[go: up one dir, main page]

CN116015217A - Broadband low-power-consumption transconductance operational amplifier with enhanced slew rate - Google Patents

Broadband low-power-consumption transconductance operational amplifier with enhanced slew rate Download PDF

Info

Publication number
CN116015217A
CN116015217A CN202310031887.XA CN202310031887A CN116015217A CN 116015217 A CN116015217 A CN 116015217A CN 202310031887 A CN202310031887 A CN 202310031887A CN 116015217 A CN116015217 A CN 116015217A
Authority
CN
China
Prior art keywords
transistor
nmos transistor
nmos
pmos
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310031887.XA
Other languages
Chinese (zh)
Inventor
粟涛
胡炳翔
王自鑫
牟炳叡
梁言
朱文丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202310031887.XA priority Critical patent/CN116015217A/en
Publication of CN116015217A publication Critical patent/CN116015217A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Amplifiers (AREA)

Abstract

本发明公开了一种压摆率增强的宽带低功耗跨导运算放大器,包括改进型循环折叠跨导运算放大器和压摆率增强电路,压摆率增强电路在放大器的大信号运作期间可显著提高正负压摆率,而在放大器的小信号运作期间在放大器的小信号运作期间其晶体管工作在亚阈值区,几乎不消耗电流,因此可以在保持低功耗的情况下,提高放大器的单位增益带宽和压摆率,从而提高了运算放大器的工作速度和输出电流能力。本发明实施例提高了高性能开关电容电路的工作速度,降低了功耗,易于推广使用,可广泛应用于运算放大器技术领域。

Figure 202310031887

The invention discloses a broadband low-power transconductance operational amplifier with enhanced slew rate, which comprises an improved loop-folded transconductance operational amplifier and a slew rate enhanced circuit. The slew rate enhanced circuit can significantly Improve the positive and negative slew rate, and during the small-signal operation of the amplifier, its transistors work in the sub-threshold region and consume almost no current, so the unit of the amplifier can be increased while maintaining low power consumption gain bandwidth and slew rate, thereby increasing the operating speed and output current capability of the operational amplifier. The embodiment of the invention improves the working speed of the high-performance switched capacitor circuit, reduces power consumption, is easy to popularize and use, and can be widely used in the technical field of operational amplifiers.

Figure 202310031887

Description

一种压摆率增强的宽带低功耗跨导运算放大器A Broadband Low Power Transconductance Operational Amplifier with Enhanced Slew Rate

技术领域technical field

本发明涉及运算放大器技术领域,尤其是一种压摆率增强的宽带低功耗跨导运算放大器。The invention relates to the technical field of operational amplifiers, in particular to a wideband low-power transconductance operational amplifier with enhanced slew rate.

背景技术Background technique

跨导运算放大器是模拟电路中最重要的电路单元之一,广泛应用于模拟电路和混合信号处理电路中,如开关电容、模数/数模转换器等。跨导运算放大器通常决定了高性能开关电容电路能够达到的功耗、精度、速度等指标。在开关电容电路中,负载通常为纯电容负载,此时单级运算跨导放大器优于多级的运算放大器,因此传统的折叠式跨导放大器获得了广泛的应用。Transconductance operational amplifier is one of the most important circuit units in analog circuits, and is widely used in analog circuits and mixed signal processing circuits, such as switched capacitors, analog-to-digital/digital-to-analog converters, etc. Transconductance operational amplifiers usually determine the power consumption, accuracy, speed and other indicators that high-performance switched capacitor circuits can achieve. In switched capacitor circuits, the load is usually a pure capacitive load. At this time, a single-stage operational transconductance amplifier is better than a multi-stage operational amplifier, so the traditional folded transconductance amplifier has been widely used.

传统的折叠式跨导放大器的工作类别属于A类,电流效率较低,具有速度慢、功耗大等缺点,为了提高压摆率和带宽只能以增加功耗为代价,已经很难迎合当前对高摆率和大带宽的跨导运算放大器的设计需求。为了提高运算跨导放大器的电流效率,需要对传统的折叠共源共栅放大器进行改进,于是循环折叠式跨导运算放大器被提出,其利用电流复用技术来提高运放的电流效率。然而现有的循环折叠式跨导运算放大器在限定功耗的情况下压摆率增加有限,而且正负压摆率不相等,其可实现的最大输出电流受到限制。The working category of the traditional folded transconductance amplifier belongs to class A, the current efficiency is low, and it has the disadvantages of slow speed and high power consumption. Design requirements for high slew rate and wide bandwidth transconductance operational amplifiers. In order to improve the current efficiency of the operational transconductance amplifier, it is necessary to improve the traditional folded cascode amplifier, so the circular folded transconductance operational amplifier is proposed, which uses the current multiplexing technology to improve the current efficiency of the operational amplifier. However, the existing loop-folded transconductance operational amplifier has a limited increase in the slew rate under the condition of limited power consumption, and the positive and negative slew rates are not equal, and its maximum output current is limited.

发明内容Contents of the invention

本发明的目的在于至少一定程度上解决现有技术中存在的技术问题之一。The purpose of the present invention is to solve one of the technical problems in the prior art at least to a certain extent.

为此,本发明实施例的一个目的在于提供一种压摆率增强的宽带低功耗跨导运算放大器,可以在保持低功耗的情况下,提高放大器的单位增益带宽和压摆率,从而以提高运算放大器的工作速度和输出电流能力。Therefore, an object of the embodiments of the present invention is to provide a wideband low-power transconductance operational amplifier with enhanced slew rate, which can improve the unity gain bandwidth and slew rate of the amplifier while maintaining low power consumption, thereby In order to improve the operating speed and output current capability of the operational amplifier.

为了达到上述技术目的,本发明实施例所采取的技术方案包括:In order to achieve the above technical objectives, the technical solutions adopted in the embodiments of the present invention include:

本发明实施例提供了一种压摆率增强的宽带低功耗跨导运算放大器,包括改进型循环折叠跨导运算放大器和压摆率增强电路,所述改进型循环折叠跨导运算放大器包括第三PMOS管、第八PMOS管、第一NMOS管、第四PMOS管、第九PMOS管、第十PMOS管、第十一PMOS管、第十二PMOS管、第五PMOS管、第十三PMOS管、第二NMOS管、第三NMOS管、第四NMOS管、第五NMOS管、第六NMOS管、第十NMOS管、第十一NMOS管、第十二NMOS管、第十三NMOS管、第十四NMOS管以及第十五NMOS管,所述压摆率增强电路包括第一PMOS管、第二PMOS管、第七NMOS管、第八NMOS管、第九NMOS管、第六PMOS管、第七PMOS管、第十六NMOS管、第十七NMOS管以及第十八NMOS管,其中:An embodiment of the present invention provides a broadband low-power transconductance operational amplifier with enhanced slew rate, including an improved cycle-folded transconductance operational amplifier and a slew rate enhancement circuit, and the improved cycle-folded transconductance operational amplifier includes the first Three PMOS transistors, eighth PMOS transistors, first NMOS transistors, fourth PMOS transistors, ninth PMOS transistors, tenth PMOS transistors, eleventh PMOS transistors, twelfth PMOS transistors, fifth PMOS transistors, thirteenth PMOS transistors tube, the second NMOS tube, the third NMOS tube, the fourth NMOS tube, the fifth NMOS tube, the sixth NMOS tube, the tenth NMOS tube, the eleventh NMOS tube, the twelfth NMOS tube, the thirteenth NMOS tube, The fourteenth NMOS transistor and the fifteenth NMOS transistor, the slew rate enhancement circuit includes a first PMOS transistor, a second PMOS transistor, a seventh NMOS transistor, an eighth NMOS transistor, a ninth NMOS transistor, a sixth PMOS transistor, The seventh PMOS transistor, the sixteenth NMOS transistor, the seventeenth NMOS transistor, and the eighteenth NMOS transistor, wherein:

所述第一PMOS管、所述第二PMOS管、所述第三PMOS管、所述第四PMOS管、所述第五PMOS管、所述第六PMOS管以及所述第七PMOS管的源极均连接到模拟正电源,所述第一PMOS管和所述第二PMOS管的栅极均与所述第七NMOS管的漏极相连,所述第二PMOS管的漏极与差分输出负端、所述第十七NMOS管的漏极、所述第八PMOS管的漏极以及所述第一NMOS管的漏极相连,所述第三PMOS管的栅极连接共模反馈电压,所述第三PMOS管的漏极与所述第八PMOS管的源极相连,所述第八PMOS管的栅极连接P型第一偏置电压,所述第四PMOS管的漏极与所述第九PMOS管、所述第十PMOS管、所述第十一PMOS管以及所述第十二PMOS管的源极相连,所述第四PMOS管的栅极连接P型第二偏置电压,所述第五PMOS管的栅极连接所述共模反馈电压,所述第五PMOS管的漏极连接到所述第十三PMOS管的源极,所述第六PMOS管和所述第七PMOS管的栅极均与所述第十八NMOS管的漏极相连,所述第六PMOS管的漏极与差分输出正端、所述第八NMOS管的漏极、所述第十三PMOS管的漏极以及所述第二NMOS管的漏极相连,所述第一NMOS管的源极与所述第九NMOS管的漏极、所述第十NMOS管的漏极、所述第九PMOS管的漏极、所述第七NMOS管的栅极、所述第八NMOS管的栅极以及所述第九NMOS管的栅极相连,所述第一NMOS管的栅极连接第一N型偏置电压,所述第九PMOS管的栅极和所述第十PMOS管的栅极均与差分输入正端相连,所述第十PMOS管的漏极与所述第五NMOS管的漏极、所述第六NMOS管的漏极、所述第十四NMOS管的栅极以及所述第十五NMOS管的栅极相连,所述第十一PMOS管的漏极与所述第三NMOS管的漏极、所述第四NMOS管的漏极、所述第十NMOS管的栅极以及所述第十一NMOS管的栅极相连,所述第十一PMOS管的栅极和所述第十二PMOS管的栅极相连均与差分输入负端相连,所述第十三PMOS管的栅极连接所述P型第一偏置电压,所述第二NMOS管的源极与所述第十五NMOS管的漏极、所述第十六NMOS管的漏极、所述第十二PMOS管的漏极、所述第十六NMOS管的栅极、所述第十七NMOS管的栅极以及所述第十八NMOS管的栅极相连,所述第二NMOS管的栅极连接所述第一N型偏置电压,所述第三NMOS管的源极与所述第十一NMOS管的漏极相连,所述第四NMOS管的源极与所述第十二NMOS管的漏极相连,所述第五NMOS管的源极与所述第十三NMOS管的漏极相连,所述第六NMOS管的源极与所述第十四NMOS管的漏极相连,所述第三NMOS管、所述第四NMOS管、所述第五NMOS管以及所述第六NMOS管的栅极均连接所述第一N型偏置电压,所述第十二NMOS管和所述第十三NMOS管的栅极均连接第二N型偏置电压,所述第七NMOS管、所述第八NMOS管、所述第九NMOS管、所述第十NMOS管、所述第十一NMOS管、所述第十二NMOS管、所述第十三NMOS管、所述第十四NMOS管、所述第十五NMOS管、所述第十六NMOS管、所述第十七NMOS管以及所述第十八NMOS管的源极均与模拟地相连。Sources of the first PMOS transistor, the second PMOS transistor, the third PMOS transistor, the fourth PMOS transistor, the fifth PMOS transistor, the sixth PMOS transistor, and the seventh PMOS transistor Both poles are connected to the analog positive power supply, the gates of the first PMOS transistor and the second PMOS transistor are connected to the drain of the seventh NMOS transistor, and the drain of the second PMOS transistor is connected to the differential output negative Terminal, the drain of the seventeenth NMOS transistor, the drain of the eighth PMOS transistor, and the drain of the first NMOS transistor are connected, and the gate of the third PMOS transistor is connected to the common-mode feedback voltage, so The drain of the third PMOS transistor is connected to the source of the eighth PMOS transistor, the gate of the eighth PMOS transistor is connected to the P-type first bias voltage, and the drain of the fourth PMOS transistor is connected to the source of the eighth PMOS transistor. The sources of the ninth PMOS transistor, the tenth PMOS transistor, the eleventh PMOS transistor, and the twelfth PMOS transistor are connected, and the gate of the fourth PMOS transistor is connected to a P-type second bias voltage, The gate of the fifth PMOS transistor is connected to the common-mode feedback voltage, the drain of the fifth PMOS transistor is connected to the source of the thirteenth PMOS transistor, and the sixth PMOS transistor and the seventh PMOS transistor are connected to the source of the thirteenth PMOS transistor. The gates of the PMOS transistors are all connected to the drain of the eighteenth NMOS transistor, the drain of the sixth PMOS transistor is connected to the positive terminal of the differential output, the drain of the eighth NMOS transistor, the drain of the thirteenth PMOS transistor The drain of the transistor is connected to the drain of the second NMOS transistor, the source of the first NMOS transistor is connected to the drain of the ninth NMOS transistor, the drain of the tenth NMOS transistor, and the drain of the ninth NMOS transistor. The drain of the PMOS transistor, the gate of the seventh NMOS transistor, the gate of the eighth NMOS transistor, and the gate of the ninth NMOS transistor are connected, and the gate of the first NMOS transistor is connected to the first NMOS transistor. Type bias voltage, the gate of the ninth PMOS transistor and the gate of the tenth PMOS transistor are connected to the positive terminal of the differential input, the drain of the tenth PMOS transistor is connected to the drain of the fifth NMOS transistor electrode, the drain of the sixth NMOS transistor, the gate of the fourteenth NMOS transistor, and the gate of the fifteenth NMOS transistor, and the drain of the eleventh PMOS transistor is connected to the third The drain of the NMOS transistor, the drain of the fourth NMOS transistor, the gate of the tenth NMOS transistor, and the gate of the eleventh NMOS transistor are connected, and the gate of the eleventh PMOS transistor is connected to the gate of the eleventh NMOS transistor. The gate of the twelfth PMOS transistor is connected to the negative terminal of the differential input, the gate of the thirteenth PMOS transistor is connected to the P-type first bias voltage, and the source of the second NMOS transistor is connected to the negative terminal of the differential input. The drain of the fifteenth NMOS transistor, the drain of the sixteenth NMOS transistor, the drain of the twelfth PMOS transistor, the gate of the sixteenth NMOS transistor, the seventeenth NMOS transistor The gate of the eighteenth NMOS transistor is connected to the gate, the gate of the second NMOS transistor is connected to the first N-type bias voltage, and the source of the third NMOS transistor is connected to the tenth NMOS transistor. The drain of an NMOS transistor is connected, the source of the fourth NMOS transistor is connected to the drain of the twelfth NMOS transistor, the source of the fifth NMOS transistor is connected to the drain of the thirteenth NMOS transistor connected, the source of the sixth NMOS transistor is connected to the drain of the fourteenth NMOS transistor, the third NMOS transistor, the fourth NMOS transistor, the fifth NMOS transistor, and the sixth NMOS transistor The gates of the transistors are connected to the first N-type bias voltage, the gates of the twelfth NMOS transistor and the thirteenth NMOS transistor are connected to the second N-type bias voltage, and the seventh NMOS transistor , the eighth NMOS transistor, the ninth NMOS transistor, the tenth NMOS transistor, the eleventh NMOS transistor, the twelfth NMOS transistor, the thirteenth NMOS transistor, the tenth NMOS transistor The sources of the four NMOS transistors, the fifteenth NMOS transistor, the sixteenth NMOS transistor, the seventeenth NMOS transistor and the eighteenth NMOS transistor are all connected to analog ground.

进一步地,在本发明的一个实施例中,所述第一NMOS管、所述第二NMOS管、所述第三NMOS管、所述第四NMOS管、所述第五NMOS管、所述第六NMOS管、所述第七NMOS管、所述第八NMOS管、所述第九NMOS管、所述第十NMOS管、所述第十一NMOS管、所述第十二NMOS管、所述第十三NMOS管、所述第十四NMOS管、所述第十五NMOS管、所述第十六NMOS管、所述第十七NMOS管以及所述第十八NMOS管的衬底均与所述模拟地相连,所述第一PMOS管、所述第二PMOS管、所述第三PMOS管、所述第四PMOS管、所述第五PMOS管、所述第六PMOS管、所述第七PMOS管、所述第八PMOS管、所述第九PMOS管、所述第十PMOS管、所述第十一PMOS管、所述第十二PMOS管以及所述第十三PMOS管的衬底均与所述模拟正电源相连。Further, in an embodiment of the present invention, the first NMOS transistor, the second NMOS transistor, the third NMOS transistor, the fourth NMOS transistor, the fifth NMOS transistor, the first Six NMOS transistors, the seventh NMOS transistor, the eighth NMOS transistor, the ninth NMOS transistor, the tenth NMOS transistor, the eleventh NMOS transistor, the twelfth NMOS transistor, the Substrates of the thirteenth NMOS transistor, the fourteenth NMOS transistor, the fifteenth NMOS transistor, the sixteenth NMOS transistor, the seventeenth NMOS transistor, and the eighteenth NMOS transistor are all compatible with The analog ground is connected, the first PMOS transistor, the second PMOS transistor, the third PMOS transistor, the fourth PMOS transistor, the fifth PMOS transistor, the sixth PMOS transistor, the The seventh PMOS transistor, the eighth PMOS transistor, the ninth PMOS transistor, the tenth PMOS transistor, the eleventh PMOS transistor, the twelfth PMOS transistor, and the thirteenth PMOS transistor The substrates are all connected to the analog positive power supply.

进一步地,在本发明的一个实施例中,所述模拟地的电位为0V,所述模拟正电源的电位为3.3V。Further, in an embodiment of the present invention, the potential of the analog ground is 0V, and the potential of the analog positive power supply is 3.3V.

进一步地,在本发明的一个实施例中,所述第九PMOS管、所述第十PMOS管、所述第十一PMOS管以及所述第十二PMOS管的晶体管尺寸相同,所述第三NMOS管、所述第四NMOS管、所述第五NMOS管以及所述第六NMOS管的晶体管尺寸相同。Further, in an embodiment of the present invention, the ninth PMOS transistor, the tenth PMOS transistor, the eleventh PMOS transistor, and the twelfth PMOS transistor have the same transistor size, and the third PMOS transistor The NMOS transistor, the fourth NMOS transistor, the fifth NMOS transistor and the sixth NMOS transistor have the same transistor size.

进一步地,在本发明的一个实施例中,所述第九NMOS管、所述第八NMOS管以及所述第七NMOS管的晶体管尺寸的比例为1:m:n,所述第十六NMOS管、所述第十七NMOS管以及所述第十八NMOS管的晶体管尺寸的比例为1:m:n,n=m+2.5,所述第九NMOS管和所述第十六NMOS管的晶体管尺寸相同。Further, in an embodiment of the present invention, the ratio of transistor sizes of the ninth NMOS transistor, the eighth NMOS transistor, and the seventh NMOS transistor is 1:m:n, and the sixteenth NMOS transistor transistor, the seventeenth NMOS transistor, and the eighteenth NMOS transistor have a transistor size ratio of 1:m:n, n=m+2.5, and the ninth NMOS transistor and the sixteenth NMOS transistor The transistors are the same size.

进一步地,在本发明的一个实施例中,所述第一PMOS管、所述第二PMOS管、所述第六PMOS管以及所述第七PMOS管的晶体管尺寸相同。Further, in an embodiment of the present invention, transistor sizes of the first PMOS transistor, the second PMOS transistor, the sixth PMOS transistor and the seventh PMOS transistor are the same.

进一步地,在本发明的一个实施例中,所述第十NMOS管、所述第十一NMOS管、所述第十二NMOS管的晶体管尺寸的比例为6:1:1,所述第十五NMOS管、所述第十四NMOS管、所述第十三NMOS管的晶体管尺寸的比例为6:1:1,所述第十二NMOS管和所述第十五NMOS管的晶体管尺寸相同。Further, in an embodiment of the present invention, the ratio of transistor sizes of the tenth NMOS transistor, the eleventh NMOS transistor, and the twelfth NMOS transistor is 6:1:1, and the tenth NMOS transistor The ratio of the transistor size of the fifth NMOS transistor, the fourteenth NMOS transistor, and the thirteenth NMOS transistor is 6:1:1, and the transistor size of the twelfth NMOS transistor and the fifteenth NMOS transistor are the same .

进一步地,在本发明的一个实施例中,所述共模反馈电压通过开关电容型共模反馈电路产生。Further, in an embodiment of the present invention, the common-mode feedback voltage is generated by a switched capacitor type common-mode feedback circuit.

本发明的优点和有益效果将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到:Advantage of the present invention and beneficial effect will be provided in part in the following description, part will become apparent from the following description, or understand by practice of the present invention:

本发明实施例提供了一种压摆率增强的宽带低功耗跨导运算放大器,包括改进型循环折叠跨导运算放大器和压摆率增强电路,压摆率增强电路在放大器的大信号运作期间可显著提高正负压摆率,而在放大器的小信号运作期间在放大器的小信号运作期间其晶体管工作在亚阈值区,几乎不消耗电流,因此可以在保持低功耗的情况下,提高放大器的单位增益带宽和压摆率,从而提高了运算放大器的工作速度和输出电流能力;本发明实施例提高了高性能开关电容电路的工作速度,降低了功耗,易于推广使用。An embodiment of the present invention provides a broadband low-power transconductance operational amplifier with enhanced slew rate, including an improved loop-folded transconductance operational amplifier and a slew rate enhanced circuit, and the slew rate enhanced circuit is used during the large signal operation of the amplifier. It can significantly improve the positive and negative slew rate, and during the small-signal operation of the amplifier, its transistors work in the sub-threshold region and consume almost no current, so the amplifier can be improved while maintaining low power consumption. Unity gain bandwidth and slew rate, thereby improving the operating speed and output current capability of the operational amplifier; the embodiment of the invention improves the operating speed of the high-performance switched capacitor circuit, reduces power consumption, and is easy to popularize and use.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面对本发明实施例中所需要使用的附图作以下介绍,应当理解的是,下面介绍中的附图仅仅为了方便清晰表述本发明的技术方案中的部分实施例,对于本领域的技术人员来说,在无需付出创造性劳动的前提下,还可以根据这些附图获取到其他附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the accompanying drawings that need to be used in the embodiments of the present invention are described below. It should be understood that the accompanying drawings in the following introductions are only for the convenience of clearly expressing the technology of the present invention For some embodiments in the solution, those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为本发明实施例提供的一种压摆率增强的宽带低功耗跨导运算放大器的结构示意图。FIG. 1 is a schematic structural diagram of a broadband low-power transconductance operational amplifier with enhanced slew rate provided by an embodiment of the present invention.

附图标记:Reference signs:

P1至P13分别表示第一至第十三PMOS管;N1至N18分别表示第一至第十八NMOS管;AVDD表示模拟正电源;AVSS表示模拟地;Vbp1表示P型第一偏置电压;Vbp2表示P型第二偏置电压;Vbn1表示N型第一偏置电压;Vbn2表示N型第二偏置电压;Vo+表示差分输出正端;Vo-表示差分输出负端;Vin+表示差分输入正端;Vin-表示差分输入负端;Vcmfb表示共模反馈电压。P1 to P13 represent the first to thirteenth PMOS transistors; N1 to N18 represent the first to eighteenth NMOS transistors; AVDD represents the analog positive power supply; AVSS represents the analog ground; Vbp1 represents the first P-type bias voltage; Vbp2 Indicates the P-type second bias voltage; Vbn1 indicates the N-type first bias voltage; Vbn2 indicates the N-type second bias voltage; Vo+ indicates the positive terminal of the differential output; Vo- indicates the negative terminal of the differential output; Vin+ indicates the positive terminal of the differential input ; Vin- represents the negative terminal of the differential input; Vcmfb represents the common-mode feedback voltage.

具体实施方式Detailed ways

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.

在本发明的描述中,多个的含义是两个或两个以上,如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。此外,除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。In the description of the present invention, multiple means two or more. If the first and the second are described only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance or implying Indicate the number of indicated technical features or implicitly indicate the sequence of indicated technical features. Also, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art.

参照图1,本发明实施例提供了一种压摆率增强的宽带低功耗跨导运算放大器,包括改进型循环折叠跨导运算放大器(如图1中虚线框以外区域所示)和压摆率增强电路(如图1中虚线框以内区域所示),改进型循环折叠跨导运算放大器包括第三PMOS管(P3)、第八PMOS管(P8)、第一NMOS管(N1)、第四PMOS管(P4)、第九PMOS管(P9)、第十PMOS管(P10)、第十一PMOS管(P11)、第十二PMOS管(P12)、第五PMOS管(P5)、第十三PMOS管(P13)、第二NMOS管(N2)、第三NMOS管(N3)、第四NMOS管(N4)、第五NMOS管(N5)、第六NMOS管(N6)、第十NMOS管(N10)、第十一NMOS管(N11)、第十二NMOS管(N12)、第十三NMOS管(N13)、第十四NMOS管(N14)以及第十五NMOS管(N15),压摆率增强电路包括第一PMOS管(P1)、第二PMOS管(P2)、第七NMOS管(N7)、第八NMOS管(N8)、第九NMOS管(N9)、第六PMOS管(P6)、第七PMOS管(P7)、第十六NMOS管(N16)、第十七NMOS管(N17)以及第十八NMOS管(N18),其中:Referring to FIG. 1 , an embodiment of the present invention provides a broadband low-power transconductance operational amplifier with enhanced slew rate, including an improved loop-folded transconductance operational amplifier (as shown in the area outside the dashed box in FIG. 1 ) and a slew rate enhancement circuit (as shown in the area within the dotted line box in Figure 1), the improved loop-folding transconductance operational amplifier includes a third PMOS transistor (P3), an eighth PMOS transistor (P8), a first NMOS transistor (N1), a Four PMOS transistors (P4), ninth PMOS transistors (P9), tenth PMOS transistors (P10), eleventh PMOS transistors (P11), twelfth PMOS transistors (P12), fifth PMOS transistors (P5), and Thirteen PMOS transistors (P13), second NMOS transistors (N2), third NMOS transistors (N3), fourth NMOS transistors (N4), fifth NMOS transistors (N5), sixth NMOS transistors (N6), tenth NMOS tube (N10), eleventh NMOS tube (N11), twelfth NMOS tube (N12), thirteenth NMOS tube (N13), fourteenth NMOS tube (N14) and fifteenth NMOS tube (N15) , The slew rate enhancement circuit includes a first PMOS transistor (P1), a second PMOS transistor (P2), a seventh NMOS transistor (N7), an eighth NMOS transistor (N8), a ninth NMOS transistor (N9), a sixth PMOS transistor tube (P6), seventh PMOS tube (P7), sixteenth NMOS tube (N16), seventeenth NMOS tube (N17) and eighteenth NMOS tube (N18), wherein:

第一PMOS管(P1)、第二PMOS管(P2)、第三PMOS管(P3)、第四PMOS管(P4)、第五PMOS管(P5)、第六PMOS管(P6)以及第七PMOS管(P7)的源极均连接到模拟正电源(AVDD),第一PMOS管(P1)和第二PMOS管(P2)的栅极均与第七NMOS管(N7)的漏极相连,第二PMOS管(P2)的漏极与差分输出负端(Vo-)、第十七NMOS管(N17)的漏极、第八PMOS管(P8)的漏极以及第一NMOS管(N1)的漏极相连,第三PMOS管(P3)的栅极连接共模反馈电压(Vcmfb),第三PMOS管(P3)的漏极与第八PMOS管(P8)的源极相连,第八PMOS管(P8)的栅极连接P型第一偏置电压(Vbp1),第四PMOS管(P4)的漏极与第九PMOS管(P9)、第十PMOS管(P10)、第十一PMOS管(P11)、第十二PMOS管(P12)的源极相连,第四PMOS管(P4)的栅极连接P型第二偏置电压(Vbp2),第五PMOS管(P5)的栅极连接共模反馈电压(Vcmfb),第五PMOS管(P5)的漏极连接到第十三PMOS管(P13)的源极,第六PMOS管(P6)、和第七PMOS管(P7)的栅极均与第十八NMOS管(N18)的漏极相连,第六PMOS管(P6)的漏极与差分输出正端(Vo+)、第八NMOS管(N8)的漏极、第十三PMOS管(P13)的漏极以及第二NMOS管(N2)的漏极相连,第一NMOS管(N1)的源极与第九NMOS管(N9)的漏极、第十NMOS管(N10)的漏极、第九PMOS管(P9)的漏极、第七至第九NMOS管(N7、N8、N9)的栅极相连,第一NMOS管(N1)的栅极连接第一N型偏置电压(Vbn1),第九PMOS管(P9)的栅极和第十PMOS管(P10)的栅极均连接差分输入正端(Vin+),第十PMOS管(P10)的漏极与第五NMOS管(N5)的漏极、第六NMOS管(N6)的漏极、第十四NMOS管(N14)的栅极以及第十五NMOS管(N15)的栅极相连,第十一PMOS管(P11)的漏极与第三NMOS管(N3)的漏极、第四NMOS管(N4)的漏极、第十NMOS管(N10)的栅极以及第十一NMOS管(N11)的栅极相连,第十一PMOS管(P11)的栅极和第十二PMOS管(P12)的栅极均连接差分输入负端(Vin-),第十三PMOS管(P13)的栅极连接P型第一偏置电压(Vbp1),第二NMOS管(N2)的源极与第十五NMOS管(N15)的漏极、第十六NMOS管(N16)的漏极、第十二PMOS管(P12)的漏极、第十六至第十八NMOS管(N16、N17、N18)的栅极相连,第二NMOS管(N2)的栅极连接第一N型偏置电压(Vbn1),第三NMOS管(N3)的源极与第十一NMOS管(N11)的漏极相连,第四NMOS管(N4)的源极与第十二NMOS管(N12)的漏极相连,第五NMOS管(N5)的源极与第十三NMOS管(N13)的漏极相连,第六NMOS管(N6)的源极与第十四NMOS管(N14)的漏极相连,第三至六NMOS管(N3、N4、N5、N6)的栅极连接第一N型偏置电压(Vbn1),第十二NMOS管(N12)和第十三NMOS管(N13)的栅极均连接第二N型偏置电压,第七NMOS管(N7)、第八NMOS管(N8)、第九NMOS管(N9)、第十NMOS管(N10)、第十一NMOS管(N11)、第十二NMOS管(N12)、第十三NMOS管(N13)、第十四NMOS管(N14)、第十五NMOS管(N15)、第十六NMOS管(N16)、第十七NMOS管(N17)以及第十八NMOS管(N18)的源极均与模拟地(AVSS)相连。The first PMOS transistor (P1), the second PMOS transistor (P2), the third PMOS transistor (P3), the fourth PMOS transistor (P4), the fifth PMOS transistor (P5), the sixth PMOS transistor (P6) and the seventh The sources of the PMOS transistors (P7) are connected to the analog positive power supply (AVDD), the gates of the first PMOS transistor (P1) and the second PMOS transistor (P2) are connected to the drain of the seventh NMOS transistor (N7), The drain of the second PMOS transistor (P2) and the differential output negative terminal (Vo-), the drain of the seventeenth NMOS transistor (N17), the drain of the eighth PMOS transistor (P8), and the first NMOS transistor (N1) The drain of the third PMOS transistor (P3) is connected to the common mode feedback voltage (Vcmfb), the drain of the third PMOS transistor (P3) is connected to the source of the eighth PMOS transistor (P8), and the eighth PMOS transistor (P8) The gate of the transistor (P8) is connected to the P-type first bias voltage (Vbp1), and the drain of the fourth PMOS transistor (P4) is connected to the ninth PMOS transistor (P9), the tenth PMOS transistor (P10), and the eleventh PMOS transistor. The source of the twelfth PMOS transistor (P11) and the twelfth PMOS transistor (P12) are connected, the gate of the fourth PMOS transistor (P4) is connected to the P-type second bias voltage (Vbp2), and the gate of the fifth PMOS transistor (P5) Connect the common mode feedback voltage (Vcmfb), the drain of the fifth PMOS transistor (P5) is connected to the source of the thirteenth PMOS transistor (P13), the sixth PMOS transistor (P6), and the seventh PMOS transistor (P7) The gates are all connected to the drain of the eighteenth NMOS transistor (N18), the drain of the sixth PMOS transistor (P6) is connected to the differential output positive terminal (Vo+), the drain of the eighth NMOS transistor (N8), and the drain of the thirteenth NMOS transistor (N8). The drain of the PMOS transistor (P13) is connected to the drain of the second NMOS transistor (N2), the source of the first NMOS transistor (N1) is connected to the drain of the ninth NMOS transistor (N9), the tenth NMOS transistor (N10) The drain of the ninth PMOS transistor (P9), the gates of the seventh to ninth NMOS transistors (N7, N8, N9) are connected, and the gate of the first NMOS transistor (N1) is connected to the first N-type bias Set the voltage (Vbn1), the gate of the ninth PMOS transistor (P9) and the gate of the tenth PMOS transistor (P10) are connected to the differential input positive terminal (Vin+), the drain of the tenth PMOS transistor (P10) is connected to the fifth The drain of the NMOS transistor (N5), the drain of the sixth NMOS transistor (N6), the gate of the fourteenth NMOS transistor (N14) and the gate of the fifteenth NMOS transistor (N15) are connected, and the eleventh PMOS transistor The drain of (P11) and the drain of the third NMOS transistor (N3), the drain of the fourth NMOS transistor (N4), the gate of the tenth NMOS transistor (N10) and the gate of the eleventh NMOS transistor (N11) The gates of the eleventh PMOS transistor (P11) and the gate of the twelfth PMOS transistor (P12) are connected to the differential input negative terminal (Vin-), and the gate of the thirteenth PMOS transistor (P13) is connected to P type first bias voltage (Vbp1), the source of the second NMOS transistor (N2), the drain of the fifteenth NMOS transistor (N15), the drain of the sixteenth NMOS transistor (N16), the twelfth PMOS transistor The drain of (P12) is connected to the gates of the sixteenth to eighteenth NMOS transistors (N16, N17, N18), and the gate of the second NMOS transistor (N2) is connected to the first N-type bias voltage (Vbn1), The source of the third NMOS transistor (N3) is connected to the drain of the eleventh NMOS transistor (N11), the source of the fourth NMOS transistor (N4) is connected to the drain of the twelfth NMOS transistor (N12), and the fifth The source of the NMOS transistor (N5) is connected to the drain of the thirteenth NMOS transistor (N13), the source of the sixth NMOS transistor (N6) is connected to the drain of the fourteenth NMOS transistor (N14), and the third to sixth The gates of the NMOS transistors (N3, N4, N5, N6) are connected to the first N-type bias voltage (Vbn1), and the gates of the twelfth NMOS transistor (N12) and the thirteenth NMOS transistor (N13) are connected to the second N-type bias voltage, seventh NMOS transistor (N7), eighth NMOS transistor (N8), ninth NMOS transistor (N9), tenth NMOS transistor (N10), eleventh NMOS transistor (N11), twelfth NMOS transistor NMOS tube (N12), thirteenth NMOS tube (N13), fourteenth NMOS tube (N14), fifteenth NMOS tube (N15), sixteenth NMOS tube (N16), seventeenth NMOS tube (N17) And the source of the eighteenth NMOS transistor (N18) is connected to the analog ground (AVSS).

进一步作为可选的实施方式,第一NMOS管、第二NMOS管、第三NMOS管、第四NMOS管、第五NMOS管、第六NMOS管、第七NMOS管、第八NMOS管、第九NMOS管、第十NMOS管、第十一NMOS管、第十二NMOS管、第十三NMOS管、第十四NMOS管、第十五NMOS管、第十六NMOS管、第十七NMOS管以及第十八NMOS管(N1至N18)的衬底均与模拟地(AVSS)相连,第一PMOS管、第二PMOS管、第三PMOS管、第四PMOS管、第五PMOS管、第六PMOS管、第七PMOS管、第八PMOS管、第九PMOS管、第十PMOS管、第十一PMOS管、第十二PMOS管以及第十三PMOS管(P1至P13)的衬底均与模拟正电源(AVDD)相连。Further as an optional implementation manner, the first NMOS transistor, the second NMOS transistor, the third NMOS transistor, the fourth NMOS transistor, the fifth NMOS transistor, the sixth NMOS transistor, the seventh NMOS transistor, the eighth NMOS transistor, the ninth NMOS transistor NMOS tubes, tenth NMOS tubes, eleventh NMOS tubes, twelfth NMOS tubes, thirteenth NMOS tubes, fourteenth NMOS tubes, fifteenth NMOS tubes, sixteenth NMOS tubes, seventeenth NMOS tubes, and The substrates of the eighteenth NMOS transistors (N1 to N18) are all connected to the analog ground (AVSS), and the first PMOS transistor, the second PMOS transistor, the third PMOS transistor, the fourth PMOS transistor, the fifth PMOS transistor, and the sixth PMOS transistor The substrates of the seventh PMOS transistor, the eighth PMOS transistor, the ninth PMOS transistor, the tenth PMOS transistor, the eleventh PMOS transistor, the twelfth PMOS transistor and the thirteenth PMOS transistor (P1 to P13) are all related to the analog Connect to the positive supply (AVDD).

进一步作为可选的实施方式,模拟地(AVSS)的电位为0V,模拟正电源(AVDD)的电位为3.3V。As a further optional implementation manner, the potential of the analog ground (AVSS) is 0V, and the potential of the analog positive power supply (AVDD) is 3.3V.

进一步作为可选的实施方式,第九PMOS管、第十PMOS管、第十一PMOS管以及第十二PMOS管(P9至P12)的晶体管尺寸相同,第三NMOS管、第四NMOS管、第五NMOS管以及第六NMOS管(N3至N6)的晶体管尺寸相同。Further as an optional implementation manner, the ninth PMOS transistor, the tenth PMOS transistor, the eleventh PMOS transistor, and the twelfth PMOS transistor (P9 to P12) have the same transistor size, and the third NMOS transistor, the fourth NMOS transistor, the The transistor sizes of the fifth NMOS transistor and the sixth NMOS transistor (N3 to N6) are the same.

进一步作为可选的实施方式,第九NMOS管(N9)、第八NMOS管(N8)以及第七NMOS管(N7)的晶体管尺寸的比例为1:m:n,第十六NMOS管(N16)、第十七NMOS管(N17)以及第十八NMOS管(N18)的晶体管尺寸的比例为1:m:n,n=m+2.5,第九NMOS管(N9)和第十六NMOS管(N16)的晶体管尺寸相同。Further as an optional implementation manner, the ratio of transistor sizes of the ninth NMOS transistor (N9), the eighth NMOS transistor (N8) and the seventh NMOS transistor (N7) is 1:m:n, and the sixteenth NMOS transistor (N16 ), the ratio of transistor size of the seventeenth NMOS transistor (N17) and the eighteenth NMOS transistor (N18) is 1:m:n, n=m+2.5, the ninth NMOS transistor (N9) and the sixteenth NMOS transistor (N16) has the same transistor size.

进一步作为可选的实施方式,第一PMOS管(P1)、第二PMOS管(P2)、第六PMOS管(P6)以及第七PMOS管(P7)的晶体管尺寸相同。As a further optional implementation manner, the transistor sizes of the first PMOS transistor (P1), the second PMOS transistor (P2), the sixth PMOS transistor (P6) and the seventh PMOS transistor (P7) are the same.

进一步作为可选的实施方式,第十NMOS管(N10)、第十一NMOS管(N11)、第十二NMOS管(N12)的晶体管尺寸的比例为6:1:1,第十五NMOS管(N15)、第十四NMOS管(N14)、第十三NMOS管(N13)的晶体管尺寸的比例为6:1:1,第十二NMOS管(N12)和第十五NMOS管(N15)的晶体管尺寸相同。Further as an optional implementation manner, the ratio of transistor sizes of the tenth NMOS transistor (N10), the eleventh NMOS transistor (N11), and the twelfth NMOS transistor (N12) is 6:1:1, and the fifteenth NMOS transistor (N15), the fourteenth NMOS transistor (N14), the thirteenth NMOS transistor (N13) have a transistor size ratio of 6:1:1, the twelfth NMOS transistor (N12) and the fifteenth NMOS transistor (N15) The transistors are the same size.

进一步作为可选的实施方式,共模反馈电压(Vcmfb)通过开关电容型共模反馈电路产生。As a further optional implementation manner, the common-mode feedback voltage (Vcmfb) is generated by a switched capacitor common-mode feedback circuit.

本发明实施例中,直流电流可以流过第十NMOS管(N10)、第十一NMOS管(N11)、第十二NMOS管(N12)、第十三NMOS管(N13)、第十四NMOS管(N14)和第十五NMOS管(N15),而几乎没有交流电流流过第四NMOS管(N4)、第五NMOS管(N5)和第十二NMOS管(N12)、第十三NMOS管(N13),因为它们对交流信号表现出高阻抗。假设第九PMOS管(P9)的跨导为gm,那么通过上述的比例控制,最终本实施例运算放大器的跨导为Gm1=7*gm。如果传统折叠型跨导放大器的输入晶体管采用P9两倍尺寸作为对比,那么其跨导为Gm2=2*gm。说明本实施例的放大器的跨导是传统折叠型跨导放大器跨导的3.5倍,这将显著提升放大器的带宽。In the embodiment of the present invention, the direct current may flow through the tenth NMOS transistor (N10), the eleventh NMOS transistor (N11), the twelfth NMOS transistor (N12), the thirteenth NMOS transistor (N13), the fourteenth NMOS transistor tube (N14) and the fifteenth NMOS tube (N15), and almost no AC current flows through the fourth NMOS tube (N4), the fifth NMOS tube (N5), the twelfth NMOS tube (N12), the thirteenth NMOS tube tube (N13) as they exhibit high impedance to AC signals. Assuming that the transconductance of the ninth PMOS transistor ( P9 ) is gm, then through the above proportional control, the final transconductance of the operational amplifier in this embodiment is Gm1=7*gm. If the input transistor of the traditional folded transconductance amplifier is twice the size of P9 as a comparison, then its transconductance is Gm2=2*gm. It shows that the transconductance of the amplifier in this embodiment is 3.5 times that of the traditional folded transconductance amplifier, which will significantly improve the bandwidth of the amplifier.

同时,运算放大器的正压摆率SR+可表示为:Meanwhile, the positive slew rate SR + of the op amp can be expressed as:

SR+=(1+n)*Ib/CL SR + =(1+n)*I b /C L

其中,Ib为通过第四PMOS管(P4)电流的一半,CL为放大器两个输出端各自所接的负载电容大小。Wherein, I b is half of the current passing through the fourth PMOS transistor (P4), and CL is the magnitude of the load capacitance connected to the two output terminals of the amplifier respectively.

运算放大器的负压摆率SR-可表示为:The negative slew rate SR- of the operational amplifier can be expressed as:

SR-=(m+3.5)*Ib/CL SR - =(m+3.5)*I b /C L

由此可见,本实施例可以通过更改m的值来调节放大器的压摆率。为了使运算放大器的正压摆率和负压摆率尽可能接近,本发明实施例取n=m+2.5,此时,运算放大器的总压摆率SR可表示为:It can be seen that in this embodiment, the slew rate of the amplifier can be adjusted by changing the value of m. In order to make the positive slew rate and negative slew rate of the operational amplifier as close as possible, the embodiment of the present invention takes n=m+2.5. At this time, the total slew rate SR of the operational amplifier can be expressed as:

SR=(2m+7)*Ib/CL SR=(2m+7)*I b /C L

在本实施例中,取m=5,在CADENCE平台进行SPICE仿真,仿真结果表明,在输出两端各接负载电容CL=40pF时,400μA总偏置电流下(包括偏置电路的电流),单位增益带宽为15.4MHz,直流增益为87.8dB,正压摆率为15.5V·μs^(-1),负压摆率为15.4V·μs^(-1),总压摆率为30.9V·μs^(-1),相位裕度为44°。In the present embodiment, m=5 is taken, and SPICE simulation is carried out on the CADENCE platform. The simulation results show that, when the load capacitance CL=40pF is respectively connected at both ends of the output, under a total bias current of 400 μA (including the current of the bias circuit), The unity gain bandwidth is 15.4MHz, the DC gain is 87.8dB, the positive slew rate is 15.5V·μs^(-1), the negative slew rate is 15.4V·μs^(-1), and the total slew rate is 30.9V ·μs^(-1), the phase margin is 44°.

可以认识到,采用本发明实施例后,通过精心设计各支路晶体管的尺寸,相较于传统的跨导放大器,更充分的利用了各个支路的电流,并通过设计压摆率增强电路,其在放大器的大信号运作期间可显著提高正负压摆率,而在放大器的小信号运作期间其晶体管工作在亚阈值区,几乎不消耗电流,进一步提高了放大器的单位增益带宽和压摆率,从而提高运算放大器的工作速度和输出电流能力,可靠性高,具有广阔的应用前景。It can be recognized that after adopting the embodiment of the present invention, by carefully designing the size of each branch transistor, compared with the traditional transconductance amplifier, the current of each branch is more fully utilized, and by designing the slew rate enhancement circuit, It can significantly increase the positive and negative slew rate during the large-signal operation of the amplifier, and its transistor works in the sub-threshold region during the small-signal operation of the amplifier, which consumes almost no current, further improving the unity-gain bandwidth and slew rate of the amplifier , thereby improving the operating speed and output current capability of the operational amplifier, high reliability, and broad application prospects.

本发明实施例压摆率增强电路在放大器的大信号运作期间可显著提高正负压摆率,而在放大器的小信号运作期间在放大器的小信号运作期间其晶体管工作在亚阈值区,几乎不消耗电流,因此可以在保持低功耗的情况下,提高放大器的单位增益带宽和压摆率,从而提高了运算放大器的工作速度和输出电流能力;本发明实施例提高了高性能开关电容电路的工作速度,降低了功耗,易于推广使用。The slew rate enhancement circuit of the embodiment of the present invention can significantly increase the positive and negative slew rates during the large-signal operation of the amplifier, and its transistors work in the sub-threshold region during the small-signal operation of the amplifier, almost no Therefore, the unity gain bandwidth and slew rate of the amplifier can be improved while maintaining low power consumption, thereby improving the operating speed and output current capability of the operational amplifier; the embodiment of the present invention improves the performance of the high-performance switched capacitor circuit. The working speed reduces power consumption and is easy to popularize and use.

在本说明书的上述描述中,参考术语“一个实施方式/实施例”、“另一实施方式/实施例”或“某些实施方式/实施例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。In the above description of this specification, the description with reference to the terms "one embodiment/example", "another embodiment/example" or "some embodiments/example" means that the description is described in conjunction with the embodiment or example. A particular feature, structure, material, or characteristic is included in at least one embodiment or example of the invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.

尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and variations can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.

以上是对本发明的较佳实施进行了具体说明,但本发明并不限于上述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present invention, but the present invention is not limited to the above-mentioned embodiments, and those skilled in the art can also make various equivalent deformations or replacements without violating the spirit of the present invention. Equivalent modifications or replacements are all within the scope defined by the claims of the present application.

Claims (8)

1.一种压摆率增强的宽带低功耗跨导运算放大器,其特征在于,包括改进型循环折叠跨导运算放大器和压摆率增强电路,所述改进型循环折叠跨导运算放大器包括第三PMOS管、第八PMOS管、第一NMOS管、第四PMOS管、第九PMOS管、第十PMOS管、第十一PMOS管、第十二PMOS管、第五PMOS管、第十三PMOS管、第二NMOS管、第三NMOS管、第四NMOS管、第五NMOS管、第六NMOS管、第十NMOS管、第十一NMOS管、第十二NMOS管、第十三NMOS管、第十四NMOS管以及第十五NMOS管,所述压摆率增强电路包括第一PMOS管、第二PMOS管、第七NMOS管、第八NMOS管、第九NMOS管、第六PMOS管、第七PMOS管、第十六NMOS管、第十七NMOS管以及第十八NMOS管,其中:1. A broadband low-power transconductance operational amplifier with enhanced slew rate is characterized in that it includes an improved loop-folded transconductance operational amplifier and a slew rate enhancement circuit, and the improved loop-folded transconductance operational amplifier includes the first Three PMOS transistors, eighth PMOS transistors, first NMOS transistors, fourth PMOS transistors, ninth PMOS transistors, tenth PMOS transistors, eleventh PMOS transistors, twelfth PMOS transistors, fifth PMOS transistors, thirteenth PMOS transistors tube, the second NMOS tube, the third NMOS tube, the fourth NMOS tube, the fifth NMOS tube, the sixth NMOS tube, the tenth NMOS tube, the eleventh NMOS tube, the twelfth NMOS tube, the thirteenth NMOS tube, The fourteenth NMOS transistor and the fifteenth NMOS transistor, the slew rate enhancement circuit includes a first PMOS transistor, a second PMOS transistor, a seventh NMOS transistor, an eighth NMOS transistor, a ninth NMOS transistor, a sixth PMOS transistor, The seventh PMOS transistor, the sixteenth NMOS transistor, the seventeenth NMOS transistor, and the eighteenth NMOS transistor, wherein: 所述第一PMOS管、所述第二PMOS管、所述第三PMOS管、所述第四PMOS管、所述第五PMOS管、所述第六PMOS管以及所述第七PMOS管的源极均连接到模拟正电源,所述第一PMOS管和所述第二PMOS管的栅极均与所述第七NMOS管的漏极相连,所述第二PMOS管的漏极与差分输出负端、所述第十七NMOS管的漏极、所述第八PMOS管的漏极以及所述第一NMOS管的漏极相连,所述第三PMOS管的栅极连接共模反馈电压,所述第三PMOS管的漏极与所述第八PMOS管的源极相连,所述第八PMOS管的栅极连接P型第一偏置电压,所述第四PMOS管的漏极与所述第九PMOS管、所述第十PMOS管、所述第十一PMOS管以及所述第十二PMOS管的源极相连,所述第四PMOS管的栅极连接P型第二偏置电压,所述第五PMOS管的栅极连接所述共模反馈电压,所述第五PMOS管的漏极连接到所述第十三PMOS管的源极,所述第六PMOS管和所述第七PMOS管的栅极均与所述第十八NMOS管的漏极相连,所述第六PMOS管的漏极与差分输出正端、所述第八NMOS管的漏极、所述第十三PMOS管的漏极以及所述第二NMOS管的漏极相连,所述第一NMOS管的源极与所述第九NMOS管的漏极、所述第十NMOS管的漏极、所述第九PMOS管的漏极、所述第七NMOS管的栅极、所述第八NMOS管的栅极以及所述第九NMOS管的栅极相连,所述第一NMOS管的栅极连接第一N型偏置电压,所述第九PMOS管的栅极和所述第十PMOS管的栅极均与差分输入正端相连,所述第十PMOS管的漏极与所述第五NMOS管的漏极、所述第六NMOS管的漏极、所述第十四NMOS管的栅极以及所述第十五NMOS管的栅极相连,所述第十一PMOS管的漏极与所述第三NMOS管的漏极、所述第四NMOS管的漏极、所述第十NMOS管的栅极以及所述第十一NMOS管的栅极相连,所述第十一PMOS管的栅极和所述第十二PMOS管的栅极相连均与差分输入负端相连,所述第十三PMOS管的栅极连接所述P型第一偏置电压,所述第二NMOS管的源极与所述第十五NMOS管的漏极、所述第十六NMOS管的漏极、所述第十二PMOS管的漏极、所述第十六NMOS管的栅极、所述第十七NMOS管的栅极以及所述第十八NMOS管的栅极相连,所述第二NMOS管的栅极连接所述第一N型偏置电压,所述第三NMOS管的源极与所述第十一NMOS管的漏极相连,所述第四NMOS管的源极与所述第十二NMOS管的漏极相连,所述第五NMOS管的源极与所述第十三NMOS管的漏极相连,所述第六NMOS管的源极与所述第十四NMOS管的漏极相连,所述第三NMOS管、所述第四NMOS管、所述第五NMOS管以及所述第六NMOS管的栅极均连接所述第一N型偏置电压,所述第十二NMOS管和所述第十三NMOS管的栅极均连接第二N型偏置电压,所述第七NMOS管、所述第八NMOS管、所述第九NMOS管、所述第十NMOS管、所述第十一NMOS管、所述第十二NMOS管、所述第十三NMOS管、所述第十四NMOS管、所述第十五NMOS管、所述第十六NMOS管、所述第十七NMOS管以及所述第十八NMOS管的源极均与模拟地相连。Sources of the first PMOS transistor, the second PMOS transistor, the third PMOS transistor, the fourth PMOS transistor, the fifth PMOS transistor, the sixth PMOS transistor, and the seventh PMOS transistor Both poles are connected to the analog positive power supply, the gates of the first PMOS transistor and the second PMOS transistor are connected to the drain of the seventh NMOS transistor, and the drain of the second PMOS transistor is connected to the differential output negative Terminal, the drain of the seventeenth NMOS transistor, the drain of the eighth PMOS transistor, and the drain of the first NMOS transistor are connected, and the gate of the third PMOS transistor is connected to the common-mode feedback voltage, so The drain of the third PMOS transistor is connected to the source of the eighth PMOS transistor, the gate of the eighth PMOS transistor is connected to the P-type first bias voltage, and the drain of the fourth PMOS transistor is connected to the source of the eighth PMOS transistor. The sources of the ninth PMOS transistor, the tenth PMOS transistor, the eleventh PMOS transistor, and the twelfth PMOS transistor are connected, and the gate of the fourth PMOS transistor is connected to a P-type second bias voltage, The gate of the fifth PMOS transistor is connected to the common-mode feedback voltage, the drain of the fifth PMOS transistor is connected to the source of the thirteenth PMOS transistor, and the sixth PMOS transistor and the seventh PMOS transistor are connected to the source of the thirteenth PMOS transistor. The gates of the PMOS transistors are all connected to the drain of the eighteenth NMOS transistor, the drain of the sixth PMOS transistor is connected to the positive terminal of the differential output, the drain of the eighth NMOS transistor, the drain of the thirteenth PMOS transistor The drain of the transistor is connected to the drain of the second NMOS transistor, the source of the first NMOS transistor is connected to the drain of the ninth NMOS transistor, the drain of the tenth NMOS transistor, and the drain of the ninth NMOS transistor. The drain of the PMOS transistor, the gate of the seventh NMOS transistor, the gate of the eighth NMOS transistor, and the gate of the ninth NMOS transistor are connected, and the gate of the first NMOS transistor is connected to the first NMOS transistor. Type bias voltage, the gate of the ninth PMOS transistor and the gate of the tenth PMOS transistor are connected to the positive terminal of the differential input, the drain of the tenth PMOS transistor is connected to the drain of the fifth NMOS transistor electrode, the drain of the sixth NMOS transistor, the gate of the fourteenth NMOS transistor, and the gate of the fifteenth NMOS transistor, and the drain of the eleventh PMOS transistor is connected to the third The drain of the NMOS transistor, the drain of the fourth NMOS transistor, the gate of the tenth NMOS transistor, and the gate of the eleventh NMOS transistor are connected, and the gate of the eleventh PMOS transistor is connected to the gate of the eleventh NMOS transistor. The gate of the twelfth PMOS transistor is connected to the negative terminal of the differential input, the gate of the thirteenth PMOS transistor is connected to the P-type first bias voltage, and the source of the second NMOS transistor is connected to the negative terminal of the differential input. The drain of the fifteenth NMOS transistor, the drain of the sixteenth NMOS transistor, the drain of the twelfth PMOS transistor, the gate of the sixteenth NMOS transistor, the seventeenth NMOS transistor The gate of the eighteenth NMOS transistor is connected to the gate, the gate of the second NMOS transistor is connected to the first N-type bias voltage, and the source of the third NMOS transistor is connected to the tenth NMOS transistor. The drain of an NMOS transistor is connected, the source of the fourth NMOS transistor is connected to the drain of the twelfth NMOS transistor, the source of the fifth NMOS transistor is connected to the drain of the thirteenth NMOS transistor connected, the source of the sixth NMOS transistor is connected to the drain of the fourteenth NMOS transistor, the third NMOS transistor, the fourth NMOS transistor, the fifth NMOS transistor, and the sixth NMOS transistor The gates of the transistors are connected to the first N-type bias voltage, the gates of the twelfth NMOS transistor and the thirteenth NMOS transistor are connected to the second N-type bias voltage, and the seventh NMOS transistor , the eighth NMOS transistor, the ninth NMOS transistor, the tenth NMOS transistor, the eleventh NMOS transistor, the twelfth NMOS transistor, the thirteenth NMOS transistor, the tenth NMOS transistor The sources of the four NMOS transistors, the fifteenth NMOS transistor, the sixteenth NMOS transistor, the seventeenth NMOS transistor and the eighteenth NMOS transistor are all connected to analog ground. 2.根据权利要求1所述的一种压摆率增强的宽带低功耗跨导运算放大器,其特征在于:所述第一NMOS管、所述第二NMOS管、所述第三NMOS管、所述第四NMOS管、所述第五NMOS管、所述第六NMOS管、所述第七NMOS管、所述第八NMOS管、所述第九NMOS管、所述第十NMOS管、所述第十一NMOS管、所述第十二NMOS管、所述第十三NMOS管、所述第十四NMOS管、所述第十五NMOS管、所述第十六NMOS管、所述第十七NMOS管以及所述第十八NMOS管的衬底均与所述模拟地相连,所述第一PMOS管、所述第二PMOS管、所述第三PMOS管、所述第四PMOS管、所述第五PMOS管、所述第六PMOS管、所述第七PMOS管、所述第八PMOS管、所述第九PMOS管、所述第十PMOS管、所述第十一PMOS管、所述第十二PMOS管以及所述第十三PMOS管的衬底均与所述模拟正电源相连。2. A kind of slew rate enhanced broadband low-power transconductance operational amplifier according to claim 1, characterized in that: said first NMOS transistor, said second NMOS transistor, said third NMOS transistor, The fourth NMOS transistor, the fifth NMOS transistor, the sixth NMOS transistor, the seventh NMOS transistor, the eighth NMOS transistor, the ninth NMOS transistor, the tenth NMOS transistor, the The eleventh NMOS transistor, the twelfth NMOS transistor, the thirteenth NMOS transistor, the fourteenth NMOS transistor, the fifteenth NMOS transistor, the sixteenth NMOS transistor, the Substrates of the seventeenth NMOS transistor and the eighteenth NMOS transistor are connected to the analog ground, and the first PMOS transistor, the second PMOS transistor, the third PMOS transistor, and the fourth PMOS transistor , the fifth PMOS transistor, the sixth PMOS transistor, the seventh PMOS transistor, the eighth PMOS transistor, the ninth PMOS transistor, the tenth PMOS transistor, and the eleventh PMOS transistor , the substrates of the twelfth PMOS transistor and the thirteenth PMOS transistor are connected to the analog positive power supply. 3.根据权利要求2所述的一种压摆率增强的宽带低功耗跨导运算放大器,其特征在于:所述模拟地的电位为0V,所述模拟正电源的电位为3.3V。3. A kind of slew rate enhanced broadband low-power transconductance operational amplifier according to claim 2, characterized in that: the potential of the analog ground is 0V, and the potential of the analog positive power supply is 3.3V. 4.根据权利要求1所述的一种压摆率增强的宽带低功耗跨导运算放大器,其特征在于:所述第九PMOS管、所述第十PMOS管、所述第十一PMOS管以及所述第十二PMOS管的晶体管尺寸相同,所述第三NMOS管、所述第四NMOS管、所述第五NMOS管以及所述第六NMOS管的晶体管尺寸相同。4. The wideband low-power transconductance operational amplifier with enhanced slew rate according to claim 1, characterized in that: the ninth PMOS transistor, the tenth PMOS transistor, and the eleventh PMOS transistor And the transistor size of the twelfth PMOS transistor is the same, and the transistor size of the third NMOS transistor, the fourth NMOS transistor, the fifth NMOS transistor, and the sixth NMOS transistor are the same. 5.根据权利要求1所述的一种压摆率增强的宽带低功耗跨导运算放大器,其特征在于:所述第九NMOS管、所述第八NMOS管以及所述第七NMOS管的晶体管尺寸的比例为1:m:n,所述第十六NMOS管、所述第十七NMOS管以及所述第十八NMOS管的晶体管尺寸的比例为1:m:n,n=m+2.5,所述第九NMOS管和所述第十六NMOS管的晶体管尺寸相同。5. The wideband low-power transconductance operational amplifier with enhanced slew rate according to claim 1, characterized in that: the ninth NMOS transistor, the eighth NMOS transistor and the seventh NMOS transistor The ratio of transistor size is 1:m:n, the ratio of transistor size of the sixteenth NMOS transistor, the seventeenth NMOS transistor and the eighteenth NMOS transistor is 1:m:n, n=m+ 2.5. The ninth NMOS transistor and the sixteenth NMOS transistor have the same transistor size. 6.根据权利要求1所述的一种压摆率增强的宽带低功耗跨导运算放大器,其特征在于:所述第一PMOS管、所述第二PMOS管、所述第六PMOS管以及所述第七PMOS管的晶体管尺寸相同。6. A kind of slew rate enhanced broadband low-power transconductance operational amplifier according to claim 1, characterized in that: said first PMOS transistor, said second PMOS transistor, said sixth PMOS transistor and The transistor size of the seventh PMOS transistor is the same. 7.根据权利要求1所述的一种压摆率增强的宽带低功耗跨导运算放大器,其特征在于:所述第十NMOS管、所述第十一NMOS管、所述第十二NMOS管的晶体管尺寸的比例为6:1:1,所述第十五NMOS管、所述第十四NMOS管、所述第十三NMOS管的晶体管尺寸的比例为6:1:1,所述第十二NMOS管和所述第十五NMOS管的晶体管尺寸相同。7. A kind of slew rate enhanced broadband low-power transconductance operational amplifier according to claim 1, characterized in that: said tenth NMOS transistor, said eleventh NMOS transistor, said twelfth NMOS transistor The transistor size ratio of the tubes is 6:1:1, the ratio of the transistor sizes of the fifteenth NMOS transistor, the fourteenth NMOS transistor, and the thirteenth NMOS transistor is 6:1:1, and the The transistor size of the twelfth NMOS transistor is the same as that of the fifteenth NMOS transistor. 8.根据权利要求1至7中任一项所述的一种压摆率增强的宽带低功耗跨导运算放大器,其特征在于:所述共模反馈电压通过开关电容型共模反馈电路产生。8. A kind of slew rate enhanced broadband low-power transconductance operational amplifier according to any one of claims 1 to 7, characterized in that: the common mode feedback voltage is generated by a switched capacitor type common mode feedback circuit .
CN202310031887.XA 2023-01-10 2023-01-10 Broadband low-power-consumption transconductance operational amplifier with enhanced slew rate Pending CN116015217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310031887.XA CN116015217A (en) 2023-01-10 2023-01-10 Broadband low-power-consumption transconductance operational amplifier with enhanced slew rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310031887.XA CN116015217A (en) 2023-01-10 2023-01-10 Broadband low-power-consumption transconductance operational amplifier with enhanced slew rate

Publications (1)

Publication Number Publication Date
CN116015217A true CN116015217A (en) 2023-04-25

Family

ID=86020955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310031887.XA Pending CN116015217A (en) 2023-01-10 2023-01-10 Broadband low-power-consumption transconductance operational amplifier with enhanced slew rate

Country Status (1)

Country Link
CN (1) CN116015217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118449357A (en) * 2024-04-24 2024-08-06 江苏帝奥微电子股份有限公司 A power generation circuit for high voltage chopper switches with wide common mode input range

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118449357A (en) * 2024-04-24 2024-08-06 江苏帝奥微电子股份有限公司 A power generation circuit for high voltage chopper switches with wide common mode input range
CN118449357B (en) * 2024-04-24 2024-11-19 江苏帝奥微电子股份有限公司 Power supply generation circuit applied to high-voltage chopper switch with wide common-mode input range

Similar Documents

Publication Publication Date Title
CN106788434B (en) Source follower buffer circuit
CN103095234B (en) A Fully Differential Operational Transconductance Amplifier
CN101662264B (en) A Low Power and Large Swing Switching Operational Amplifier
CN103546127A (en) A low-power high-speed comparator with offset storage
Kun et al. A high-performance folded cascode amplifier
CN101741328A (en) Circular Folded Transconductance Operational Amplifier with Complementary Inputs
CN109379064A (en) A kind of current comparator
CN107092295A (en) A kind of high Slew Rate fast transient response LDO circuit
CN106067822B (en) A High Speed and High Precision CMOS Latch Comparator
CN111262537B (en) A transconductance amplifier
CN105406826A (en) Three-stage operational amplifier suitable for wide capacitive load range
CN116015217A (en) Broadband low-power-consumption transconductance operational amplifier with enhanced slew rate
CN102075151A (en) Complementary circulation folding gain bootstrapping operational amplifier circuit with preamplifier
CN105162424B (en) A kind of low-power consumption linear transconductance error amplifier
CN104702268B (en) The circuit that voltage buffer circuit and driving load with it switch with sequential
CN110798203A (en) High Linearity Unity Gain Voltage Buffer in Nanoscale CMOS Process
CN111884656B (en) Comparator and analog-to-digital converter
CN102355212A (en) Rail-to-rail input stage with current compensation function
CN101860334A (en) A Circulating Current Transconductance Operational Amplifier with Separated DC and AC Paths
CN104104229A (en) Quiescent current control device
CN110224700A (en) A kind of high speed complementation type dual power supply operational amplifier
CN117767896A (en) Amplifying circuit and comparator
CN111384940A (en) A High Linearity Wide Swing CMOS Voltage Follower
CN102098014A (en) Complementary circularly-folded gain bootstrap transconductance operation amplifier with preamplifier
CN210724750U (en) High Linearity Unity Gain Voltage Buffer in Nanoscale CMOS Process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination