CN102075151A - Complementary circulation folding gain bootstrapping operational amplifier circuit with preamplifier - Google Patents
Complementary circulation folding gain bootstrapping operational amplifier circuit with preamplifier Download PDFInfo
- Publication number
- CN102075151A CN102075151A CN 201010618392 CN201010618392A CN102075151A CN 102075151 A CN102075151 A CN 102075151A CN 201010618392 CN201010618392 CN 201010618392 CN 201010618392 A CN201010618392 A CN 201010618392A CN 102075151 A CN102075151 A CN 102075151A
- Authority
- CN
- China
- Prior art keywords
- transistor
- nmos transistor
- pmos
- nmos
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Amplifiers (AREA)
Abstract
本发明公开了一种带有预放大器的互补循环折叠增益自举运算放大器电路,属于运算放大器技术领域。其具有由N型晶体管(N1、N2、N3、N4)构成的预放大器,通过P型晶体管(P1、P2、P3、P4)和N型晶体管(N16、N17、N18、N19)互补输入,以及采用循环折叠增益自举跨导运算放大器结构来提高跨导运算放大器的单位增益带宽。本电路具有高单位增益带宽和低功耗的特点,符合集成电路目前研究和发展的方向。
The invention discloses a complementary loop folding gain bootstrap operational amplifier circuit with a preamplifier, which belongs to the technical field of operational amplifiers. It has a pre-amplifier consisting of N-type transistors (N1, N2, N3, N4), complementary inputs via P-type transistors (P1, P2, P3, P4) and N-type transistors (N16, N17, N18, N19), and The loop folding gain bootstrap transconductance operational amplifier structure is adopted to improve the unity-gain bandwidth of the transconductance operational amplifier. This circuit has the characteristics of high unity gain bandwidth and low power consumption, which is in line with the current research and development direction of integrated circuits.
Description
技术领域technical field
本发明涉及微电子学与固体电子学领域,涉及一种运算放大器,具体为一种带有预放大器的互补循环折叠增益自举运算放大器电路。The invention relates to the fields of microelectronics and solid electronics, and relates to an operational amplifier, in particular to a complementary loop folding gain bootstrap operational amplifier circuit with a preamplifier.
背景技术Background technique
运算放大器是很多模拟电路最重要的模块之一,广泛应用于模数转换电路,滤波器等模拟信号处理电路中。通常决定了高性能开关电容电路能够达到的精度、速度和功耗等指标。在开关电容电路中,负载通常为纯电容性质,此时单级运算放大器(OTA)功耗优于多级的运算放大器,并且带有增益自举结构的单级运算放大器可以提供非常高的增益。因此,传统的折叠式增益自举OTA放大器获得了广泛的应用。但是,传统的折叠式增益自举OTA放大器具有速度慢、功耗大等缺点。一方面,集成电路的工作速度日益提高;另一方面,目前消费电子领域,以电池为电力的移动便携设备要求电路的功耗尽可能低,从而延长移动便携设备的使用时间。The operational amplifier is one of the most important modules of many analog circuits, and is widely used in analog signal processing circuits such as analog-to-digital conversion circuits and filters. It usually determines the accuracy, speed and power consumption that the high-performance switched capacitor circuit can achieve. In a switched capacitor circuit, the load is usually purely capacitive. At this time, the power consumption of a single-stage operational amplifier (OTA) is better than that of a multi-stage operational amplifier, and a single-stage operational amplifier with a gain bootstrap structure can provide very high gain. . Therefore, the traditional folded gain bootstrap OTA amplifier has been widely used. However, traditional folded-gain bootstrap OTA amplifiers have disadvantages such as slow speed and high power consumption. On the one hand, the working speed of integrated circuits is increasing day by day; on the other hand, in the field of consumer electronics, mobile portable devices powered by batteries require the power consumption of circuits to be as low as possible, so as to prolong the use time of mobile portable devices.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
为了克服现有折叠式增益自举OTA速度慢、功耗大的不足,本发明提供了一种带有预放大器的互补循环折叠增益自举OTA,要解决的问题在于,提高增益自举OTA的单位增益带宽GBW,以提高其工作速度,并降低功耗。In order to overcome the shortcomings of the existing folded gain bootstrap OTA, such as slow speed and large power consumption, the present invention provides a complementary loop folded gain bootstrap OTA with a pre-amplifier. The problem to be solved is to improve the gain bootstrap OTA Unity gain bandwidth GBW to increase its operating speed and reduce power consumption.
(二)技术方案(2) Technical solutions
为解决上述技术问题,本发明提供了一种带有预放大器的互补循环折叠增益自举运算放大器电路,包括:预放大器电路,P型互补输入支路以及N型互补输入支路,其中:In order to solve the above-mentioned technical problems, the invention provides a kind of complementary loop folding gain bootstrap operational amplifier circuit with pre-amplifier, comprising: pre-amplifier circuit, P-type complementary input branch and N-type complementary input branch, wherein:
所述预放大器电路包括第一NMOS晶体管N1、第二NMOS管N2、第三NMOS管N3、第四NMOS管N4,和第五NMOS管N5,其中:The pre-amplifier circuit includes a first NMOS transistor N1, a second NMOS transistor N2, a third NMOS transistor N3, a fourth NMOS transistor N4, and a fifth NMOS transistor N5, wherein:
第五NMOS管N5源极接地,栅极接N型第一偏置电压Vbn1;第一NMOS管N1的栅极接第一全差分信号VINN;第二NMOS管N2的栅极接第二全差分信号VINP;该第一NMOS管N1的源极与第二NMOS管N2的源极相连后接所述第五NMOS管N5的漏极;第三NMOS管N3、第四NMOS管N4两者的栅极相连后接N型第零偏置电压Vbn0,两者的漏极相连后接电源电压VDD;The source of the fifth NMOS transistor N5 is grounded, and the gate is connected to the N-type first bias voltage Vbn1; the gate of the first NMOS transistor N1 is connected to the first full differential signal VINN; the gate of the second NMOS transistor N2 is connected to the second full differential signal Signal VINP; the source of the first NMOS transistor N1 is connected to the source of the second NMOS transistor N2 and then connected to the drain of the fifth NMOS transistor N5; the gates of the third NMOS transistor N3 and the fourth NMOS transistor N4 After the poles are connected, the N-type zero bias voltage Vbn0 is connected, and the drains of the two are connected to the power supply voltage VDD;
所述P型互补输入支路包括:第一PMOS管P1、第二PMOS管P2、第三PMOS管P3和第四PMOS管P4,其中:该第一PMOS管P1、第二PMOS管P2两者的栅极连接后接所述第一全差分信号VINN;该第三PMOS管P3、第四PMOS管P4两者的栅极连接后接所述第二全差分信号VINP;The P-type complementary input branch includes: a first PMOS transistor P1, a second PMOS transistor P2, a third PMOS transistor P3, and a fourth PMOS transistor P4, wherein: both the first PMOS transistor P1 and the second PMOS transistor P2 The gate of the gate is connected to the first full differential signal VINN; the gates of the third PMOS transistor P3 and the fourth PMOS transistor P4 are connected to the second full differential signal VINP;
所述N型互补输入支路包括:第十六NMOS管N16、第十七NMOS管N17、第十八NMOS管N18和第十九NMOS管N19,其中:第十六NMOS晶体管N16、第十七NMOS管N17两者的栅极互连后接所述第一全差分信号VINN;第十八NMOS管N18、第十九NMOS管N19两者的栅极互连后接所述第二全差分信号VINP。The N-type complementary input branch includes: a sixteenth NMOS transistor N16, a seventeenth NMOS transistor N17, an eighteenth NMOS transistor N18, and a nineteenth NMOS transistor N19, wherein: the sixteenth NMOS transistor N16, the seventeenth NMOS transistor N19 The gates of the NMOS transistors N17 and N17 are interconnected and then connected to the first full differential signal VINN; the gates of the eighteenth NMOS transistor N18 and the nineteenth NMOS transistor N19 are connected and then connected to the second full differential signal VINP.
其中,所述电路还包括:与所述P型互补输入支路相连的P型偏置电压晶体管部分、P型偏置尾电流晶体管对部分、P型共源共栅晶体管部分以及和所述P型共源共栅晶体管部分相连的第一运算放大器;其中,Wherein, the circuit further includes: a P-type bias voltage transistor part connected to the P-type complementary input branch, a P-type bias tail current transistor pair part, a P-type cascode transistor part, and the P-type A first operational amplifier partially connected to a type cascode transistor; where,
所述P型偏置电压晶体管部分包括第五PMOS管P5,所述第五PMOS管P5的源极接所述电源电压VDD,栅极接P型第一偏置电压Vbp1,漏极同时与所述第一到第四共四个PMOS管P1~P4的源极相连;The P-type bias voltage transistor part includes a fifth PMOS transistor P5, the source of the fifth PMOS transistor P5 is connected to the power supply voltage VDD, the gate is connected to the P-type first bias voltage Vbp1, and the drain is connected to the first P-type bias voltage Vbp1 at the same time. The sources of the first to fourth four PMOS transistors P1-P4 are connected;
所述P型偏置尾电流晶体管部分包括:第六NMOS管N6、第七NMOS管N7、第八NMOS管N8和第九NMOS管M9,其中:所述第六到第九共四个NMOS管N6~N9的源极都接地;所述第六NMOS管N6、第七NMOS管N7两者的栅极互连后接所述第三PMOS管P3的漏极;所述第八NMOS管N8、第九NMOS管N9两者的栅极互连后接所述第二PMOS管P2的漏极;所述第六NMOS管N6、第一PMOS管P1两者的漏极相连;The P-type bias tail current transistor part includes: a sixth NMOS transistor N6, a seventh NMOS transistor N7, an eighth NMOS transistor N8, and a ninth NMOS transistor M9, wherein: the sixth to ninth NMOS transistors are four in total The sources of N6-N9 are all grounded; the gates of the sixth NMOS transistor N6 and the seventh NMOS transistor N7 are interconnected and then connected to the drain of the third PMOS transistor P3; the eighth NMOS transistor N8, The gates of the ninth NMOS transistor N9 are connected to the drain of the second PMOS transistor P2; the drains of the sixth NMOS transistor N6 and the first PMOS transistor P1 are connected;
所述P型共源共栅晶体管对部分包括:第十NMOS管N10、第十一NMOS管N11、第十二NMOS管N12和第十三NMOS管N13,其中:第十NMOS管N10的源极与所述第六NMOS管N6的漏极相连,第十一NMOS管N11的源极与所述第九NMOS管N9的漏极相连,第十二NMOS管N12的源极和所述第七晶体管N7的漏极相连,第十三NMOS管N13的源极和所述第八NMOS管N8的漏极相连,第十二NMOS管N12的漏极和所述第三PMOS管P3的漏极相连,第十三NMOS管N13的漏极和所述第二PMOS管P2的漏极相连,第十二NMOS管N12、第十三NMOS管N13两者的栅极互连后接N型第二偏置电压Vbn2;The P-type cascode transistor pair includes: the tenth NMOS transistor N10, the eleventh NMOS transistor N11, the twelfth NMOS transistor N12, and the thirteenth NMOS transistor N13, wherein: the source of the tenth NMOS transistor N10 connected to the drain of the sixth NMOS transistor N6, the source of the eleventh NMOS transistor N11 is connected to the drain of the ninth NMOS transistor N9, the source of the twelfth NMOS transistor N12 is connected to the seventh transistor The drain of N7 is connected, the source of the thirteenth NMOS transistor N13 is connected to the drain of the eighth NMOS transistor N8, the drain of the twelfth NMOS transistor N12 is connected to the drain of the third PMOS transistor P3, The drain of the thirteenth NMOS transistor N13 is connected to the drain of the second PMOS transistor P2; voltage Vbn2;
所述第一运算放大器的电源电压正端接所述第六PMOS管P6的漏极,电源电压负端接所述第九PMOS管P9的漏极,正输出端将第一输出信号POUTP至所述第十五PMOS管P15的栅极,负输出端输出第二输出信号POUTN至所述第十四PMOS管P14的栅极,第一偏置电压端PVCM接N型偏置电压。The positive terminal of the power supply voltage of the first operational amplifier is connected to the drain of the sixth PMOS transistor P6, the negative terminal of the power supply voltage is connected to the drain of the ninth PMOS transistor P9, and the positive output terminal connects the first output signal POUTP to the drain of the sixth PMOS transistor P6. The gate of the fifteenth PMOS transistor P15, the negative output terminal outputs the second output signal POUTN to the gate of the fourteenth PMOS transistor P14, and the first bias voltage terminal PVCM is connected to the N-type bias voltage.
其中,所述电路还包括:Wherein, the circuit also includes:
与所述N型互补输入支路相连的N型偏置电压晶体管部分、N型偏置尾电流晶体管部分、N型共源共栅晶体管部分以及和所述N型共源共栅晶体管部分相连的第二运算放大器;The N-type bias voltage transistor part connected to the N-type complementary input branch, the N-type bias tail current transistor part, the N-type cascode transistor part, and the N-type cascode transistor part connected second operational amplifier;
所述N型偏置电压晶体管部分包括第二十NMOS管N20,所述第二十NMOS管N20的源极接地,漏极同时与所述第十六到第十九共四个NMOS管N16~N19的源极相连,该第二十NMOS管N20的栅极接共模控制信号VCMFB;The N-type bias voltage transistor part includes a twentieth NMOS transistor N20, the source of the twentieth NMOS transistor N20 is grounded, and the drain is simultaneously connected to the sixteenth to nineteenth NMOS transistors N16-N16. The source of N19 is connected, and the gate of the twentieth NMOS transistor N20 is connected to the common mode control signal VCMFB;
所述N型偏置尾电流晶体管部分包括:第六PMOS管P6、第七PMOS管P7、第八PMOS管P8和第九PMOS管P9,其中,第六至第九共四个PMOS管P6~P9的各源极互连后接所述电源电压VDD;第六PMOS管P6、第七PMOS管P7两者的栅极互连后接所述第十八NMOS管N18的漏极;第八PMOS管P8、第九PMOS管P9两者的栅极互连后接所述第七NMOS管N7的漏极;第六PMOS管P6的漏极、第十六MOS管N16两者的漏极相连;第九PMOS管P9、第十九NMOS管N19两者的漏极相连;The N-type bias tail current transistor part includes: a sixth PMOS transistor P6, a seventh PMOS transistor P7, an eighth PMOS transistor P8, and a ninth PMOS transistor P9, wherein there are four PMOS transistors P6 to P9 in total from the sixth to the ninth The sources of P9 are connected to the power supply voltage VDD; the gates of the sixth PMOS transistor P6 and the seventh PMOS transistor P7 are connected to the drain of the eighteenth NMOS transistor N18; the eighth PMOS The gates of the transistor P8 and the ninth PMOS transistor P9 are interconnected and then connected to the drain of the seventh NMOS transistor N7; the drains of the sixth PMOS transistor P6 and the drains of the sixteenth MOS transistor N16 are connected; The drains of the ninth PMOS transistor P9 and the nineteenth NMOS transistor N19 are connected;
所述N型共源共栅晶体管部分包括:第十二PMOS管P12、第十三PMOS管P13、第十四PMOS管P14、和第十五PMOS管P15,其中,第十二PMOS管P12、第十三PMOS管P13两者的栅极互连后接P型第二偏置电压Vbp2;第十二PMOS管P12的源极与第七PMOS管P7的漏极相连,而该第十二PMOS管P12的漏极与所述第十八NMOS管N18的漏极相连,第十三PMOS管P13的源极与第八PMOS管P8的漏极相连,该第十三PMOS管P13的漏极与所述第十七NMOS管N17的漏极相连,第十四PMOS管P14的源极与第六PMOS管P6的漏极相连,而该第十四PMOS管P14的漏极与所述第十NMOS管N10的漏极相连后输出第一差分信号VOUTP,第十五PMOS管P15的源极与第九PMOS管P9的漏极相连,而该第十五PMOS管P15的漏极与所述第十一NMOS管N11的漏极相连后输出第二差分信号VOUTN;The N-type cascode transistor part includes: a twelfth PMOS transistor P12, a thirteenth PMOS transistor P13, a fourteenth PMOS transistor P14, and a fifteenth PMOS transistor P15, wherein the twelfth PMOS transistor P12, The gates of the thirteenth PMOS transistor P13 are connected to the second P-type bias voltage Vbp2; the source of the twelfth PMOS transistor P12 is connected to the drain of the seventh PMOS transistor P7, and the twelfth PMOS transistor P12 The drain of the transistor P12 is connected to the drain of the eighteenth NMOS transistor N18, the source of the thirteenth PMOS transistor P13 is connected to the drain of the eighth PMOS transistor P8, and the drain of the thirteenth PMOS transistor P13 is connected to the drain of the eighth PMOS transistor P8. The drain of the seventeenth NMOS transistor N17 is connected, the source of the fourteenth PMOS transistor P14 is connected to the drain of the sixth PMOS transistor P6, and the drain of the fourteenth PMOS transistor P14 is connected to the tenth NMOS transistor P14. The drain of the transistor N10 is connected to output the first differential signal VOUTP, the source of the fifteenth PMOS transistor P15 is connected to the drain of the ninth PMOS transistor P9, and the drain of the fifteenth PMOS transistor P15 is connected to the tenth PMOS transistor P15. The drains of an NMOS transistor N11 are connected to output a second differential signal VOUTN;
所述第二运算放大器的电源电压负端接第十一NMOS管N11的源极,电源电压正端接第十NMOS管N10的源极,正输出端输出第三输出信号NOUTP至所述第十一PMOS管P11的栅极,而负输出端输出第四输出信号NOUTN至第十NMOS管N10的栅极,第二偏置电压端NVCM接P型偏置电压。The negative terminal of the power supply voltage of the second operational amplifier is connected to the source of the eleventh NMOS transistor N11, the positive terminal of the power supply voltage is connected to the source of the tenth NMOS transistor N10, and the positive output terminal outputs the third output signal NOUTP to the tenth NMOS transistor N10. The gate of a PMOS transistor P11, and the negative output terminal outputs the fourth output signal NOUTN to the gate of the tenth NMOS transistor N10, and the second bias voltage terminal NVCM is connected to the P-type bias voltage.
(三)有益效果(3) Beneficial effects
本发明采用了N型MOS管与P型MOS管组成的互补输入支路,并且N型互补输入支路与P型互补输入支路的共源共栅晶体管N10、N11和P14、P15共用了相同的电流,因此更充分的利用了的各个支路的电流,有效地提高了运放的单位增益带宽GBW,提高了运放的工作速度。并且由于增加了共源共栅自举电路Nboost和Pboost,提高了电路的增益。仿真结果表明,该电路提高了单位增益带宽和直流增益。因此,使用本发明可以提高诸如高性能模数转换器的高性能开关电容的速度,降低功耗。The present invention adopts the complementary input branch composed of N-type MOS transistor and P-type MOS transistor, and the cascode transistors N10, N11 and P14, P15 of the N-type complementary input branch and the P-type complementary input branch share the same Therefore, the current of each branch is more fully utilized, which effectively improves the unit gain bandwidth GBW of the operational amplifier and improves the operating speed of the operational amplifier. And because the cascode bootstrap circuit Nboost and Pboost are added, the gain of the circuit is improved. Simulation results show that the circuit improves unity-gain bandwidth and DC gain. Therefore, using the present invention can increase the speed of high-performance switched capacitors such as high-performance analog-to-digital converters and reduce power consumption.
附图说明Description of drawings
图1是本发明的电路结构图;Fig. 1 is a circuit structure diagram of the present invention;
图2是Pboost电路结构图;Fig. 2 is a Pboost circuit structure diagram;
图3是Nboost电路结构图。Fig. 3 is the structure diagram of Nboost circuit.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细说明。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings and examples. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
本发明属于微电子学与固体电子学领域的超大规模集成电路设计,涉及一种增益自举OTA电路,可以用于模数转换电路,滤波器等模拟信号处理电路的设计,例如可以用于诸如高速模数转换器等高性能开关电容电路中高速增益自举运算放大器的设计。The invention belongs to the design of ultra-large-scale integrated circuits in the field of microelectronics and solid-state electronics, and relates to a gain bootstrap OTA circuit, which can be used in the design of analog signal processing circuits such as analog-to-digital conversion circuits and filters. Design of high-speed gain bootstrap operational amplifiers in high-performance switched capacitor circuits such as high-speed analog-to-digital converters.
本发明的电路结构参见图1,本发明提供了一种带有预放大器的互补循环折叠增益自举运算放大器电路,包括:预放大器电路,P型互补输入支路以及N型互补输入支路,其中:The circuit structure of the present invention is referring to Fig. 1, and the present invention provides a kind of complementary loop folding gain bootstrap operational amplifier circuit with preamplifier, comprises: preamplifier circuit, P-type complementary input branch and N-type complementary input branch, in:
所述预放大器电路包括第一NMOS晶体管N1、第二NMOS管N2、第三NMOS管N3、第四NMOS管N4,和第五NMOS管N5,其中:The pre-amplifier circuit includes a first NMOS transistor N1, a second NMOS transistor N2, a third NMOS transistor N3, a fourth NMOS transistor N4, and a fifth NMOS transistor N5, wherein:
第五NMOS管N5源极接地,栅极接N型第一偏置电压Vbn1;第一NMOS管N1的栅极接第一全差分信号VINN;第二NMOS管N2的栅极接第二全差分信号VINP;该第一NMOS管N1的源极与第二NMOS管N2的源极相连后接所述第五NMOS管N5的漏极;第三NMOS管N3、第四NMOS管N4两者的栅极相连后接N型第零偏置电压Vbn0,两者的漏极相连后接电源电压VDD;The source of the fifth NMOS transistor N5 is grounded, and the gate is connected to the N-type first bias voltage Vbn1; the gate of the first NMOS transistor N1 is connected to the first full differential signal VINN; the gate of the second NMOS transistor N2 is connected to the second full differential signal Signal VINP; the source of the first NMOS transistor N1 is connected to the source of the second NMOS transistor N2 and then connected to the drain of the fifth NMOS transistor N5; the gates of the third NMOS transistor N3 and the fourth NMOS transistor N4 After the poles are connected, the N-type zero bias voltage Vbn0 is connected, and the drains of the two are connected to the power supply voltage VDD;
所述P型互补输入支路包括:第一PMOS管P1、第二PMOS管P2、第三PMOS管P3和第四PMOS管P4,其中:该第一PMOS管P1、第二PMOS管P2两者的栅极连接后接所述第一全差分信号VINN;该第三PMOS管P3、第四PMOS管P4两者的栅极连接后接所述第二全差分信号VINP;The P-type complementary input branch includes: a first PMOS transistor P1, a second PMOS transistor P2, a third PMOS transistor P3, and a fourth PMOS transistor P4, wherein: both the first PMOS transistor P1 and the second PMOS transistor P2 The gate of the gate is connected to the first full differential signal VINN; the gates of the third PMOS transistor P3 and the fourth PMOS transistor P4 are connected to the second full differential signal VINP;
所述N型互补输入支路包括:第十六NMOS管N16、第十七NMOS管N17、第十八NMOS管N18和第十九NMOS管N19,其中:第十六NMOS晶体管N16、第十七NMOS管N17两者的栅极互连后接所述第一全差分信号VINN;第十八NMOS管N18、第十九NMOS管N19两者的栅极互连后接所述第二全差分信号VINP。The N-type complementary input branch includes: a sixteenth NMOS transistor N16, a seventeenth NMOS transistor N17, an eighteenth NMOS transistor N18, and a nineteenth NMOS transistor N19, wherein: the sixteenth NMOS transistor N16, the seventeenth NMOS transistor N19 The gates of the NMOS transistors N17 and N17 are interconnected and then connected to the first full differential signal VINN; the gates of the eighteenth NMOS transistor N18 and the nineteenth NMOS transistor N19 are connected and then connected to the second full differential signal VINP.
其中,所述电路还包括:与所述P型互补输入支路相连的P型偏置电压晶体管部分、P型偏置尾电流晶体管对部分、P型共源共栅晶体管部分以及和所述P型共源共栅晶体管部分相连的第一运算放大器;其中,Wherein, the circuit further includes: a P-type bias voltage transistor part connected to the P-type complementary input branch, a P-type bias tail current transistor pair part, a P-type cascode transistor part, and the P-type A first operational amplifier partially connected to a type cascode transistor; where,
所述P型偏置电压晶体管部分包括第五PMOS管P5,所述第五PMOS管P5的源极接所述电源电压VDD,栅极接P型第一偏置电压Vbp1,漏极同时与所述第一到第四共四个PMOS管P1~P4的源极相连;The P-type bias voltage transistor part includes a fifth PMOS transistor P5, the source of the fifth PMOS transistor P5 is connected to the power supply voltage VDD, the gate is connected to the P-type first bias voltage Vbp1, and the drain is connected to the first P-type bias voltage Vbp1 at the same time. The sources of the first to fourth four PMOS transistors P1-P4 are connected;
所述P型偏置尾电流晶体管部分包括:第六NMOS管N6、第七NMOS管N7、第八NMOS管N8和第九NMOS管M9,其中:所述第六到第九共四个NMOS管N6~N9的源极都接地;所述第六NMOS管N6、第七NMOS管N7两者的栅极互连后接所述第三PMOS管P3的漏极;所述第八NMOS管N8、第九NMOS管N9两者的栅极互连后接所述第二PMOS管P2的漏极;所述第六NMOS管N6、第一PMOS管P1两者的漏极相连;The P-type bias tail current transistor part includes: a sixth NMOS transistor N6, a seventh NMOS transistor N7, an eighth NMOS transistor N8, and a ninth NMOS transistor M9, wherein: the sixth to ninth NMOS transistors are four in total The sources of N6-N9 are all grounded; the gates of the sixth NMOS transistor N6 and the seventh NMOS transistor N7 are interconnected and then connected to the drain of the third PMOS transistor P3; the eighth NMOS transistor N8, The gates of the ninth NMOS transistor N9 are connected to the drain of the second PMOS transistor P2; the drains of the sixth NMOS transistor N6 and the first PMOS transistor P1 are connected;
所述P型共源共栅晶体管对部分包括:第十NMOS管N10、第十一NMOS管N11、第十二NMOS管N12和第十三NMOS管N13,其中:第十NMOS管N10的源极与所述第六NMOS管N6的漏极相连,第十一NMOS管N11的源极与所述第九NMOS管N9的漏极相连,第十二NMOS管N12的源极和所述第七晶体管N7的漏极相连,第十三NMOS管N13的源极和所述第八NMOS管N8的漏极相连,第十二NMOS管N12的漏极和所述第三PMOS管P3的漏极相连,第十三NMOS管N13的漏极和所述第二PMOS管P2的漏极相连,第十二NMOS管N12、第十三NMOS管N13两者的栅极互连后接N型第二偏置电压Vbn2;The P-type cascode transistor pair includes: the tenth NMOS transistor N10, the eleventh NMOS transistor N11, the twelfth NMOS transistor N12, and the thirteenth NMOS transistor N13, wherein: the source of the tenth NMOS transistor N10 connected to the drain of the sixth NMOS transistor N6, the source of the eleventh NMOS transistor N11 is connected to the drain of the ninth NMOS transistor N9, the source of the twelfth NMOS transistor N12 is connected to the seventh transistor The drain of N7 is connected, the source of the thirteenth NMOS transistor N13 is connected to the drain of the eighth NMOS transistor N8, the drain of the twelfth NMOS transistor N12 is connected to the drain of the third PMOS transistor P3, The drain of the thirteenth NMOS transistor N13 is connected to the drain of the second PMOS transistor P2; voltage Vbn2;
所述第一运算放大器的电源电压正端接所述第六PMOS管P6的漏极,电源电压负端接所述第九PMOS管P9的漏极,正输出端将第一输出信号POUTP至所述第十五PMOS管P15的栅极,负输出端输出第二输出信号POUTN至所述第十四PMOS管P14的栅极,第一偏置电压端PVCM接N型偏置电压。The positive terminal of the power supply voltage of the first operational amplifier is connected to the drain of the sixth PMOS transistor P6, the negative terminal of the power supply voltage is connected to the drain of the ninth PMOS transistor P9, and the positive output terminal connects the first output signal POUTP to the drain of the sixth PMOS transistor P6. The gate of the fifteenth PMOS transistor P15, the negative output terminal outputs the second output signal POUTN to the gate of the fourteenth PMOS transistor P14, and the first bias voltage terminal PVCM is connected to the N-type bias voltage.
其中,所述电路还包括:Wherein, the circuit also includes:
和所述N型互补输入支路相连的N型偏置电压晶体管部分、N型偏置尾电流晶体管部分、N型共源共栅晶体管部分以及和所述N型共源共栅晶体管部分相连的第二运算放大器;The N-type bias voltage transistor part connected to the N-type complementary input branch, the N-type bias tail current transistor part, the N-type cascode transistor part, and the N-type cascode transistor part connected to the N-type cascode transistor part second operational amplifier;
所述N型偏置电压晶体管部分包括第二十NMOS管N20,所述第二十NMOS管N20的源极接地,漏极同时与所述第十六到第十九共四个NMOS管N16~N19的源极相连,该第二十NMOS管N20的栅极接共模控制信号VCMFB;The N-type bias voltage transistor part includes a twentieth NMOS transistor N20, the source of the twentieth NMOS transistor N20 is grounded, and the drain is simultaneously connected to the sixteenth to nineteenth NMOS transistors N16-N16. The source of N19 is connected, and the gate of the twentieth NMOS transistor N20 is connected to the common mode control signal VCMFB;
所述N型偏置尾电流晶体管部分包括:第六PMOS管P6、第七PMOS管P7、第八PMOS管P8和第九PMOS管P9,其中,第六至第九共四个PMOS管P6~P9的各源极互连后接所述电源电压VDD;第六PMOS管P6、第七PMOS管P7两者的栅极互连后接所述第十八NMOS管N18的漏极;第八PMOS管P8、第九PMOS管P9两者的栅极互连后接所述第七NMOS管N7的漏极;第六PMOS管P6的漏极、第十六MOS管N16两者的漏极相连;第九PMOS管P9、第十九NMOS管N19两者的漏极相连;The N-type bias tail current transistor part includes: a sixth PMOS transistor P6, a seventh PMOS transistor P7, an eighth PMOS transistor P8, and a ninth PMOS transistor P9, wherein there are four PMOS transistors P6 to P9 in total from the sixth to the ninth The sources of P9 are connected to the power supply voltage VDD; the gates of the sixth PMOS transistor P6 and the seventh PMOS transistor P7 are connected to the drain of the eighteenth NMOS transistor N18; the eighth PMOS The gates of the transistor P8 and the ninth PMOS transistor P9 are interconnected and then connected to the drain of the seventh NMOS transistor N7; the drains of the sixth PMOS transistor P6 and the drains of the sixteenth MOS transistor N16 are connected; The drains of the ninth PMOS transistor P9 and the nineteenth NMOS transistor N19 are connected;
所述N型共源共栅晶体管部分包括:第十二PMOS管P12、第十三PMOS管P13、第十四PMOS管P14、和第十五PMOS管P15,其中,第十二PMOS管P12、第十三PMOS管P13两者的栅极互连后接P型第二偏置电压Vbp2;第十二PMOS管P12的源极与第七PMOS管P7的漏极相连,而该第十二PMOS管P12的漏极与所述第十八NMOS管N18的漏极相连,第十三PMOS管P13的源极与第八PMOS管P8的漏极相连,该第十三PMOS管P13的漏极与所述第十七NMOS管N17的漏极相连,第十四PMOS管P14的源极与第六PMOS管P6的漏极相连,而该第十四PMOS管P14的漏极与所述第十NMOS管N10的漏极相连后输出第一差分信号VOUTP,第十五PMOS管P15的源极与第九PMOS管P9的漏极相连,而该第十五PMOS管P15的漏极与所述第十一NMOS管N11的漏极相连后输出第二差分信号VOUTN;The N-type cascode transistor part includes: a twelfth PMOS transistor P12, a thirteenth PMOS transistor P13, a fourteenth PMOS transistor P14, and a fifteenth PMOS transistor P15, wherein the twelfth PMOS transistor P12, The gates of the thirteenth PMOS transistor P13 are connected to the second P-type bias voltage Vbp2; the source of the twelfth PMOS transistor P12 is connected to the drain of the seventh PMOS transistor P7, and the twelfth PMOS transistor P12 The drain of the transistor P12 is connected to the drain of the eighteenth NMOS transistor N18, the source of the thirteenth PMOS transistor P13 is connected to the drain of the eighth PMOS transistor P8, and the drain of the thirteenth PMOS transistor P13 is connected to the drain of the eighth PMOS transistor P8. The drain of the seventeenth NMOS transistor N17 is connected, the source of the fourteenth PMOS transistor P14 is connected to the drain of the sixth PMOS transistor P6, and the drain of the fourteenth PMOS transistor P14 is connected to the tenth NMOS transistor P14. The drain of the transistor N10 is connected to output the first differential signal VOUTP, the source of the fifteenth PMOS transistor P15 is connected to the drain of the ninth PMOS transistor P9, and the drain of the fifteenth PMOS transistor P15 is connected to the tenth PMOS transistor P15. The drains of an NMOS transistor N11 are connected to output a second differential signal VOUTN;
所述第二运算放大器的电源电压负端接第十一NMOS管N11的源极,电源电压正端接第十NMOS管N10的源极,正输出端输出第三输出信号NOUTP至所述第十一PMOS管P11的栅极,而负输出端输出第四输出信号NOUTN至第十NMOS管N10的栅极,第二偏置电压端NVCM接P型偏置电压。The negative terminal of the power supply voltage of the second operational amplifier is connected to the source of the eleventh NMOS transistor N11, the positive terminal of the power supply voltage is connected to the source of the tenth NMOS transistor N10, and the positive output terminal outputs the third output signal NOUTP to the tenth NMOS transistor N10. The gate of a PMOS transistor P11, and the negative output terminal outputs the fourth output signal NOUTN to the gate of the tenth NMOS transistor N10, and the second bias voltage terminal NVCM is connected to the P-type bias voltage.
图1中晶体管P1、P2、P3、P4为P型输入器件,N16、N17、N18、N19为N型输入器件。VINP、VINN为全差分输入信号,VINP加到P3、P4和N18、N19的栅极,VINN加到P1、P2和N16、N17的栅极。晶体管P5为P1、P2、P3、P4组成的P型互补输入支路提供偏置电流,N20为N16、N17、N18、N19组成的N型互补输入支路提供偏置电流。与此同时,N20提供一个路径,以通过在共模反馈电路(N型偏置电压晶体硅部分)中产生的信号VCMFB控制输出VOUTP、VOUTN的共模分量。晶体管N6、N7和N8、N9为P型互补输入支路的偏置尾电流晶体管,N10、N11和N12、N13为P型互补输入支路的共源共栅晶体管对。晶体管P6、P7和P8、P9为N型互补输入支路的偏置尾电流晶体管。P14、P15和P12、P13为N型互补输入支路的共源共栅晶体管对。VOUTP和VOUTN为全差分输出。Vbp1为晶体管P5的偏置电压,Vpb2为晶体管P14、P15、P12、P13的偏置电压。Vbn2为晶体管N10、N11、N12、N13的偏置电压。VDD和GND分别具有1.8V和0V的电源电压。Transistors P1, P2, P3, and P4 in FIG. 1 are P-type input devices, and N16, N17, N18, and N19 are N-type input devices. VINP and VINN are fully differential input signals. VINP is added to the gates of P3, P4 and N18 and N19, and VINN is added to the gates of P1, P2 and N16 and N17. Transistor P5 provides bias current for the P-type complementary input branch composed of P1, P2, P3, and P4, and N20 provides bias current for the N-type complementary input branch composed of N16, N17, N18, and N19. At the same time, N20 provides a path to control the common-mode components of the output VOUTP, VOUTN through the signal VCMFB generated in the common-mode feedback circuit (N-type bias voltage crystal silicon part). Transistors N6, N7, N8, and N9 are bias tail current transistors of the P-type complementary input branch, and N10, N11, N12, and N13 are cascode transistor pairs of the P-type complementary input branch. Transistors P6, P7 and P8, P9 are bias tail current transistors of the N-type complementary input branch. P14, P15 and P12, P13 are cascode transistor pairs of the N-type complementary input branch. VOUTP and VOUTN are fully differential outputs. Vbp1 is the bias voltage of the transistor P5, and Vpb2 is the bias voltage of the transistors P14, P15, P12, and P13. Vbn2 is the bias voltage of the transistors N10, N11, N12, and N13. VDD and GND have supply voltages of 1.8V and 0V, respectively.
与常规增益自举OTA相比,本发明采用了N型MOS管与P型MOS管支路互补输入;与仅有P型输入器件的Rida S.Assaad循环折叠OTA(可参见IEEE固态电路杂志2009年9月第9卷第2535-2542页的文章“The Recycling Folded Cascode:A General Enhancement of the Folded Cascode Amplifier”中报道的循环折叠OTA结构)相比,本发明互补循环折叠OTA增加了N型互补输入支路,并且N型互补输入支路与P型互补输入支路的共源共栅晶体管N10、N11和P14、P15共用了相同的电流。因此更充分的利用了的各个支路的电流,有效地提高了运放的单位增益带宽GBW,提高了运放的工作速度。并且由于增加了共源共栅自举电路Nboost和Pboost,提高了放大器的增益。Compared with conventional gain bootstrapping OTA, the present invention has adopted N-type MOS tube and P-type MOS tube branch complementary input; With only P-type input device Rida S.Assaad cycle folding OTA (can refer to IEEE solid-state circuit magazine 2009 Compared with the cyclic folding OTA structure reported in the article "The Recycling Folded Cascode: A General Enhancement of the Folded Cascode Amplifier" on pages 2535-2542 of Volume 9 in September 2009), the complementary cyclic folding OTA of the present invention increases the N-type complementary The input branch, and the cascode transistors N10, N11 and P14, P15 of the N-type complementary input branch and the P-type complementary input branch share the same current. Therefore, the current of each branch is more fully utilized, effectively improving the unity gain bandwidth GBW of the operational amplifier, and improving the working speed of the operational amplifier. And because the cascode bootstrap circuit Nboost and Pboost are added, the gain of the amplifier is improved.
如图2所示,辅助放大器Pboost(即上述的第一运算放大器)的输入PINP、PINN连接至节点24、27,输出POUTP、POUTN连接至节点61、60,PVCM、PVbp1、PVbp2、PVbn1和PVbn1为固定的偏置电压。As shown in Figure 2, the input PINP and PINN of the auxiliary amplifier Pboost (namely the above-mentioned first operational amplifier) are connected to the
如图3所示,辅助放大器Nboost(即上述的第二运算放大器)的输入NINP、NINN连接至节点14、17,输出NOUTP、NOUTN连接至节点63、62,VCMFB、NVCM、PVCM、NVbp1、NVbp2、NVbn1、NVbn1、PVbp1、PVbp2、PVbn2和PVbn1为固定的偏置电压。As shown in Figure 3, the inputs NINP and NINN of the auxiliary amplifier Nboost (that is, the above-mentioned second operational amplifier) are connected to
为了验证性能,在CADENCE平台进行SPICE仿真。In order to verify the performance, SPICE simulation is carried out on the CADENCE platform.
仿真结果表明,在3pF电容负载时,单位增益带宽为11.26GHz。因此可以得到本发明的增益自举OTA的特性总结,如表1所示。Simulation results show that the unity-gain bandwidth is 11.26GHz at a 3pF capacitive load. Therefore, a summary of the characteristics of the gain bootstrap OTA of the present invention can be obtained, as shown in Table 1.
表1Table 1
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Those of ordinary skill in the relevant technical field can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, all Equivalent technical solutions also belong to the category of the present invention, and the scope of patent protection of the present invention should be defined by the claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010618392 CN102075151A (en) | 2010-12-22 | 2010-12-22 | Complementary circulation folding gain bootstrapping operational amplifier circuit with preamplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010618392 CN102075151A (en) | 2010-12-22 | 2010-12-22 | Complementary circulation folding gain bootstrapping operational amplifier circuit with preamplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102075151A true CN102075151A (en) | 2011-05-25 |
Family
ID=44033527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010618392 Pending CN102075151A (en) | 2010-12-22 | 2010-12-22 | Complementary circulation folding gain bootstrapping operational amplifier circuit with preamplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102075151A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102098014A (en) * | 2010-12-24 | 2011-06-15 | 清华大学 | Complementary circularly-folded gain bootstrap transconductance operation amplifier with preamplifier |
CN104617889A (en) * | 2015-02-09 | 2015-05-13 | 西安电子科技大学 | Low-power-consumption and low-noise CMOS amplifier for ExG signal collecting system |
CN105356856A (en) * | 2015-11-03 | 2016-02-24 | 天津大学 | High-gain two-stage operational amplifier not sensitive to process in nanoscale |
CN107154786A (en) * | 2017-04-11 | 2017-09-12 | 东南大学 | A kind of rail-to-rail operation transconductance amplifier of low-voltage |
CN108259007A (en) * | 2017-12-29 | 2018-07-06 | 思瑞浦微电子科技(苏州)股份有限公司 | Enhancing circuit applied to amplifier conversion rate |
CN112436811A (en) * | 2020-10-13 | 2021-03-02 | 华南理工大学 | Operational amplifier, chip and method based on metal oxide TFT |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6831513B2 (en) * | 2002-01-16 | 2004-12-14 | Oki Electric Industry Co., Ltd. | Differential amplifier |
CN1953321A (en) * | 2005-10-21 | 2007-04-25 | 冲电气工业株式会社 | Operational amplifier |
CN101667813A (en) * | 2008-12-30 | 2010-03-10 | 天津南大强芯半导体芯片设计有限公司 | Pre-amplifier circuit |
CN101741329A (en) * | 2009-12-16 | 2010-06-16 | 清华大学 | Loop Folding Gain Bootstrap Transconductance Operational Amplifier with Complementary Inputs |
-
2010
- 2010-12-22 CN CN 201010618392 patent/CN102075151A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6831513B2 (en) * | 2002-01-16 | 2004-12-14 | Oki Electric Industry Co., Ltd. | Differential amplifier |
CN1953321A (en) * | 2005-10-21 | 2007-04-25 | 冲电气工业株式会社 | Operational amplifier |
CN101667813A (en) * | 2008-12-30 | 2010-03-10 | 天津南大强芯半导体芯片设计有限公司 | Pre-amplifier circuit |
CN101741329A (en) * | 2009-12-16 | 2010-06-16 | 清华大学 | Loop Folding Gain Bootstrap Transconductance Operational Amplifier with Complementary Inputs |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102098014A (en) * | 2010-12-24 | 2011-06-15 | 清华大学 | Complementary circularly-folded gain bootstrap transconductance operation amplifier with preamplifier |
CN104617889A (en) * | 2015-02-09 | 2015-05-13 | 西安电子科技大学 | Low-power-consumption and low-noise CMOS amplifier for ExG signal collecting system |
CN105356856A (en) * | 2015-11-03 | 2016-02-24 | 天津大学 | High-gain two-stage operational amplifier not sensitive to process in nanoscale |
CN105356856B (en) * | 2015-11-03 | 2018-10-16 | 天津大学 | The high-gain two-stage calculation amplifier insensitive suitable for technique under nano-scale |
CN107154786A (en) * | 2017-04-11 | 2017-09-12 | 东南大学 | A kind of rail-to-rail operation transconductance amplifier of low-voltage |
CN108259007A (en) * | 2017-12-29 | 2018-07-06 | 思瑞浦微电子科技(苏州)股份有限公司 | Enhancing circuit applied to amplifier conversion rate |
CN108259007B (en) * | 2017-12-29 | 2021-06-04 | 思瑞浦微电子科技(苏州)股份有限公司 | Enhancement circuit applied to operational amplifier conversion rate |
CN112436811A (en) * | 2020-10-13 | 2021-03-02 | 华南理工大学 | Operational amplifier, chip and method based on metal oxide TFT |
CN112436811B (en) * | 2020-10-13 | 2021-06-08 | 华南理工大学 | Operational amplifier, chip and method based on metal oxide TFT |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9634685B2 (en) | Telescopic amplifier with improved common mode settling | |
CN102158180B (en) | Switch-type operation amplifier with low power consumption | |
CN101741328A (en) | Circular Folded Transconductance Operational Amplifier with Complementary Inputs | |
CN103095234B (en) | A Fully Differential Operational Transconductance Amplifier | |
CN106788434B (en) | Source follower buffer circuit | |
CN101741329B (en) | Complementary input circularly folding gain bootstrap operational transconductance amplifier | |
CN103546127A (en) | A low-power high-speed comparator with offset storage | |
CN101662264B (en) | A Low Power and Large Swing Switching Operational Amplifier | |
CN101958692B (en) | Low-pressure rail-to-rail calculation magnification circuit | |
CN111200402B (en) | High-linearity dynamic residual error amplifier circuit capable of improving gain | |
CN104242839A (en) | Programmable fully-differential gain-bootstrap operational transconductance amplifier | |
CN109120243A (en) | Clock driver circuit | |
CN102075151A (en) | Complementary circulation folding gain bootstrapping operational amplifier circuit with preamplifier | |
Kun et al. | A high-performance folded cascode amplifier | |
CN102158188B (en) | Low Power Bandwidth Doubler Operational Amplifier Implemented Using MOS Devices | |
CN102098014A (en) | Complementary circularly-folded gain bootstrap transconductance operation amplifier with preamplifier | |
CN110798203A (en) | High Linearity Unity Gain Voltage Buffer in Nanoscale CMOS Process | |
CN111884656B (en) | Comparator and analog-to-digital converter | |
CN115225047A (en) | Fully differential push-pull output operational amplifier powered by 0.9V core voltage | |
CN103441736B (en) | The preamplifier circuit of CMOS comparator | |
CN102035486A (en) | Complementary input circular folded transconductance operational amplifier with preamplifier | |
CN102355212A (en) | Rail-to-rail input stage with current compensation function | |
CN110224700A (en) | A kind of high speed complementation type dual power supply operational amplifier | |
CN103368542A (en) | High precision and small time-delay continuous time comparator | |
CN110855274A (en) | Low-offset rail-to-rail dynamic latch comparator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110525 |