CN116069114A - Bandgap Reference Circuit - Google Patents
Bandgap Reference Circuit Download PDFInfo
- Publication number
- CN116069114A CN116069114A CN202111275148.2A CN202111275148A CN116069114A CN 116069114 A CN116069114 A CN 116069114A CN 202111275148 A CN202111275148 A CN 202111275148A CN 116069114 A CN116069114 A CN 116069114A
- Authority
- CN
- China
- Prior art keywords
- transistor
- bandgap reference
- current
- resistor
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is DC
- G05F3/10—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/262—Current mirrors using field-effect transistors only
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
技术领域technical field
本公开涉及电子电路,更具体地,涉及一种带隙基准电路。The present disclosure relates to electronic circuits, and more particularly, to a bandgap reference circuit.
背景技术Background technique
由于模拟电路中的电阻、三极管等器件具有一定的温度系数,使得所提供的基本电压在一定程度上受到温度的影响,从而造成偏差。在模拟电路中,常需要与温度几乎无关的电压基准为三极管和其他电路元器件提供精准的偏置,因此带隙基准电路受到广泛的应用。Since the resistors, transistors and other devices in the analog circuit have a certain temperature coefficient, the basic voltage provided is affected by the temperature to a certain extent, resulting in deviation. In analog circuits, a voltage reference that is almost independent of temperature is often required to provide accurate biasing for transistors and other circuit components, so bandgap reference circuits are widely used.
带隙基准电路的原理是将在某一温度下的两个具有正负温度系数的电压以适当的权重相加,由于其相反的温度特性,可近似得到一个零温度系数的电压基准,以减小由于温度漂移引起的输出电压变化。但由于具有正负温度系数的两个电压具有不同的阶数,两个电压之间存在不能抵消补偿的高阶分量,导致带隙基准电路的精度不够高。The principle of the bandgap reference circuit is to add two voltages with positive and negative temperature coefficients at a certain temperature with appropriate weights. Due to their opposite temperature characteristics, a voltage reference with zero temperature coefficient can be approximated to reduce Minimal output voltage variation due to temperature drift. However, since the two voltages with positive and negative temperature coefficients have different orders, there are high-order components that cannot be offset and compensated between the two voltages, resulting in insufficient accuracy of the bandgap reference circuit.
发明内容Contents of the invention
本公开的一个目的是提供一种用于对带隙基准子电路进行电压补偿的带隙基准电路,可以对带隙基准子电路进行电压补偿,提高带隙基准子电路的精度。An object of the present disclosure is to provide a bandgap reference circuit for performing voltage compensation on the bandgap reference subcircuit, which can perform voltage compensation on the bandgap reference subcircuit and improve the accuracy of the bandgap reference subcircuit.
根据本公开的第一方面,提供了一种带隙基准电路。According to a first aspect of the present disclosure, a bandgap reference circuit is provided.
该带隙基准电路包括带隙基准子电路、补偿电流发生子电路和电流镜像子电路;所述电流镜像子电路分别与所述补偿电流发生子电路、所述带隙基准子电路连接;所述带隙基准子电路,用于生成带隙基准电压;所述补偿电流发生子电路,用于生成具有温度特性的补偿电流;所述电流镜像子电路,用于对所述补偿电流进行镜像生成镜像电流,通过所述镜像电流对所述带隙基准电压进行电压补偿。The bandgap reference circuit includes a bandgap reference subcircuit, a compensation current generation subcircuit and a current mirror subcircuit; the current mirror subcircuit is connected to the compensation current generation subcircuit and the bandgap reference subcircuit respectively; the The bandgap reference subcircuit is used to generate a bandgap reference voltage; the compensation current generation subcircuit is used to generate a compensation current with temperature characteristics; the current mirror subcircuit is used to mirror the compensation current to generate a mirror image current, and perform voltage compensation on the bandgap reference voltage through the mirror current.
可选地,所述补偿电流发生子电路包括第一三极管;所述第一三极管的集电极和所述带隙基准电路的工作电压端连接;所述第一三极管的发射极和所述带隙基准子电路连接,以向所述带隙基准子电路提供工作电压;所述第一三极管的基极产生所述补偿电流。Optionally, the compensation current generation sub-circuit includes a first triode; the collector of the first triode is connected to the working voltage terminal of the bandgap reference circuit; the emitter of the first triode The pole is connected to the bandgap reference subcircuit to provide an operating voltage to the bandgap reference subcircuit; the base of the first triode generates the compensation current.
可选地,所述补偿电流发生子电路包括第一三极管;所述第一三极管的集电极和所述带隙基准电路的工作电压端连接;所述第一三极管的发射极和第一电流源连接;所述第一三极管的基极产生所述补偿电流。Optionally, the compensation current generation sub-circuit includes a first triode; the collector of the first triode is connected to the working voltage terminal of the bandgap reference circuit; the emitter of the first triode The pole is connected to the first current source; the base of the first triode generates the compensation current.
可选地,所述电流镜像子电路包括第一电流镜、第二电流镜和第一电阻;第一电流镜的第一镜像电流端口、第一三极管的基极、第一电阻的第一端分别连接至第一电路节点;第二电流镜的第一镜像电流端口与第一电阻的第二端连接;第一电流镜的第二镜像电流端口、第二电流镜的第二镜像电流端口分别连接至第二电路节点;所述电流镜像子电路与所述带隙基准子电路连接,包括:所述第二电路节点与所述带隙基准子电路连接。Optionally, the current mirror subcircuit includes a first current mirror, a second current mirror, and a first resistor; the first mirror current port of the first current mirror, the base of the first triode, and the first resistor of the first resistor One end is respectively connected to the first circuit node; the first mirror current port of the second current mirror is connected to the second end of the first resistor; the second mirror current port of the first current mirror, the second mirror current port of the second current mirror The ports are respectively connected to the second circuit node; the current mirror subcircuit is connected to the bandgap reference subcircuit, including: the second circuit node is connected to the bandgap reference subcircuit.
可选地,所述第一电流镜为共源共栅电流镜。Optionally, the first current mirror is a cascode current mirror.
可选地,所述第一电流镜包括第一至第六PMOS管;第一至第三PMOS管的栅极连接在一起,第一至第三PMOS管的源极分别与所述带隙基准电路的工作电压端连接;第四至第六PMOS管的栅极连接在一起;第一PMOS管的漏极和第四PMOS管的源极连接,第二PMOS管的漏极和第五PMOS管的源极连接,第三PMOS管的漏极和第六PMOS管的源极连接;第四PMOS管的漏极和第二电流源连接,第五PMOS管的漏极连接至第一电路节点,第六PMOS管的漏极连接至第二电路节点;第一PMOS管的漏极和栅极连接,第四PMOS管的漏极和栅极连接;其中,第五PMOS管的漏极为第一电流镜的第一镜像电流端口,第六PMOS管的漏极为第一电流镜的第二镜像电流端口。Optionally, the first current mirror includes first to sixth PMOS transistors; the gates of the first to third PMOS transistors are connected together, and the sources of the first to third PMOS transistors are respectively connected to the bandgap reference The working voltage end of the circuit is connected; the gates of the fourth to sixth PMOS transistors are connected together; the drain of the first PMOS transistor is connected to the source of the fourth PMOS transistor, and the drain of the second PMOS transistor is connected to the fifth PMOS transistor The source of the third PMOS transistor is connected to the source of the sixth PMOS transistor; the drain of the fourth PMOS transistor is connected to the second current source, and the drain of the fifth PMOS transistor is connected to the first circuit node. The drain of the sixth PMOS transistor is connected to the second circuit node; the drain of the first PMOS transistor is connected to the gate, and the drain of the fourth PMOS transistor is connected to the gate; wherein, the drain of the fifth PMOS transistor is the first current The first mirror current port of the mirror, and the drain of the sixth PMOS transistor is the second mirror current port of the first current mirror.
可选地,所述第二电流镜包括第一至第四NMOS管;第一NMOS管的栅极和第二NOMS管的栅极连接;第三NMOS管的栅极和第四NOMS管的栅极连接;第一NMOS管的漏极与第一电阻的第二端连接,第二NMOS管的漏极连接至第二电路节点;第一NMOS管的源极和第三NMOS管的漏极连接,第二NMOS管的源极和第四NMOS管的漏极连接;第一NMOS管的漏极和栅极连接,第三PMOS管的漏极和栅极连接;第三NMOS管的源极和第四NOMS管的源极分别接地;其中,第一NMOS管的漏极为第二电流镜的第一镜像电流端口,第二NMOS管的漏极为第二电流镜的第二镜像电流端口。Optionally, the second current mirror includes first to fourth NMOS transistors; the gate of the first NMOS transistor is connected to the gate of the second NOMS transistor; the gate of the third NMOS transistor is connected to the gate of the fourth NOMS transistor pole connection; the drain of the first NMOS transistor is connected to the second end of the first resistor, and the drain of the second NMOS transistor is connected to the second circuit node; the source of the first NMOS transistor is connected to the drain of the third NMOS transistor , the source of the second NMOS transistor is connected to the drain of the fourth NMOS transistor; the drain of the first NMOS transistor is connected to the gate, and the drain and gate of the third PMOS transistor are connected; the source of the third NMOS transistor is connected to the gate of the fourth NMOS transistor. The sources of the fourth NOMS transistors are respectively grounded; wherein, the drain of the first NMOS transistor is the first mirror current port of the second current mirror, and the drain of the second NMOS transistor is the second mirror current port of the second current mirror.
可选地,所述带隙基准子电路包括运算放大器、第二三极管、第三三极管、第二电阻以及第三电阻;运算放大器的第一输入与第二三极管的集电极连接,第二输入端与第三三极管的集电极连接;第二三极管的基极和第三三极管的基极连接,第三三极管的发射极与第二电阻的第一端连接,第二三极管的发射极和第二电阻的第二端连接;第二电阻的第二端与第三电阻的第一端连接,第三电阻的第二端接地;运算放大器的输出端与第三三极管的基极连接,以输出带隙基准电压;所述第二电路节点与所述带隙基准子电路连接,包括:所述第二电路节点与第三电阻的第一端连接。Optionally, the bandgap reference subcircuit includes an operational amplifier, a second transistor, a third transistor, a second resistor, and a third resistor; the first input of the operational amplifier and the collector of the second transistor connection, the second input terminal is connected to the collector of the third transistor; the base of the second transistor is connected to the base of the third transistor, and the emitter of the third transistor is connected to the first resistor of the second resistor One end is connected, the emitter of the second transistor is connected to the second end of the second resistor; the second end of the second resistor is connected to the first end of the third resistor, and the second end of the third resistor is grounded; the operational amplifier The output terminal of the third transistor is connected to the base of the third transistor to output the bandgap reference voltage; the second circuit node is connected to the bandgap reference subcircuit, including: the second circuit node and the third resistor The first end is connected.
可选地,所述带隙基准子电路包括运算放大器、第二三极管、第三三极管、第二电阻、第三电阻以及第四电阻;运算放大器的第一输入与第二三极管的集电极连接,第二输入端与第三三极管的集电极连接;第二三极管的基极和第三三极管的基极连接,第三三极管的发射极与第二电阻的第一端连接,第二三极管的发射极和第二电阻的第二端连接;第二电阻的第二端与第四电阻的第一端连接,第四电阻的第二端与第三电阻的第一端连接,第三电阻的第二端接地;运算放大器的输出端与第二三极管的基极连接,以输出带隙基准电压;所述第二电路节点与所述带隙基准子电路连接,包括:所述第二电路节点与第三电阻的第一端连接。Optionally, the bandgap reference subcircuit includes an operational amplifier, a second triode, a third triode, a second resistor, a third resistor, and a fourth resistor; the first input of the operational amplifier and the second triode The collector of the transistor is connected, the second input terminal is connected with the collector of the third transistor; the base of the second transistor is connected with the base of the third transistor, and the emitter of the third transistor is connected with the third transistor The first end of the second resistor is connected, the emitter of the second triode is connected to the second end of the second resistor; the second end of the second resistor is connected to the first end of the fourth resistor, and the second end of the fourth resistor It is connected to the first end of the third resistor, and the second end of the third resistor is grounded; the output end of the operational amplifier is connected to the base of the second triode to output the bandgap reference voltage; the second circuit node is connected to the The bandgap reference subcircuit connection includes: the second circuit node is connected to the first end of the third resistor.
可选地,所述第一三极管为NPN型三极管、所述第二三极管为NPN型三极管、所述第三三极管为NPN型三极管。Optionally, the first transistor is an NPN transistor, the second transistor is an NPN transistor, and the third transistor is an NPN transistor.
本公开实施例提供的带隙基准电路,具有高阶温度补偿功能,使得带隙基准电路对于温度的变化更加不敏感,输出的带隙基准电压曲线更加平缓,具有更小的幅度变化,实现了高精度带隙基准电压的输出。The bandgap reference circuit provided by the embodiments of the present disclosure has a high-order temperature compensation function, which makes the bandgap reference circuit more insensitive to temperature changes, and the output bandgap reference voltage curve is gentler and has smaller amplitude changes, realizing Output of high precision bandgap reference voltage.
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。Other features of the present disclosure and advantages thereof will become apparent through the following detailed description of exemplary embodiments of the present disclosure with reference to the accompanying drawings.
附图说明Description of drawings
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate the embodiments of the disclosure and together with the description serve to explain the principles of the disclosure.
图1是本公开实施例提供的带隙基准电路的示意图;FIG. 1 is a schematic diagram of a bandgap reference circuit provided by an embodiment of the present disclosure;
图2是本公开实施例提供的带隙基准电路的电路图;FIG. 2 is a circuit diagram of a bandgap reference circuit provided by an embodiment of the present disclosure;
图3是本公开实施例提供的带隙基准电路的电路图;FIG. 3 is a circuit diagram of a bandgap reference circuit provided by an embodiment of the present disclosure;
图4是本公开实施例提供的不对带隙基准电压进行补偿的电压曲线图;FIG. 4 is a voltage curve diagram provided by an embodiment of the present disclosure without compensating the bandgap reference voltage;
图5是本公开实施例提供的对带隙基准电压进行补偿的电压曲线图。FIG. 5 is a voltage curve diagram for compensating a bandgap reference voltage provided by an embodiment of the present disclosure.
附图标记说明Explanation of reference signs
运算放大器Amp;Operational amplifier Amp;
第一电阻-R6、第二电阻-R3,第三电阻-R5、第四电阻-R4、第五电阻-R1、第六电阻-R2;The first resistor-R6, the second resistor-R3, the third resistor-R5, the fourth resistor-R4, the fifth resistor-R1, the sixth resistor-R2;
第一三极管-Q3,第二三极管-Q1,第三三极管-Q2;The first triode-Q3, the second triode-Q1, the third triode-Q2;
第一PMOS管-MP1、第二PMOS管-MP2、第三PMOS管-MP3、第四PMOS管-MP4、第五PMOS管-MP5、第六PMOS管-MP6;The first PMOS transistor-MP1, the second PMOS transistor-MP2, the third PMOS transistor-MP3, the fourth PMOS transistor-MP4, the fifth PMOS transistor-MP5, the sixth PMOS transistor-MP6;
第一NMOS管-MN1、第二NMOS管-MN2、第三NMOS管-MN3、第四NMOS管-MN4。The first NMOS transistor-MN1, the second NMOS transistor-MN2, the third NMOS transistor-MN3, and the fourth NMOS transistor-MN4.
具体实施方式Detailed ways
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。Various exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings. It should be noted that relative arrangements of components and steps, numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present disclosure unless specifically stated otherwise.
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and in no way intended as any limitation of the disclosure, its application or uses.
对于相关领域普通技术人员已知的技术和设备可能不作详细讨论,但在适当情况下,所述技术和设备应当被视为说明书的一部分。Techniques and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques and devices should be considered part of the description.
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as exemplary only, and not as limitations. Therefore, other instances of the exemplary embodiment may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters denote like items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures.
英文缩写名词解释:Explanation of English abbreviations:
MOS管:Metal Oxide Semiconductor,金属-氧化物半导体场效应晶体管。PMOS管:Positive channel Metal-Oxide-Semiconductor,P沟道型MOS管。NMOS管:Negativechannel Metal-Oxide-Semiconductor,N沟道型MOS管。MOS tube: Metal Oxide Semiconductor, metal-oxide semiconductor field effect transistor. PMOS tube: Positive channel Metal-Oxide-Semiconductor, P-channel MOS tube. NMOS tube: Negativechannel Metal-Oxide-Semiconductor, N-channel MOS tube.
参见图1所示,本公开实施例提供了一种带隙基准电路。该带隙基准电路包括带隙基准子电路100、补偿电流发生子电路200和电流镜像子电路300。电流镜像子电路300分别与补偿电流发生子电路200、带隙基准子电路100连接。带隙基准子电路100用于生成带隙基准电压。补偿电流发生子电路200用于生成具有温度特性的补偿电流。电流镜像子电路300用于对补偿电流进行镜像生成镜像电流,通过镜像电流对带隙基准电压进行电压补偿。Referring to FIG. 1 , an embodiment of the present disclosure provides a bandgap reference circuit. The bandgap reference circuit includes a
本公开实施例中,补偿电流发生子电路200用于生成具有高阶温度特性的补偿电流,从而为带隙基准子电路100输出的带隙基准电压提供高阶温度补偿。本公开实施例中,二阶和二阶以上的温度特性为高阶温度特性。可以利用三极管的高阶温度特性来生成具有高阶温度特性的补偿电流。In the embodiment of the present disclosure, the compensation
在一个例子中,参见图2所示,补偿电流发生子电路200包括第一三极管Q3。第一三极管Q3的集电极和带隙基准电路的工作电压端VCC连接。第一三极管Q3的发射极和带隙基准子电路100连接,以向带隙基准子电路100提供工作电压。第一三极管Q3的基极产生补偿电流I5。In one example, as shown in FIG. 2 , the compensation current generating
在另一个例子中,将该第一三极管Q3的发射极改为不与带隙基准子电路100连接,而是和第一电流源连接。第一电流源在图中没有示出,只需要能够为第一三极管Q3提供电流源即可。In another example, the emitter of the first transistor Q3 is changed not to be connected to the
在一个例子中,第一三极管Q3为NPN型三极管。In one example, the first transistor Q3 is an NPN transistor.
下面参见图2所示,对本公开实施例提供的带隙基准电路进行说明。Referring to FIG. 2 below, the bandgap reference circuit provided by the embodiment of the present disclosure will be described.
补偿电流发生子电路200包括第一三极管Q3。第一三极管Q3的集电极和带隙基准电路的工作电压端VCC连接。第一三极管Q3的发射极和带隙基准子电路100连接,以向带隙基准子电路100提供工作电压。第一三极管Q3的基极产生补偿电流I5。The compensation current generating
电流镜像子电路300包括第一电流镜、第二电流镜以及第一电阻R6。第一电流镜的第一镜像电流端口A1、第一三极管Q3的基极、第一电阻R6的第一端分别连接至第一电路节点C1。第二电流镜的第一镜像电流端口B1与第一电阻R6的第二端连接。第一电流镜的第二镜像电流端口A2、第二电流镜的第二镜像电流端口B2分别连接至第二电路节点C2。电流镜像子电路300与带隙基准子电路100连接是指第二电路节点C2与带隙基准子电路100连接。The
第一电流镜连接电流源,对电流源输出的电流进行镜像。第一电流镜的具体电路被设计为使得第一电流镜的第一镜像电流端口A1和第一电流镜的第二镜像电流端口A2处的电流相同,第二电流镜的具体电路被设计为使得第二电流镜的第一镜像电流端口B1和第二电流镜的第二镜像电流端口B2处的电流相同。The first current mirror is connected to the current source, and mirrors the current output by the current source. The specific circuit of the first current mirror is designed so that the currents at the first mirror current port A1 of the first current mirror and the second mirror current port A2 of the first current mirror are the same, and the specific circuit of the second current mirror is designed such that The currents at the first mirror current port B1 of the second current mirror and the second mirror current port B2 of the second current mirror are the same.
在一个例子中,第一电流镜为共源共栅电流镜。在一个例子中,第一电流镜包括第一至第六PMOS管。第一PMOS管MP1、第二PMOS管MP2以及第三PMOS管MP3的栅极连接在一起。第一PMOS管MP1、第二PMOS管MP2以及第三PMOS管MP3的源极分别与带隙基准电路的工作电压端VCC连接。第四PMOS管MP4、第五PMOS管MP5以及第六PMOS管MP6的栅极连接在一起。第一PMOS管MP1的漏极和第四PMOS管MP4的源极连接,第二PMOS管MP2的漏极和第五PMOS管MP5的源极连接,第三PMOS管MP3的漏极和第六PMOS管MP6的源极连接。第四PMOS管MP4的漏极和第二电流源Idc连接。第五PMOS管MP5的漏极连接至第一电路节点C1,也即,第五PMOS管MP5的漏极和第一电阻R6的第一端、第一三极管Q3的基极分别连接。第六PMOS管MP6的漏极连接至第二电路节点C2,也即,第六PMOS管MP6的漏极和第二电流镜的第二镜像电流端口B2连接。第一PMOS管MP1的漏极和栅极连接在一起,第四PMOS管MP4的漏极和栅极连接在一起。第五PMOS管MP5的漏极为第一电流镜的第一镜像电流端口A1,第六PMOS管MP6的漏极为第一电流镜的第二镜像电流端口A2。In one example, the first current mirror is a cascode current mirror. In one example, the first current mirror includes first to sixth PMOS transistors. Gates of the first PMOS transistor MP1 , the second PMOS transistor MP2 and the third PMOS transistor MP3 are connected together. The sources of the first PMOS transistor MP1 , the second PMOS transistor MP2 and the third PMOS transistor MP3 are respectively connected to the working voltage terminal VCC of the bandgap reference circuit. Gates of the fourth PMOS transistor MP4 , the fifth PMOS transistor MP5 and the sixth PMOS transistor MP6 are connected together. The drain of the first PMOS transistor MP1 is connected to the source of the fourth PMOS transistor MP4, the drain of the second PMOS transistor MP2 is connected to the source of the fifth PMOS transistor MP5, and the drain of the third PMOS transistor MP3 is connected to the sixth PMOS transistor. Source connection of tube MP6. The drain of the fourth PMOS transistor MP4 is connected to the second current source Idc. The drain of the fifth PMOS transistor MP5 is connected to the first circuit node C1, that is, the drain of the fifth PMOS transistor MP5 is connected to the first end of the first resistor R6 and the base of the first transistor Q3 respectively. The drain of the sixth PMOS transistor MP6 is connected to the second circuit node C2, that is, the drain of the sixth PMOS transistor MP6 is connected to the second mirror current port B2 of the second current mirror. The drain and gate of the first PMOS transistor MP1 are connected together, and the drain and gate of the fourth PMOS transistor MP4 are connected together. The drain of the fifth PMOS transistor MP5 is the first mirror current port A1 of the first current mirror, and the drain of the sixth PMOS transistor MP6 is the second mirror current port A2 of the first current mirror.
在一个例子中,第二电流镜为共源共栅电流镜。在一个例子中,第二电流镜包括第一至第四NMOS管。第一NMOS管MN1的栅极和第二NOMS管MN2的栅极连接。第三NMOS管MN3的栅极和第四NOMS管的栅极连接。第一NMOS管MN1的漏极与第一电阻R6的第二端连接。第二NMOS管的漏极连接至第二电路节点C2,也即,第二NMOS管的漏极和第六PMOS管MP6的漏极连接。第一NMOS管MN1的源极和第三NMOS管MN3的漏极连接,第二NMOS管MN2的源极和第四NMOS管MN4的漏极连接。第一NMOS管MN1的漏极和栅极连接在一起,第三PMOS管MP3的漏极和栅极连接在一起。第三NMOS管MN3的源极接地,第四NOMS管MN4的源极接地。第一NMOS管MN1的漏极为第二电流镜的第一镜像电流端口B1,第二NMOS管MN2的漏极为第二电流镜的第二镜像电流端口B2。In one example, the second current mirror is a cascode current mirror. In one example, the second current mirror includes first to fourth NMOS transistors. The gate of the first NMOS transistor MN1 is connected to the gate of the second NOMS transistor MN2. The gate of the third NMOS transistor MN3 is connected to the gate of the fourth NOMS transistor. The drain of the first NMOS transistor MN1 is connected to the second end of the first resistor R6. The drain of the second NMOS transistor is connected to the second circuit node C2, that is, the drain of the second NMOS transistor is connected to the drain of the sixth PMOS transistor MP6. The source of the first NMOS transistor MN1 is connected to the drain of the third NMOS transistor MN3, and the source of the second NMOS transistor MN2 is connected to the drain of the fourth NMOS transistor MN4. The drain and gate of the first NMOS transistor MN1 are connected together, and the drain and gate of the third PMOS transistor MP3 are connected together. The source of the third NMOS transistor MN3 is grounded, and the source of the fourth NOMS transistor MN4 is grounded. The drain of the first NMOS transistor MN1 is the first mirror current port B1 of the second current mirror, and the drain of the second NMOS transistor MN2 is the second mirror current port B2 of the second current mirror.
上述实施例中的补偿电流发生子电路200和电流镜像子电路300可以适用于不同的带隙基准子电路,补偿电流发生子电路200生成具有高阶温度特性的补偿电流,电流镜像子电路300对补偿电流进行镜像生成镜像电流,通过镜像电流对带隙基准电压进行电压补偿。The compensation
本公开实施例中,带隙基准电路通过获取具有高阶温度系数的补偿电流I5,使补偿电流I5的镜像电流I0流过第三电阻R5形成有同样阶次的电压来对带隙基准电压进行更高阶、更精确的温度补偿。In the embodiment of the present disclosure, the bandgap reference circuit obtains the compensation current I5 with a high-order temperature coefficient, and makes the mirror current I0 of the compensation current I5 flow through the third resistor R5 to form a voltage with the same order to perform the bandgap reference voltage Higher order, more accurate temperature compensation.
在一个例子中,参见图2所示,带隙基准子电路100包括第二三极管Q1、第三三极管Q2、第二电阻R3、第三电阻R5、第五电阻R1、第六电阻R2、以及运算放大器Amp。In one example, as shown in FIG. 2 , the
运算放大器的两个输入端分别为IP、IN,输出端为OUT。运算放大器的输出端OUT即为带隙基准子电路100的输出端,用于输出带隙基准电压。The two input terminals of the operational amplifier are IP and IN, and the output terminal is OUT. The output terminal OUT of the operational amplifier is the output terminal of the
第五电阻R1和第六电阻R2的电阻值相同。第五电阻R1的第一端和带隙基准子电路100的工作电压端连接,第六电阻R2的第一端和带隙基准子电路100的工作电压端连接。在本例子中,第五电阻R1的第一端、第六电阻R2的第一端分别和第一三极管Q3的发射极连接,第一三极管Q3的发射极向带隙基准子电路100提供工作电压。The resistance values of the fifth resistor R1 and the sixth resistor R2 are the same. The first terminal of the fifth resistor R1 is connected to the working voltage terminal of the
第五电阻R1的第二端和第二三极管Q1的集电极连接,第六电阻R1的第二端和第三三极管Q2的集电极连接。第二三极管Q1的基极和第三三极管Q2的基极连接。第三三极管Q2的发射极与第二电阻R3的第一端连接,第二三极管Q1的发射极和第二电阻R3的第二端连接。第二电阻R3的第二端与第三电阻R5的第一端连接,第三电阻R5的第二端接地。The second end of the fifth resistor R1 is connected to the collector of the second transistor Q1, and the second end of the sixth resistor R1 is connected to the collector of the third transistor Q2. The base of the second transistor Q1 is connected to the base of the third transistor Q2. The emitter of the third transistor Q2 is connected to the first end of the second resistor R3, and the emitter of the second transistor Q1 is connected to the second end of the second resistor R3. The second end of the second resistor R3 is connected to the first end of the third resistor R5, and the second end of the third resistor R5 is grounded.
第二三极管Q1的基极-发射极电压VBE1和第三三极管Q2的基极-发射极电压VBE2不同。在一个例子中,第二三极管Q1采用单个三极管器件实现,第三三极管Q2采用多个三极管器件并联构成。在一个例子中,第二三极管Q1为NPN型三极管、第三三极管Q2为NPN型三极管。The base-emitter voltage V BE1 of the second transistor Q1 is different from the base-emitter voltage V BE2 of the third transistor Q2. In an example, the second triode Q1 is realized by using a single triode device, and the third triode Q2 is formed by using multiple triode devices connected in parallel. In one example, the second transistor Q1 is an NPN transistor, and the third transistor Q2 is an NPN transistor.
运算放大器AMP的第一输入端IP与第二三极管Q1的集电极连接,运算放大器AMP的第二输入端IN与第三三极管Q2的集电极连接。运算放大器AMP的输出端OUT与第二三极管Q1的基极连接,以输出带隙基准电压。The first input terminal IP of the operational amplifier AMP is connected to the collector of the second transistor Q1, and the second input terminal IN of the operational amplifier AMP is connected to the collector of the third transistor Q2. The output terminal OUT of the operational amplifier AMP is connected to the base of the second transistor Q1 to output the bandgap reference voltage.
在本例中,第二电路节点C2与带隙基准子电路100连接是指第二电路节点C2与第三电阻R5的第一端连接。镜像电流子电路300通过第三电阻R5,将镜像电流I0转换为具有高阶温度特性的补偿电压对带隙基准电压进行电压补偿。In this example, the second circuit node C2 is connected to the
下面对图2所示的带隙基准电路的工作原理进行说明:The working principle of the bandgap reference circuit shown in Figure 2 is described below:
对于图2所示的带隙基准子电路100,在不设置补偿电流发生子电路200和电流镜像子电路300,也就是不对带隙基准子电路100进行电压补偿的情况下:For the
运算放大器Amp的第一输入端IP和第二输入端IN的电压近似相等,并且第五电阻R1和第六电阻R2阻值相同,因此流过第二三极管Q1的电流与流过第三三极管Q2的电流相等。第二三极管Q1的基极-发射极电压VBE1和第三三极管Q2的基极-发射极电压VBE2不同,第二三极管Q1的基极-发射极电压VBE1和第三三极管Q2的基极-发射极电压VBE2之间存在一个电压差ΔVBE,该电压差ΔVBE施加在第二电阻R3上。由于运算放大器AMP的输出端OUT和第二三极管Q1的基极连接,运算放大器AMP输出的电压等于第二三极管Q1的基极-发射极电压VBE1加上第三电阻R5上的电压。第三电阻R5上的电压为ΔVBE*R5/R3,最终运算放大器AMP输出的电压为VBE1+ΔVBE*R5/R3,也就是带隙基准子电路100输出的带隙基准电压VOUT为VBE1+ΔVBE*R5/R3。The voltages of the first input terminal IP and the second input terminal IN of the operational amplifier Amp are approximately equal, and the resistance values of the fifth resistor R1 and the sixth resistor R2 are the same, so the current flowing through the second transistor Q1 is the same as the current flowing through the third transistor Q1 The currents of transistor Q2 are equal. The base-emitter voltage V BE1 of the second transistor Q1 is different from the base-emitter voltage V BE2 of the third transistor Q2, and the base-emitter voltage V BE1 of the second transistor Q1 is different from that of the third transistor Q2. There is a voltage difference ΔV BE between the base-emitter voltage V BE2 of the triode Q2, and the voltage difference ΔV BE is applied to the second resistor R3. Since the output terminal OUT of the operational amplifier AMP is connected to the base of the second transistor Q1, the output voltage of the operational amplifier AMP is equal to the base-emitter voltage V BE1 of the second transistor Q1 plus the voltage of the third resistor R5 Voltage. The voltage on the third resistor R5 is ΔV BE *R5/R3, and the final output voltage of the operational amplifier AMP is V BE1 +ΔV BE *R5/R3, that is, the bandgap reference voltage V OUT output by the
也就是说,在不进行电压补偿的情况下,带隙基准子电路100输出的带隙基准电压VOUT为:VOUT=VBE1+ΔVBE*R5/R3。通过调整R5/R3的大小,可以获得近似零温度系数的带隙基准电压。That is to say, in the case of no voltage compensation, the bandgap reference voltage V OUT output by the
对于图2所示的带隙基准子电路100,在设置补偿电流发生子电路200、电流镜像子电路300对其进行电压补偿的情况下:For the
第一至第六PMOS管MP1~MP6构成共源共栅的第一电流镜,第一至第四NMOS管MN1~MN4构成共栅的第二电流镜。第一PMOS管MP1、第四PMOS管MP4将第二电流源Idc的电流精准复制至第二PMOS管MP2和第五PMOS管MP5的支路,第三PMOS管MP3和第六PMOS管MP6的支路。基于第一电流镜的工作原理,流过第二PMOS管MP2、第五PMOS管MP5的电流I1等于流过第三PMOS管MP3、第六PMOS管MP6的电流I2。基于第二电流镜的工作原理,流过第一NOMS管MN1、第三NOMS管MN3的电流I3等于流过第二NOMS管MN2、第四NOMS管MN4的电流I4。第一三极管Q3的基极产生补偿电流I5,由于I1=I3+I5,I2=I4+I0,I1=I2,I3=I4,可知I0=I5,也就是说,将第一三极管Q3的基极输出的补偿电流I5镜像为本公开实施例中的镜像电流I0。The first to sixth PMOS transistors MP1 - MP6 form a first current mirror of cascode, and the first to fourth NMOS transistors MN1 - MN4 form a second current mirror of common gate. The first PMOS transistor MP1 and the fourth PMOS transistor MP4 accurately copy the current of the second current source Idc to the branches of the second PMOS transistor MP2 and the fifth PMOS transistor MP5, and the branches of the third PMOS transistor MP3 and the sixth PMOS transistor MP6 road. Based on the working principle of the first current mirror, the current I1 flowing through the second PMOS transistor MP2 and the fifth PMOS transistor MP5 is equal to the current I2 flowing through the third PMOS transistor MP3 and the sixth PMOS transistor MP6. Based on the working principle of the second current mirror, the current I3 flowing through the first NOMS transistor MN1 and the third NOMS transistor MN3 is equal to the current I4 flowing through the second NOMS transistor MN2 and the fourth NOMS transistor MN4. The base of the first triode Q3 produces compensation current I5, because I1=I3+I5, I2=I4+I0, I1=I2, I3=I4, it can be seen that I0=I5, that is to say, the first triode The mirror image of the compensation current I5 output by the base of Q3 is the mirror current I0 in the embodiment of the present disclosure.
由于第一三极管Q3的基极电流的自身温度特性,补偿电流I5是具有高阶温度系数的电流,所以镜像电流I0流经第三电阻R5形成的电压也是具有高阶温度系数的电压。镜像电流I0流经第三电阻R5形成的电压为I0*R5,用此电压来对带隙基准电压进行高阶温度补偿。Due to the temperature characteristic of the base current of the first transistor Q3, the compensation current I5 is a current with a high-order temperature coefficient, so the voltage formed by the mirror current I0 flowing through the third resistor R5 is also a voltage with a high-order temperature coefficient. The voltage formed by the mirror current I0 flowing through the third resistor R5 is I0*R5, and this voltage is used to perform high-order temperature compensation for the bandgap reference voltage.
也就是说,在进行电压补偿的情况下,带隙基准子电路100输出的带隙基准电压VOUT为:VOUT=VBE1+ΔVBE*R5/R3+I0*R5。通过调整R5/R3以及I0*R5的大小,可以获得近似零温度系数的带隙基准电压。That is to say, in the case of voltage compensation, the bandgap reference voltage V OUT output by the
在一个例子中,参见图3所示,带隙基准子电路100包括第二三极管Q1、第三三极管Q2、第二电阻R3、第三电阻R5、第四电阻R4、第五电阻R1、第六电阻R2、以及运算放大器Amp。在图3所示的实施例中,第二电阻R3和第三电阻R5之间串联了第四电阻R4。第三三极管Q2的发射极与第二电阻R3的第一端连接,第二三极管Q1的发射极和第二电阻R3的第二端连接。第二电阻R3的第二端与第四电阻R5的第一端连接,第四电阻R5的第二端与第三电阻R5的第一端连接,第三电阻R5的第二端接地。图3所示的实施例和图2所示的实施例的相似部分不再重复说明。In one example, referring to FIG. 3 , the
下面对图3所示的带隙基准电路的工作原理进行说明:The working principle of the bandgap reference circuit shown in Figure 3 is described below:
对于图3所示的带隙基准子电路100,在不设置补偿电流发生子电路200和电流镜像子电路300,也就是不对带隙基准子电路100进行电压补偿的情况下:For the
第二三极管Q1的基极-发射极电压VBE1和第三三极管Q2的基极-发射极电压VBE2之间存在一个电压差ΔVBE,该电压差ΔVBE施加在第二电阻R3上。由于运算放大器AMP的输出端OUT和第二三极管Q1的基极连接,运算放大器AMP输出的电压等于第二三极管Q1的基极-发射极电压VBE1加上第四电阻R4的电压、第三电阻R5上的电压。第四电阻R4的电压和第三电阻R5上的电压之和为ΔVBE*(R4+R5)/R3,最终运算放大器AMP输出的电压为VBE1+ΔVBE*(R4+R5)/R3,也就是带隙基准子电路100输出的带隙基准电压VOUT为VBE1+ΔVBE*(R4+R5)/R3。There is a voltage difference ΔV BE between the base-emitter voltage V BE1 of the second transistor Q1 and the base-emitter voltage V BE2 of the third transistor Q2, and the voltage difference ΔVBE is applied to the second resistor R3 superior. Since the output terminal OUT of the operational amplifier AMP is connected to the base of the second transistor Q1, the output voltage of the operational amplifier AMP is equal to the base-emitter voltage V BE1 of the second transistor Q1 plus the voltage of the fourth resistor R4 , the voltage on the third resistor R5. The sum of the voltage of the fourth resistor R4 and the voltage of the third resistor R5 is ΔV BE *(R4+R5)/R3, and the final output voltage of the operational amplifier AMP is V BE1 +ΔV BE *(R4+R5)/R3, That is, the bandgap reference voltage V OUT output by the
也就是说,在不进行电压补偿的情况下,带隙基准子电路100输出的带隙基准电压VOUT为:VOUT=VBE1+ΔVBE*(R4+R5)/R3。通过调整(R4+R5)/R3的大小,可以获得近似零温度系数的带隙基准电压。That is to say, without voltage compensation, the bandgap reference voltage V OUT output by the
对于图3所示的带隙基准子电路100,在设置补偿电流发生子电路200、电流镜像子电路300对其进行电压补偿的情况下:带隙基准子电路100输出的带隙基准电压VOUT为:VOUT=VBE1+ΔVBE*(R4+R5)/R3+I0*R5。通过调整(R4+R5)/R3以及I0*R5的大小,可以获得近似零温度系数的带隙基准电压。For the
在图3所示的例子中,设置有第三电阻R5和第四电阻R4,如果想只调整ΔVBE*(R4+R5)/R3的结果,可以只调整第四电阻R4的电阻值,不会影响I0*R5的结果。也就是说利用图3所示的电路,可以更方便灵活地对带隙基准子电路100输出的带隙基准电压VOUT进行调整。In the example shown in Figure 3, the third resistor R5 and the fourth resistor R4 are provided. If you want to only adjust the result of ΔV BE * (R4+R5)/R3, you can only adjust the resistance value of the fourth resistor R4, not Will affect the result of I0*R5. That is to say, by using the circuit shown in FIG. 3 , the bandgap reference voltage V OUT output by the
参见图4所示,在不进行电压补偿的情况下,带隙基准子电路可以使得正负温度系数部分相互抵消,形成对称的抛物线型状的温度-带隙基准电压曲线,实现了减小温度系数、提高带隙基准电压的精度的效果。但是由于具有正负温度系数的两个电压具有不同的阶数,电压差ΔVBE对温度是一阶的函数,而基极-发射极电压VBE1对温度的函数中包含高次项,因此正负温度系数不是完全抵消补偿,而是存在无法抵消补偿的高阶分量。As shown in Figure 4, in the absence of voltage compensation, the bandgap reference subcircuit can partially offset the positive and negative temperature coefficients to form a symmetrical parabolic temperature-bandgap reference voltage curve, which reduces the temperature coefficient, the effect of improving the accuracy of the bandgap reference voltage. But because the two voltages with positive and negative temperature coefficients have different orders, the voltage difference ΔV BE is a first-order function of temperature, and the function of base-emitter voltage V BE1 to temperature contains high-order terms, so the positive The negative temperature coefficient is not completely offset compensation, but there are higher order components that cannot be offset compensated.
参见图5所示,在进行电压补偿的情况下,带隙基准子电路输出的带隙基准电压更加平缓,在同样的温度变化的情况下带隙基准电压的幅度变化更小,使得带隙基准电压对于温度的变化更加不敏感,实现了高精度带隙基准电压的输出。As shown in Figure 5, in the case of voltage compensation, the bandgap reference voltage output by the bandgap reference subcircuit is more gentle, and the amplitude of the bandgap reference voltage changes smaller under the same temperature change, so that the bandgap reference The voltage is more insensitive to changes in temperature, and the output of a high-precision bandgap reference voltage is realized.
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本发明的范围由所附权利要求来限定。Having described various embodiments of the present invention, the foregoing description is exemplary, not exhaustive, and is not limited to the disclosed embodiments. Many modifications and alterations will be apparent to those of ordinary skill in the art without departing from the scope of the described embodiments. The terminology used herein is chosen to best explain the principle of each embodiment, practical application or improvement of technology in the market, or to enable other ordinary skilled in the art to understand each embodiment disclosed herein. The scope of the invention is defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111275148.2A CN116069114A (en) | 2021-10-29 | 2021-10-29 | Bandgap Reference Circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111275148.2A CN116069114A (en) | 2021-10-29 | 2021-10-29 | Bandgap Reference Circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116069114A true CN116069114A (en) | 2023-05-05 |
Family
ID=86182382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111275148.2A Pending CN116069114A (en) | 2021-10-29 | 2021-10-29 | Bandgap Reference Circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116069114A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040095187A1 (en) * | 2002-11-19 | 2004-05-20 | Intersil Americas Inc. | Modified brokaw cell-based circuit for generating output current that varies linearly with temperature |
CN101329586A (en) * | 2007-06-19 | 2008-12-24 | 凹凸电子(武汉)有限公司 | Reference voltage generator and method for providing multiple reference voltages |
US20110109296A1 (en) * | 2009-11-10 | 2011-05-12 | STMicroelectronics (Shenzhen) R&D Co. Ltd | Voltage Regulator Architecture |
CN102968153A (en) * | 2012-11-29 | 2013-03-13 | 苏州硅智源微电子有限公司 | Breaking point compensation and thermal limitation circuit |
CN104375553A (en) * | 2014-12-10 | 2015-02-25 | 中国电子科技集团公司第四十七研究所 | Bandgap reference circuit and base current compensation circuit |
CN207067835U (en) * | 2017-06-20 | 2018-03-02 | 上海灿瑞科技股份有限公司 | It is a kind of that there is high-order temperature compensated band gap reference voltage source circuit |
CN208239921U (en) * | 2018-06-01 | 2018-12-14 | 上海汉容微电子有限公司 | A kind of reference voltage source circuit |
CN109343639A (en) * | 2018-11-01 | 2019-02-15 | 西安电子科技大学 | A low temperature drift bandgap reference voltage circuit, method and chip |
CN209514446U (en) * | 2018-11-01 | 2019-10-18 | 西安矽源半导体有限公司 | A kind of wide temperature range band-gap reference voltage circuit |
CN111142605A (en) * | 2020-02-10 | 2020-05-12 | 上海治精微电子有限公司 | Bandgap Reference Circuits and Electronic Devices |
-
2021
- 2021-10-29 CN CN202111275148.2A patent/CN116069114A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040095187A1 (en) * | 2002-11-19 | 2004-05-20 | Intersil Americas Inc. | Modified brokaw cell-based circuit for generating output current that varies linearly with temperature |
CN101329586A (en) * | 2007-06-19 | 2008-12-24 | 凹凸电子(武汉)有限公司 | Reference voltage generator and method for providing multiple reference voltages |
US20110109296A1 (en) * | 2009-11-10 | 2011-05-12 | STMicroelectronics (Shenzhen) R&D Co. Ltd | Voltage Regulator Architecture |
CN102968153A (en) * | 2012-11-29 | 2013-03-13 | 苏州硅智源微电子有限公司 | Breaking point compensation and thermal limitation circuit |
CN104375553A (en) * | 2014-12-10 | 2015-02-25 | 中国电子科技集团公司第四十七研究所 | Bandgap reference circuit and base current compensation circuit |
CN207067835U (en) * | 2017-06-20 | 2018-03-02 | 上海灿瑞科技股份有限公司 | It is a kind of that there is high-order temperature compensated band gap reference voltage source circuit |
CN208239921U (en) * | 2018-06-01 | 2018-12-14 | 上海汉容微电子有限公司 | A kind of reference voltage source circuit |
CN109343639A (en) * | 2018-11-01 | 2019-02-15 | 西安电子科技大学 | A low temperature drift bandgap reference voltage circuit, method and chip |
CN209514446U (en) * | 2018-11-01 | 2019-10-18 | 西安矽源半导体有限公司 | A kind of wide temperature range band-gap reference voltage circuit |
CN111142605A (en) * | 2020-02-10 | 2020-05-12 | 上海治精微电子有限公司 | Bandgap Reference Circuits and Electronic Devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10671109B2 (en) | Scalable low output impedance bandgap reference with current drive capability and high-order temperature curvature compensation | |
JP4809340B2 (en) | Voltage circuit proportional to absolute temperature | |
US7612606B2 (en) | Low voltage current and voltage generator | |
CN108037791B (en) | A Bandgap Reference Circuit Without Operation Amplifier | |
US9298202B2 (en) | Device for generating an adjustable bandgap reference voltage with large power supply rejection rate | |
US9804631B2 (en) | Method and device for generating an adjustable bandgap reference voltage | |
CN108664072B (en) | High-order temperature compensation band gap reference circuit | |
US8587368B2 (en) | Bandgap reference circuit with an output insensitive to offset voltage | |
US8368377B2 (en) | Voltage regulator architecture | |
JP2014086000A (en) | Reference voltage generation circuit | |
CN104753481B (en) | Differential operational amplifier and bandgap reference voltage generating circuit | |
CN118692540A (en) | Compensation circuit and method for managing curvature compensation in a compensation circuit | |
Meng et al. | A-80dB PSRR 1.166 ppm/° C bandgap voltage reference with improved high-order temperature compensation | |
JPWO2008050375A1 (en) | Bias circuit | |
US20160320790A1 (en) | Current mirror with tunable mirror ratio | |
CN106055013A (en) | Band-gap reference circuit without operational amplifier and with ultralow temperature drift | |
Gupta et al. | Predicting and designing for the impact of process variations and mismatch on the trim range and yield of bandgap references | |
CN116069114A (en) | Bandgap Reference Circuit | |
CN215729467U (en) | A Bias Circuit Structure Applied to Multiple Voltages | |
CN114326891A (en) | Band gap reference circuit and analog integrated circuit | |
CN116149420B (en) | A zero temperature drift current generating circuit | |
KR100599974B1 (en) | Reference voltage generator | |
CN106292831B (en) | Current mirror with adjustable mirror reflection ratio | |
JPH0934566A (en) | Current source circuit | |
JP7499143B2 (en) | Reference Voltage Source Circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |