CN116004677B - Construction method and application of Trichoderma reesei engineering bacteria for producing itaconic acid - Google Patents
Construction method and application of Trichoderma reesei engineering bacteria for producing itaconic acid Download PDFInfo
- Publication number
- CN116004677B CN116004677B CN202211494223.9A CN202211494223A CN116004677B CN 116004677 B CN116004677 B CN 116004677B CN 202211494223 A CN202211494223 A CN 202211494223A CN 116004677 B CN116004677 B CN 116004677B
- Authority
- CN
- China
- Prior art keywords
- trichoderma reesei
- itaconic acid
- seq
- strain
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明公开了一种生产衣康酸的里氏木霉工程菌的构建方法及应用,属于生物工程领域。上述构建方法包括以下步骤:(1)以不产衣康酸的丝状真菌里氏木霉菌或者里氏木霉菌来源的衍生菌为出发菌株,导入编码顺式乌头酸脱羧酶和线粒体三羧酸转运蛋白的外源基因,获得菌株I;(2)过表达所述菌株I的内源膜转运蛋白,获取产衣康酸的里氏木霉工程菌。本发明通过基因改造获得里氏木霉工程菌,该工程菌能以葡萄糖、甘油、液化淀粉、纤维素、纤维素水解液等常见物质为碳源,直接发酵生产大量衣康酸,摇瓶发酵最高产量可达60g/L。可见,本发明为微生物来源的衣康酸的生产提供了新的方法,可应用于衣康酸的工业化生产。
The invention discloses a construction method and application of an engineering strain of Trichoderma reesei that produces itaconic acid, and belongs to the field of bioengineering. The above-mentioned construction method includes the following steps: (1) Using the filamentous fungus Trichoderma reesei that does not produce itaconic acid or a derivative derived from Trichoderma reesei as a starting strain, introduce encoding cis-aconitic acid decarboxylase and mitochondrial tricarboxylic acid The exogenous gene of the acid transporter was used to obtain strain I; (2) the endogenous membrane transporter of strain I was overexpressed to obtain the itaconic acid-producing Trichoderma reesei engineering strain. The present invention obtains engineering bacteria of Trichoderma reesei through genetic modification. This engineering bacteria can use common substances such as glucose, glycerol, liquefied starch, cellulose, and cellulose hydrolyzates as carbon sources to directly ferment and produce a large amount of itaconic acid. The maximum output can reach 60g/L. It can be seen that the present invention provides a new method for the production of itaconic acid derived from microorganisms, and can be applied to the industrial production of itaconic acid.
Description
技术领域Technical field
本发明涉及生物工程领域,特别是涉及一种生产衣康酸的里氏木霉工程菌的构建方法及应用。The invention relates to the field of bioengineering, and in particular to a construction method and application of an engineering strain of Trichoderma reesei that produces itaconic acid.
背景技术Background technique
衣康酸,又称亚甲基琥珀酸或亚甲基丁二酸,是一种重要的不饱和二羧酸,被广泛应用于乳胶、塑料、树脂等高价值化学品的生产。衣康酸具有抗菌、抗炎、抗肿瘤、抗病毒等特性,在医学、畜牧养殖业具有良好的应用前景。此外,衣康酸还是生产潜在生物燃料3-甲基四氢呋喃的中间体,具有替代石油基甲基丙烯酸和丙烯酸的巨大潜力。Itaconic acid, also known as methylenesuccinic acid or methylenesuccinic acid, is an important unsaturated dicarboxylic acid that is widely used in the production of high-value chemicals such as latex, plastics, and resins. Itaconic acid has antibacterial, anti-inflammatory, anti-tumor, anti-viral and other properties, and has good application prospects in medicine and animal husbandry. In addition, itaconic acid is also an intermediate in the production of potential biofuel 3-methyltetrahydrofuran, which has great potential to replace petroleum-based methacrylic acid and acrylic acid.
工业化生产衣康酸是通过微生物发酵实现的,工业化生产的主要菌种是土曲霉。在发酵罐中,土曲霉发酵生产衣康酸的产量已达130~160g/L。玉米黑粉菌是一种担子菌,也具有生产衣康酸的能力。Industrial production of itaconic acid is achieved through microbial fermentation, and the main strain of industrial production is Aspergillus terreus. In the fermentation tank, the yield of itaconic acid fermented by Aspergillus terreus has reached 130-160g/L. Ustilago maysa is a basidiomycete fungus that also has the ability to produce itaconic acid.
里氏木霉的优势:里氏木霉作为重要的工业生产菌株,是GRAS(GenerallyRegarded as Safe)菌株,非常适合工业化放大生产,已被广泛应用于食品、饲料等发酵行业。然而由于里氏木霉菌株不能生产衣康酸,因此,本发明通过基因改造技术,构建里氏木霉工程菌株用于衣康酸的发酵生产。Advantages of Trichoderma reesei: As an important industrial production strain, Trichoderma reesei is a GRAS (Generally Regarded as Safe) strain, which is very suitable for industrial scale-up production and has been widely used in fermentation industries such as food and feed. However, since the Trichoderma reesei strain cannot produce itaconic acid, the present invention uses genetic modification technology to construct an engineering strain of Trichoderma reesei for the fermentation production of itaconic acid.
发明内容Contents of the invention
本发明的目的是提供一种生产衣康酸的里氏木霉工程菌的构建方法及应用,以解决上述现有技术存在的问题,该里氏木霉工程菌可以生产大量的衣康酸,为微生物来源的衣康酸提供了新的方法。The purpose of the present invention is to provide a construction method and application of a Trichoderma reesei engineering bacterium that produces itaconic acid, so as to solve the problems existing in the above-mentioned prior art. The Trichoderma reesei engineering bacterium can produce a large amount of itaconic acid, Provides a new approach for microbially derived itaconic acid.
为实现上述目的,本发明提供了如下方案:In order to achieve the above objects, the present invention provides the following solutions:
本发明提供一种里氏木霉工程菌的构建方法,包括以下步骤:The invention provides a method for constructing engineering bacteria of Trichoderma reesei, which includes the following steps:
(1)以不产衣康酸的丝状真菌里氏木霉菌或者里氏木霉菌来源的衍生菌为出发菌株,导入编码顺式乌头酸脱羧酶和线粒体三羧酸转运蛋白的外源基因,获得菌株I;(1) Using the non-itaconic acid-producing filamentous fungus Trichoderma reesei or its derivatives derived from Trichoderma reesei as the starting strain, introduce foreign genes encoding cis-aconitic acid decarboxylase and mitochondrial tricarboxylic acid transporter , obtain strain I;
(2)过表达所述菌株I的内源膜转运蛋白,获取产衣康酸的里氏木霉工程菌。(2) Overexpress the endogenous membrane transport protein of the strain I to obtain an itaconic acid-producing Trichoderma reesei engineering strain.
优选的是,所述出发菌株包括里氏木霉菌QM6a,QM9414,Rut-C30,RL-P37,NG14以及PC-3-7。Preferably, the starting strains include Trichoderma reesei QM6a, QM9414, Rut-C30, RL-P37, NG14 and PC-3-7.
优选的是,所述线粒体三羧酸转运蛋白和顺式乌头酸脱羧酶源自于土曲霉注释的具有表达线粒体三羧酸转运蛋白功能和顺式乌头酸脱羧酶功能的蛋白编码基因。Preferably, the mitochondrial tricarboxylic acid transporter and cis-aconitate decarboxylase are derived from a protein-coding gene annotated by Aspergillus terreus that has the function of expressing the mitochondrial tricarboxylic acid transporter and cis-aconitate decarboxylase.
所述顺式乌头酸脱羧酶的氨基酸序列如SEQ ID NO:1所示,编码所述顺式乌头酸脱羧酶的基因序列如SEQ ID NO.2所示;所述线粒体三羧酸转运蛋白的氨基酸序列如SEQID NO.5所示,编码所述线粒体三羧酸转运蛋白的基因序列如SEQ ID NO.6所示。The amino acid sequence of the cis-aconitate decarboxylase is shown in SEQ ID NO: 1, and the gene sequence encoding the cis-aconitate decarboxylase is shown in SEQ ID NO.2; the mitochondrial tricarboxylic acid transporter The amino acid sequence of the protein is shown in SEQ ID NO.5, and the gene sequence encoding the mitochondrial tricarboxylic acid transporter is shown in SEQ ID NO.6.
优选的是,所述内源膜转运蛋白为mfs超家族转运蛋白;编码所述内源膜转运蛋白的基因包括mfs1、mfs2、mfs3、mfs4、mfs5,其核苷酸序列分别如SEQ ID NO.10、SEQ IDNO.11、SEQ ID NO.12、SEQ ID NO.13和SEQ ID NO.14所示。Preferably, the endogenous membrane transport protein is an mfs superfamily transport protein; the genes encoding the endogenous membrane transport proteins include mfs1, mfs2, mfs3, mfs4, and mfs5, and their nucleotide sequences are as shown in SEQ ID NO. 10. Shown in SEQ ID NO.11, SEQ ID NO.12, SEQ ID NO.13 and SEQ ID NO.14.
本发明还提供一种里氏木霉工程菌,由所述的构建方法构建而成。The invention also provides an engineering strain of Trichoderma reesei, which is constructed by the construction method.
本发明还提供一种生成衣康酸的方法,利用所述的里氏木霉工程菌发酵,收集发酵液,获取衣康酸。The present invention also provides a method for producing itaconic acid, which utilizes the Trichoderma reesei engineering bacteria to ferment, collects the fermentation liquid, and obtains itaconic acid.
优选的是,发酵条件为:接种量为108个孢子/50mL液体培养基,发酵温度为28-30℃,转速为200rpm。Preferably, the fermentation conditions are: the inoculum amount is 10 8 spores/50 mL liquid culture medium, the fermentation temperature is 28-30°C, and the rotation speed is 200 rpm.
优选的是,所述液体培养基包括以下浓度组分:碳源50-100g/L,蛋白胨1-6g/L,KH2PO4 0.15g/L,K2HPO4 0.15g/L,CaCl2·2H2O 0.10g/L,MgSO4·7H2O 0.10g/L,碳酸钙20-40g/L,NaCl 0.05g/L以及1mL/L微量元素液。Preferably, the liquid culture medium includes the following concentration components: carbon source 50-100g/L, peptone 1-6g/L, KH 2 PO 4 0.15g/L, K 2 HPO 4 0.15g/L, CaCl 2 ·2H 2 O 0.10g/L, MgSO 4 ·7H 2 O 0.10g/L, calcium carbonate 20-40g/L, NaCl 0.05g/L and 1mL/L trace element solution.
优选的是,所述碳源包括葡萄糖、甘油、液化淀粉、纤维素、纤维素水解液中任一种;Preferably, the carbon source includes any one of glucose, glycerol, liquefied starch, cellulose, and cellulose hydrolyzate;
所述微量元素包括以下重量的组分:1.6g MnSO4·4H2O,5g FeSO4·7H2O,2gCoCl2·6H2O,1.4g ZnSO4·7H2O,用水溶解并定容至1L。The trace elements include the following weight components: 1.6g MnSO 4 ·4H 2 O, 5g FeSO 4 ·7H 2 O, 2g CoCl 2 ·6H 2 O, 1.4g ZnSO 4 ·7H 2 O, dissolved in water and diluted to volume 1L.
本发明还提供所述的构建方法,或所述的里氏木霉工程菌在生产衣康酸中的应用。The present invention also provides the construction method, or the application of the Trichoderma reesei engineering bacteria in the production of itaconic acid.
本发明公开了以下技术效果:The invention discloses the following technical effects:
本发明以里氏木霉菌为出发菌株,经过基因改造导入外源基因,使改造后的菌株能够表达线粒体三羧酸转运蛋白和顺式乌头酸脱羧酶,使原先不具备衣康酸生产能力的里氏木霉,获得合成衣康酸的能力;进一步地,通过过表达里氏木霉内源的膜转运蛋白,提高衣康酸的产量,将里氏木霉改造为可以高效合成分泌衣康酸的工程菌株。The present invention uses Trichoderma reesei as the starting strain and introduces exogenous genes through genetic modification, so that the modified strain can express mitochondrial tricarboxylic acid transporter and cis-aconitate decarboxylase, so that bacteria that originally did not have the ability to produce itaconic acid can Trichoderma reesei has acquired the ability to synthesize itaconic acid; further, by overexpressing the endogenous membrane transporter of Trichoderma reesei, the production of itaconic acid is increased, and Trichoderma reesei is transformed to be able to efficiently synthesize secreted itaconic acid. Engineered strains of acid.
实验证明,本发明获得的里氏木霉工程菌株能以葡萄糖、甘油、液化淀粉、纤维素、纤维素水解液等常见物质为碳源,直接发酵生产大量衣康酸,其摇瓶最高产量可达60g/L。可见,本发明为微生物来源的衣康酸的生产提供了新的方法,可应用于衣康酸的工业化生产。Experiments have proven that the engineering strain of Trichoderma reesei obtained by the present invention can directly ferment and produce a large amount of itaconic acid using common substances such as glucose, glycerol, liquefied starch, cellulose, cellulose hydrolyzate, etc. as carbon sources, and its maximum shake flask output can Up to 60g/L. It can be seen that the present invention provides a new method for the production of itaconic acid derived from microorganisms, and can be applied to the industrial production of itaconic acid.
附图说明Description of the drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the drawings of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts.
图1为本发明中表达质粒构建流程图;A:mttA-cad1双基因表达载体;B:不同菌株以及基于基因改造构建的工程菌株发酵葡萄糖生产衣康酸;Figure 1 is a flow chart of expression plasmid construction in the present invention; A: mttA-cad1 dual-gene expression vector; B: different strains and engineering strains constructed based on genetic modification to ferment glucose and produce itaconic acid;
图2为本发明中表达质粒构建流程图;A:mfs表达载体;B:工程菌株TrIA02等,发酵葡萄糖生产衣康酸;Figure 2 is a flow chart for expression plasmid construction in the present invention; A: mfs expression vector; B: engineering strain TrIA02, etc., fermenting glucose to produce itaconic acid;
图3为本发明中以甘油、液化淀粉、纤维素、纤维素水解液为碳源时,基因工程菌株TrIA02的衣康酸产量。Figure 3 shows the itaconic acid production of the genetically engineered strain TrIA02 when glycerol, liquefied starch, cellulose, and cellulose hydrolyzate are used as carbon sources in the present invention.
具体实施方式Detailed ways
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the invention will now be described in detail. This detailed description should not be construed as limitations of the invention, but rather as a more detailed description of certain aspects, features and embodiments of the invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms used in the present invention are only used to describe particular embodiments and are not intended to limit the present invention. In addition, for numerical ranges in the present invention, it should be understood that every intermediate value between the upper and lower limits of the range is also specifically disclosed. Every smaller range between any stated value or value intermediate within a stated range and any other stated value or value intermediate within a stated range is also included within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded from the range.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although only the preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention. All documents mentioned in this specification are incorporated by reference to disclose and describe the methods and/or materials in connection with which the documents relate. In the event of conflict with any incorporated document, the contents of this specification shall prevail.
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本申请说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and changes can be made to the specific embodiments described herein without departing from the scope or spirit of the invention. Other embodiments will be apparent to the skilled person from the description of the invention. The specification and examples are intended to be illustrative only.
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。The words "includes", "includes", "has", "contains", etc. used in this article are all open terms, which mean including but not limited to.
以下实施例涉及的菌株:里氏木霉菌株QM6a(购买于美国模式培养物集存库ATCC13631),QM9414(购买于美国模式培养物集存库ATCC 26921),Rut-C30(购买于美国模式培养物集存库ATCC 56765),RL-P37(美国农业研究菌种保藏中心NRRL 15709),NG14(购买于美国模式培养物集存库ATCC 56767),PC-3-7(购买于美国模式培养物集存库ATCC66589)。Strains involved in the following examples: Trichoderma reesei strain QM6a (purchased from American Type Culture Collection ATCC 13631), QM9414 (purchased from American Type Culture Collection ATCC 26921), Rut-C30 (purchased from American Type Culture Collection ATCC 26921) ATCC 56765), RL-P37 (NRRL 15709), NG14 (purchased from American Type Culture Collection ATCC 56767), PC-3-7 (purchased from American Type Culture Collection) Collection library ATCC66589).
实施例1利用基因工程菌发酵生产衣康酸Example 1 Fermentation production of itaconic acid using genetically engineered bacteria
1、制备球磨纤维素悬浊液1. Preparation of ball-milled cellulose suspension
在500mL体积的三角瓶中,加入20g玉米秸秆粉(能过50目筛子),200mL去离子水,加入直径为0.5-1cm的玻璃珠(铺平底部为宜),灭菌(121℃,20min)。用橡皮袋扎紧瓶口,以免水分挥发,再放入摇床中,200rpm摇10-15天(优选12天)后,取出,再灭菌一次(115℃,20min)。制成10%的球磨纤维素悬浊液(以起始玉米秸秆固体干物质投量计算)。In a 500mL Erlenmeyer flask, add 20g corn straw powder (can pass through a 50-mesh sieve), 200mL deionized water, add glass beads with a diameter of 0.5-1cm (it is appropriate to flatten the bottom), and sterilize (121°C, 20min ). Tie the mouth of the bottle tightly with a rubber bag to prevent water from evaporating, then place it in a shaker, shake at 200 rpm for 10-15 days (preferably 12 days), take it out, and sterilize again (115°C, 20 min). A 10% ball-milled cellulose suspension was prepared (calculated based on the initial corn straw solid dry matter dosage).
2、制备糖化淀粉溶液2. Prepare saccharified starch solution
将0.5g氯化钙溶解于60℃的1kg热水中,然后加入1kg玉米淀粉,再加入0.5g的高温ɑ-淀粉酶(商业酶,宁夏夏盛实业集团有限公司)制成面糊,并将此面糊的pH调节至6.0。随后在97-98℃下保持1.5h,然后降温至60-62℃(优选60℃),将pH调节至4.0,加入0.8mL的葡萄糖淀粉酶(商业酶,宁夏夏盛实业集团有限公司),在60-62℃保持27-28h((优选60℃),28h)。加入蒸馏水定容至2.5L,随后再115℃湿热灭菌30min,即获得含糖量约为400g/L的糖化淀粉溶液。Dissolve 0.5g calcium chloride in 1kg hot water at 60°C, then add 1kg corn starch, and then add 0.5g high-temperature ɑ-amylase (commercial enzyme, Ningxia Xiasheng Industrial Group Co., Ltd.) to make a batter, and The pH of this batter is adjusted to 6.0. Then keep it at 97-98°C for 1.5h, then cool to 60-62°C (preferably 60°C), adjust the pH to 4.0, add 0.8mL of glucoamylase (commercial enzyme, Ningxia Xiasheng Industrial Group Co., Ltd.), Keep at 60-62°C for 27-28h ((preferably 60°C), 28h). Add distilled water to adjust the volume to 2.5L, and then sterilize with wet heat at 115°C for 30 minutes to obtain a saccharified starch solution with a sugar content of approximately 400g/L.
3、制备纤维素水解液3. Preparation of cellulose hydrolyzate
经过碱预处理的干玉米秸秆中含有62.6%的纤维素,21.4%的半纤维素和8.2%的木质素。纤维素水解实验可在摇瓶中进行,以预处理的玉米秸秆作为底物,底物的装载量为15%(150g秸秆干物质/反应总体积为1L)。加入两种酶水解纤维素:纤维素酶和β-葡萄糖苷酶。纤维素酶(商业酶,宁夏夏盛实业集团有限公司)的装载量为20FPU/g干生物质;β-葡萄糖苷酶(商业酶,宁夏夏盛实业集团有限公司)的装载量为40CBU/g干生物质。将反应摇瓶置于50℃(100rpm),pH 5.0反应96h。反应结束后,离心去除不溶物,上清水解液定容至1.5L,再115℃湿热灭菌30min。制成10%的纤维素水解液(以起始碱预处理的干玉米秸秆固体物质投量计算)。Alkali-pretreated dry corn stover contains 62.6% cellulose, 21.4% hemicellulose and 8.2% lignin. The cellulose hydrolysis experiment can be carried out in a shake flask, using pretreated corn straw as the substrate, and the loading capacity of the substrate is 15% (150g straw dry matter/total reaction volume of 1L). Two enzymes are added to hydrolyze cellulose: cellulase and beta-glucosidase. The loading capacity of cellulase (commercial enzyme, Ningxia Xiasheng Industrial Group Co., Ltd.) is 20FPU/g dry biomass; the loading capacity of β-glucosidase (commercial enzyme, Ningxia Xiasheng Industrial Group Co., Ltd.) is 40CBU/g Dry biomass. The reaction shake flask was placed at 50°C (100 rpm), pH 5.0, and reacted for 96 hours. After the reaction, insoluble matter was removed by centrifugation, the supernatant hydrolyzate was diluted to 1.5L, and then sterilized by moist heat at 115°C for 30 minutes. A 10% cellulose hydrolyzate was prepared (calculated based on the initial alkali pretreated dry corn straw solid matter dosage).
4、基因工程菌发酵生产衣康酸4. Fermentation of genetically engineered bacteria to produce itaconic acid
将基因工程菌分别接种至250mL三角瓶中的50mL以葡萄糖、甘油、液化淀粉、纤维素、纤维素水解液为碳源的培养基中(配方:碳源50-100g/L,蛋白胨6g/L,KH2PO40.15g/L,K2HPO4 0.15g/L,CaCl2·2H2O 0.10g/L,MgSO4·7H2O 0.10g/L,碳酸钙20-40g/L,NaCl0.05g/L,1mL/L微量元素液。微量元素液配方(1000mL:1.6g MnSO4·4H2O,5g FeSO4·7H2O,2g CoCl2·6H2O,1.4g ZnSO4·7H2O,溶于水中,定容至1L),接种量为108个孢子/50mL培养基,28℃,220rpm培养,第八天取样测定衣康酸含量。以葡萄糖、液化淀粉为碳源时,最终碳源浓度为100g/L(以葡萄糖分子含量计算),碳酸钙浓度为40g/L;以甘油为碳源时,最终碳源浓度为80g/L,碳酸钙浓度为40g/L;以纤维素、纤维素水解液为碳源,最终碳源浓度为50g/L(以起始玉米秸秆固体干物质投量计算),碳酸钙浓度为20g/L。Genetically engineered bacteria were inoculated into 50 mL of culture medium containing glucose, glycerol, liquefied starch, cellulose, and cellulose hydrolyzate as carbon sources in a 250 mL Erlenmeyer flask (formula: carbon source 50-100 g/L, peptone 6 g/L , KH 2 PO 4 0.15g/L, K 2 HPO 4 0.15g/L, CaCl 2 ·2H 2 O 0.10g/L, MgSO 4 ·7H 2 O 0.10g/L, calcium carbonate 20-40g/L, NaCl0 .05g/L, 1mL/L trace element liquid. Trace element liquid formula (1000mL: 1.6g MnSO 4 ·4H 2 O, 5g FeSO 4 ·7H 2 O, 2g CoCl 2 ·6H 2 O, 1.4g ZnSO 4 ·7H 2 O, dissolved in water, diluted to 1L), the inoculation amount is 10 8 spores/50mL culture medium, culture at 28°C, 220rpm, and sample itaconic acid content on the eighth day. When glucose and liquefied starch are used as carbon sources , the final carbon source concentration is 100g/L (calculated based on glucose molecule content), and the calcium carbonate concentration is 40g/L; when using glycerol as the carbon source, the final carbon source concentration is 80g/L, and the calcium carbonate concentration is 40g/L; Cellulose and cellulose hydrolyzate are used as carbon sources. The final carbon source concentration is 50g/L (calculated based on the initial corn straw solid dry matter input), and the calcium carbonate concentration is 20g/L.
实施例2衣康酸含量的测定方法Embodiment 2 Determination method of itaconic acid content
取按照实施例1发酵的发酵液于离心管中,加入1倍体积的2mol/L H2SO4,放入80℃,100rpm的水浴摇床震荡30min,待发酵液中的碳酸钙溶解完全后,将发酵液与管壁上的水珠混匀后,取1mL液体于1.5mL离心管中,14000×g离心30min,吸取上清,用高效液相色谱(HPLC)测定衣康酸含量。Take the fermentation broth fermented according to Example 1 in a centrifuge tube, add 1 times the volume of 2mol/LH 2 SO 4 , put it into a water bath shaker at 80°C and 100rpm and shake it for 30 minutes. After the calcium carbonate in the fermentation broth is completely dissolved, After mixing the fermentation broth and the water beads on the tube wall, take 1 mL of the liquid into a 1.5 mL centrifuge tube, centrifuge at 14,000 × g for 30 min, absorb the supernatant, and measure the itaconic acid content with high-performance liquid chromatography (HPLC).
高效液相色谱(HPLC)测定衣康酸含量:流动相:5mM H2SO4;流速:0.5mL/min;柱温:30℃;检测器:紫外检测器;波长:210nm;柱子:AmineX HPX-87X,(300mm×7.8mm)。Determination of itaconic acid content by high performance liquid chromatography (HPLC): mobile phase: 5mM H 2 SO 4 ; flow rate: 0.5mL/min; column temperature: 30°C; detector: UV detector; wavelength: 210nm; column: AmineX HPX -87X, (300mm×7.8mm).
实施例3在里氏木霉中同时表达土曲霉来源的线粒体三羧酸转运蛋白编码基因mttA和顺式乌头酸脱羧酶编码基因cad1Example 3 Simultaneous expression of mitochondrial tricarboxylic acid transporter encoding gene mttA and cis-aconitate decarboxylase encoding gene cad1 derived from Aspergillus terreus in Trichoderma reesei
1、cad1单基因表达载体(pOEcad1)的构建1. Construction of cad1 single gene expression vector (pOEcad1)
1)利用引物Ppdc-F和Ppdc-R,以里氏木霉基因组为模板扩增Ppdc序列。1) Use primers Ppdc-F and Ppdc-R to amplify the Ppdc sequence using the Trichoderma reesei genome as a template.
Ppdc-F:5’-ACTAGTGAGCTCATTTATGAAAGGAGGGAGCATTCTTCGA-3’;Ppdc-F: 5’-ACTAGTGAGTCATTTATGAAAGGAGGGAGCATTCTTCGA-3’;
Ppdc-R:5’-CATGATTGTGCTGTAGCTGCGC-3’。Ppdc-R: 5’-CATGATTGTGCTGTAGCTGCGC-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;引物(10μM each)1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; primer (10μM each) 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL) 1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
2)利用引物cad1-1和cad1-2,以密码子优化的cad1质粒为模板扩增cad1序列。2) Use primers cad1-1 and cad1-2 to amplify the cad1 sequence using the codon-optimized cad1 plasmid as a template.
cad1-1:5’-AGCTACAGCACAATCATGACGAAGCAGAGCGCCG-3’;cad1-1: 5’-AGCTACAGCACAATCATGACGAAGCAGAGCGCCG-3’;
cad1-2:5’-CCGGTCACGAAAGCCTCAGACGAGGGGGCTCTTGACG-3’。cad1-2: 5’-CCGGTCACGAAAGCCTCAGACGAGGGGGCTCTTGACG-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;引物(10μM each)1.5μL;合成质粒模板(10ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; primers (10μM each) 1.5μL; synthetic plasmid template (10ng) 1μL; KOD-Plus-Neo (1U/μL )1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
3)利用引物Tcbh2-1和Tcbh2-2,以里氏木霉基因组为模板扩增Tcbh2序列;3) Use primers Tcbh2-1 and Tcbh2-2 to amplify the Tcbh2 sequence using the Trichoderma reesei genome as a template;
Tcbh2-1:5’-GGCTTTCGTGACCGGGCTT-3’;Tcbh2-1: 5’-GGCTTTCGTGACCGGGCTT-3’;
Tcbh2-2:5’-AGTGCCAAGCTTATTTTGGGTATGGTTTCCACGTGCA-3’。Tcbh2-2: 5’-AGTGCCAAGCTTATTTTGGGTATGGTTTCCACGTGCA-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;引物(10μM each)1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; primer (10μM each) 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL) 1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃15sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 15sec, 30 cycles; 68°C 5min.
4)以LML2.0a(Zhang et al.Light-inducible genetic engineering andcontrol of non-homologous end-joining in industrial eukaryoticmicroorganisms:LML 3.0and OFN 1.0.Scientific Reports.2016,6:20761)为骨架构建表达载体,在已有质粒LML2.0a上的限制性内切酶SwaI进行单酶切,利用Vazyme One StepClone Kit进行同源重组,构建Ppdc-cad1-Tcbh2表达框,得到cad1单基因表达载体pOEcad1(图1A)。4) Use LML2.0a (Zhang et al. Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0. Scientific Reports. 2016, 6: 20761) as the skeleton to construct an expression vector. The restriction endonuclease SwaI on the existing plasmid LML2.0a was digested with a single enzyme, and the Vazyme One StepClone Kit was used to perform homologous recombination to construct the Ppdc-cad1-Tcbh2 expression cassette and obtain the cad1 single gene expression vector pOEcad1 (Figure 1A).
其中,cad1的氨基酸序列如SEQ ID NO.1所示,cad1的核苷酸序列如SEQ IDNO.2所示,Ppdc的核苷酸序列如SEQ ID NO.3所示,Tcbh2的核苷酸序列如SEQ IDNO.4所示。Among them, the amino acid sequence of cad1 is shown in SEQ ID NO.1, the nucleotide sequence of cad1 is shown in SEQ ID NO.2, the nucleotide sequence of Ppdc is shown in SEQ ID NO.3, and the nucleotide sequence of Tcbh2 As shown in SEQ IDNO.4.
2、mttA-cad1双基因表达载体(pOEmttA-cad1)的构建。2. Construction of mttA-cad1 dual gene expression vector (pOEmttA-cad1).
1)利用引物Peno-F和Peno-R,以里氏木霉基因组为模板扩增Peno序列。1) Use primers Peno-F and Peno-R to amplify the Peno sequence using the Trichoderma reesei genome as a template.
Peno-F:5’-GATTACGAATTCTTAATTAATGCCAACTCCTTGACGCCAA-3’;Peno-F: 5’-GATTACGAATTCTTAATTAATGCCAACTCCTTGACGCCAA-3’;
Peno-R:5’-CATTTTGAAGCTATTTCAGGT-3’。Peno-R: 5’-CATTTTTGAAGCTATTTCAGGT-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;引物(10μM each)1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; primer (10μM each) 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL) 1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
2)利用引物mttA-1和mttA-2,以密码子优化的mttA质粒为模板扩增mttA序列。mttA-1:5’-TGAAATAGCTTCAAAATGTCTAAGAAGCACATTGTTATCATTG-3’;2) Use primers mttA-1 and mttA-2 to amplify the mttA sequence using the codon-optimized mttA plasmid as a template. mttA-1: 5’-TGAAATAGCTTCAAAATGTCTAAGAAGCACATTGTTATCATTG-3’;
mttA-2:5’-TTTCGCCACGGAGCTTCAGATGACGTTGGAGTTGTGG-3’。mttA-2: 5’-TTTCGCCACGGAGCTTTCAGATGACGTTGGAGTTGTGG-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;引物(10μM each)1.5μL;合成质粒模板(10ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; primers (10μM each) 1.5μL; synthetic plasmid template (10ng) 1μL; KOD-Plus-Neo (1U/μL )1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
3)利用引物Tcbh1-1和Tcbh1-2,以里氏木霉基因组为模板扩增Tcbh1序列。3) Use primers Tcbh1-1 and Tcbh1-2 to amplify the Tcbh1 sequence using the Trichoderma reesei genome as a template.
Tcbh1-1:5’-AGCTCCGTGGCGAAAGCC-3’;Tcbh1-1: 5’-AGCTCCGTGGCGAAAGCC-3’;
Tcbh1-2:5’-CATTATACGAAGTTATTCTAGAATTTCCACTGTTGCTATTATGCTGT-3’。Tcbh1-2: 5’-CATTATACGAAGTTATTCTAGAATTTCCACTGTTGCTATTATGCTGT-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;引物(10μM each)1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; primer (10μM each) 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL) 1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃15sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 15sec, 30 cycles; 68°C 5min.
4)以cad1单基因表达载体pOEcad1(图1A)为骨架构建表达载体。在已有质粒pOEcad1上的限制性内切酶PacI/XbaI进行双酶切,利用Vazyme One Step Clone Kit进行同源重组,构建Peno-mttA-Tcbh1表达框,得到mttA-cad1双基因表达载体pOEmttA-cad1(图1A)。4) Use the cad1 single gene expression vector pOEcad1 (Figure 1A) as the backbone to construct an expression vector. Double digestion was carried out with the restriction endonuclease PacI/XbaI on the existing plasmid pOEcad1, and homologous recombination was performed using Vazyme One Step Clone Kit to construct the Peno-mttA-Tcbh1 expression cassette and obtain the mttA-cad1 dual gene expression vector pOEmttA- cad1 (Fig. 1A).
其中,mttA的氨基酸序列如SEQ ID NO.5所示,mttA的核苷酸序列如SEQ IDNO.6所示,Peno的核苷酸序列如SEQ ID NO.7所示,Tcbh1的核苷酸序列如SEQ IDNO.8所示。Among them, the amino acid sequence of mttA is shown in SEQ ID NO.5, the nucleotide sequence of mttA is shown in SEQ ID NO.6, the nucleotide sequence of Peno is shown in SEQ ID NO.7, and the nucleotide sequence of Tcbh1 As shown in SEQ IDNO.8.
3、将mttA-cad1双基因表达载体pOEmttA-cad1导入里氏木霉,获得基因工程菌株TrIA013. Introduce the mttA-cad1 dual-gene expression vector pOEmttA-cad1 into Trichoderma reesei to obtain the genetically engineered strain TrIA01
本发明涉及到的表达或异源表达,是农杆菌介导里氏木霉转化及克隆筛选,将相关基因整合到里氏木霉基因组进行表达。本发明涉及到的转化方法为根瘤农杆菌介导的结合转移。The expression or heterologous expression involved in the present invention is Agrobacterium-mediated transformation and cloning screening of Trichoderma reesei, and the relevant genes are integrated into the Trichoderma reesei genome for expression. The transformation method involved in the present invention is Agrobacterium tumefaciens-mediated conjugative transfer.
1)将质粒pOEmttA-cad1电转至农杆菌,然后将含有质粒pOEmttA-cad1的农杆菌与里氏木霉宿主菌株QM6a(ATCC 13631),QM9414(ATCC 26921),Rut-C30(ATCC56765),RL-P37(NRRL 15709),NG14(ATCC 56767),PC-3-7(ATCC 66589)在IM平板(Covert etal.Agrobacterium tumefaciens-mediated transformation of Fusariumcircinatum.Mycol.Res.105(3):259-264)共培养,进行根瘤农杆菌介导的结合转移,共培养两天后将转化子转接于含有头孢噻肟(300μg/mL)和潮霉素B(75μg/mL)的PDA平板中进行筛选,直至转化子长出菌丝和孢子,然后进行筛选和验证。1) Electroporate the plasmid pOEmttA-cad1 into Agrobacterium, and then combine the Agrobacterium containing the plasmid pOEmttA-cad1 with the Trichoderma reesei host strain QM6a (ATCC 13631), QM9414 (ATCC 26921), Rut-C30 (ATCC56765), RL- P37 (NRRL 15709), NG14 (ATCC 56767), PC-3-7 (ATCC 66589) in IM plate (Covert et al. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol. Res. 105(3):259-264). Culture, perform Agrobacterium tumefaciens-mediated conjugation transfer, and after two days of co-culture, transformants are transferred to PDA plates containing cefotaxime (300 μg/mL) and hygromycin B (75 μg/mL) for screening until transformation The seeds grow mycelium and spores, which are then screened and verified.
2)将上述验证的转化子接种至250mL三角瓶中的50mL以葡萄糖为碳源的培养基(见实施例1)中,接种量为108个孢子/50mL培养基,28℃,220rpm培养,第8天取样测定衣康酸含量。2) Inoculate the above-verified transformants into 50 mL of culture medium with glucose as the carbon source (see Example 1) in a 250 mL Erlenmeyer flask. The inoculation amount is 10 spores/50 mL of culture medium, and cultured at 28°C and 220 rpm. On the 8th day, samples were taken to determine the itaconic acid content.
3)mttA-cad1在里氏木霉菌株中共表达时,均能显著发酵生产衣康酸。其中产量最高的菌株为QM6a的转化子,命名为TrIA01,葡萄糖为碳源时衣康酸产量可达到42.5g/L(图1B)。3) When mttA-cad1 is co-expressed in Trichoderma reesei strains, itaconic acid can be significantly fermented and produced. The strain with the highest yield is the QM6a transformant, named TrIA01. When glucose is used as the carbon source, itaconic acid production can reach 42.5g/L (Figure 1B).
实施例4在里氏木霉中过表达自身的膜转运蛋白编码基因Example 4 Overexpression of own membrane transporter encoding gene in Trichoderma reesei
以土曲霉来源的主要促进剂超家族蛋白(major facilitator superfamilyprotein)mfsA的氨基酸序列(SEQ ID NO.9)为模板,通过同源比对鉴定出5个里氏木霉菌内源的膜转运蛋白的编码基因,命名为mfs1、mfs2、mfs3、mfs4、mfs5,其基因序列分别如SEQID NO.10、SEQ ID NO.11、SEQ ID NO.12、SEQ ID NO.13和SEQ ID NO.14所示。Using the amino acid sequence (SEQ ID NO. 9) of the major facilitator superfamily protein mfsA derived from Aspergillus terreus as a template, five endogenous membrane transport proteins of Trichoderma reesei were identified through homology alignment. The coding genes are named mfs1, mfs2, mfs3, mfs4, and mfs5, and their gene sequences are shown in SEQ ID NO.10, SEQ ID NO.11, SEQ ID NO.12, SEQ ID NO.13, and SEQ ID NO.14 respectively. .
1、内源的膜转运蛋白编码基因过表达载体pOEmfs1的构建1. Construction of endogenous membrane transporter encoding gene overexpression vector pOEmfs1
1)利用引物mfs1-F1和mfs1-F2,以里氏木霉基因组为模板扩增mfs1的上游序列mae1-F(核苷酸序列如SEQ ID NO.15所示)。1) Use primers mfs1-F1 and mfs1-F2 to amplify the upstream sequence mae1-F of mfs1 using the Trichoderma reesei genome as a template (the nucleotide sequence is shown in SEQ ID NO. 15).
mfs1-F1:5’-ATTACGAATTCTTAATTAACTGTTGGCAATGGCTGGATGA-3’;mfs1-F1: 5’-ATTACGAATTCTTAATTAACTGTTGGCAAATGGCTGGATGA-3’;
mfs1-F2:5’-CATTATACGAAGTTATTCTAGACGGCAGCACAGGACGATGAA-3’。mfs1-F2: 5’-CATTATACGAAGTTATTCTAGACGGCAGCACAGGACGATGAA-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs1-F1/mfs1-F2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs1-F1/mfs1-F2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃25sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 25sec, 30 cycles; 68°C 5min.
2)利用实施例3中引物pdc-F和pdc-R以及扩增条件,以里氏木霉基因组为模板扩增启动子Ppdc序列(核苷酸序列如SEQ ID NO.3所示)。2) Using the primers pdc-F and pdc-R and the amplification conditions in Example 3, use the Trichoderma reesei genome as a template to amplify the promoter Ppdc sequence (the nucleotide sequence is shown in SEQ ID NO. 3).
3)利用引物mfs1-1和rmfs1-2,以里氏木霉基因组为模板扩增mfs1部分基因序列mfs1-O(核苷酸序列如SEQ ID NO.16所示)。3) Use primers mfs1-1 and rmfs1-2 to amplify the mfs1 partial gene sequence mfs1-O (the nucleotide sequence is shown in SEQ ID NO. 16) using the Trichoderma reesei genome as a template.
mfs1-1:5’-AGCTACAGCACAATCATGAAGCAAGATGAAGCGATACAGC-3’;mfs1-1: 5’-AGCTACAGCACAATCATGAAGCAAGATGAAGCGATACAGC-3’;
mfs1-2:5’-AGTGCCAAGCTTATTTGCGACGAAGATGGCACAGAAC-3’。mfs1-2: 5’-AGTGCCAAGCTTATTTGCGACGAAGATGGCACAGAAC-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs1-1/mfs1-2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs1-1/mfs1-2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
4)以lcNG(Wu et al.An efficient shortened genetic transformationstrategy for filamentous fungus Trichoderma reesei.J.Gen.Appl.Microbiol.,2019,65:301-307.)为骨架构建表达载体,在已有质粒lcNG上的限制性内切酶PacI/XbaI进行双酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入上游序列mfs1-F;用SwaI进行单酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入启动子Ppdc和部分基因序列mfs1-O;构建出mfs1的过表达质粒pOEmfs1(图2A)。4) Use lcNG (Wu et al. An efficient shortened genetic transformation strategy for filamentous fungus Trichoderma reesei. J. Gen. Appl. Microbiol., 2019, 65: 301-307.) as the backbone to construct an expression vector on the existing plasmid lcNG The restriction endonuclease PacI/XbaI was used for double digestion, and the Vazyme One Step Clone Kit was used for seamless connection, and the upstream sequence mfs1-F was connected; SwaI was used for single digestion, and the Vazyme One Step Clone Kit was used for seamless connection. , connect the promoter Ppdc and part of the gene sequence mfs1-O; construct the mfs1 overexpression plasmid pOEmfs1 (Figure 2A).
2、内源的膜转运蛋白编码基因过表达载体pOEmfs2的构建2. Construction of endogenous membrane transporter encoding gene overexpression vector pOEmfs2
1)利用引物mfs2-F1和mfs2-F2,以里氏木霉基因组为模板扩增mfs2的上游序列mfs2-F(核苷酸序列如SEQ ID NO.17所示);1) Use primers mfs2-F1 and mfs2-F2 to amplify the upstream sequence mfs2-F of mfs2 using the Trichoderma reesei genome as a template (the nucleotide sequence is shown in SEQ ID NO. 17);
mfs2-F1:5’-ATTACGAATTCTTAATTAACTGTTGGCAATGGCTGGATGA-3’;mfs2-F1: 5’-ATTACGAATTCTTAATTAACTGTTGGCAAATGGCTGGATGA-3’;
mfs2-F2:5’-CATTATACGAAGTTATTCTAGACGGCAGCACAGGACGATGAA-3’。mfs2-F2: 5’-CATTATACGAAGTTATTCTAGACGGCAGCACAGGACGATGAA-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs2-F1/mfs2-F2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs2-F1/mfs2-F2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃25sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 25sec, 30 cycles; 68°C 5min.
2)利用实施例3中引物pdc-F和pdc-R以及扩增条件,以里氏木霉基因组为模板扩增启动子Ppdc序列(核苷酸序列如SEQ ID NO.3所示);2) Using the primers pdc-F and pdc-R and the amplification conditions in Example 3, use the Trichoderma reesei genome as a template to amplify the promoter Ppdc sequence (the nucleotide sequence is shown in SEQ ID NO. 3);
3)利用引物mfs2-1和mfs2-2,以里氏木霉基因组为模板扩增mfs2部分基因序列mfs2-O(核苷酸序列如SEQ ID NO.18所示)。3) Use primers mfs2-1 and mfs2-2 to amplify the mfs2 partial gene sequence mfs2-O (the nucleotide sequence is shown in SEQ ID NO. 18) using the Trichoderma reesei genome as a template.
mfs2-1:5’-AGCTACAGCACAATCATGAAGCAAGATGAAGCGATACAGC-3’;mfs2-1: 5’-AGCTACAGCACAATCATGAAGCAAGATGAAGCGATACAGC-3’;
mfs2-2:5’-AGTGCCAAGCTTATTTGCGACGAAGATGGCACAGAAC-3’。mfs2-2: 5’-AGTGCCAAGCTTATTTGCGACGAAGATGGCACAGAAC-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs2-1/mfs2-2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs2-1/mfs2-2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
4)以lcNG(Wu et al.An efficient shortened genetic transformationstrategy for filamentous fungus Trichoderma reesei.J.Gen.Appl.Microbiol.,2019,65:301-307.)为骨架构建表达载体,在已有质粒lcNG上的限制性内切酶PacI/XbaI进行双酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入上游序列mfs2-F;用SwaI进行单酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入启动子Ppdc和部分基因序列mfs2-O;构建出mfs2的过表达质粒pOEmfs2(图2A)。4) Use lcNG (Wu et al. An efficient shortened genetic transformation strategy for filamentous fungus Trichoderma reesei. J. Gen. Appl. Microbiol., 2019, 65: 301-307.) as the backbone to construct an expression vector on the existing plasmid lcNG The restriction endonuclease PacI/XbaI was used for double digestion, and Vazyme One Step Clone Kit was used for seamless connection, and the upstream sequence mfs2-F was connected; SwaI was used for single digestion, and Vazyme One Step Clone Kit was used for seamless connection. , connect the promoter Ppdc and part of the gene sequence mfs2-O; construct the mfs2 overexpression plasmid pOEmfs2 (Figure 2A).
3、内源的膜转运蛋白编码基因过表达载体pOEmfs3的构建3. Construction of endogenous membrane transporter encoding gene overexpression vector pOEmfs3
1)利用引物mfs3-F1和mfs3-F2,以里氏木霉基因组为模板扩增mfs3的上游序列mfs3-F(核苷酸序列如SEQ ID NO:19所示)。1) Use primers mfs3-F1 and mfs3-F2 to amplify the upstream sequence mfs3-F of mfs3 using the Trichoderma reesei genome as a template (the nucleotide sequence is shown in SEQ ID NO: 19).
mfs3-F1:5’-ATTACGAATTCTTAATTAAGAAGCGTCTCCAGGACATTCC-3’;mfs3-F1: 5’-ATTACGAATTCTTAATTAAGAAGCGTCTCCAGGACATTCC-3’;
mfs3-F2:5’-CATTATACGAAGTTATTCTAGAGGGCGAATCTGAAAGCGGATG-3’。mfs3-F2: 5’-CATTATACGAAGTTATTCTAGAGGGCGAATCTGAAAGCGGATG-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs3-F1/mfs3-F2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs3-F1/mfs3-F2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃25sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 25sec, 30 cycles; 68°C 5min.
2)利用实施例3中引物pdc-F和pdc-R以及扩增条件,以里氏木霉基因组为模板扩增启动子Ppdc序列(核苷酸序列如SEQ ID NO.3所示)。2) Using the primers pdc-F and pdc-R and the amplification conditions in Example 3, use the Trichoderma reesei genome as a template to amplify the promoter Ppdc sequence (the nucleotide sequence is shown in SEQ ID NO. 3).
3)利用引物mfs3-1和mfs3-2,以里氏木霉基因组为模板扩增mfs3部分基因序列mfs3-O(核苷酸序列如SEQ ID NO.20所示)。3) Use primers mfs3-1 and mfs3-2 to amplify the mfs3 partial gene sequence mfs3-O using the Trichoderma reesei genome as a template (the nucleotide sequence is shown in SEQ ID NO. 20).
mfs3-1:5’-AGCTACAGCACAATCATGTCATCAAAATTTGACAATGAACAAGA-3’;mfs3-1: 5’-AGCTACAGCACAATCATGTCATCAAAATTTGACAATGAACAAGA-3’;
mfs3-2:5’-AGTGCCAAGCTTATTTCGGAACGGACCAAGCACATC-3’。mfs3-2: 5’-AGTGCCAAGCTTATTTCGGAACGGACCAAGCACATC-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs3-1/mfs3-2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs3-1/mfs3-2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
5)以lcNG(Wu et al.An efficient shortened genetic transformationstrategy for filamentous fungus Trichoderma reesei.J.Gen.Appl.Microbiol.,2019,65:301-307.)为骨架构建表达载体,在已有质粒lcNG上的限制性内切酶PacI/XbaI进行双酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入上游序列mfs3-F;用SwaI进行单酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入启动子Ppdc和部分基因序列mfs3-O;构建出mfs3的过表达质粒pOEmfs3(图2A)。5) Use lcNG (Wu et al. An efficient shortened genetic transformation strategy for filamentous fungus Trichoderma reesei. J. Gen. Appl. Microbiol., 2019, 65: 301-307.) as the backbone to construct an expression vector on the existing plasmid lcNG The restriction endonuclease PacI/XbaI was used for double digestion, and Vazyme One Step Clone Kit was used for seamless connection, and the upstream sequence mfs3-F was connected; SwaI was used for single digestion, and Vazyme One Step Clone Kit was used for seamless connection. , connect the promoter Ppdc and part of the gene sequence mfs3-O; construct the mfs3 overexpression plasmid pOEmfs3 (Figure 2A).
4、内源的膜转运蛋白编码基因过表达载体pOEmfs4的构建4. Construction of endogenous membrane transporter encoding gene overexpression vector pOEmfs4
1)利用引物mfs4-F1和mfs4-F2,以里氏木霉基因组为模板扩增mfs4的上游序列mfs4-F(核苷酸序列如SEQ ID NO.21所示)。1) Use primers mfs4-F1 and mfs4-F2 to amplify the upstream sequence mfs4-F of mfs4 using the Trichoderma reesei genome as a template (the nucleotide sequence is shown in SEQ ID NO. 21).
mfs4-F1:5’-ATTACGAATTCTTAATTAAGCTGTGGAGTTGCCGATAAGG-3’;mfs4-F1: 5’-ATTACGAATTCTTAATTAAGCTGTGGAGTTGCCGATAAGG-3’;
mfs4-F2:5’-CATTATACGAAGTTATTCTAGACAGACGACGGCGGTATCAT-3’。mfs4-F2: 5’-CATTATACGAAGTTATTCTAGACAGACGACGGCGGTATCAT-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs4-F1/mfs4-F2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs4-F1/mfs4-F2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃25sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 25sec, 30 cycles; 68°C 5min.
2)利用实施例3中引物pdc-F和pdc-R以及扩增条件,以里氏木霉基因组为模板扩增启动子Ppdc序列(核苷酸序列如SEQ ID NO:3所示)。2) Using the primers pdc-F and pdc-R and the amplification conditions in Example 3, use the Trichoderma reesei genome as a template to amplify the promoter Ppdc sequence (the nucleotide sequence is shown in SEQ ID NO: 3).
3)利用引物mfs4-1和mfs4-2,以里氏木霉基因组为模板扩增mfs4部分基因序列mfs4-O(核苷酸序列如SEQ ID NO.22所示)。3) Use primers mfs4-1 and mfs4-2 to amplify the mfs4 partial gene sequence mfs4-O (the nucleotide sequence is shown in SEQ ID NO. 22) using the Trichoderma reesei genome as a template.
mfs4-1:5’-AGCTACAGCACAATCATGGGCGCCTCAGAAGACAC-3’;mfs4-1: 5’-AGCTACAGCACAATCATGGGCGCCTCAGAAGACAC-3’;
mfs4-2:5’-AGTGCCAAGCTTATTTGCATCTGCCATCCTGACCTGTA-3’。mfs4-2: 5’-AGTGCCAAGCTTATTTGCATCTGCCATCCTGACCTGTA-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs4-1/mfs4-2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs4-1/mfs4-2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
4)以lcNG(Wu et al.An efficient shortened genetic transformationstrategy for filamentous fungus Trichoderma reesei.J.Gen.Appl.Microbiol.,2019,65:301-307.)为骨架构建表达载体,在已有质粒lcNG上的限制性内切酶PacI/XbaI进行双酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入上游序列mfs4-F;用SwaI进行单酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入启动子Ppdc和部分基因序列mfs4-O;构建出mfs4的过表达质粒pOEmfs4(图2A)。4) Use lcNG (Wu et al. An efficient shortened genetic transformation strategy for filamentous fungus Trichoderma reesei. J. Gen. Appl. Microbiol., 2019, 65: 301-307.) as the backbone to construct an expression vector on the existing plasmid lcNG The restriction endonuclease PacI/XbaI was used for double digestion, and Vazyme One Step Clone Kit was used for seamless connection, and the upstream sequence mfs4-F was connected; SwaI was used for single digestion, and Vazyme One Step Clone Kit was used for seamless connection. , connect the promoter Ppdc and part of the gene sequence mfs4-O; construct the mfs4 overexpression plasmid pOEmfs4 (Figure 2A).
5、内源的膜转运蛋白编码基因过表达载体pOEmfs5的构建5. Construction of endogenous membrane transporter encoding gene overexpression vector pOEmfs5
1)利用引物mfs5-F1和mfs5-F2,以里氏木霉基因组为模板扩增mfs5的上游序列mfs5-F(核苷酸序列如SEQ ID NO.23所示)。1) Use primers mfs5-F1 and mfs5-F2 to amplify the upstream sequence mfs5-F of mfs5 using the Trichoderma reesei genome as a template (the nucleotide sequence is shown in SEQ ID NO. 23).
mfs5-F1:5’-ATTACGAATTCTTAATTAACCTCCGAGTTGGCTATCACTGA-3’;mfs5-F1: 5’-ATTACGAATTCTTAATTAACCTCCGAGTTGGCTATCACTGA-3’;
mfs5-F2:5’-CATTATACGAAGTTATTCTAGAGGGTCCTGGATGTATGCGATGA-3’。mfs5-F2: 5’-CATTATACGAAGTTATTCTAGAGGGTCCTGGATGTATGCGATGA-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs5-F1/mfs5-F2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs5-F1/mfs5-F2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃25sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 25sec, 30 cycles; 68°C 5min.
2)利用实施例3中引物pdc-F和pdc-R以及扩增条件,以里氏木霉基因组为模板扩增启动子Ppdc序列(核苷酸序列如SEQ ID NO.3所示)。2) Using the primers pdc-F and pdc-R and the amplification conditions in Example 3, use the Trichoderma reesei genome as a template to amplify the promoter Ppdc sequence (the nucleotide sequence is shown in SEQ ID NO. 3).
3)利用引物mfs5-1和mfs5-2,以里氏木霉基因组为模板扩增mfs5部分基因序列mfs5-O(核苷酸序列如SEQ ID NO.24所示)。3) Use primers mfs5-1 and mfs5-2 to amplify the mfs5 partial gene sequence mfs5-O (the nucleotide sequence is shown in SEQ ID NO. 24) using the Trichoderma reesei genome as a template.
mfs5-1:5’-AGCTACAGCACAATCATGTCGTCAACACCCGACCC-3’;mfs5-1: 5’-AGCTACAGCACAATCATGTCGTCAACACCCGACCC-3’;
mfs5-2:5’-AGTGCCAAGCTTATTTGAGGATGCGGAAGACGATGA-3’。mfs5-2: 5’-AGTGCCAAGCTTATTTGAGGATGCGGAAGACGATGA-3’.
扩增反应体系:10×PCR Buffer for KOD-Plus-Neo 5μL;2mM dNTPs 5μL;25mMMgSO4 3μL;10μM引物mfs5-1/mfs5-2各1.5μL;基因组模板(200ng)1μL;KOD-Plus-Neo(1U/μL)1μL。Amplification reaction system: 10×PCR Buffer for KOD-Plus-Neo 5μL; 2mM dNTPs 5μL; 25mMMgSO 4 3μL; 10μM primer mfs5-1/mfs5-2 each 1.5μL; genome template (200ng) 1μL; KOD-Plus-Neo (1U/μL)1μL.
反应程序:94℃2min;98℃10sec,58℃30sec,68℃45sec,运行30个循环;68℃5min。Reaction program: 94°C 2min; 98°C 10sec, 58°C 30sec, 68°C 45sec, 30 cycles; 68°C 5min.
4)以lcNG(Wu et al.An efficient shortened genetic transformationstrategy for filamentous fungus Trichoderma reesei.J.Gen.Appl.Microbiol.,2019,65:301-307.)为骨架构建表达载体,在已有质粒lcNG上的限制性内切酶PacI/XbaI进行双酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入上游序列mfs5-F;用SwaI进行单酶切,利用Vazyme One Step Clone Kit进行无缝连接,连入启动子Ppdc和部分基因序列mfs5-O;构建出mfs1的过表达质粒pOEmfs5(图2A)。4) Use lcNG (Wu et al. An efficient shortened genetic transformation strategy for filamentous fungus Trichoderma reesei. J. Gen. Appl. Microbiol., 2019, 65: 301-307.) as the backbone to construct an expression vector on the existing plasmid lcNG The restriction endonuclease PacI/XbaI was used for double digestion, and Vazyme One Step Clone Kit was used for seamless connection, and the upstream sequence mfs5-F was connected; SwaI was used for single digestion, and Vazyme One Step Clone Kit was used for seamless connection. , connected to the promoter Ppdc and part of the gene sequence mfs5-O; the overexpression plasmid pOEmfs5 of mfs1 was constructed (Figure 2A).
实施例5Example 5
将上述实施例4构建的表达载体pOEmfs1~pOEmfs5分别导入里氏木霉工程菌株TrIA01,获得衣康酸产量提高的工程菌株TrIA02。The expression vectors pOEmfs1 to pOEmfs5 constructed in the above Example 4 were respectively introduced into the Trichoderma reesei engineering strain TrIA01 to obtain the engineering strain TrIA02 with improved itaconic acid production.
本发明所述表达,是农杆菌介导里氏木霉转化及克隆筛选,将里氏木霉内源基因整合到里氏木霉基因组进行表达。本发明所述转化方法为根瘤农杆菌介导的结合转移。The expression in the present invention is Agrobacterium-mediated transformation and cloning screening of Trichoderma reesei, and the endogenous genes of Trichoderma reesei are integrated into the Trichoderma reesei genome for expression. The transformation method of the present invention is Agrobacterium tumefaciens-mediated conjugation transfer.
1)将表达质粒pOEmfs1~pOEmfs5分别电转至农杆菌,然后将含有表达质粒的农杆菌分别与里氏木霉宿主菌株TrIA01共培养(培养条件参考文献:Covert etal.Agrobacterium tumefaciens-mediated transformation of Fusariumcircinatum.Mycol.Res.105(3):259-264),进行根瘤农杆菌介导的结合转移,共培养两天后将转化子转接于含有头孢噻肟(300μg/mL)和G418(400μg/mL)的PDA平板中进行筛选,直至转化子长出菌丝和孢子,然后进行验证。1) The expression plasmids pOEmfs1 ~ pOEmfs5 were electroporated into Agrobacterium respectively, and then the Agrobacterium containing the expression plasmids were co-cultured with the Trichoderma reesei host strain TrIA01 (culture conditions reference: Covert etal. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol.Res.105(3):259-264), Agrobacterium tumefaciens-mediated conjugative transfer was performed, and after two days of co-culture, the transformants were transferred to cells containing cefotaxime (300 μg/mL) and G418 (400 μg/mL). Screen on PDA plates until the transformants grow hyphae and spores, and then verify.
2)将上述转化子接种至250mL三角瓶中的50mL以葡萄糖为碳源的发酵培养基(见实施例1)中,接种量为108个孢子/50mL培养基,28~30℃(优选30℃),200rpm培养,第8天取样测定衣康酸含量,来验证其生物学功能。2) Inoculate the above transformants into 50 mL of fermentation medium with glucose as the carbon source (see Example 1) in a 250 mL Erlenmeyer flask. The inoculation amount is 10 spores/50 mL of medium at 28-30°C (preferably 30 ℃), culture at 200rpm, and take samples to measure the itaconic acid content on the 8th day to verify its biological function.
3)膜转运蛋白质可以将衣康酸转运出细胞外。因此,膜转运蛋白质在里氏木霉工程菌株TrIA01中大量表达后,菌株能在发酵液中显著积累更多的衣康酸(mfs4除外)。其中,产量最高的转化株为mfs1基因的转化子,命名为TrIA02,葡萄糖为碳源时衣康酸产量可达60g/L(图2B)。3) Membrane transport proteins can transport itaconic acid out of cells. Therefore, after membrane transport proteins are expressed in large quantities in the Trichoderma reesei engineering strain TrIA01, the strain can significantly accumulate more itaconic acid in the fermentation broth (except for mfs4). Among them, the transformant with the highest yield is the mfs1 gene transformant, named TrIA02. When glucose is used as the carbon source, itaconic acid production can reach 60g/L (Figure 2B).
4)工程菌株TrIA02能以甘油、液化淀粉、纤维素、纤维素水解液等常见碳源,直接发酵生产大量衣康酸(图3)。实验说明里氏木霉经过遗传改造后可以多种碳源进行衣康酸发酵。4) The engineering strain TrIA02 can directly ferment and produce large amounts of itaconic acid using common carbon sources such as glycerol, liquefied starch, cellulose, and cellulose hydrolyzate (Figure 3). Experiments show that Trichoderma reesei can ferment itaconic acid with a variety of carbon sources after genetic modification.
由上述实施例的结果可知,本发明经过对里氏木霉菌进行基因改造后,成功发酵生产衣康酸。本发明的研究成果是首次表明里氏木霉原始菌株虽然不能生产衣康酸,但通过基因工程改造后可以葡萄糖、甘油、液化淀粉、纤维素、纤维素水解液等常见碳源为底物,发酵生产衣康酸。并且通过实验证实了:里氏木霉工程菌株在摇瓶中发酵生产衣康酸的潜力,为衣康酸的工业化大规模发酵生产提供了优良的菌株。It can be seen from the results of the above examples that the present invention successfully fermented and produced itaconic acid after genetically modifying Trichoderma reesei. The research results of the present invention are the first to show that although the original strain of Trichoderma reesei cannot produce itaconic acid, after genetic engineering modification, it can use common carbon sources such as glucose, glycerol, liquefied starch, cellulose, and cellulose hydrolyzate as substrates. Fermentation produces itaconic acid. And it was confirmed through experiments that the potential of the Trichoderma reesei engineered strain to ferment itaconic acid in shake flasks provides an excellent strain for the industrial large-scale fermentation production of itaconic acid.
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-described embodiments only describe the preferred modes of the present invention and do not limit the scope of the present invention. Without departing from the design spirit of the present invention, those of ordinary skill in the art can make various modifications to the technical solutions of the present invention. All deformations and improvements shall fall within the protection scope determined by the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211494223.9A CN116004677B (en) | 2022-11-25 | 2022-11-25 | Construction method and application of Trichoderma reesei engineering bacteria for producing itaconic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211494223.9A CN116004677B (en) | 2022-11-25 | 2022-11-25 | Construction method and application of Trichoderma reesei engineering bacteria for producing itaconic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116004677A CN116004677A (en) | 2023-04-25 |
CN116004677B true CN116004677B (en) | 2024-02-13 |
Family
ID=86032443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211494223.9A Active CN116004677B (en) | 2022-11-25 | 2022-11-25 | Construction method and application of Trichoderma reesei engineering bacteria for producing itaconic acid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116004677B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103834582A (en) * | 2012-11-22 | 2014-06-04 | 中国科学院青岛生物能源与过程研究所 | Itaconic acid fermentation yield improvement bacterial strain, construction method thereof and itaconic acid production method using bacterial strain |
CN105431539A (en) * | 2013-05-02 | 2016-03-23 | 荷兰Dna生物科技有限公司 | Novel organic acid pathway |
CN108795789A (en) * | 2018-07-02 | 2018-11-13 | 山东省食品发酵工业研究设计院 | A kind of high-yield itaconic acid Yarrowia lipolytica engineered strain and its construction method, zymotechnique and application |
CN110036114A (en) * | 2016-08-26 | 2019-07-19 | 勒萨弗尔公司 | The itaconic acid of raising produces |
EP3536784A1 (en) * | 2018-03-05 | 2019-09-11 | ACIB GmbH | Host cell engineered for improved metabolite production |
CN114657075A (en) * | 2022-02-10 | 2022-06-24 | 天津科技大学 | Aspergillus niger strain for producing itaconic acid, method and application |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2017344A1 (en) * | 2007-07-20 | 2009-01-21 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Production of itaconic acid |
US10947548B2 (en) * | 2018-04-24 | 2021-03-16 | Battelle Memorial Institute | Production of organic acids from Aspergillus cis-aconitic acid decarboxylase (cadA) deletion strains |
-
2022
- 2022-11-25 CN CN202211494223.9A patent/CN116004677B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103834582A (en) * | 2012-11-22 | 2014-06-04 | 中国科学院青岛生物能源与过程研究所 | Itaconic acid fermentation yield improvement bacterial strain, construction method thereof and itaconic acid production method using bacterial strain |
CN105431539A (en) * | 2013-05-02 | 2016-03-23 | 荷兰Dna生物科技有限公司 | Novel organic acid pathway |
CN110036114A (en) * | 2016-08-26 | 2019-07-19 | 勒萨弗尔公司 | The itaconic acid of raising produces |
EP3536784A1 (en) * | 2018-03-05 | 2019-09-11 | ACIB GmbH | Host cell engineered for improved metabolite production |
CN108795789A (en) * | 2018-07-02 | 2018-11-13 | 山东省食品发酵工业研究设计院 | A kind of high-yield itaconic acid Yarrowia lipolytica engineered strain and its construction method, zymotechnique and application |
CN114657075A (en) * | 2022-02-10 | 2022-06-24 | 天津科技大学 | Aspergillus niger strain for producing itaconic acid, method and application |
Non-Patent Citations (2)
Title |
---|
Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain.;Xuenian Huang, et al.;Micro Cell Fact;第13卷(第119期);1-9 * |
Rewriting a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.;Abeer H Hossain, et al.;Micro Cell Fact;第15卷(第1期);1-15 * |
Also Published As
Publication number | Publication date |
---|---|
CN116004677A (en) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107142225A (en) | A kind of pichia yeast recombinant bacterium of overexpression Streptomyces sp. FA1 sources zytase | |
CN109022438A (en) | A kind of promoter and its application of keratinase heterogenous expression | |
CN109554355B (en) | Polypeptide with cellulose degradation enhancing activity and application thereof | |
CN104046586B (en) | One strain gene engineering bacterium and the application in producing (2R, 3R)-2,3-butanediol thereof | |
Yuan et al. | Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus | |
CN113234699A (en) | Alpha-1, 2-fucosyltransferase and application thereof | |
CN116004677B (en) | Construction method and application of Trichoderma reesei engineering bacteria for producing itaconic acid | |
WO2021129396A1 (en) | Recombinant filamentous fungus for producing ethanol, and construction and application thereof | |
US20130210119A1 (en) | Method for producing cellulolytic and/or hemicellulolytic enzymes | |
CN114806899B (en) | Trichoderma reesei engineering bacteria for producing L-malic acid and application thereof | |
CN104844698B (en) | A method for promoting microbial cell transport of glucose, xylose and arabinose and its application in fermentation of bio-based products | |
CN117904019A (en) | Method for producing glycollic acid by fermentation with corn stalk hydrolysate as substrate | |
CN113881618B (en) | Recombinant bacillus subtilis secreting milk casein, and construction method and application thereof | |
CN108865913A (en) | A method of building efficient secretory expression chondroitin sulfate hydrolase recombinant bacterium | |
CN110862952B (en) | 5-aminolevulinic acid producing strain and its construction method and application | |
CN113025506B (en) | Recombinant filamentous fungus for producing ethanol and construction and application thereof | |
CN116254249A (en) | Construction of a recombinant bacterium expressing chitinase and preparation of mutants with high enzyme activity | |
CN107236680A (en) | A kind of pichia yeast recombinant bacterium of expression Streptomyces sp. FA1 sources zytase | |
CN109401991B (en) | Recombinant saccharomyces cerevisiae and method for producing ethanol by fermenting raw materials | |
CN110229795B (en) | Polypeptide with cellulolytic activity enhancing function and encoding gene and application thereof | |
CN114807095B (en) | Chitinase mutant and application thereof | |
CN108841810B (en) | Multifunctional cellulase gene and application thereof | |
CN118599753B (en) | Gene recombinant pediococcus acidilactici and application thereof in kitchen waste recycling treatment | |
CN114634883B (en) | Recombinant engineering bacteria producing 2'-fucosyllactose and its construction method and application | |
CN118147036B (en) | Bacillus subtilis capable of stably expressing target product and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |