organic material B, (II)有机材料A的最低空轨道能级高于有机材料B的最低空轨道能级,其中有机量子阱结构的周期数为1~10的整数。(II) The lowest unoccupied orbital energy level of the organic material A is higher than that of the organic material B, wherein the period number of the organic quantum well structure is an integer of 1-10. 2.根据权利要求1所述的有机电致发光器件,其特征在于,所述的有机材料A层的膜厚为0.5~30.0nm,所述的有机材料B层的膜厚为0.5~10.0nm。2. The organic electroluminescent device according to claim 1, characterized in that, the film thickness of the organic material A layer is 0.5-30.0 nm, and the film thickness of the organic material B layer is 0.5-10.0 nm . 3.根据权利要求1所述的有机电致发光器件,其特征在于,所述的有机材料B是一种染料C。3. The organic electroluminescent device according to claim 1, wherein the organic material B is a dye C. 4.根据权利要求1所述的有机电致发光器件,其特征在于,所述的第一电极层(2)和空穴传输层(4)之间夹有一层缓冲层(3),所述的空穴传输层(4)和电子传输层(6)之间夹有一层过渡层(5)。4. The organic electroluminescent device according to claim 1, characterized in that, a buffer layer (3) is sandwiched between the first electrode layer (2) and the hole transport layer (4), the A transition layer (5) is sandwiched between the hole transport layer (4) and the electron transport layer (6). 5.根据权利要求4所述的有机电致发光器件,其特征在于,所述的缓冲层(3)由铜酞菁组成,所述的过渡层(5)由N,N’-二-(1-萘基)-N,N’-二苯基-1,1’-联苯基-4,4’-二胺组成。5. The organic electroluminescent device according to claim 4, characterized in that, the buffer layer (3) is composed of copper phthalocyanine, and the transition layer (5) is composed of N, N'-di-( 1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine. 6.根据权利要求1所述的有机电致发光器件,其特征在于,所述的有机材料A是三苯胺类、咔唑类、吡咯啉类或噁二唑类化合物中的一种材料,所述的有机材料B是酞菁类化合物中的一种材料。6. The organic electroluminescent device according to claim 1, characterized in that, the organic material A is a material in triphenylamines, carbazoles, pyrrolines or oxadiazoles, the The above-mentioned organic material B is a material among phthalocyanine compounds. 7.根据权利要求6所述的有机电致发光器件,其特征在于,所述的三苯胺类化合物包括N,N’-二-(1-萘基)-N,N’-二苯基-1,1’-联苯基-4,4’-二胺、N,N’-二苯基-N,N’-双(间甲基苯基)-1,1’-联苯基-4,4’-二胺或4,4’,4”-三(3-甲基苯基苯胺)三苯胺,所述的咔唑类化合物包括聚乙烯基咔唑、2,9-二甲基-4,7-二苯基-1,10-邻菲咯啉或4,7-二苯基-1,10-邻菲咯啉,所述的噁二唑类化合物包括三-[1-苯基-1H-苯并咪唑基]-(1,3,5-三取代苯)或2-(4-特丁基苯基)-5-(4-联苯基)-1,3,4-噁二唑,所述的酞菁类化合物包括铜酞菁、酞菁或钒酞菁。7. The organic electroluminescent device according to claim 6, wherein said triphenylamine compound comprises N, N'-di-(1-naphthyl)-N, N'-diphenyl- 1,1'-biphenyl-4,4'-diamine, N,N'-diphenyl-N,N'-bis(m-methylphenyl)-1,1'-biphenyl-4 , 4'-diamine or 4,4',4"-tris(3-methylphenylaniline) triphenylamine, the carbazole compounds include polyvinylcarbazole, 2,9-dimethyl- 4,7-diphenyl-1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline, the oxadiazole compounds include tri-[1-phenyl -1H-benzimidazolyl]-(1,3,5-trisubstituted benzene) or 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxa Oxadiazole, the phthalocyanine compound includes copper phthalocyanine, phthalocyanine or vanadium phthalocyanine. 8.根据权利要求7所述的有机电致发光器件,其特征在于,所述的有机材料A是N,N’-二-(1-萘基)-N,N’-二苯基-1,1’-联苯基-4,4’-二胺,所述的有机材料B是铜酞菁。8. The organic electroluminescent device according to claim 7, characterized in that, said organic material A is N, N'-two-(1-naphthyl)-N, N'-diphenyl-1 , 1'-biphenyl-4,4'-diamine, the organic material B is copper phthalocyanine. 9.根据权利要求1所述的有机电致发光器件,其特征在于,所述的电子传输层(6)采用金属有机配合物或噁二唑类化合物中的一种材料。9 . The organic electroluminescent device according to claim 1 , characterized in that, the electron transport layer ( 6 ) is made of a metal-organic complex or an oxadiazole compound. 10.根据权利要求9所述的有机电致发光器件,其特征在于,所述的电子传输层(6)采用三(8-羟基喹啉)铝、(水杨醛缩邻胺苯酚)-(8-羟基喹啉)合铝(III)、(水杨醛缩邻胺苯酚)-(8-羟基喹啉)合镓(III)或4-羟基吖啶锌中的一种材料。10. organic electroluminescent device according to claim 9, is characterized in that, described electron transport layer (6) adopts three (8-hydroxyquinoline) aluminum, (salicylaldehyde anteline phenol)-( One of 8-hydroxyquinoline)aluminum(III), (salicylaldehyde ortho-aminophenol)-(8-hydroxyquinoline)gallium(III) or 4-hydroxyacridine zinc. 11.根据权利要求3所述的有机电致发光器件,其特征在于,所述的有机材料A是三苯胺类、咔唑类、吡咯啉类或噁二唑类化合物中的一种材料,所述的有机染料C是聚苯类、香豆素类或双吡喃类化合物中的一种材料。11. The organic electroluminescence device according to claim 3, characterized in that, the organic material A is a material in triphenylamines, carbazoles, pyrrolines or oxadiazoles, and The organic dye C mentioned above is a material among polyphenylene, coumarin or bispyran compounds. 12.根据权利要求11所述的有机电致发光器件,其特征在于,所述的聚苯类化合物包括5,6,11,12-四苯基并四苯或并五苯,所述的香豆素类染料包括10-(2-苯并噻唑)-1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H,11H-苯并[1]吡喃[6,7,8-ij]喹啉嗪,所述的双吡喃类化合物包括4-二氰基亚甲基-2-叔丁基-6-(1,1,7,7-四甲基-久洛尼定-9-乙烯基)-4H-吡喃或4-二氰亚甲基-2-甲基-6-(p-二甲氨基苯乙烯基)-4H-吡喃。12. The organic electroluminescent device according to claim 11, wherein the polyphenylene compound comprises 5,6,11,12-tetraphenyltetracene or pentacene, and the aromatic Soybean dyes include 10-(2-benzothiazole)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-benzo[1]pyridine Pyran [6,7,8-ij] quinolinazine, the bispyran compound includes 4-dicyanomethylene-2-tert-butyl-6-(1,1,7,7-tetra Methyl-julonidine-9-vinyl)-4H-pyran or 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran. 13.根据权利要求12所述的有机电致发光器件,其特征在于,所述的有机材料A是N,N’-二-(1-萘基)-N,N’-二苯基-1,1’-联苯基-4,4’-二胺,所述的有机染料C是5,6,11,12-四苯基并四苯。13. The organic electroluminescence device according to claim 12, wherein said organic material A is N, N'-two-(1-naphthyl)-N, N'-diphenyl-1 , 1'-biphenyl-4,4'-diamine, the organic dye C is 5,6,11,12-tetraphenyltetracene.
CNB031210635A 2002-04-03 2003-03-21 An organic electroluminescent device Expired - Lifetime CN1161002C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031210635A CN1161002C (en) 2002-04-03 2003-03-21 An organic electroluminescent device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN02116537.8 2002-04-03
CN02116537A CN1409412A (en) 2002-04-03 2002-04-03 Organic electroluminescence device using organic quantum trap as hole transmission layer
CN 02125484 CN1398146A (en) 2002-08-13 2002-08-13 Electroluminescent organic device
CN021254842 2002-08-13
CN02125484.2 2002-08-13
CNB031210635A CN1161002C (en) 2002-04-03 2003-03-21 An organic electroluminescent device

Publications (2)

Publication Number Publication Date
CN1457105A CN1457105A (en) 2003-11-19
CN1161002C true CN1161002C (en) 2004-08-04

Family

ID=29423935

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031210635A Expired - Lifetime CN1161002C (en) 2002-04-03 2003-03-21 An organic electroluminescent device

Country Status (1)

Country Link
CN (1) CN1161002C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433400C (en) * 2005-01-17 2008-11-12 财团法人工业技术研究院 Organic polymer light-emitting diode device and display applying same
US7538341B2 (en) 1999-12-31 2009-05-26 Lg Chem, Ltd. Electronic device comprising organic compound having p-type semiconducting characteristics
US7560175B2 (en) 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US7763882B2 (en) 1999-12-31 2010-07-27 Lg Chem, Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
US8253126B2 (en) 1999-12-31 2012-08-28 Lg Chem. Ltd. Organic electronic device
US8680693B2 (en) 2006-01-18 2014-03-25 Lg Chem. Ltd. OLED having stacked organic light-emitting units

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086817B2 (en) * 2004-07-20 2008-05-14 キヤノン株式会社 Organic EL device
CN101079471B (en) * 2006-05-25 2010-06-09 清华大学 An organic electroluminescent device
TWI638583B (en) * 2007-09-27 2018-10-11 半導體能源研究所股份有限公司 Light-emitting element, light-emitting device, and electronic appliance
EP2354135B1 (en) * 2009-12-23 2013-09-18 Semiconductor Energy Laboratory Co., Ltd. Benzimidazol-2-yl-phenyl compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN103427045A (en) * 2012-05-14 2013-12-04 海洋王照明科技股份有限公司 Organic light-emitting device and preparation method thereof
CN103824939A (en) * 2012-11-19 2014-05-28 海洋王照明科技股份有限公司 Polymer solar cell and preparation method thereof
WO2014082307A1 (en) * 2012-11-30 2014-06-05 海洋王照明科技股份有限公司 Organic light-emitting device and preparing method thereof
CN108666432B (en) * 2018-04-02 2020-02-18 华南理工大学 An organic light-emitting diode containing a multi-level organic semiconductor heterojunction
CN111384280B (en) * 2018-12-29 2021-05-18 Tcl科技集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538341B2 (en) 1999-12-31 2009-05-26 Lg Chem, Ltd. Electronic device comprising organic compound having p-type semiconducting characteristics
US7560175B2 (en) 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US7648779B2 (en) 1999-12-31 2010-01-19 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US7648780B2 (en) 1999-12-31 2010-01-19 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US7763882B2 (en) 1999-12-31 2010-07-27 Lg Chem, Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
US8253126B2 (en) 1999-12-31 2012-08-28 Lg Chem. Ltd. Organic electronic device
CN100433400C (en) * 2005-01-17 2008-11-12 财团法人工业技术研究院 Organic polymer light-emitting diode device and display applying same
US8680693B2 (en) 2006-01-18 2014-03-25 Lg Chem. Ltd. OLED having stacked organic light-emitting units

Also Published As

Publication number Publication date
CN1457105A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3615536B2 (en) Organic EL light emitting device
CN1271464C (en) Organic light-emitting device capable of emitting white light source and manufacturing method thereof
JP4939284B2 (en) Organic electroluminescent device
JP4915650B2 (en) Organic electroluminescence device
CN1161002C (en) An organic electroluminescent device
KR100669717B1 (en) Organic electroluminescent element
JP2002100482A (en) Organic electroluminescence element
CN1389934A (en) Organic luminescent device containing coloured neutral dopant in hole transfer layer and/or electronic transfer layer
JPH1079297A (en) Electroluminescent element
JP2002100478A (en) Organic electroluminescence element and its method of manufacture
CN1913194A (en) White electroluminescent device and method of producing the same
JPH0896959A (en) Organic electroluminescent device
CN100508244C (en) An organic electroluminescent white light device
CN1582073A (en) A kind of organic electrophosphorescent device and its preparation method
CN101079471A (en) An organic EL part
CN1913730A (en) White electroluminescent device and method of producing the same
CN1449227A (en) Organic electroluminescence device
CN1914956A (en) organic electroluminescent element
CN101540375A (en) Organic electroluminescence device
CN101123298A (en) A structure-optimized white light organic electroluminescent device
CN1921171A (en) White light organic electroluminescent device
CN101030625A (en) Organic electroluminescent device
CN1585580A (en) Organic electro-white light device and producing method thereof
CN1398146A (en) Electroluminescent organic device
TW201123970A (en) Organic electroluminescent devices and process for production of same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20091204

Address after: Room 209A, Museum of works, Tsinghua University, Beijing: 100084

Co-patentee after: BEIJING VISIONOX TECHNOLOGY Co.,Ltd.

Patentee after: TSINGHUA University

Address before: Room 209A, Museum of works, Tsinghua University, Beijing: 100084

Patentee before: Tsinghua University

CX01 Expiry of patent term

Granted publication date: 20040804

CX01 Expiry of patent term