CN116081776B - A spring return type residual pressure energy recovery device - Google Patents
A spring return type residual pressure energy recovery device Download PDFInfo
- Publication number
- CN116081776B CN116081776B CN202310374024.2A CN202310374024A CN116081776B CN 116081776 B CN116081776 B CN 116081776B CN 202310374024 A CN202310374024 A CN 202310374024A CN 116081776 B CN116081776 B CN 116081776B
- Authority
- CN
- China
- Prior art keywords
- pressure
- piston
- low
- joint
- concentrated seawater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 73
- 239000013535 sea water Substances 0.000 claims abstract description 181
- 238000007789 sealing Methods 0.000 claims abstract description 31
- 238000004891 communication Methods 0.000 claims description 34
- 239000007787 solid Substances 0.000 claims 1
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000012530 fluid Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010612 desalination reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/10—Energy recovery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
技术领域technical field
本申请涉及能量回收技术领域,尤其涉及一种弹簧复位式余压能回收装置。The present application relates to the technical field of energy recovery, in particular to a spring return type residual pressure energy recovery device.
背景技术Background technique
现今,已发明出的多种海水淡化技术中,使用反渗透膜的反渗透法以其设备简单、易于维护和设备模块化的优点迅速占领市场,成为应用最广泛的方法。Nowadays, among the various seawater desalination technologies that have been invented, the reverse osmosis method using reverse osmosis membrane has quickly occupied the market due to its advantages of simple equipment, easy maintenance and equipment modularization, and has become the most widely used method.
通常反渗透海水淡化过程中排放出的浓海水压力高达5.0MPa~6.5MPa,将这部分压力能直接释放将造成很大浪费。据统计,浓海水压力能直接释放所造成的损失约占产水总成本的30%~50%,因而安装余压能回收装置是十分有必要的。Usually the pressure of the concentrated seawater discharged during the reverse osmosis seawater desalination process is as high as 5.0MPa-6.5MPa, and it will cause a lot of waste to directly release this part of the pressure energy. According to statistics, the loss caused by the direct release of concentrated seawater pressure energy accounts for about 30% to 50% of the total cost of water production, so it is very necessary to install a residual pressure energy recovery device.
现有的余压能回收装置工作方式主要有两种,分别为水力透平式和正位移式。其中正位移式余压能回收装置是基于压力传递进行余压能回收,这种装置需要通过泵提供额外压力完成余压能回收,因此需要消耗一定的电能才能工作,这增加一定的回收成本,也降低了回收效率。There are mainly two working modes of the existing residual pressure energy recovery device, namely hydraulic turbine type and positive displacement type. Among them, the positive displacement residual pressure energy recovery device is based on pressure transmission for residual pressure energy recovery. This device needs to provide additional pressure through the pump to complete the residual pressure energy recovery, so it needs to consume a certain amount of electric energy to work, which increases a certain recovery cost. Also reduces the recovery efficiency.
发明内容Contents of the invention
有鉴于此,本申请的目的是提供一种弹簧复位式余压能回收装置,减少泵的耗能,提高了能量回收效率。In view of this, the purpose of this application is to provide a spring return type residual pressure energy recovery device, which reduces the energy consumption of the pump and improves the energy recovery efficiency.
为达到上述技术目的,本申请提供了一种弹簧复位式余压能回收装置,包括芯体、两个换相模块以及回收模块;In order to achieve the above technical purpose, this application provides a spring return type residual pressure energy recovery device, which includes a core body, two phase change modules and a recovery module;
所述芯体可转动设置;The core body can be rotatably set;
两个所述换相模块沿所述芯体的转动中心线方向固定在所述芯体的两端,并与所述芯体密封接触;The two commutation modules are fixed on both ends of the core body along the direction of the rotation centerline of the core body, and are in sealing contact with the core body;
所述回收模块包括回收单元、高压浓海水入口接头、低压浓海水出口接头、高压海水出口接头以及低压海水入口接头;The recovery module includes a recovery unit, a high-pressure concentrated seawater inlet connector, a low-pressure concentrated seawater outlet connector, a high-pressure seawater outlet connector, and a low-pressure seawater inlet connector;
所述高压海水出口接头安装有限压阀;The high-pressure seawater outlet joint is equipped with a pressure-limiting valve;
所述回收单元包括活塞通腔、密封挡板以及活塞组件;The recovery unit includes a piston cavity, a sealing baffle and a piston assembly;
所述活塞通腔沿所述芯体的转动中心线方向设置于所述芯体上;The piston cavity is arranged on the core body along the rotation centerline direction of the core body;
所述密封挡板固定在所述活塞通腔,用于沿所述芯体的转动中心线方向将所述活塞通腔隔成两个腔体;The sealing baffle is fixed on the piston cavity, and is used to divide the piston cavity into two cavities along the rotation centerline direction of the core;
所述活塞组件包括连杆、第一活塞、第二活塞以及弹性件;The piston assembly includes a connecting rod, a first piston, a second piston and an elastic member;
所述连杆沿所述芯体的转动中心线方向活动穿设于所述密封挡板,且一端与所述第一活塞连接,另一端与所述第二活塞连接;The connecting rod is movable through the sealing baffle along the rotation centerline direction of the core body, and one end is connected to the first piston, and the other end is connected to the second piston;
所述弹性件连接于所述第一活塞与所述密封挡板之间或连接于所述第二活塞与所述密封挡板之间;The elastic member is connected between the first piston and the sealing baffle or between the second piston and the sealing baffle;
所述高压浓海水入口接头与所述低压浓海水出口接头安装于一个所述换相模块上,且分别可与所述活塞通腔的一端连接导通;The high-pressure concentrated seawater inlet joint and the low-pressure concentrated seawater outlet joint are installed on one of the phase-changing modules, and can be connected to one end of the piston cavity for conduction respectively;
所述高压海水出口接头以及所述低压海水入口接头安装于另一个所述换相模块上,且分别可与所述活塞通腔的另一端连接导通;The high-pressure seawater outlet joint and the low-pressure seawater inlet joint are installed on another phase-changing module, and can be connected to the other end of the piston cavity respectively;
所述活塞通腔通过所述芯体的转动,可在自身两端分别连通所述高压浓海水入口接头与所述高压海水出口接头的状态、以及自身两端分别连通所述低压浓海水出口接头与所述低压海水入口接头的状态之间切换。Through the rotation of the core body, the piston cavity can communicate with the state of the high-pressure concentrated seawater inlet joint and the high-pressure seawater outlet joint at its two ends, and communicate with the low-pressure concentrated seawater outlet joint at its two ends. Toggle between states with the low pressure seawater inlet joint.
进一步地,所述高压浓海水入口接头以及所述低压浓海水出口接头布置在所述第二活塞背离所述第一活塞的一侧;Further, the high-pressure concentrated seawater inlet joint and the low-pressure concentrated seawater outlet joint are arranged on the side of the second piston away from the first piston;
所述高压海水出口接头与所述低压海水入口接头布置在所述第一活塞背离所述第二活塞的一侧;The high-pressure seawater outlet joint and the low-pressure seawater inlet joint are arranged on a side of the first piston away from the second piston;
所述弹性件连接在第二活塞与密封挡板之间。The elastic member is connected between the second piston and the sealing baffle.
进一步地,所述回收单元为2n个,n≥1;Further, there are 2n recovery units, n≥1;
2n个所述回收单元绕所述芯体的转动中心线圆周均匀分布;The 2n recovery units are evenly distributed around the rotation center line of the core;
所述高压浓海水入口接头、所述低压浓海水出口接头、所述高压海水出口接头以及所述低压海水入口接头均为m个,m=n;The high-pressure concentrated seawater inlet joint, the low-pressure concentrated seawater outlet joint, the high-pressure seawater outlet joint and the low-pressure seawater inlet joint are all m, m=n;
当2n个所述活塞通腔中的一半数量的所述活塞通腔处于自身两端分别连通所述高压浓海水入口接头与所述高压海水出口接头状态时,另一半数量的所述活塞通腔处于自身两端连通所述低压浓海水出口接头与所述低压海水入口接头状态。When half of the piston cavities in the 2n piston cavities are in the state that their two ends are respectively connected to the high-pressure concentrated seawater inlet joint and the high-pressure seawater outlet joint, the other half of the piston cavities It is in the state that its two ends are connected to the low-pressure concentrated seawater outlet joint and the low-pressure seawater inlet joint.
进一步地,所述芯体包括转轴以及芯本体;Further, the core body includes a rotating shaft and a core body;
所述芯本体可拆卸安装于所述转轴上,且与所述转轴同步转动配合。The core body is detachably mounted on the rotating shaft and rotates synchronously with the rotating shaft.
进一步地,所述换相模块包括换相盘以及接口端盘;Further, the phase change module includes a phase change plate and an interface end plate;
所述换相盘设有多个可与所述活塞通腔端口连接导通的第一连通孔;The commutation disk is provided with a plurality of first communication holes that can be connected to the piston cavity port;
所述高压浓海水入口接头以及所述低压浓海水出口接头与一个所述换相模块上的所述第一连通孔一一对应连接导通;The high-pressure concentrated seawater inlet joint and the low-pressure concentrated seawater outlet joint are connected and conducted in one-to-one correspondence with the first communication hole on one of the phase change modules;
所述高压海水出口接头以及所述低压海水入口接头与另一个所述换相模块上的所述第一连通孔一一对应连接导通;The high-pressure seawater outlet joint and the low-pressure seawater inlet joint are in one-to-one connection with the first communication hole on the other phase change module;
所述换相盘可拆卸安装于所述转轴上,且与所述芯体密封接触并同步转动;The commutation disc is detachably mounted on the rotating shaft, and is in sealing contact with the core body and rotates synchronously;
所述接口端盘套装于所述转轴上,且固定在所述换相盘远离所述芯本体的一侧,并与所述换相盘密封接触;The interface end plate is sleeved on the rotating shaft, fixed on the side of the commutation disc away from the core body, and is in sealing contact with the commutation disc;
所述接口端盘与所述转轴之间连接有轴承;A bearing is connected between the interface end plate and the rotating shaft;
所述接口端盘上设有多个与所述第一连通孔一一对应连接导通的第二连通孔;The interface end plate is provided with a plurality of second communication holes connected and connected to the first communication holes in one-to-one correspondence;
所述高压浓海水入口接头以及所述低压浓海水出口接头一一对应安装于一个所述换相模块的所述第二连通孔上;The high-pressure concentrated seawater inlet joint and the low-pressure concentrated seawater outlet joint are respectively installed on the second communication hole of one of the phase change modules;
所述高压海水出口接头以及所述低压海水入口接头一一对应安装于另一个所述换相模块的所述第二连通孔上。The high-pressure seawater outlet joint and the low-pressure seawater inlet joint are respectively installed on the second communication hole of the other phase change module.
进一步地,所述第一连通孔为弧形孔。Further, the first communicating hole is an arc-shaped hole.
进一步地,所述换相盘朝向所述轴承的一面上设有与所述轴承固定圈接触相抵的环形凸起,以使得所述轴承的转动圈与所述换相盘之间形成间隙。Further, the side of the commutation disc facing the bearing is provided with an annular protrusion that contacts and abuts against the bearing fixing ring, so that a gap is formed between the rotating ring of the bearing and the commutation disc.
进一步地,所述转轴为螺纹轴;Further, the rotating shaft is a threaded shaft;
所述换相模块还包括与所述转轴螺纹配合的螺帽;The phase change module also includes a nut threadedly engaged with the shaft;
所述螺帽套设于所述转轴,并与所述轴承的固定圈接触相抵,以使得所述换相盘与所述芯本体紧固一起。The nut is sleeved on the rotating shaft, and is in contact with the fixed ring of the bearing, so that the commutation disc and the core body are fastened together.
进一步地,所述螺帽与所述轴承的固定圈之间还设有垫圈。Further, a washer is provided between the nut and the fixed ring of the bearing.
进一步地,所述弹性件为弹簧,套设于所述连杆上。Further, the elastic member is a spring, sleeved on the connecting rod.
从以上技术方案可以看出,本申请所设计的弹簧复位式余压能回收装置,当芯体转动至活塞通腔的两端分别连通高压浓海水入口接头与高压海水出口接头的状态时,高压浓海水通过高压浓海水入口接头进入活塞通腔中第二活塞一侧的腔体推动第二活塞(以此为例)运动,同时通过连杆带动第一活塞运动并使得弹性件发生形变,进而将第一活塞一侧的腔体中的低压海水加压成高压海水,实现对高压浓海水余压能的回收利用。该加压后腔体中的高压海水达到限压阀的预设压力后从高压海水出口接头排出,同时使得另一腔体中高压浓水泄压变为低压浓海水。当芯体转动至活塞通腔的两端分别连通低压浓海水出口接头与低压海水入口接头的状态时,处于形变状态的弹性件在复位时推动第二活塞反向运动,将泄压后的低压浓海水从低压浓海水出口接头排出,同时连杆拉动第一活塞运动将低压海水从低压海水入口接头吸入,为下一余压能回收利用做好准备。It can be seen from the above technical solutions that the spring return type residual pressure energy recovery device designed in this application, when the core body rotates to the state where the two ends of the piston cavity are respectively connected to the high-pressure concentrated seawater inlet joint and the high-pressure seawater outlet joint, the high-pressure Concentrated seawater enters the cavity on the side of the second piston in the piston through the high-pressure concentrated seawater inlet joint to push the second piston (take this as an example) to move, and at the same time drives the first piston to move through the connecting rod and deforms the elastic member, and then Pressurizing the low-pressure seawater in the cavity on one side of the first piston into high-pressure seawater, so as to realize the recovery and utilization of residual pressure energy of the high-pressure concentrated seawater. After the pressurized high-pressure seawater in the cavity reaches the preset pressure of the pressure limiting valve, it is discharged from the high-pressure seawater outlet joint, and at the same time, the high-pressure concentrated water in the other cavity is released to become low-pressure concentrated seawater. When the core rotates to the state where the two ends of the piston cavity are respectively connected to the low-pressure concentrated seawater outlet joint and the low-pressure seawater inlet joint, the elastic member in the deformed state pushes the second piston to move in the reverse direction when it is reset, and the low-pressure seawater after pressure relief Concentrated seawater is discharged from the low-pressure concentrated seawater outlet joint, and at the same time, the connecting rod pulls the first piston to move low-pressure seawater from the low-pressure seawater inlet joint, making preparations for the recovery of the next residual pressure energy.
本申请利用高压浓海水推动活塞以使得弹性件形变,将低压海水加压,实现对高压浓海水余压能的回收利用,并利用弹性件的复位带动活塞抽入低压海水。与传统的余压能回收装置相比,不需要安装额外的泵,减少了泵的耗能,提高了能量回收效率。This application uses high-pressure concentrated seawater to push the piston to deform the elastic member, pressurizes the low-pressure seawater to realize the recovery and utilization of the residual pressure energy of the high-pressure concentrated seawater, and uses the reset of the elastic member to drive the piston to draw in low-pressure seawater. Compared with the traditional residual pressure energy recovery device, there is no need to install an additional pump, which reduces the energy consumption of the pump and improves the energy recovery efficiency.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present application. Those skilled in the art can also obtain other drawings based on these drawings without any creative effort.
图1为本申请中提供的一种弹簧复位式余压能回收装置的第一剖视图;Figure 1 is the first cross-sectional view of a spring return type residual pressure energy recovery device provided in this application;
图2为本申请中提供的一种弹簧复位式余压能回收装置的第二剖视图;Fig. 2 is a second cross-sectional view of a spring return type residual pressure energy recovery device provided in this application;
图3为本申请中提供的一种弹簧复位式余压能回收装置的接口端盘结构图;Fig. 3 is a structural diagram of an interface end plate of a spring return type residual pressure energy recovery device provided in this application;
图4为本申请中提供的一种弹簧复位式余压能回收装置的换相盘与回收单元配合结构示意图;Fig. 4 is a schematic diagram of the cooperating structure of the commutation disk and the recovery unit of a spring-return type residual pressure energy recovery device provided in this application;
图5为本申请中提供的一种弹簧复位式余压能回收装置处于第一相位状态的工作原理图;Fig. 5 is a working principle diagram of a spring return type residual pressure energy recovery device in the first phase state provided in this application;
图6为本申请中提供的一种弹簧复位式余压能回收装置处于第二相位状态的工作原理图;Fig. 6 is a working principle diagram of a spring return type residual pressure energy recovery device in the second phase state provided in this application;
图中:1、芯体;11、芯本体;12、转轴;2、回收单元;21、活塞通腔;22、第一活塞;23、密封挡板;24、连杆;25、弹性件;26、第二活塞;3、换相模块;31、换相盘;311、第一连通孔;312、环形凸起;32、接口端盘;321、第二连通孔;33、轴承;34、螺帽;35、垫圈;41、高压海水出口接头;411、限压阀;42、高压浓海水入口接头;43、低压海水入口接头;44、低压浓海水出口接头。In the figure: 1, core body; 11, core body; 12, rotating shaft; 2, recovery unit; 21, piston cavity; 22, first piston; 23, sealing baffle; 24, connecting rod; 25, elastic member; 26. The second piston; 3. The phase change module; 31. The phase change plate; 311. The first communication hole; 312. The annular protrusion; 32. The interface end plate; 321. The second communication hole; 33. The bearing; 34. Nut; 35, gasket; 41, high-pressure seawater outlet connector; 411, pressure limiting valve; 42, high-pressure concentrated seawater inlet connector; 43, low-pressure seawater inlet connector; 44, low-pressure concentrated seawater outlet connector.
具体实施方式Detailed ways
下面将结合附图对本申请实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请实施例保护的范围。The following will clearly and completely describe the technical solutions of the embodiments of the present application with reference to the accompanying drawings. Apparently, the described embodiments are part of the embodiments of the present application, not all of them. Based on the embodiments in the embodiments of the present application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the embodiments of the present application.
在本申请实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the embodiments of the present application, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer " and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the embodiments of the present application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, Constructed and operative in a particular orientation and therefore should not be construed as limiting to the embodiments of the present application. In addition, the terms "first", "second", and "third" are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可更换连接,或一体地连接,可以是机械连接,也可以是电连接,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。In the description of the embodiments of this application, it should be noted that unless otherwise specified and limited, the terms "installation", "connection", and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a Replaceable connection, or integral connection, can be mechanical connection or electrical connection, direct connection or indirect connection through an intermediary, or internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the embodiments of the present application in specific situations.
本申请实施例公开了一种弹簧复位式余压能回收装置。The embodiment of the present application discloses a spring return type residual pressure energy recovery device.
请参阅图1、图2、图5以及图6,本申请实施例中提供的一种弹簧复位式余压能回收装置的一个实施例包括:Please refer to Fig. 1, Fig. 2, Fig. 5 and Fig. 6, an embodiment of a spring return type residual pressure energy recovery device provided in the embodiment of the present application includes:
芯体1、两个换相模块3以及回收模块。
芯体1可转动设置,进而可通过旋转电机实现转动控制。The
两个换相模块3沿芯体1的转动中心线方向固定在芯体1的两端,并与芯体1密封接触。Two
就回收模块设计来说,包括回收单元2、高压浓海水入口接头42、低压浓海水出口接头44、高压海水出口接头41以及低压海水入口接头43。As far as the design of the recovery module is concerned, it includes a recovery unit 2 , a high-pressure concentrated
回收单元2包括活塞通腔21、密封挡板23以及活塞组件。The recovery unit 2 includes a
活塞通腔21沿芯体1的转动中心线方向设置于芯体1上,可随芯体1的转动绕芯体1的转动中心线转动。就该活塞通腔21的形成来说,可以是在芯体1上开设一个贯通腔,以形成活塞通腔21,又或者在芯体1上安装一活塞筒,该活塞筒内部贯穿芯体1两端的通腔也就形成活塞通腔21,具体不做限制。The
密封挡板23固定在活塞通腔21,用于沿芯体1的转动中心线方向将活塞通腔21隔成两个腔体,该密封挡板23具体可以是环形结构,固定在活塞通腔21的中间位置,起到对活塞组件的安装与限位作用。The sealing
就活塞组件设计来说,包括连杆24、第一活塞22、第二活塞26以及弹性件25。连杆24沿芯体1的转动中心线方向活动穿设于密封挡板23,且一端与第一活塞22连接,另一端与第二活塞26连接;第一活塞22与第二活塞26应当与活塞通腔21内壁紧密接触,达到密封效果,以便隔绝不同流体,其活塞结构可参考已有活塞结构设计,不做限制。就弹性件25来说,可以是连接于第一活塞22与密封挡板23之间或连接于第二活塞26与密封挡板23之间。As far as the design of the piston assembly is concerned, it includes a connecting
高压浓海水入口接头42与低压浓海水出口接头44安装于一个换相模块3上,且分别可与活塞通腔21的一端连接导通。高压海水出口接头41以及低压海水入口接头43安装于另一个换相模块3上,且分别可与活塞通腔21的另一端连接导通。The high-pressure concentrated
活塞通腔21通过芯体1的转动,可在自身两端分别连通高压浓海水入口接头42与高压海水出口接头41的状态、以及自身两端分别连通低压浓海水出口接头44与低压海水入口接头43的状态之间切换。Through the rotation of the
将活塞通腔21的两端分别连通高压浓海水入口接头42与高压海水出口接头41的状态作为第一相位状态,而活塞通腔21的两端分别连通低压浓海水出口接头44与低压海水入口接头43的状态作为第二相位状态,那么也就是通过芯体1的转动即可实现活塞通腔21在第一相位状态与第二相位状态之间进行切换。The two ends of the
具体的,如图1以及图2所示,该高压浓海水入口接头42、低压浓海水出口接头44可以是布置在第二活塞26背离第一活塞22的一侧,那么高压海水出口接头41与低压海水入口接头43也就布置在第一活塞22背离第二活塞26的一侧;从左右侧分布情况来说,由于第一活塞22与第二活塞26之间为左右分布情况,那么高压浓海水入口接头42、低压浓海水出口接头44也就是布置在右侧,而高压海水出口接头41与低压海水入口接头43也就布置在左侧,对应的弹性件25可以是连接在第二活塞26与密封挡板23之间。以此分布情况为例,具体工作流程如下:Specifically, as shown in Figures 1 and 2, the high-pressure concentrated seawater inlet joint 42 and the low-pressure concentrated seawater outlet joint 44 may be arranged on the side of the
如图5所示,当活塞通腔21处于第一相位状态时,高压浓海水通过高压浓海水入口接头42进入活塞通腔21的第二活塞26右侧以推动第二活塞26运动,同时通过连杆24带动第一活塞22向左运动并使得弹性件25发生压缩,进而将第一活塞22左侧中的低压海水加压成高压海水,实现对高压浓海水余压能的回收利用。该加压后腔体中的高压海水达到限压阀411的预设压力后从高压海水出口接头41排出,同时使得第二活塞26右侧中的高压浓水泄压变为低压浓海水。As shown in Figure 5, when the
如图6所示,电机带动芯体1转动,当活塞通腔21从第一相位状态切换至第二相位状态时,处于压缩状态的弹性件25复位推动第二活塞26向右运动,将泄压后得到的低压浓海水推至低压浓海水出口接头44排出,第二活塞26运动的同时通过连杆24拉动第一活塞22运动,将低压海水从低压海水入口接头43吸入,为下一余压能回收利用做好准备。As shown in Figure 6, the motor drives the
本申请利用高压浓海水推动活塞以使得弹性件25形变,将低压海水加压,实现对高压浓海水余压能的回收利用,并利用弹性件25的复位带动活塞抽入低压海水。与传统的余压能回收装置相比,不需要安装额外的泵,减少了泵的耗能,提高了能量回收效率。This application uses high-pressure concentrated seawater to push the piston to deform the
以上为本申请实施例提供的一种弹簧复位式余压能回收装置的实施例一,以下为本申请实施例提供的一种弹簧复位式余压能回收装置的实施例二,具体请参阅图1至图6。The above is the first embodiment of a spring return type residual pressure energy recovery device provided by the embodiment of the present application, and the following is the second embodiment of a spring return type residual pressure energy recovery device provided by the embodiment of the present application. Please refer to the figure for
基于上述实施例一的方案:Based on the scheme of the first embodiment above:
进一步地,为了提升回收效率,该回收单元2可以设计为2n个,n≥1且为自然数,也即是回收单元2可以是设计为2的倍数个,那么2n个回收单元2绕芯体1的转动中心线圆周均匀分布,也即是2n个活塞通腔21绕芯体1的转动中心线圆周均匀分布。Further, in order to improve the recycling efficiency, the recycling unit 2 can be designed as 2n, n≥1 and is a natural number, that is, the recycling unit 2 can be designed as a multiple of 2, then 2n recycling units 2 around the
对应的,高压浓海水入口接头42、低压浓海水出口接头44、高压海水出口接头41以及低压海水入口接头43均为m个,m=n。当2n个活塞通腔21中的一半数量的活塞通腔21处于自身两端分别连通高压浓海水入口接头42与高压海水出口接头41状态时,另一半数量的活塞通腔21处于自身两端连通低压浓海水出口接头44与低压海水入口接头43状态。Correspondingly, there are m high-pressure concentrated
以四个回收单元2为例,那么高压浓海水入口接头42、低压浓海水出口接头44、高压海水出口接头41以及低压海水入口接头43均为两个,四个活塞通腔21圆周均匀设置在芯体1上,两个高压浓海水入口接头42与两个低压浓海水出口接头44绕芯体1的转动中心线交错设置,两个高压海水出口接头41与两个低压海水入口接头43也同样绕芯体1的转动中心线交错设置。当两个回收单元2中的活塞通腔21处于第一相位状态时,另外的两个回收单元2中的活塞通腔21也就处于第二相位状态,实现第一相位状态与第二相位状态同时进行,也就是芯体1每转动90°就可以实现一次第一相位状态与第二相位状态之间切换,进而每转动180°即可实现弹性件25完成一次形变恢复,使得回收单元2完成一次工作循环,旋转一周则可以完成两次工作循环,较好的提升了效率。Taking four recovery units 2 as an example, there are two high-pressure concentrated seawater inlet joints 42, low-pressure concentrated seawater outlet joints 44, high-pressure seawater outlet joints 41 and low-pressure seawater inlet joints 43, and the circumferences of the four
进一步地,就芯体1结构设计来说,包括转轴12以及芯本体11,芯本体11可拆卸安装于转轴12上,且与转轴12同步转动配合,活塞通腔21设置在芯本体11上,转轴12的中心轴线也就形成前述的芯体1的转动中心线。该转轴12可以通过皮带与电机的传动轮相连接,以受电机驱动而实现转动,进而带动芯本体11转动。而芯本体11的结构可以是环形桶结构,整个套装在转轴12上并受转轴12带动而实现转动;当然,芯本体11也可以是单独一个箱体结构,直接固定在转轴12上,而其数量与回收单元2数量相同,也即是回收单元2数量有多少个,芯本体11也就有多少个,具体不做限制。Further, as far as the structural design of the
进一步地,换相模块3包括换相盘31以及接口端盘32。Further, the
换相盘31设有多个可与活塞通腔21端口连接导通的第一连通孔311;高压浓海水入口接头42以及低压浓海水出口接头44与一个换相模块3上的第一连通孔311一一对应连接导通;高压海水出口接头41以及低压海水入口接头43与另一个换相模块3上的第一连通孔311一一对应连接导通。The
以设置有转轴12为例,那么换相盘31为可拆卸套装于转轴12上,且与芯体1密封接触并同步转动。Taking the rotating
接口端盘32套装于转轴12上,且固定在换相盘31远离芯本体11的一侧,并与换相盘31密封接触。The
接口端盘32与转轴12之间连接有轴承33,从而保证接口端盘32能够顺畅地与换相盘31之间发生相对转动。接口端盘32中部设有轴承孔,以便于安装轴承33。接口端盘32与换相盘31的搭配设计,使得低压海水入口接头43、高压海水出口接头41、低压浓海水入口接头以及高压浓海水出口接头的接口形状不用跟随换相盘31中的第一连通孔311形状进行调整。另外,通过设置接口端盘32,使得低压海水入口接头43、高压海水出口接头41、低压浓海水入口接头以及高压浓海水出口接头安装布置更加方便。A
接口端盘32上设有多个与第一连通孔311一一对应连接导通的第二连通孔321;高压浓海水入口接头42以及低压浓海水出口接头44一一对应安装于一个换相模块3的第二连通孔321上。高压海水出口接头41以及低压海水入口接头43一一对应安装于另一个换相模块3的第二连通孔321上。The
进一步地,第一连通孔311优选设计为弧形孔,弧形孔设计可以延长活塞通腔21中流体压力传递的可用时间,使得流体中的压力传递更加充分,同时缩短空档时间,其中空档时间也就是指的芯体1旋转过程中,限压阀411、低压海水入口接头43、高压海水出口接头41、低压浓海水入口接头以及高压浓海水出口接头在芯体1两侧的换相盘31中第一连通孔311之间的部分的停留时间,通过缩短空档时间可以提升余压能回收效率。Furthermore, the
具体的,活塞通腔21可以是圆柱腔,那么其两端口也就是圆形口,第一连通孔311可以是尺寸大于该圆柱通腔端口的弧形孔,而第二连通孔321可以是与该圆柱通孔端口相适配的圆形孔,从活塞通腔21出来的流体先流经第一连通孔311再流经第二连通孔321,而第一连通孔311的弧形孔设计也就能够延长流体的压力传递时间。Specifically, the
另外,设计时,应当注意第一连通孔311之间的间隙部分尺寸要大于活塞通腔21的端口尺寸以及第二连通孔321尺寸,以保证该间隙部分能够完全阻隔活塞通腔21的端口与第二连通孔321,避免两个相邻活塞通腔21之间连通窜液。而第二连通孔321之间的间隙部分则会在芯体1旋转的过程中,防止流体从第一连通孔311流出,起到防泄露作用。In addition, when designing, it should be noted that the size of the gap between the first communication holes 311 is larger than the size of the port of the
进一步地,换相盘31朝向轴承33的一面上设有与轴承33固定圈接触相抵的环形凸起312,以使得轴承33的转动圈与换相盘31之间形成间隙。从而能够避免换相盘31与轴承33之间的接触磨损。Further, on the side of the
进一步地,该转轴12可以设计为螺纹轴,可以是具有部分螺纹轴段的设计或全螺纹轴段设计,不做限制。对应的,换相模块3还包括与转轴12螺纹配合的螺帽34,螺帽34数量优选为两个;将螺帽34套设于转轴12,并与轴承33的固定圈接触相抵,以使得换相盘31与芯本体11紧固一起。螺帽34的设置,也使得整体的安装配合更加方便,维护更加便利。Further, the rotating
本申请中,接口端盘32与换相盘31之间密封接触但为相对转动配合,而芯本体11与换相盘31之间为密封接触但为同步转动配合,接口端盘32连接相应的海水出入口接头并处于固定状态,当芯体1与换相盘31发生转动时,也就与接口端盘32发生相对转动。芯体1以及换相盘31可通过键槽配合的方式与转轴12同步转动配合,也满足轴向方向可拆卸的设计,具体不做限制。In this application, the
进一步地,螺帽34与轴承33的固定圈之间还设有垫圈35,该垫圈35可以弹性材料设计,不做限制。Further, a
进一步地,就弹性件25设计来说,可以为弹簧,套设于连杆24上。Further, as far as the design of the
以上对本申请所提供的一种弹簧复位式余压能回收装置进行了详细介绍,对于本领域的一般技术人员,依据本申请实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The above is a detailed introduction of a spring return type residual pressure energy recovery device provided by this application. For those of ordinary skill in the art, according to the idea of the embodiment of this application, there will be changes in the specific implementation and application range. In summary, the contents of this specification should not be construed as limiting the application.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310374024.2A CN116081776B (en) | 2023-04-10 | 2023-04-10 | A spring return type residual pressure energy recovery device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310374024.2A CN116081776B (en) | 2023-04-10 | 2023-04-10 | A spring return type residual pressure energy recovery device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116081776A CN116081776A (en) | 2023-05-09 |
CN116081776B true CN116081776B (en) | 2023-06-27 |
Family
ID=86201109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310374024.2A Active CN116081776B (en) | 2023-04-10 | 2023-04-10 | A spring return type residual pressure energy recovery device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116081776B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118423221B (en) * | 2024-05-15 | 2024-11-29 | 广东海洋大学 | Spiral tapered rotary self-driven residual pressure energy recovery device for sea water desalination |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100963557B1 (en) * | 2008-06-11 | 2010-06-15 | 한국기계연구원 | Self Reciprocating Energy Recovery Device |
CN101817573B (en) * | 2010-04-09 | 2012-12-12 | 杭州佳湖科技有限公司 | Electric double-action energy recycling device |
CN206770143U (en) * | 2017-04-04 | 2017-12-19 | 赵序良 | A kind of hydraulic pumping unit for being used for energy and Sewage treatment |
CN206988036U (en) * | 2017-04-30 | 2018-02-09 | 浙江大学 | A kind of desalinization energy regenerating and boost in pressure integrative machine |
CN112648106A (en) * | 2019-10-10 | 2021-04-13 | 天津工业大学 | Beta type stirling drive free piston seawater desalination pressurization system |
-
2023
- 2023-04-10 CN CN202310374024.2A patent/CN116081776B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN116081776A (en) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116081776B (en) | A spring return type residual pressure energy recovery device | |
CN100450591C (en) | Double-dial coupled type pressure exchanger for sea water or brine reverse osmosis desalination system | |
CN103977708B (en) | Electricity drives from supercharging rotator type energy recycle device | |
CN111022281B (en) | Low-friction pair seawater desalination high-pressure pump and energy recovery integrated unit | |
CN110778474B (en) | A radial piston fluid pump capable of recovering pressure energy in waste fluid | |
CN106594009A (en) | External drive rotor type energy recycling device | |
CN101149052A (en) | A pressurization and recovery combined pump with asymmetric cavity | |
CN102815766B (en) | Liquid pressure energy recovery device based on full rotation valves | |
CN206988036U (en) | A kind of desalinization energy regenerating and boost in pressure integrative machine | |
CN102553443A (en) | Misalignment channel autorotation hydraulic rotary piston supercharger | |
CN104261516B (en) | A kind of fluid pressure energy recovery method based on piston type liquid switch | |
CN105712438A (en) | Pressure energy recovering method based on rotary self-sealing liquid switchers | |
CN110697844A (en) | Filter core and purifier | |
CN202460481U (en) | Dislocation passage hydraulic piston intersection supercharger of hollow rotor | |
CN108661874B (en) | Shaftless two-dimensional plunger variable motor pump | |
CN205472798U (en) | Fluid pressure can recovery unit based on rotation type special -shaped axis end face seal switch | |
CN215633741U (en) | Gear pump for high-pressure equipment | |
CN102580536B (en) | Supercharger with stagger hydraulic pistons of staggered channels on hollow rotor | |
CN105565436B (en) | Liquid pressure energy retracting device based on rotary special-shaped axis end face seal switch | |
CN116201709B (en) | An integrated slip-shoeless hydraulic pump-motor energy recovery unit | |
CN105540747B (en) | A kind of pressure energy retracting device based on rotary liquid switch | |
CN105731597B (en) | Pressure energy retracting device based on rotation self sealss liquid switch | |
CN110585926B (en) | Seawater desalination energy recovery device | |
AU2015100440A4 (en) | Design method for fluid transfer device | |
CN219953838U (en) | Novel power exchange type energy recovery device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |