[go: up one dir, main page]

CN115985981B - Solar cell, preparation method thereof and photovoltaic module - Google Patents

Solar cell, preparation method thereof and photovoltaic module Download PDF

Info

Publication number
CN115985981B
CN115985981B CN202310172661.1A CN202310172661A CN115985981B CN 115985981 B CN115985981 B CN 115985981B CN 202310172661 A CN202310172661 A CN 202310172661A CN 115985981 B CN115985981 B CN 115985981B
Authority
CN
China
Prior art keywords
layer
conductive layer
doped conductive
doped
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310172661.1A
Other languages
Chinese (zh)
Other versions
CN115985981A (en
Inventor
张彼克
徐梦微
金井升
张昕宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jinko Solar Co Ltd
Original Assignee
Zhejiang Jinko Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202310172661.1A priority Critical patent/CN115985981B/en
Priority to CN202310608687.6A priority patent/CN116581174A/en
Application filed by Zhejiang Jinko Solar Co Ltd filed Critical Zhejiang Jinko Solar Co Ltd
Publication of CN115985981A publication Critical patent/CN115985981A/en
Application granted granted Critical
Publication of CN115985981B publication Critical patent/CN115985981B/en
Priority to JP2023105399A priority patent/JP7427833B1/en
Priority to KR1020230087294A priority patent/KR102741653B1/en
Priority to US18/365,170 priority patent/US12183841B2/en
Priority to EP23189628.3A priority patent/EP4421879B1/en
Priority to AU2023210662A priority patent/AU2023210662B2/en
Priority to JP2024008327A priority patent/JP2024119744A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • H10F10/164Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
    • H10F10/165Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
    • H10F10/166Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/122Active materials comprising only Group IV materials
    • H10F77/1223Active materials comprising only Group IV materials characterised by the dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/90Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
    • H10F19/902Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
    • H10F19/906Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells characterised by the materials of the structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/80Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/129Passivating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/122Active materials comprising only Group IV materials
    • H10F77/1226Active materials comprising only Group IV materials comprising multiple Group IV elements, e.g. SiC
    • H10F77/1227Active materials comprising only Group IV materials comprising multiple Group IV elements, e.g. SiC characterised by the dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/14Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
    • H10F77/143Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

The application relates to a solar cell, a preparation method thereof and a photovoltaic module, comprising the following steps: a semiconductor substrate having a first surface and a second surface disposed opposite to each other; an emitter electrode and a first passivation layer positioned on the first surface of the semiconductor substrate; a tunneling layer located on the second surface of the semiconductor substrate; the first doped conductive layer and the blocking layer are positioned on the surface of the tunneling layer, wherein the first doped conductive layer is positioned between the tunneling layer and the blocking layer, and the first doped conductive layer and the blocking layer correspond to the metallized area; the second doped conductive layer is positioned on the surface of the tunneling layer, covers the tunneling layer and the blocking layer of the non-metallized region, and has a doping concentration greater than that of the first doped conductive layer; the second passivation layer is positioned on the surface of the second doped conductive layer; a second electrode penetrating the second passivation layer and contacting the second doped polysilicon layer, and a first electrode penetrating the first passivation layer and contacting the emitter.

Description

太阳能电池及其制备方法、光伏组件Solar cell and its preparation method, photovoltaic module

技术领域technical field

本申请涉及光伏电池技术领域,具体地讲,涉及一种太阳能电池及其制备方法、光伏组件。The present application relates to the technical field of photovoltaic cells, in particular, to a solar cell, a preparation method thereof, and a photovoltaic module.

背景技术Background technique

随着太阳能电池技术的不断发展,金属接触区域的复合损失成为制约太阳能电池转换效率进一步提高的重要因素之一。为了提高太阳能电池的转换速率,常通过钝化接触来对太阳能电池进行钝化,以降低太阳能电池体内和表面的复合。常用的钝化接触电池有异质结(Heterojunction with Intrinsic Thin-layer,HIT)电池和隧穿氧化层钝化接触(Tunnel Oxide Passivated Contact,TOPCon)电池。然而,现有电池的钝化结构的钝化性能提升有限,使得钝化接触电池的转换效率有待提高,且不易量产。With the continuous development of solar cell technology, the recombination loss in the metal contact area has become one of the important factors restricting the further improvement of solar cell conversion efficiency. In order to improve the conversion rate of solar cells, the solar cells are often passivated by passivating contacts to reduce the recombination in the body and surface of the solar cells. Commonly used passivated contact cells include heterojunction (Heterojunction with Intrinsic Thin-layer, HIT) cells and tunnel oxide passivated contact (Tunnel Oxide Passivated Contact, TOPCon) cells. However, the improvement of the passivation performance of the passivation structure of the existing battery is limited, so that the conversion efficiency of the passivated contact battery needs to be improved, and it is not easy to mass-produce.

因此,如何提升钝化接触电池的钝化性能成为光伏产业急需解决的问题。Therefore, how to improve the passivation performance of passivated contact cells has become an urgent problem to be solved in the photovoltaic industry.

发明内容Contents of the invention

鉴于此,本申请提出一种太阳能电池及其制备方法、光伏组件,该太阳能电池能够改善金属化区域钝化性能偏低的同时,还能够保证载流子的横向运输能力。In view of this, the present application proposes a solar cell, a preparation method thereof, and a photovoltaic module. The solar cell can improve the low passivation performance of the metallization region while ensuring the lateral transport capability of carriers.

第一方面,本申请提供一种太阳能电池,所述太阳能电池包括:半导体衬底,所述半导体衬底具有相对设置的第一表面和第二表面;In a first aspect, the present application provides a solar cell, the solar cell comprising: a semiconductor substrate, the semiconductor substrate has a first surface and a second surface opposite to each other;

位于所述半导体衬底第一表面的发射极和第一钝化层;an emitter and a first passivation layer located on the first surface of the semiconductor substrate;

位于所述半导体衬底第二表面的隧穿层;a tunneling layer located on the second surface of the semiconductor substrate;

位于所述隧穿层表面的第一掺杂导电层和阻滞层,其中,所述第一掺杂导电层位于所述隧穿层与所述阻滞层之间,所述第一掺杂导电层和所述阻滞层对应于金属化区域;A first doped conductive layer and a barrier layer located on the surface of the tunneling layer, wherein the first doped conductive layer is located between the tunneling layer and the barrier layer, and the first doped the conductive layer and said barrier layer correspond to metallized areas;

位于所述隧穿层表面的第二掺杂导电层,所述第二掺杂导电层覆盖非金属化区域的所述隧穿层和所述阻滞层,所述第二掺杂导电层的掺杂浓度大于所述第一掺杂导电层的掺杂浓度;A second doped conductive layer located on the surface of the tunneling layer, the second doped conductive layer covers the tunneling layer and the blocking layer in the non-metallized region, the second doped conductive layer The doping concentration is greater than the doping concentration of the first doped conductive layer;

位于所述第二掺杂导电层表面的第二钝化层;a second passivation layer located on the surface of the second doped conductive layer;

穿透所述第二钝化层与所述第二掺杂导电层形成接触的第二电极及穿透所述第一钝化层与所述发射极形成接触的第一电极。A second electrode that penetrates through the second passivation layer and forms contact with the second doped conductive layer, and a first electrode that penetrates the first passivation layer and forms contact with the emitter.

第二方面,本申请提供一种太阳能电池的制备方法,包括以下步骤:In a second aspect, the present application provides a method for preparing a solar cell, comprising the following steps:

提供半导体衬底,所述半导体衬底包括相对设置的第一表面和第二表面;providing a semiconductor substrate comprising opposed first and second surfaces;

在制绒后的所述半导体衬底的第一表面形成发射极;forming an emitter on the first surface of the semiconductor substrate after texturing;

在所述半导体衬底的第二表面形成隧穿层;forming a tunneling layer on the second surface of the semiconductor substrate;

在所述隧穿层的表面形成第一非导电层,所述第一非导电层对应于金属化区域和非金属化区域;forming a first non-conductive layer on the surface of the tunneling layer, the first non-conductive layer corresponds to a metallized area and a non-metallized area;

在所述第一非导电层表面形成阻滞层,其中,所述阻滞层对应于金属化区域;forming a retardation layer on the surface of the first non-conductive layer, wherein the retardation layer corresponds to a metallized region;

在所述第一非导电层和所述阻滞层的表面形成第二非导电层,对所述第二非导电层进行掺杂处理,使得所述第二非导电层和位于非金属化区域的所述第一非导电层转变为第二掺杂导电层、位于金属化区域的所述第一非导电层转变为第一掺杂导电层,其中,所述第二掺杂导电层的掺杂浓度大于所述第一掺杂导电层的掺杂浓度;A second non-conductive layer is formed on the surface of the first non-conductive layer and the retarder layer, and the second non-conductive layer is doped so that the second non-conductive layer and the non-metallized region are located The first non-conductive layer is transformed into a second doped conductive layer, and the first non-conductive layer located in the metallization region is transformed into a first doped conductive layer, wherein the doping of the second doped conductive layer The impurity concentration is greater than the doping concentration of the first doped conductive layer;

在所述第二掺杂导电层的表面形成第二钝化层及在所述发射极的表面形成第一钝化层;forming a second passivation layer on the surface of the second doped conductive layer and forming a first passivation layer on the surface of the emitter;

在所述第二钝化层表面形成第二电极及在所述第一钝化层表面形成第一电极。A second electrode is formed on the surface of the second passivation layer and a first electrode is formed on the surface of the first passivation layer.

第三方面,本申请实施例提供一种光伏组件,所述光伏组件包括盖板、封装材料层、太阳能电池串,所述太阳能电池串包括多个第一方面所述的制备方法制备的太阳能电池或第二方面所述的太阳能电池。In the third aspect, the embodiment of the present application provides a photovoltaic module, the photovoltaic module includes a cover plate, an encapsulation material layer, and a solar cell string, and the solar cell string includes a plurality of solar cells prepared by the preparation method described in the first aspect Or the solar cell described in the second aspect.

本申请的技术方案至少具有以下有益的效果:The technical solution of the present application has at least the following beneficial effects:

本申请通过仅在电池第二表面的金属化区域设置低浓度的第一掺杂导电层以及阻滞层,而在电池第二表面整个表面设置浓度较高的第二掺杂导电层,一方面,浓度较低的第一掺杂导电层与隧穿层接触,能够减少掺杂元素对于隧穿层的钝化影响,降低金属化区域的复合电流密度J0,metal,同时浓度较低的第一掺杂导电层与半导体衬底之间的准费米能级的差值qVD较小,有利于提升理论开路电压,有利于提升太阳能电池的光电转换效率;此外,浓度较高的第二掺杂导电层存在于金属化区域和非金属化区域,能够保证电池背面载流子的横向传输速率,而且,处于非金属化区域的第二掺杂导电层与半导体衬底之间的距离较近,能够避免因为设置低浓度的第一掺杂导电层和阻滞层使得第二掺杂导电层与半导体衬底之间距离太远而导致第二掺杂导电层的能带弯曲效果减弱太多,从而保证载流子的选择性传输。In the present application, a low-concentration first doped conductive layer and a retardation layer are arranged only on the metallized region of the second surface of the battery, and a second doped conductive layer with a higher concentration is arranged on the entire second surface of the battery. On the one hand , the first doped conductive layer with a lower concentration is in contact with the tunneling layer, which can reduce the passivation effect of doping elements on the tunneling layer, and reduce the recombination current density J 0,metal of the metallized region. The difference qVD of the quasi-Fermi energy level between the doped conductive layer and the semiconductor substrate is small, which is conducive to improving the theoretical open circuit voltage and the photoelectric conversion efficiency of the solar cell; in addition, the higher concentration of the second doped The heteroconductive layer exists in the metallized area and the non-metallized area, which can ensure the lateral transport rate of the charge carriers on the back of the battery, and the distance between the second doped conductive layer in the non-metallized area and the semiconductor substrate is relatively short , it can avoid that the energy band bending effect of the second doped conductive layer is weakened too much because the distance between the second doped conductive layer and the semiconductor substrate is too far due to the low concentration of the first doped conductive layer and the retarder layer , so as to ensure the selective transport of carriers.

附图说明Description of drawings

为了更清楚的说明本申请实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application or the prior art, the accompanying drawings that need to be used in the description of the embodiments or the prior art will be briefly introduced below. Obviously, the accompanying drawings in the following description are only For some embodiments of the present application, those of ordinary skill in the art can also obtain other drawings based on these drawings without creative effort.

图1为本申请太阳能电池的结构示意图一;Fig. 1 is a structural schematic diagram 1 of the solar cell of the present application;

图2为本申请太阳能电池的制备流程图;Fig. 2 is the preparation flowchart of the solar cell of the present application;

图3为本申请在半导体衬底第一发射极的结构示意图;FIG. 3 is a schematic structural view of the first emitter of the semiconductor substrate in the present application;

图4为本申请在半导体衬底第二表面形成隧穿层的结构示意图;FIG. 4 is a schematic structural view of forming a tunneling layer on the second surface of a semiconductor substrate in the present application;

图5为本申请在隧穿层表面形成第一非导电层的结构示意图;Fig. 5 is a schematic structural diagram of forming a first non-conductive layer on the surface of the tunneling layer according to the present application;

图6为本申请在第一非导电层表明形成阻滞层的结构示意图;FIG. 6 is a schematic structural diagram showing the formation of a retardation layer in the first non-conductive layer of the present application;

图7为本申请在位于非金属化区域的第一非导电层和阻滞层表面形成第二非导电层的结构示意图;Fig. 7 is a schematic structural view of the present application forming a second non-conductive layer on the surface of the first non-conductive layer and the retardation layer located in the non-metallized region;

图8为本申请对图7形成的结构进行掺杂处理后的结构示意图;FIG. 8 is a schematic structural view of the structure formed in FIG. 7 after doping treatment in the present application;

图9为本申请在半导体衬底上形成第一钝化层和第二钝化层后的结构示意图;9 is a schematic structural view of the present application after forming a first passivation layer and a second passivation layer on a semiconductor substrate;

图10为本申请光伏组件的结构示意图。FIG. 10 is a schematic structural diagram of a photovoltaic module of the present application.

图中:1-半导体衬底;In the figure: 1-semiconductor substrate;

2-发射极;2 - emitter;

3-第一钝化层;3 - first passivation layer;

4-隧穿层;4-tunneling layer;

5-第一掺杂导电层;5 - the first doped conductive layer;

6-阻滞层;6-retardation layer;

7-第二掺杂导电层;7-the second doped conductive layer;

8-第二钝化层;8 - second passivation layer;

9-第一电极;9 - first electrode;

10-第二电极;10 - second electrode;

11-第一非导电层;11 - a first non-conductive layer;

12-第二非导电层;12 - second non-conductive layer;

1000-光伏组件;1000-photovoltaic modules;

100-太阳能电池;100 - solar cells;

200-第一盖板;200-the first cover plate;

300-第一封装胶层;300-the first packaging adhesive layer;

400-第二封装胶层;400-the second packaging adhesive layer;

500-第二盖板。500 - Second cover plate.

具体实施方式Detailed ways

为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。In order to better understand the technical solutions of the present application, the embodiments of the present application will be described in detail below in conjunction with the accompanying drawings.

应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。It should be clear that the described embodiments are only some of the embodiments of the present application, not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of this application.

在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。Terms used in the embodiments of the present application are only for the purpose of describing specific embodiments, and are not intended to limit the present application. The singular forms "a", "said" and "the" used in the embodiments of this application and the appended claims are also intended to include the plural forms unless the context clearly indicates otherwise.

应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。It should be understood that the term "and/or" used herein is only an association relationship describing associated objects, which means that there may be three relationships, for example, A and/or B, which may mean that A exists alone, and A and B exist simultaneously. B, there are three situations of B alone. In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.

优化晶硅太阳能的表面钝化是其提效的重要手段之一。近年来,随着理论技术的发展与人们对更优质钝化效果的追求,隧穿氧化层钝化接触 (tunnel oxide passivatedcontact, TOPCon)结构因其更高的理论效率广受青睐。TOPCon结构由超薄氧化硅和重掺杂硅薄膜组成,其具有良好的钝化效果形成场钝化效果,使得使用TOPCon 技术制备的晶硅电池效率已达到 26% 以上。Optimizing the surface passivation of crystalline silicon solar energy is one of the important means to improve its efficiency. In recent years, with the development of theoretical technology and people's pursuit of better passivation effect, the tunnel oxide passivated contact (TOPCon) structure is widely favored because of its higher theoretical efficiency. The TOPCon structure is composed of ultra-thin silicon oxide and heavily doped silicon film, which has a good passivation effect and forms a field passivation effect, so that the efficiency of crystalline silicon cells prepared using TOPCon technology has reached more than 26%.

现有的TOPCon 电池大都使用 ploy-Si (多晶硅)作为掺杂层,先由 化学气相沉积(CVD)的方法沉积一层 非晶硅(a-Si:H)再经过退火处理使 a-Si:H 转变为 ploy-Si,从而使得结晶度得到了极大的提升,进一步对ploy-Si进行掺杂激活,提升TOPCon电池的导电性,研究人员发现,硅衬底与收集层之间准费米能级的差值qVD是决定开路电压上限的物理量,当qVD越大,电池的开路电压Voc的上限也越高。传统掺杂多晶硅层的掺杂浓度需要达到一定高度,如此可以与金属电极形成较好接触,但高掺杂浓度的多晶硅层同样存在两个问题:磷扩散至氧化层会影响隧穿层的钝化效果;且掺杂多晶硅与硅衬底的qVD较小,导致理论开路电压上限较低,从而限制了TOPCon 电池转化效率的提升。Most of the existing TOPCon batteries use poly-Si (polysilicon) as the doped layer. First, a layer of amorphous silicon (a-Si:H) is deposited by chemical vapor deposition (CVD) and then annealed to make a-Si: H is transformed into poly-Si, which greatly improves the crystallinity, further activates the doping of poly-Si, and improves the conductivity of the TOPCon battery. The researchers found that the quasi-Fermi The energy level difference qVD is a physical quantity that determines the upper limit of the open circuit voltage. When qVD is larger, the upper limit of the battery's open circuit voltage Voc is also higher. The doping concentration of the traditional doped polysilicon layer needs to reach a certain height, so that it can form a good contact with the metal electrode, but the polysilicon layer with high doping concentration also has two problems: the diffusion of phosphorus into the oxide layer will affect the passivation of the tunneling layer. and the qVD between doped polysilicon and silicon substrate is small, resulting in a low upper limit of theoretical open circuit voltage, which limits the improvement of TOPCon cell conversion efficiency.

鉴于此,本申请实施例提供一种太阳能电池,如图1所示,为本申请实施例提供的太阳能电池的结构示意图,包括:In view of this, the embodiment of the present application provides a solar cell, as shown in FIG. 1 , which is a schematic structural diagram of the solar cell provided in the embodiment of the present application, including:

半导体衬底1,半导体衬底1具有相对设置的第一表面和第二表面;A semiconductor substrate 1, the semiconductor substrate 1 has a first surface and a second surface opposite to each other;

位于半导体衬底1第一表面的发射极2和第一钝化层3;The emitter 2 and the first passivation layer 3 located on the first surface of the semiconductor substrate 1;

位于半导体衬底1第二表面的隧穿层4;a tunneling layer 4 located on the second surface of the semiconductor substrate 1;

位于隧穿层4表面的第一掺杂导电层5和阻滞层6,其中,第一掺杂导电层5位于隧穿层4与阻滞层6之间,第一掺杂导电层5和阻滞层6对应于金属化区域;The first doped conductive layer 5 and the barrier layer 6 located on the surface of the tunneling layer 4, wherein the first doped conductive layer 5 is located between the tunneling layer 4 and the barrier layer 6, the first doped conductive layer 5 and the barrier layer 6 The barrier layer 6 corresponds to the metallization area;

位于隧穿层4表面的第二掺杂导电层7,第二掺杂导电层7覆盖非金属化区域的隧穿层4和阻滞层6,第二掺杂导电层7的掺杂浓度大于第一掺杂导电层5的掺杂浓度;The second doped conductive layer 7 located on the surface of the tunneling layer 4, the second doped conductive layer 7 covers the tunneling layer 4 and the blocking layer 6 in the non-metallized region, and the doping concentration of the second doped conductive layer 7 is greater than The doping concentration of the first doped conductive layer 5;

位于第二掺杂导电层7表面的第二钝化层8;A second passivation layer 8 located on the surface of the second doped conductive layer 7;

与发射极2接触的第一电极9以及与第二掺杂导电层7接触的第二电极10。A first electrode 9 in contact with the emitter 2 and a second electrode 10 in contact with the second doped conductive layer 7 .

在上述方案中,本申请通过仅在电池第二表面的金属化区域设置低浓度的第一掺杂导电层5以及阻滞层6,而在电池第二表面整个表面设置浓度较高的第二掺杂导电层7,一方面,浓度较低的第一掺杂导电层5与隧穿层4接触,能够减少掺杂元素对于隧穿层4的钝化影响,降低金属化区域的复合电流密度J0,metal,同时浓度较低的第一掺杂导电层5与半导体衬底1之间的准费米能级的差值qVD较小,有利于提升理论开路电压,有利于提升太阳能电池的光电转换效率;此外,浓度较高的第二掺杂导电层7存在于金属化区域和非金属化区域,能够保证电池背面载流子的横向传输速率,而且,处于非金属化区域的第二掺杂导电层7与半导体衬底1之间的距离较近,能够避免因为设置低浓度的第一掺杂导电层5和阻滞层6使得第二掺杂导电层7与半导体衬底1之间距离太远而导致第二掺杂导电层7的能带弯曲效果减弱太多,从而保证载流子的选择性传输。与在太阳能电池背面的隧穿层4上依次设置整面的轻掺杂导电层、整面的阻滞层6和整面的重掺杂导电层提升钝化效果相比,本申请的局域化的掺杂导电层设计,不仅能够提升金属化区域的钝化效果,还能够保证载流子的横向传输效率,可有效提升电池效率。In the above scheme, the present application only arranges the low-concentration first doped conductive layer 5 and the retardation layer 6 on the metallized area of the second surface of the battery, and arranges the second doped conductive layer 6 with a higher concentration on the entire surface of the second surface of the battery. The doped conductive layer 7, on the one hand, the first doped conductive layer 5 with a lower concentration is in contact with the tunneling layer 4, which can reduce the passivation effect of doping elements on the tunneling layer 4, and reduce the recombination current density of the metallized region J 0,metal , at the same time, the difference qVD of the quasi-Fermi level between the first doped conductive layer 5 with a lower concentration and the semiconductor substrate 1 is small, which is conducive to improving the theoretical open circuit voltage and improving the performance of the solar cell. Photoelectric conversion efficiency; in addition, the second doped conductive layer 7 with higher concentration exists in the metallized area and the non-metallized area, which can ensure the lateral transmission rate of the charge carriers on the back of the battery, and the second doped conductive layer 7 in the non-metallized area The distance between the doped conductive layer 7 and the semiconductor substrate 1 is relatively close, which can avoid the gap between the second doped conductive layer 7 and the semiconductor substrate 1 due to the low concentration of the first doped conductive layer 5 and the retarder layer 6. If the distance between them is too far, the band bending effect of the second doped conductive layer 7 will be weakened too much, so as to ensure the selective transport of carriers. Compared with sequentially setting the entire lightly doped conductive layer, the entire surface retardation layer 6 and the entire surface heavily doped conductive layer on the tunneling layer 4 on the back of the solar cell to improve the passivation effect, the local area of the present application The design of the optimized doped conductive layer can not only improve the passivation effect of the metallized area, but also ensure the lateral transmission efficiency of carriers, which can effectively improve the battery efficiency.

在一些实施方式中,半导体衬底1的第一表面可以是太阳能电池的正面,也可以是太阳能电池的背面,当半导体衬底1的第一表面为太阳能电池的正面时,则半导体衬底1的第二表面为太阳能电池的背面;相应的,当半导体衬底1的第一表面为太阳能电池的背面时,半导体衬底1的第二表面为太阳能电池的正面,可以理解,太阳能电池的正面为面向太阳的表面(即受光面),太阳能电池的背面为背对太阳的表面(即背光面)。以下,均以半导体衬底1的第一表面为太阳能电池的正面、半导体衬底1的第二表面为太阳能电池的背面为例进行说明。In some embodiments, the first surface of the semiconductor substrate 1 can be the front side of the solar cell, or the back side of the solar cell. When the first surface of the semiconductor substrate 1 is the front side of the solar cell, the semiconductor substrate 1 The second surface of the semiconductor substrate 1 is the back side of the solar cell; correspondingly, when the first surface of the semiconductor substrate 1 is the back side of the solar cell, the second surface of the semiconductor substrate 1 is the front side of the solar cell. It can be understood that the front side of the solar cell The surface facing the sun (that is, the light-receiving surface), and the back of the solar cell is the surface that faces away from the sun (that is, the backlight surface). Hereinafter, description will be made by taking the first surface of the semiconductor substrate 1 as the front side of the solar cell and the second surface of the semiconductor substrate 1 as the back side of the solar cell as an example.

对于本领域人员而言,金属化区域指的是太阳能电池的第二电极10穿透第二钝化层8与掺杂导电层形成接触(直接或间接接触)的区域,在某些情况下,电极形成过程中的导电金属微粒会游离于电极主结构形成间接接触;非金属化区域指的是除第二电极10穿透第二钝化层8与掺杂导电层形成接触的区域以外其他的区域或金属化区域以外的区域。For those skilled in the art, the metallization region refers to the region where the second electrode 10 of the solar cell penetrates the second passivation layer 8 and forms contact (direct or indirect contact) with the doped conductive layer. In some cases, The conductive metal particles in the electrode formation process will dissociate from the main structure of the electrode to form indirect contact; the non-metallized area refers to the area other than the area where the second electrode 10 penetrates the second passivation layer 8 and forms contact with the doped conductive layer. areas or areas other than metallized areas.

在一些实施方式中,半导体衬底1为N型晶体硅衬底(或硅片),还可以是P型晶体硅衬底(硅片)。晶体硅衬底(硅衬底)例如为多晶硅衬底、单晶硅衬底、微晶硅衬底或碳化硅衬底中的一种,本申请实施例对于半导体衬底1的具体类型不作限定。半导体衬底1的掺杂元素可以是磷、氮等。In some implementation manners, the semiconductor substrate 1 is an N-type crystalline silicon substrate (or silicon wafer), and may also be a P-type crystalline silicon substrate (silicon wafer). The crystalline silicon substrate (silicon substrate) is, for example, one of a polycrystalline silicon substrate, a single crystal silicon substrate, a microcrystalline silicon substrate or a silicon carbide substrate, and the embodiment of the present application does not limit the specific type of the semiconductor substrate 1 . The doping element of the semiconductor substrate 1 may be phosphorus, nitrogen or the like.

在一些实施方式中,半导体衬底1的厚度为60μm~240μm,具体可以是60μm、80μm、90μm、100μm、120μm、150μm、200μm或240μm等,在此不做限定。In some embodiments, the thickness of the semiconductor substrate 1 is 60 μm-240 μm, specifically 60 μm, 80 μm, 90 μm, 100 μm, 120 μm, 150 μm, 200 μm or 240 μm, etc., which is not limited here.

在一些实施方式中,发射极2可以为具有均匀掺杂深度的发射极2结构,或者,可以为具有不同掺杂浓度和掺杂深度的选择性发射极2结构,具体的,选择性发射极2为金属电极对应的重掺杂发射极区域,其他区域为轻掺杂发射极区域。发射极2区域可以位于半导体衬底1的表面内,也可以位于半导体衬底1表面外形成独立的发射极2结构。当半导体衬底1为N型时,发射极2为P型,半导体衬底1与发射极2形成PN结。In some embodiments, the emitter 2 can be an emitter 2 structure with a uniform doping depth, or can be a selective emitter 2 structure with different doping concentrations and doping depths, specifically, the selective emitter 2 is the heavily doped emitter region corresponding to the metal electrode, and the other regions are lightly doped emitter regions. The region of the emitter 2 may be located within the surface of the semiconductor substrate 1 , or may be located outside the surface of the semiconductor substrate 1 to form an independent structure of the emitter 2 . When the semiconductor substrate 1 is N-type, the emitter 2 is P-type, and the semiconductor substrate 1 and the emitter 2 form a PN junction.

在一些实施方式中,第一钝化层3的材质可以包括但不限于氧化硅、氮化硅、氮氧化硅、氧化铝等单层氧化层或多层结构,第一钝化层3能够对半导体衬底1产生良好的钝化效果,有助于提高电池的转换效率。需要说明的是,第一钝化层3也可以起到减少入射光反射的作用,在某些实例中,也可称之为减反射层 。In some embodiments, the material of the first passivation layer 3 may include but not limited to single-layer oxide layers or multi-layer structures such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, etc., and the first passivation layer 3 can The semiconductor substrate 1 produces a good passivation effect, which helps to improve the conversion efficiency of the battery. It should be noted that the first passivation layer 3 can also function to reduce the reflection of incident light, and in some instances, it can also be called an anti-reflection layer.

在一些实施方式中,第一钝化层3的厚度范围为10nm~120nm,具体可以是10nm、20nm、30nm、42nm、50nm、60nm、70nm、80nm、90nm、100nm或120nm等,当然也可以是上述范围内的其他值,在此不做限定。In some embodiments, the thickness of the first passivation layer 3 ranges from 10nm to 120nm, specifically 10nm, 20nm, 30nm, 42nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm or 120nm, etc. Of course, it can also be Other values within the above range are not limited here.

在一些实施方式中,隧穿层4为薄氧化物层,例如,可以是氧化硅或金属氧化物,并且可以含有其它额外的元素,例如氮。示例性地,隧穿层4可以是氧化硅层、氧化铝层、氮氧化硅层、氧化钼层、氧化铪层中的一种或多种层叠结构。在其他实施例中,隧穿层4也可以是含氧氮化硅层、含氧碳化硅层等。该隧穿层4在实际效果上可以不具备完美的隧道势垒,因为例如含有诸如针孔的缺陷,这可以导致其它电荷载流子传输机制(例如漂移、扩散)相对于隧道效应占主导。In some embodiments, the tunneling layer 4 is a thin oxide layer, such as silicon oxide or metal oxide, and may contain other additional elements, such as nitrogen. Exemplarily, the tunneling layer 4 may be one or more stacked structures of a silicon oxide layer, an aluminum oxide layer, a silicon oxynitride layer, a molybdenum oxide layer, and a hafnium oxide layer. In other embodiments, the tunneling layer 4 may also be an oxygen-containing silicon nitride layer, an oxygen-containing silicon carbide layer, and the like. The tunneling layer 4 may not in practical effect have a perfect tunneling barrier, since eg it contains defects such as pinholes, which may cause other charge carrier transport mechanisms (eg drift, diffusion) to dominate over the tunneling effect.

在一些实施方式中,隧穿层4的厚度为0.5nm~2nm,具体可以是0.5 nm、0.8 nm、1nm、1.2 nm、1.5 nm、1.8 nm或2 nm等,本申请较薄的隧穿层4,有利于阻止多数载流子的传输,促进少数载流子的隧穿收集。In some embodiments, the thickness of the tunneling layer 4 is 0.5nm~2nm, specifically 0.5nm, 0.8nm, 1nm, 1.2nm, 1.5nm, 1.8nm or 2nm, etc. The thinner tunneling layer in this application 4. It is beneficial to prevent the transport of majority carriers and promote the tunneling collection of minority carriers.

在一些实施方式中,第一掺杂导电层5的材质包括多晶硅、微晶硅和碳化硅等半导体材料,本申请实施例对于第一掺杂导电层5的具体类型不作限定。优选的,第一掺杂导电层5的材质包括多晶硅,即第一掺杂导电层5为第一掺杂多晶硅层,第二掺杂导电层7为第二掺杂多晶硅层。In some embodiments, the material of the first doped conductive layer 5 includes semiconductor materials such as polysilicon, microcrystalline silicon, and silicon carbide, and the embodiment of the present application does not limit the specific type of the first doped conductive layer 5 . Preferably, the material of the first doped conductive layer 5 includes polysilicon, that is, the first doped conductive layer 5 is a first doped polysilicon layer, and the second doped conductive layer 7 is a second doped polysilicon layer.

在一些实施方式中,第一掺杂导电层5中的掺杂元素包括硼、磷、镓和砷中的至少一种。In some embodiments, the doping element in the first doped conductive layer 5 includes at least one of boron, phosphorus, gallium and arsenic.

在一些实施方式中,第一掺杂导电层5的掺杂浓度为1E18 cm-3~1.5E21cm-3,具体可以是1E18 cm-3、3E18cm-3、8E18cm-3、1E19cm-3、5E19cm-3、1E20cm-3、5E20cm-3、8E20cm-3、1E21cm-3或1.5E21cm-3等。具体的:In some embodiments, the doping concentration of the first doped conductive layer 5 is 1E18 cm -3 to 1.5E21cm -3 , specifically 1E18 cm -3 , 3E18cm -3 , 8E18cm -3 , 1E19cm -3 , 5E19cm -3 3. 1E20cm -3 , 5E20cm -3 , 8E20cm -3 , 1E21cm -3 or 1.5E21cm -3 , etc. specific:

当第一掺杂导电层5中的掺杂元素为磷、其材质为多晶硅时,第一掺杂导电层5为掺磷多晶硅层;掺磷多晶硅层中磷元素的浓度为1E19 cm-3~1.5E21cm-3,具体可以是1E19cm-3、5E19cm-3、1E20cm-3、5E20cm-3、8E20cm-3、1E21cm-3或1.5E21cm-3等。将掺磷多晶硅层中磷的浓度控制在上述范围内,有利于获得优异的钝化及金属接触性能,可以理解的是,掺磷多晶硅层中磷的浓度指的是掺磷多晶硅层中只占据硅晶格位置的掺杂元素磷的浓度。When the doping element in the first doped conductive layer 5 is phosphorus and its material is polysilicon, the first doped conductive layer 5 is a phosphorus-doped polysilicon layer; the concentration of phosphorus in the phosphorus-doped polysilicon layer is 1E19 cm −3 ~ 1.5E21cm -3 , specifically 1E19cm -3 , 5E19cm -3 , 1E20cm -3 , 5E20cm -3 , 8E20cm -3 , 1E21cm -3 or 1.5E21cm -3 , etc. Controlling the concentration of phosphorus in the phosphorus-doped polysilicon layer within the above-mentioned range is beneficial to obtain excellent passivation and metal contact performance. It can be understood that the concentration of phosphorus in the phosphorus-doped polysilicon layer refers to that only the The concentration of the dopant element phosphorus at the silicon lattice sites.

当第一掺杂导电层5中的掺杂元素为砷、其材质为多晶硅时,第一掺杂导电层5为掺砷多晶硅层;掺砷多晶硅层中砷元素的浓度为1E19 cm-3~1.5E21cm-3,具体可以是1E19cm-3、5E19cm-3、1E20cm-3、5E20cm-3、8E20cm-3、1E21cm-3或1.5E21cm-3等。将掺砷多晶硅层中砷的浓度控制在上述范围内,有利于获得优异的钝化及金属接触性能。When the doping element in the first doped conductive layer 5 is arsenic and its material is polysilicon, the first doped conductive layer 5 is an arsenic-doped polysilicon layer; the concentration of the arsenic element in the arsenic-doped polysilicon layer is 1E19 cm −3 ~ 1.5E21cm -3 , specifically 1E19cm -3 , 5E19cm -3 , 1E20cm -3 , 5E20cm -3 , 8E20cm -3 , 1E21cm -3 or 1.5E21cm -3 , etc. Controlling the concentration of arsenic in the arsenic-doped polysilicon layer within the above range is beneficial to obtain excellent passivation and metal contact performance.

当第一掺杂导电层5中的掺杂元素为硼、其材质为多晶硅时,第一掺杂导电层5为掺硼多晶硅层;掺硼多晶硅层中硼元素的浓度为1E18 cm-3~4.5E19cm-3,具体可以是1E18cm-3、5E18cm-3、1E19cm-3、2E19cm-3、3E19cm-3、4E19cm-3或4.5E19cm-3等。将掺硼多晶硅层中硼的浓度控制在上述范围内,有利于获得优异的钝化性能,同时保证与金属电极的接触。When the doping element in the first doped conductive layer 5 is boron and its material is polysilicon, the first doped conductive layer 5 is a boron-doped polysilicon layer; the concentration of boron in the boron-doped polysilicon layer is 1E18 cm −3 ~ 4.5E19cm -3 , specifically 1E18cm -3 , 5E18cm -3 , 1E19cm -3 , 2E19cm -3 , 3E19cm -3 , 4E19cm -3 or 4.5E19cm -3 . Controlling the concentration of boron in the boron-doped polysilicon layer within the above-mentioned range is beneficial to obtain excellent passivation performance while ensuring contact with the metal electrode.

当第一掺杂导电层5中的掺杂元素为镓、其材质为多晶硅时,第一掺杂导电层5为掺镓多晶硅层;掺镓多晶硅层中镓元素的浓度为1E18 cm-3~4.5E19cm-3,具体可以是1E18cm-3、5E18cm-3、1E19cm-3、2E19cm-3、3E19cm-3、4E19cm-3或4.5E19cm-3等。将掺镓多晶硅层中镓的浓度控制在上述范围内,有利于获得优异的钝化性能,同时保证与金属电极的接触。When the doping element in the first doped conductive layer 5 is gallium and its material is polysilicon, the first doped conductive layer 5 is a gallium-doped polysilicon layer; the concentration of gallium in the gallium-doped polysilicon layer is 1E18 cm -3 ~ 4.5E19cm -3 , specifically 1E18cm -3 , 5E18cm -3 , 1E19cm -3 , 2E19cm -3 , 3E19cm -3 , 4E19cm -3 or 4.5E19cm -3 . Controlling the concentration of gallium in the gallium-doped polysilicon layer within the above-mentioned range is beneficial to obtain excellent passivation performance while ensuring contact with the metal electrode.

在一些实施方式中,第一掺杂导电层5的厚度为20nm~150nm,具体可以是20 nm、30nm、40 nm、50 nm、60 nm、70 nm、80 nm、90 nm、100 nm、110 nm、120 nm、130 nm、140 nm或150 nm等。In some embodiments, the thickness of the first doped conductive layer 5 is 20 nm to 150 nm, specifically 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm. nm, 120 nm, 130 nm, 140 nm or 150 nm etc.

在一些实施方式中,本申请的阻滞层6为用于阻滞第二掺杂导电层7中的掺杂元素向位于金属化区域的第一掺杂导电层5中迁移的膜层结构,其能够降低掺杂元素向金属化区域的隧穿层4扩散,提升第二掺杂导电层7中掺杂元素的掺杂浓度,进而提升场钝化能力。阻滞层6的材质包括硅氧化物(例如可以是SiOx)、硅碳化物(例如可以是SiC)、硅氮化物(例如可以是SiNx)和镁氟化物(例如可以是MgF2)中的至少一种。上述材料中的掺杂离子的扩散速率远低于多晶硅中掺杂离子的扩散速率,具体的,多晶硅中晶界多,同时多晶硅本体Si-Si的四面体晶格结构相对于阻滞层更适合杂质原子扩散;而阻滞层,示例性的,SiC是由于其非晶态导致杂质元素扩散慢, SiOx是由于本身晶格特性导致杂质元素扩散慢,使得杂质元素在该阻滞层中长时间逗留,缓慢扩散,因此起到阻滞作用。In some embodiments, the blocking layer 6 of the present application is a film layer structure used to block the migration of doping elements in the second doped conductive layer 7 to the first doped conductive layer 5 located in the metallization region, It can reduce the diffusion of doping elements to the tunneling layer 4 in the metallization region, increase the doping concentration of the doping elements in the second doped conductive layer 7 , and further improve the field passivation capability. The material of the retardation layer 6 includes silicon oxide (such as SiO x ), silicon carbide (such as SiC), silicon nitride (such as SiN x ) and magnesium fluoride (such as MgF 2 ). at least one of . The diffusion rate of dopant ions in the above materials is much lower than that of dopant ions in polysilicon. Specifically, there are many grain boundaries in polysilicon, and the tetrahedral lattice structure of polysilicon bulk Si-Si is more suitable for retardation layers. impurity atom diffusion; and retardation layer, exemplary, SiC is because its amorphous state causes impurity element diffusion to be slow, and SiO x is that impurity element is diffused slowly because of its lattice property, makes impurity element grow in this retardation layer Time lingers, diffuses slowly and thus acts as a block.

在本实施例中,阻滞层6的阻滞能力由发生热扩散的掺杂离子在第一掺杂导电层朝向隧穿层的方向上所能迁移的最长距离所定义,掺杂离子所能迁移的最长距离越短,阻滞层6的阻滞能力越强,掺杂离子所能迁移的最长距离越长,阻滞层6的阻滞能力越弱。In this embodiment, the retardation capability of the retardation layer 6 is defined by the longest distance that the thermally diffused dopant ions can migrate in the direction of the first doped conductive layer toward the tunneling layer. The shorter the longest distance that can migrate, the stronger the retardation ability of the retardation layer 6 is, and the longer the longest distance that the dopant ions can migrate, the weaker the retardation ability of the retardation layer 6 .

在一些实施方式中,沿平行于隧穿层4方向,即为图1中的X轴方向,第一掺杂导电层5的宽度与阻滞层6的宽度之比为1:(1~2),具体可以是1:1、1:1.2、1:1.5、1:1.7或1:2等,优选的,第一掺杂导电层5的宽度与阻滞层6的宽度之比为1:1.2,可以理解,在一些实施例中,阻滞层6在隧穿层4上的正投影与第一掺杂导电层5在隧穿层4上的正投影重合,在另一些实施例中,阻滞层6在隧穿层4上的正投影与第一掺杂导电层5在隧穿层4上的正投影部分重合,在上述比例限制下,能够确保第一掺杂导电层5中掺杂浓度在较低的范围内,能够减少掺杂元素对于隧穿层4的钝化影响,有利于提升理论开路电压,进一步提升太阳能电池的转换效率。In some embodiments, along the direction parallel to the tunneling layer 4, that is, the X-axis direction in FIG. 1, the ratio of the width of the first doped conductive layer 5 to the width of the retardation layer 6 is 1:(1~2 ), specifically can be 1:1, 1:1.2, 1:1.5, 1:1.7 or 1:2, etc., preferably, the ratio of the width of the first doped conductive layer 5 to the width of the retardation layer 6 is 1: 1.2. It can be understood that, in some embodiments, the orthographic projection of the retardation layer 6 on the tunneling layer 4 coincides with the orthographic projection of the first doped conductive layer 5 on the tunneling layer 4. In other embodiments, The orthographic projection of the retardation layer 6 on the tunneling layer 4 partially overlaps with the orthographic projection of the first doped conductive layer 5 on the tunneling layer 4. Under the limitation of the above ratio, it can be ensured that the first doped conductive layer 5 is doped When the dopant concentration is in a lower range, the passivation effect of the doping elements on the tunneling layer 4 can be reduced, which is beneficial to increase the theoretical open circuit voltage and further improve the conversion efficiency of the solar cell.

在一些实施方式中,阻滞层6的厚度为0.5 nm~4nm,例如可以是0.5 nm、1 nm、2nm、3 nm或4 nm等。可以理解,阻滞层6的厚度方向指的是沿第一掺杂导电层5指向隧穿层4的方向,将阻滞层6的厚度控制在上述范围内,能够阻滞沿垂直于隧穿层4所在表面的方向上的掺杂元素进入第一掺杂导电层5,以使得第一掺杂导电层5中的掺杂浓度较低。若阻滞层6的厚度小于0.5nm,则阻滞层6的阻滞能力较差,无法获得较低浓度的第一掺杂导电层5,若阻滞层6的厚度大于4nm,则阻滞层6会对载流子在Z轴方向上的传输产生较大的阻滞,无法保证载流子能够有效传输。In some embodiments, the retardation layer 6 has a thickness of 0.5 nm to 4 nm, for example, 0.5 nm, 1 nm, 2 nm, 3 nm or 4 nm. It can be understood that the thickness direction of the retardation layer 6 refers to the direction along the direction of the first doped conductive layer 5 to the tunneling layer 4, and the thickness of the retardation layer 6 is controlled within the above-mentioned range, so that the retardation along the direction perpendicular to the tunneling layer can be prevented. The doping elements in the direction of the surface where the layer 4 is located enter the first doped conductive layer 5 , so that the doping concentration in the first doped conductive layer 5 is relatively low. If the thickness of the retardation layer 6 is less than 0.5nm, the retardation ability of the retardation layer 6 is relatively poor, and the first doped conductive layer 5 with a lower concentration cannot be obtained. If the thickness of the retardation layer 6 is greater than 4nm, the retardation Layer 6 will greatly hinder the transport of carriers in the Z-axis direction, and cannot guarantee the effective transport of carriers.

在一些实施方式中,第二掺杂导电层7覆盖非金属化区域的隧穿层4和阻滞层6,第二掺杂导电层7的材质包括多晶硅、微晶硅和碳化硅等半导体材料,本申请实施例对于第二掺杂导电层7的具体类型不作限定。优选的,第二掺杂导电层7的材质包括多晶硅。In some embodiments, the second doped conductive layer 7 covers the tunneling layer 4 and the blocking layer 6 in the non-metallized region, and the material of the second doped conductive layer 7 includes semiconductor materials such as polycrystalline silicon, microcrystalline silicon, and silicon carbide. In the embodiment of the present application, the specific type of the second doped conductive layer 7 is not limited. Preferably, the material of the second doped conductive layer 7 includes polysilicon.

在一些实施方式中,第二掺杂导电层7中的掺杂元素包括硼、磷、镓和砷中的至少一种。In some embodiments, the doping element in the second doped conductive layer 7 includes at least one of boron, phosphorus, gallium and arsenic.

在一些实施方式中,第二掺杂导电层7的掺杂浓度为5E18 cm-3~2E21cm-3,具体可以是5E18cm-3、8E18cm-3、1E19cm-3、5E19cm-3、1E20cm-3、5E20cm-3、8E20cm-3、1E21cm-3或2E21cm-3等。具体的:In some embodiments, the doping concentration of the second doped conductive layer 7 is 5E18 cm -3 to 2E21cm -3 , specifically 5E18cm -3 , 8E18cm -3 , 1E19cm -3 , 5E19cm -3 , 1E20cm -3 , 5E20cm -3 , 8E20cm -3 , 1E21cm -3 or 2E21cm -3 , etc. specific:

当第二掺杂导电层7中的掺杂元素为磷、其材质为多晶硅时,第二掺杂导电层7为掺磷多晶硅层;掺磷多晶硅层中磷元素的浓度为5E19 cm-3~2E21cm-3,具体可以是5E19cm-3、1E20cm-3、5E20cm-3、8E20cm-3、1E21cm-3或2E21cm-3等。将掺磷多晶硅层中磷的浓度控制在上述范围内,能够保证载流子的横向传输,有利于提升填充因子,可以理解的是,掺磷多晶硅层中磷的浓度指的是掺磷多晶硅层中只占据硅晶格位置的掺杂元素磷的浓度。When the doping element in the second doped conductive layer 7 is phosphorus and its material is polysilicon, the second doped conductive layer 7 is a phosphorus-doped polysilicon layer; the concentration of phosphorus in the phosphorus-doped polysilicon layer is 5E19 cm -3 ~ 2E21cm -3 , specifically 5E19cm -3 , 1E20cm -3 , 5E20cm -3 , 8E20cm -3 , 1E21cm -3 or 2E21cm -3 , etc. Controlling the concentration of phosphorus in the phosphorus-doped polysilicon layer within the above-mentioned range can ensure the lateral transport of carriers and help improve the fill factor. It can be understood that the concentration of phosphorus in the phosphorus-doped polysilicon layer refers to the phosphorus-doped polysilicon layer The concentration of the dopant element phosphorus that only occupies the silicon lattice sites in the silicon.

当第二掺杂导电层7中的掺杂元素为砷、其材质为多晶硅时,第二掺杂导电层7为掺砷多晶硅层;掺砷多晶硅层中砷元素的浓度为5E19 cm-3~2E21cm-3,具体可以是5E19cm-3、1E20cm-3、5E20cm-3、8E20cm-3、1E21cm-3或2E21cm-3等。将掺砷多晶硅层中砷的浓度控制在上述范围内,能够保证载流子的横向传输,有利于提升填充因子。When the doping element in the second doped conductive layer 7 is arsenic and its material is polysilicon, the second doped conductive layer 7 is an arsenic-doped polysilicon layer; the concentration of the arsenic element in the arsenic-doped polysilicon layer is 5E19 cm -3 ~ 2E21cm -3 , specifically 5E19cm -3 , 1E20cm -3 , 5E20cm -3 , 8E20cm -3 , 1E21cm -3 or 2E21cm -3 , etc. Controlling the concentration of arsenic in the arsenic-doped polysilicon layer within the above-mentioned range can ensure the lateral transport of carriers and is beneficial to improve the fill factor.

当第二掺杂导电层7中的掺杂元素为硼、其材质为多晶硅时,第二掺杂导电层7为掺硼多晶硅层;掺硼多晶硅层中硼元素的浓度为5E18 cm-3~5E19cm-3,具体可以是5E18cm-3、1E19cm-3、2E19cm-3、3E19cm-3、4E19cm-3或5E19cm-3等。将掺硼多晶硅层中硼的浓度控制在上述范围内,有利于获得优异的钝化性能,同时保证与金属电极的接触。When the doping element in the second doped conductive layer 7 is boron and its material is polysilicon, the second doped conductive layer 7 is a boron-doped polysilicon layer; the concentration of boron in the boron-doped polysilicon layer is 5E18 cm −3 ~ 5E19cm -3 , specifically 5E18cm -3 , 1E19cm -3 , 2E19cm -3 , 3E19cm -3 , 4E19cm -3 or 5E19cm -3 . Controlling the concentration of boron in the boron-doped polysilicon layer within the above-mentioned range is beneficial to obtain excellent passivation performance while ensuring contact with the metal electrode.

当第二掺杂导电层7中的掺杂元素为镓、其材质为多晶硅时,第二掺杂导电层7为掺镓多晶硅层;掺镓多晶硅层中镓元素的浓度为5E18 cm-3~5E19cm-3,具体可以是5E18cm-3、1E19cm-3、2E19cm-3、3E19cm-3、4E19cm-3或5E19cm-3等。将掺镓多晶硅层中镓的浓度控制在上述范围内,有利于获得优异的钝化性能,同时保证与金属电极的接触。When the doping element in the second doped conductive layer 7 is gallium and its material is polysilicon, the second doped conductive layer 7 is a gallium-doped polysilicon layer; the concentration of gallium in the gallium-doped polysilicon layer is 5E18 cm -3 ~ 5E19cm -3 , specifically 5E18cm -3 , 1E19cm -3 , 2E19cm -3 , 3E19cm -3 , 4E19cm -3 or 5E19cm -3 . Controlling the concentration of gallium in the gallium-doped polysilicon layer within the above-mentioned range is beneficial to obtain excellent passivation performance while ensuring contact with the metal electrode.

在一些实施方式中,第二掺杂导电层7的厚度为20nm~200nm,具体可以是20 nm、30nm、40 nm、50 nm、60 nm、70 nm、80 nm、90 nm、100 nm、110 nm、120 nm、130 nm、140 nm、150nm、160 nm、170 nm、180 nm、190 nm或200 nm等。可以理解,由于第一掺杂导电层5仅对应局部的金属化区域,第二掺杂导电层7覆盖第一掺杂导电层5,且第二掺杂导电层7对应电池整个背面(即对应金属化区域和非金属化区域)。因此,第一掺杂导电层5的厚度小于第二掺杂导电层7的厚度。In some embodiments, the thickness of the second doped conductive layer 7 is 20nm~200nm, specifically 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170 nm, 180 nm, 190 nm or 200 nm etc. It can be understood that since the first doped conductive layer 5 only corresponds to a local metallization area, the second doped conductive layer 7 covers the first doped conductive layer 5, and the second doped conductive layer 7 corresponds to the entire back of the battery (that is, corresponds to metallized and non-metallized areas). Therefore, the thickness of the first doped conductive layer 5 is smaller than the thickness of the second doped conductive layer 7 .

在一些实施方式中,与第一掺杂导电层5相接触的隧穿层4的表面面积记为S1,与第一掺杂导电层5相接触的隧穿层4的表面面积和与第二掺杂导电层7相接触的隧穿层4的表面面积之和记为S2,S1:S2=1:(5~50),具体可以是1:5、1:10、1:20、1:30、1:40、1:45或1:50等,在上述范围内,既能够保证掺杂导电层在金属化区域的钝化性能的同时,还能保证掺杂导电层在其他区域的载流子的横向传输,有利于提升电池的光电转换效率。若S1:S2大于1:5,则第一掺杂导电层5的占比过多,导致多晶硅层中的载流子横向传输受阻较大,电池填充因子受影响,光电转换效率降低;若S1:S2小于1:50,则第二掺杂导电层7的占比过多,导致金属区载流子复合速率上升,钝化效果显著下降,电池开路电压受影响,光电转换效率降低。In some embodiments, the surface area of the tunneling layer 4 in contact with the first doped conductive layer 5 is denoted as S1, and the surface area of the tunneling layer 4 in contact with the first doped conductive layer 5 and the second The sum of the surface areas of the tunneling layer 4 in contact with the doped conductive layer 7 is denoted as S2, S1:S2=1:(5~50), specifically 1:5, 1:10, 1:20, 1: 30, 1:40, 1:45 or 1:50, etc., within the above range, it can not only ensure the passivation performance of the doped conductive layer in the metallization area, but also ensure the loading of the doped conductive layer in other areas. The lateral transport of carriers is beneficial to improve the photoelectric conversion efficiency of the battery. If S1:S2 is greater than 1:5, the proportion of the first doped conductive layer 5 is too large, resulting in greater resistance to the lateral transport of carriers in the polysilicon layer, affecting the battery fill factor, and reducing the photoelectric conversion efficiency; if S1 : S2 is less than 1:50, the proportion of the second doped conductive layer 7 is too much, resulting in the increase of the carrier recombination rate in the metal region, the passivation effect is significantly reduced, the open circuit voltage of the battery is affected, and the photoelectric conversion efficiency is reduced.

在一些实施方式中,本申请实施例还提供一种太阳能电池的制备方法,能够用于制作本申请实施例提供的太阳能电池,在制备掺杂导电层的过程中,先制备覆盖隧穿层4的第一非导电层11,再在金属化区域制备阻滞层6,再在覆盖非金属化区域的隧穿层4和阻滞层6的表面制备第二非导电层12,最后进行掺杂处理,使得第二非导电层12和位于非金属化区域的第一非导电层11转变为第二掺杂导电层7、位于金属化区域的所述第一非导电层11转变为第一掺杂导电层5,由于阻滞层6的存在,随着掺杂处理过程中的进行,掺杂元素进入第一非导电层11变成第一掺杂导电层5的阻力越来越大,使得沿第一掺杂导电层5指向隧穿层4方向,第一掺杂导电层5的掺杂浓度依次减小,如此设置,能够尽可能的降低掺杂元素对于隧穿层4的扩散,有利于提升金属化区域的钝化性能。In some embodiments, the embodiment of the present application also provides a method for preparing a solar cell, which can be used to manufacture the solar cell provided in the embodiment of the present application. In the process of preparing the doped conductive layer, first prepare the covering tunneling layer 4 The first non-conductive layer 11 of the first non-conductive layer 11, and then prepare the barrier layer 6 in the metallized area, then prepare the second non-conductive layer 12 on the surface of the tunneling layer 4 and the barrier layer 6 covering the non-metallized area, and finally perform doping treatment, so that the second non-conductive layer 12 and the first non-conductive layer 11 located in the non-metallized area are converted into the second doped conductive layer 7, and the first non-conductive layer 11 located in the metallized area is converted into the first doped conductive layer 7. Due to the presence of the retardation layer 6 in the heteroconductive layer 5, as the doping process progresses, the resistance of the dopant elements entering the first non-conductive layer 11 to become the first doped conductive layer 5 becomes larger and larger, so that Along the direction of the first doped conductive layer 5 pointing to the tunneling layer 4, the doping concentration of the first doped conductive layer 5 decreases successively, so that the diffusion of doping elements to the tunneling layer 4 can be reduced as much as possible. It is beneficial to improve the passivation performance of the metallized area.

在一些实施方式中,在掺杂处理的过程中,由于金属化区域阻滞层6的存在,阻止了掺杂元素向第一非导电层11方向的传输,使得位于金属化区域的第二非导电层12中存在较多的掺杂元素,而在非金属化区域,没有阻滞层6的阻挡,掺杂元素能够在整个非金属化区域进行较为均匀的扩散,导致位于非金属化区域的第一非导电层11和第二非导电层12中的掺杂元素较少,即位于非金属化区域的第二掺杂导电层7的掺杂浓度大于位于金属化区域的第二掺杂导电层7的掺杂浓度,如此设置,使得第二掺杂导电层7中与第二电极10相接触的区域的浓度较大,有利于载流子的横向运输以及第二掺杂导电层7与第二电极10形成较好的接触。In some embodiments, during the doping process, due to the existence of the blocking layer 6 in the metallization region, the transmission of dopant elements to the direction of the first non-conductive layer 11 is prevented, so that the second non-conductive layer located in the metallization region There are many doping elements in the conductive layer 12, but in the non-metallized region, without the barrier of the retardation layer 6, the doping elements can diffuse relatively uniformly throughout the non-metallized region, resulting in The doping elements in the first non-conductive layer 11 and the second non-conductive layer 12 are less, that is, the doping concentration of the second doped conductive layer 7 located in the non-metallized region is higher than that of the second doped conductive layer 7 located in the metallized region. The doping concentration of layer 7 is set in such a way that the concentration of the region in contact with the second electrode 10 in the second doped conductive layer 7 is relatively large, which is beneficial to the lateral transport of carriers and the connection between the second doped conductive layer 7 and the second electrode 10. The second electrode 10 forms a better contact.

在一些实施方式中,沿平行于隧穿层4所在平面层方向,由于第一掺杂导电层5的两侧分别与第二掺杂导电层7相接壤,在掺杂处理过程中,第二掺杂导电层7中的掺杂元素也会沿着平行于隧穿层4所在平面层方向扩散进入第一掺杂导电层5中,使得朝向第二掺杂导电层7的第一掺杂导电层5的掺杂浓度大于背离第二掺杂导电层7的第一掺杂导电层5的掺杂浓度。In some implementations, along the layer direction parallel to the plane where the tunneling layer 4 is located, since both sides of the first doped conductive layer 5 border on the second doped conductive layer 7 respectively, during the doping process, the second The doping element in the doped conductive layer 7 will also diffuse into the first doped conductive layer 5 along the direction parallel to the plane layer where the tunneling layer 4 is located, so that the first doped conductive layer towards the second doped conductive layer 7 is conductive The doping concentration of layer 5 is greater than the doping concentration of first doped conductive layer 5 facing away from second doped conductive layer 7 .

本申请实施例提供的太阳能电池的制作方法,可以用于制作TOPCon电池,下面,将结合本发明实施例中的附图,对本申请TOPCon电池的制备方法进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。The manufacturing method of the solar cell provided by the embodiment of the present application can be used to make the TOPCon battery. Below, the preparation method of the TOPCon battery of the present application will be clearly and completely described in conjunction with the accompanying drawings in the embodiment of the present invention. The described implementation Examples are only some embodiments of the present invention, not all embodiments.

本申请实施例提供一种太阳能电池的制备方法,如图2所示,为本申请太阳能电池的制备方法,包括以下步骤:The embodiment of the present application provides a method for preparing a solar cell, as shown in FIG. 2 , which is a method for preparing a solar cell of the present application, including the following steps:

步骤S100、提供半导体衬底1,半导体衬底1包括相对设置的第一表面和第二表面。In step S100 , a semiconductor substrate 1 is provided, and the semiconductor substrate 1 includes a first surface and a second surface opposite to each other.

步骤S200、在制绒后的半导体衬底1的第一表面形成发射极2。Step S200 , forming an emitter 2 on the first surface of the textured semiconductor substrate 1 .

步骤S300、在半导体衬底1的第二表面形成隧穿层4。Step S300 , forming a tunneling layer 4 on the second surface of the semiconductor substrate 1 .

步骤S400、在隧穿层4的表面形成第一非导电层11,第一非导电层11对应于金属化区域和非金属化区域。Step S400 , forming a first non-conductive layer 11 on the surface of the tunneling layer 4 , the first non-conductive layer 11 corresponds to the metallized area and the non-metallized area.

步骤S500、在第一非导电层11表面形成阻滞层6,其中,阻滞层6对应于金属化区域。Step S500 , forming a retardation layer 6 on the surface of the first non-conductive layer 11 , wherein the retardation layer 6 corresponds to a metallization region.

步骤S600、在第一非导电层11和阻滞层6的表面形成第二非导电层12,对第二非导电层12进行掺杂处理,使得第二非导电层12和位于非金属化区域的第一非导电层11转变为第二掺杂导电层7、位于金属化区域的第一非导电层11转变为第一掺杂导电层5,其中,第二掺杂导电层7的掺杂浓度大于第一掺杂导电层5的掺杂浓度。Step S600, forming a second non-conductive layer 12 on the surface of the first non-conductive layer 11 and the retardation layer 6, and performing doping treatment on the second non-conductive layer 12, so that the second non-conductive layer 12 and the non-metallized area are located The first non-conductive layer 11 is transformed into the second doped conductive layer 7, and the first non-conductive layer 11 located in the metallization region is transformed into the first doped conductive layer 5, wherein the doping of the second doped conductive layer 7 The concentration is greater than the doping concentration of the first doped conductive layer 5 .

步骤S700、在第二掺杂导电层7的表面形成第二钝化层8及在发射极2的表面形成第一钝化层3。Step S700 , forming the second passivation layer 8 on the surface of the second doped conductive layer 7 and forming the first passivation layer 3 on the surface of the emitter 2 .

步骤S800、在第二钝化层8表面形成第二电极10及在第一钝化层3表面形成第一电极9。Step S800 , forming the second electrode 10 on the surface of the second passivation layer 8 and forming the first electrode 9 on the surface of the first passivation layer 3 .

在上述方案中,本申请通过在半导体衬底1的第二表面依次形成第一非导电层11、阻滞层6和第二非导电层12,再进行掺杂处理,阻滞层6的存在使得掺杂处理的过程中掺杂元素会较少的进入阻滞层6和隧穿层4之间的第一非导电层11中,使得第二非导电层12和位于非金属化区域的第一非导电层11转变为第二掺杂导电层7、位于金属化区域的第一非导电层11转变为第一掺杂导电层5,且第二掺杂导电层7的掺杂浓度大于第一掺杂导电层5的掺杂浓度,第二非导电层12和位于非金属化区域的第一非导电层11转变为第二掺杂导电层7、位于金属化区域的第一非导电层11转变为第一掺杂导电层5,其中,第二掺杂导电层7的掺杂浓度大于第一掺杂导电层5的掺杂浓度。一方面,浓度较低的第一掺杂导电层5与隧穿层4接触,能够减少掺杂元素对于隧穿层4的钝化影响,同时浓度较低的第一掺杂导电层5与半导体衬底1之间的准费米能级的差值qVD较小,有利于提升理论开路电压,有利于提升太阳能电池的光电转换效率;此外,浓度较高的第二掺杂导电层7存在于金属化区域和非金属化区域,能够保证电池背面载流子的横向传输速率,而且,处于非金属化区域的第二掺杂导电层7与半导体衬底1之间的距离较近,能够避免因为设置低浓度的第一掺杂导电层5和阻滞层6使得第二掺杂导电层7与半导体衬底1之间距离太远而导致第二掺杂导电层7的能带弯曲效果减弱太多,从而保证载流子的选择性传输。In the above scheme, the present application sequentially forms the first non-conductive layer 11, the retardation layer 6 and the second non-conductive layer 12 on the second surface of the semiconductor substrate 1, and then performs doping treatment, the existence of the retardation layer 6 During the doping process, less doping elements will enter into the first non-conductive layer 11 between the blocking layer 6 and the tunneling layer 4, so that the second non-conductive layer 12 and the first non-conductive layer located in the non-metallized region A non-conductive layer 11 is transformed into a second doped conductive layer 7, the first non-conductive layer 11 located in the metallization region is transformed into a first doped conductive layer 5, and the doping concentration of the second doped conductive layer 7 is greater than that of the first doped conductive layer The doping concentration of a doped conductive layer 5, the second non-conductive layer 12 and the first non-conductive layer 11 located in the non-metallized area are transformed into the second doped conductive layer 7, the first non-conductive layer located in the metallized area 11 transforms into the first doped conductive layer 5 , wherein the doping concentration of the second doped conductive layer 7 is greater than that of the first doped conductive layer 5 . On the one hand, the first doped conductive layer 5 with a lower concentration is in contact with the tunneling layer 4, which can reduce the passivation effect of doping elements on the tunneling layer 4, and at the same time, the first doped conductive layer 5 with a lower concentration is in contact with the semiconductor The difference qVD of the quasi-Fermi energy level between the substrates 1 is small, which is conducive to improving the theoretical open circuit voltage and the photoelectric conversion efficiency of the solar cell; in addition, the second doped conductive layer 7 with a higher concentration exists in the The metallized area and the non-metallized area can ensure the lateral transmission rate of the charge carriers on the back of the battery, and the distance between the second doped conductive layer 7 in the non-metallized area and the semiconductor substrate 1 is relatively close, which can avoid The energy band bending effect of the second doped conductive layer 7 is weakened because the first doped conductive layer 5 and the retardation layer 6 are set at a low concentration so that the distance between the second doped conductive layer 7 and the semiconductor substrate 1 is too far away. Too much, thus ensuring the selective transport of carriers.

在一些实施方式中,半导体衬底1的第一表面为太阳能电池的正面,半导体衬底1的第二表面为太阳能电池的背面为例,对本申请太阳能电池的制备方法进行清楚、完整地描述。In some embodiments, the first surface of the semiconductor substrate 1 is the front side of the solar cell, and the second surface of the semiconductor substrate 1 is the back side of the solar cell as an example to clearly and completely describe the preparation method of the solar cell in this application.

步骤S100、提供半导体衬底1,半导体衬底1包括相对设置的第一表面和第二表面。In step S100 , a semiconductor substrate 1 is provided, and the semiconductor substrate 1 includes a first surface and a second surface opposite to each other.

在一些实施方式中,半导体衬底1为N型晶体硅衬底(或硅片),还可以是P型晶体硅衬底(硅片)。晶体硅衬底(硅衬底)例如为多晶硅衬底、单晶硅衬底、微晶硅衬底或碳化硅衬底中的一种,本申请实施例对于半导体衬底1的具体类型不作限定。半导体衬底1的掺杂元素可以是磷、氮等。In some implementation manners, the semiconductor substrate 1 is an N-type crystalline silicon substrate (or silicon wafer), and may also be a P-type crystalline silicon substrate (silicon wafer). The crystalline silicon substrate (silicon substrate) is, for example, one of a polycrystalline silicon substrate, a single crystal silicon substrate, a microcrystalline silicon substrate or a silicon carbide substrate, and the embodiment of the present application does not limit the specific type of the semiconductor substrate 1 . The doping element of the semiconductor substrate 1 may be phosphorus, nitrogen or the like.

在一些实施方式中,半导体衬底1的厚度为110μm ~250μm,具体地,半导体衬底1的厚度可以是110 μm、120 μm、140 μm、150 μm、160 μm、170 μm、180 μm、180 μm、190 μm、200μm、210 μm、220 μm、230 μm、240 μm或250 μm等,本申请实施例对于半导体衬底1的厚度不作限定。In some embodiments, the thickness of the semiconductor substrate 1 is 110 μm to 250 μm, specifically, the thickness of the semiconductor substrate 1 can be 110 μm, 120 μm, 140 μm, 150 μm, 160 μm, 170 μm, 180 μm, 180 μm μm, 190 μm, 200 μm, 210 μm, 220 μm, 230 μm, 240 μm or 250 μm, etc., the embodiment of the present application does not limit the thickness of the semiconductor substrate 1 .

步骤S200、如图3所示,在制绒后的半导体衬底1的第一表面形成发射极2。In step S200 , as shown in FIG. 3 , an emitter 2 is formed on the first surface of the textured semiconductor substrate 1 .

在一些实施方式中,可以对半导体衬底1的正面进行制绒处理,以形成绒面或表面纹理结构(例如金字塔结构)。制绒处理的方式可以是化学刻蚀、激光刻蚀、机械法和等离子刻蚀等等,在此不做限定。示例性地,可以使用NaOH溶液对半导体衬底1的前表面进行制绒处理,由于NaOH溶液的腐蚀具有各向异性,从而可以制备得到金字塔绒面结构。In some implementation manners, the front surface of the semiconductor substrate 1 may be textured to form a textured surface or a surface texture structure (eg, a pyramid structure). The methods of texturing can be chemical etching, laser etching, mechanical method, plasma etching, etc., which are not limited here. Exemplarily, NaOH solution may be used to perform texturing treatment on the front surface of the semiconductor substrate 1 , since the corrosion of NaOH solution is anisotropic, a pyramid textured structure may be prepared.

可以理解的,通过制绒处理使半导体衬底1的表面具有绒面结构,产生陷光效果,增加太阳能电池对光线的吸收数量,从而提高太阳能电池的转换效率。It can be understood that the surface of the semiconductor substrate 1 has a textured structure through the texturing process, which produces a light trapping effect and increases the amount of light absorbed by the solar cell, thereby improving the conversion efficiency of the solar cell.

在一些实施方式中,在制绒处理之前,还可以包括对半导体衬底1进行清洗的步骤,以去除表面的金属和有机污染物。In some embodiments, before the texturing treatment, a step of cleaning the semiconductor substrate 1 may also be included to remove metal and organic pollutants on the surface.

在一些实施方式中,可通过高温扩散、浆料掺杂或者离子注入中的任意一种或多种方法在半导体衬底1的正面形成发射极2。具体地,通过硼源来扩散硼原子形成发射极2。硼源例如可以采用三溴化硼进行扩散处理,使得晶体硅的微晶硅相转变为多晶硅相。由于半导体衬底1表面具有较高浓度的硼,通常会形成硼硅玻璃层(BSG),这层硼硅玻璃层具有金属吸杂作用,会影响太阳能电池的正常工作,需要后续去除。In some embodiments, the emitter 2 can be formed on the front surface of the semiconductor substrate 1 by any one or more methods of high temperature diffusion, slurry doping or ion implantation. Specifically, the emitter 2 is formed by diffusing boron atoms through a boron source. The boron source, for example, can be diffused with boron tribromide, so that the microcrystalline silicon phase of crystalline silicon is transformed into a polycrystalline silicon phase. Since the surface of the semiconductor substrate 1 has a relatively high concentration of boron, a borosilicate glass layer (BSG) is usually formed. This layer of borosilicate glass layer has a metal gettering effect, which will affect the normal operation of the solar cell and needs to be removed later.

在一些实施例中,发射极2可以为具有均匀掺杂深度的发射极2结构,或者,可以为具有不同掺杂浓度和掺杂深度的选择性发射极2结构。In some embodiments, the emitter 2 may be an emitter 2 structure with a uniform doping depth, or may be a selective emitter 2 structure with different doping concentrations and doping depths.

步骤S300、如图4所示,在半导体衬底1的第二表面形成隧穿层4。In step S300 , as shown in FIG. 4 , a tunneling layer 4 is formed on the second surface of the semiconductor substrate 1 .

在一些实施方式中,本申请实施例对于形成隧穿层4的具体操作方式的不作限定。示例性地,可以采用臭氧氧化法、高温热氧化法和硝酸氧化法中的任意一种对半导体衬底1的后表面进行氧化隧穿。隧穿层4可以为氧化硅层、氧化铝层和氮氧化硅层中的一种或多种。In some implementation manners, the embodiment of the present application does not limit the specific operation manner of forming the tunneling layer 4 . Exemplarily, any one of an ozone oxidation method, a high temperature thermal oxidation method, and a nitric acid oxidation method may be used to perform oxidation tunneling on the rear surface of the semiconductor substrate 1 . The tunneling layer 4 may be one or more of a silicon oxide layer, an aluminum oxide layer and a silicon oxynitride layer.

步骤S400、如图5所示,在隧穿层4的表面形成第一非导电层11,第一非导电层11对应于金属化区域和非金属化区域。In step S400 , as shown in FIG. 5 , a first non-conductive layer 11 is formed on the surface of the tunneling layer 4 , and the first non-conductive layer 11 corresponds to the metallized area and the non-metallized area.

在一些实施方式中,第一非导电层11采用的低温沉积的方式进行,具体地,非晶硅层可以采用化学气相沉积法(CVD)、物理气相沉积法(PVD)或原子层沉积法(ALD)中的任意一种或多种方法制备,本发明对于掺杂非晶硅层400的制备方法不作限定。相应的,沉积所采用的设备可以为CVD设备、PVD 设备和ALD设备等。In some embodiments, the first non-conductive layer 11 is deposited by low temperature, specifically, the amorphous silicon layer can be deposited by chemical vapor deposition (CVD), physical vapor deposition (PVD) or atomic layer deposition ( ALD) by any one or more methods, and the present invention does not limit the preparation method of the doped amorphous silicon layer 400 . Correspondingly, the equipment used for deposition may be CVD equipment, PVD equipment, ALD equipment, etc.

在一些实施方式中,低温沉积的温度为100℃~300℃,低温沉积的温度具体可以是100℃、110℃、120℃、150℃、170℃、200℃、220℃、250℃或300℃等,将低温沉积的温度限定在上述范围内,有利于形成非导电膜层,还可以使得局部非导电材料晶化,进而提高电池的光电性能。In some embodiments, the temperature of low temperature deposition is 100°C~300°C, and the temperature of low temperature deposition can be 100°C, 110°C, 120°C, 150°C, 170°C, 200°C, 220°C, 250°C or 300°C etc. Limiting the temperature of low-temperature deposition to the above-mentioned range is conducive to the formation of non-conductive film layers, and can also crystallize local non-conductive materials, thereby improving the photoelectric performance of the battery.

在一些实施方式中,第一非导电层11的厚度为20nm~150nm,具体可以是20 nm、30nm、40 nm、50 nm、60 nm、70 nm、80 nm、90 nm、100 nm、110 nm、120 nm、130 nm、140 nm或150 nm等。In some embodiments, the thickness of the first non-conductive layer 11 is 20nm~150nm, specifically 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm , 120 nm, 130 nm, 140 nm or 150 nm, etc.

步骤S500、如图6所示,在第一非导电层11表面形成阻滞层6,其中,阻滞层6对应于金属化区域。In step S500 , as shown in FIG. 6 , a blocking layer 6 is formed on the surface of the first non-conductive layer 11 , wherein the blocking layer 6 corresponds to a metallization region.

在一些实施方式中,在硅氧化物、硅碳化物、硅氮化物和镁氟化物等气体氛围下,在第一非导电层11表面进行局部激光处理形成与金属化区域对应的阻滞层6。局部激光处理相比于现有的掩膜版的处理方法,本申请的局部激光处理工艺简单,产能高,易量产。当然,还可以通过其他的方式形成局域化的阻滞层6,本申请对此不作限制,在形成阻滞层6的过程中,阻滞层6可以完全处于金属化区域内,还可以部分阻滞层6位于非金属化区域内部,以获得较强的阻滞作用。In some embodiments, in a gas atmosphere of silicon oxide, silicon carbide, silicon nitride, magnesium fluoride, etc., local laser treatment is performed on the surface of the first non-conductive layer 11 to form a retardation layer 6 corresponding to the metallized region. . Partial laser processing Compared with the existing mask plate processing method, the partial laser processing process of the present application is simple, with high productivity and easy mass production. Of course, the localized barrier layer 6 can also be formed in other ways, and this application is not limited to this. In the process of forming the barrier layer 6, the barrier layer 6 can be completely in the metallization area, or can be partially The retardation layer 6 is located inside the non-metallized area to obtain a stronger retardation effect.

在一些实施方式中,激光处理所采用的激光为脉冲宽度为1ps~100ns,具体可以是1 ps、100 ps、500 ps、1 ns、5ns、10ns、50ns或100ns。In some embodiments, the pulse width of the laser used in the laser treatment is 1 ps-100 ns, specifically 1 ps, 100 ps, 500 ps, 1 ns, 5 ns, 10 ns, 50 ns or 100 ns.

在一些实施方式中,激光的波长为250nm~532nm,具体可以是250 nm、280 nm、300nm、350 nm、400 nm、480 nm、500 nm或532 nm。In some embodiments, the wavelength of the laser is 250 nm to 532 nm, specifically 250 nm, 280 nm, 300 nm, 350 nm, 400 nm, 480 nm, 500 nm or 532 nm.

在一些实施方式中,激光处理的功率为20mJ/cm2~500mJ/cm2,具体可以是20 mJ/cm2、50 mJ/cm2、80 mJ/cm2、100 mJ/cm2、150 mJ/cm2、200 mJ/cm2、300 mJ/cm2、400 mJ/cm2或500 mJ/cm2,对于在蓝绿波段吸收较好的硅氮化物等,可用小功率的激光进行处理;对于硅氧化物等带隙宽的材料需要用大功率的激光进行处理。In some embodiments, the power of laser treatment is 20mJ/cm 2 ~500mJ/cm 2 , specifically 20 mJ/cm 2 , 50 mJ/cm 2 , 80 mJ/cm 2 , 100 mJ/cm 2 , 150 mJ /cm 2 , 200 mJ/cm 2 , 300 mJ/cm 2 , 400 mJ/cm 2 or 500 mJ/cm 2 , for silicon nitride with better absorption in the blue-green band, it can be processed with a low-power laser; Materials with wide band gaps such as silicon oxide need to be processed with high-power lasers.

在一些实施方式中,激光处理的频率为100kHz~160kHz,具体可以是100 kHz、300kHz、800 kHz、1000 kHz、1300 kHz或1600kHz。In some embodiments, the frequency of laser treatment is 100 kHz to 160 kHz, specifically 100 kHz, 300 kHz, 800 kHz, 1000 kHz, 1300 kHz or 1600 kHz.

在一些实施方式中,激光处理的脉冲辐照次数为1~5次。In some embodiments, the number of pulse irradiations for laser treatment is 1-5 times.

步骤S600、在第一非导电层11和阻滞层6的表面形成第二非导电层12,得到的结构如图7所示,对第二非导电层12进行掺杂处理,得到的结构如图8所示。Step S600, forming a second non-conductive layer 12 on the surface of the first non-conductive layer 11 and the retardation layer 6, the obtained structure is shown in FIG. 7, and the second non-conductive layer 12 is doped, and the obtained structure is as follows Figure 8 shows.

在上述步骤中,对第二非导电层12进行掺杂处理的过程中,掺杂元素沿图1所示的Z轴方向进行扩散,即在金属化区域,掺杂元素依次从第二非导电层12→阻滞层6→第一非导电层11进行传输,在传输的过程中,由于阻滞层6的存在,使得掺杂元素由第二非导电层12向第一非导电层11中扩散的难度增加,在掺杂的压力作用下,仍然有部分的掺杂元素可以扩散至第一非导电层11中,如此设置,使得第二非导电层12和位于非金属化区域的第一非导电层11转变为第二掺杂导电层7、位于金属化区域的第一非导电层11转变为第一掺杂导电层5,且第二掺杂导电层7的掺杂浓度大于第一掺杂导电层5的掺杂浓度。可以理解,第一掺杂导电层5的厚度即为第一非导电层11的厚度,第二掺杂导电层7的厚度即为第一非导电层11的厚度加上第二非导电层12的厚度。In the above steps, in the process of doping the second non-conductive layer 12, the dopant element diffuses along the Z-axis direction shown in FIG. Layer 12 → retardation layer 6 → first non-conductive layer 11 for transmission, during the process of transmission, due to the existence of the retardation layer 6, doping elements are transferred from the second non-conductive layer 12 to the first non-conductive layer 11 The difficulty of diffusion increases. Under the action of doping pressure, some doping elements can still diffuse into the first non-conductive layer 11, so that the second non-conductive layer 12 and the first non-metallized region The non-conductive layer 11 is transformed into the second doped conductive layer 7, the first non-conductive layer 11 located in the metallization area is transformed into the first doped conductive layer 5, and the doping concentration of the second doped conductive layer 7 is higher than that of the first The doping concentration of the doped conductive layer 5 . It can be understood that the thickness of the first doped conductive layer 5 is the thickness of the first non-conductive layer 11, and the thickness of the second doped conductive layer 7 is the thickness of the first non-conductive layer 11 plus the thickness of the second non-conductive layer 12. thickness of.

在一些实施方式中,在掺杂处理的过程中,随着掺杂处理过程中的进行,掺杂元素进入第一非导电层11变成第一掺杂导电层5的阻力越来越大,使得沿第一掺杂导电层5指向隧穿层4方向,第一掺杂导电层5的掺杂浓度依次减小。In some embodiments, during the doping process, as the doping process progresses, the resistance of doping elements entering the first non-conductive layer 11 to become the first doped conductive layer 5 becomes greater and greater, The doping concentration of the first doped conductive layer 5 decreases sequentially along the direction from the first doped conductive layer 5 to the tunneling layer 4 .

在一些实施方式中,在掺杂处理的过程中,由于金属化区域阻滞层6的存在,阻止了掺杂元素向第一非导电层11方向的传输,使得位于金属化区域的第二非晶硅中存在较多的掺杂元素,而在非金属化区域,没有阻滞层6的阻挡,掺杂元素能够在整个非金属化区域进行较为均匀的扩散,导致位于非金属化区域的第一非导电层11和第二非导电层12中的掺杂元素较少,即位于非金属化区域的第二掺杂导电层7的掺杂浓度大于位于金属化区域的第二掺杂导电层7的掺杂浓度。In some embodiments, during the doping process, due to the existence of the blocking layer 6 in the metallization region, the transmission of dopant elements to the direction of the first non-conductive layer 11 is prevented, so that the second non-conductive layer located in the metallization region There are many doping elements in the crystalline silicon, but in the non-metallized area, there is no barrier of the barrier layer 6, and the doping elements can be diffused relatively uniformly throughout the non-metallized area, resulting in the first The doping elements in the first non-conductive layer 11 and the second non-conductive layer 12 are less, that is, the doping concentration of the second doped conductive layer 7 located in the non-metallized region is higher than that of the second doped conductive layer located in the metallized region 7 doping concentration.

在一些实施方式中,沿平行于隧穿层4所在平面层方向,由于第一掺杂导电层5的两侧分别与第二掺杂导电层7相接壤,在掺杂处理过程中,第二掺杂导电层7中的掺杂元素也会沿着平行于隧穿层4所在平面层方向扩散进入第一掺杂导电层5中,使得朝向第二掺杂导电层7的第一掺杂导电层5的掺杂浓度大于背离第二掺杂导电层7的第一掺杂导电层5的掺杂浓度。In some implementations, along the layer direction parallel to the plane where the tunneling layer 4 is located, since both sides of the first doped conductive layer 5 border on the second doped conductive layer 7 respectively, during the doping process, the second The doping element in the doped conductive layer 7 will also diffuse into the first doped conductive layer 5 along the direction parallel to the plane layer where the tunneling layer 4 is located, so that the first doped conductive layer towards the second doped conductive layer 7 is conductive The doping concentration of layer 5 is greater than the doping concentration of first doped conductive layer 5 facing away from second doped conductive layer 7 .

在一些实施方式中,掺杂处理采用高温沉积扩散法,其具体制备过程为:在高温设备通入氮气20min排尽炉管内空气,使得高温设备升温至600℃~1100℃,通入混合有掺杂源的惰性气体,如Ar/N2等,高温反应5 min ~50min;再通入氧气,继续在600℃~1100℃下继续氧化反应5 min ~60min,氧化后将高温设备降温至室温即可。In some embodiments, the doping treatment adopts a high-temperature deposition and diffusion method, and its specific preparation process is as follows: nitrogen gas is introduced into the high-temperature equipment for 20 minutes to exhaust the air in the furnace tube, so that the high-temperature equipment is heated to 600 ° C ~ 1100 ° C, and a mixture of doped Inert gas with impurity sources, such as Ar/ N2 , etc., react at high temperature for 5 minutes to 50 minutes; then introduce oxygen, continue the oxidation reaction at 600°C to 1100°C for 5 minutes to 60 minutes, and cool the high temperature equipment to room temperature after oxidation. Can.

在一些实施方式中,掺杂处理的掺杂元素包括硼、镓、磷和砷中的至少一种。掺杂处理的掺杂源包括硼源、镓源、磷源和砷源中的至少一种,典型并非限制性的,硼源例如可以是BCl3、BBr3、B2H4、有机硼源和含高浓度硼单质的固体硅中的至少一种,镓源例如可以是三甲基镓和含高浓度镓单质的固体硅,磷源例如可以是POCl3、PH3、有机磷源和含高浓度磷单质的固体硅中的至少一种。砷源例如可以是AsH3和含高浓度砷单质的固体硅。In some embodiments, the dopant element of the doping treatment includes at least one of boron, gallium, phosphorus and arsenic. The dopant source for doping treatment includes at least one of boron source, gallium source, phosphorus source and arsenic source, typical but not limiting, boron source can be BCl 3 , BBr 3 , B 2 H 4 , organic boron source, for example and at least one of solid silicon containing high-concentration boron simple substance, the gallium source can be, for example, trimethylgallium and solid silicon containing high-concentration gallium simple substance, and the phosphorus source can be, for example, POCl 3 , PH 3 , organic phosphorus source and At least one of solid silicon with a high concentration of simple phosphorus. The source of arsenic can be, for example, AsH 3 and solid silicon containing a high concentration of arsenic.

在一些实施方式中,掺杂元素导电类型与半导体衬底1的掺杂元素导电类型相同。例如,半导体衬底1为N型衬底,那么掺杂的元素为N型掺杂元素,比如磷元素或砷元素,形成的掺杂层可以为磷掺杂层或砷掺杂硅层;半导体衬底1为P型衬底,那么掺杂的元素为P型掺杂眼熟,比如硼元素或镓元素,形成的掺杂层为硼掺杂层或镓掺杂层。In some embodiments, the conductivity type of the dopant element is the same as that of the semiconductor substrate 1 . For example, if the semiconductor substrate 1 is an N-type substrate, then the doped element is an N-type doping element, such as phosphorus or arsenic, and the doped layer formed can be a phosphorus-doped layer or an arsenic-doped silicon layer; If the substrate 1 is a P-type substrate, the doped element is a P-type doped element, such as boron or gallium, and the doped layer formed is a boron-doped layer or a gallium-doped layer.

步骤S700、如图9所示,在第二掺杂导电层7的表面形成第二钝化层8及在发射极2的表面形成第一钝化层3。In step S700 , as shown in FIG. 9 , a second passivation layer 8 is formed on the surface of the second doped conductive layer 7 and a first passivation layer 3 is formed on the surface of the emitter 2 .

在一些实施方式中,在一些实施方式中,第一钝化层3可以包括但不限于氧化硅、氮化硅、氮氧化硅、氧化铝等单层氧化层或多层结构。当然,第一钝化层3还可以采用其他类型的钝化层,本发明对于第一钝化层3的具体材质不作限定,上述第一钝化层3能够对半导体衬底1产生良好的钝化和减反效果,有助于提高电池的转换效率。In some embodiments, in some embodiments, the first passivation layer 3 may include, but not limited to, a single-layer oxide layer or a multi-layer structure such as silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide. Certainly, the first passivation layer 3 can also adopt other types of passivation layers, and the present invention does not limit the specific material of the first passivation layer 3, and the above-mentioned first passivation layer 3 can produce good passivation to the semiconductor substrate 1. and anti-reflection effects, which help to improve the conversion efficiency of the battery.

在一些实施方式中,第二钝化层8可以包括但不限于氧化硅、氮化硅、氮氧化硅、氧化铝等单层氧化层或多层结构。例如,第二钝化层8由氮化硅组成,氮化硅薄膜层可以起到减反射膜的作用,且该氮化硅薄膜具有良好的绝缘性、致密性、稳定性和对杂质离子的掩蔽能力,氮化硅薄膜层能够对半导体衬底1产生钝化作用,明显改善太阳能电池的光电转换效率。In some embodiments, the second passivation layer 8 may include but not limited to a single-layer oxide layer or a multi-layer structure such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, and the like. For example, the second passivation layer 8 is made of silicon nitride, and the silicon nitride film layer can act as an anti-reflection film, and the silicon nitride film has good insulation, compactness, stability and resistance to impurity ions. Masking ability, the silicon nitride film layer can passivate the semiconductor substrate 1, and obviously improve the photoelectric conversion efficiency of the solar cell.

步骤S800、在第二钝化层8表面形成第二电极10及在第一钝化层3表面形成第一电极9。Step S800 , forming the second electrode 10 on the surface of the second passivation layer 8 and forming the first electrode 9 on the surface of the first passivation layer 3 .

在一些实施方式中,在半导体衬底1的正面使用浆料印刷正面主栅和正面副栅,并进行烘干形成对应的第一电极9,在半导体衬底1的背面使用浆料印刷背面主栅和背面副栅,并进行烘干形成对应的第二电极10,最后将烘干后的电池片进行烧结,制得太阳能电池。In some embodiments, paste is used to print the front main gate and front sub-gate on the front side of the semiconductor substrate 1, and then dried to form the corresponding first electrode 9, and the paste is used to print the back main gate on the back side of the semiconductor substrate 1. grid and rear sub-gate, and drying to form the corresponding second electrode 10, and finally sintering the dried cell sheet to obtain a solar cell.

本发明实施例中不限定第一电极9和第二电极10的具体材质。例如,第一电极9为银电极或银/铝电极,第二电极10为银电极或银/铝电极。The specific materials of the first electrode 9 and the second electrode 10 are not limited in the embodiment of the present invention. For example, the first electrode 9 is a silver electrode or a silver/aluminum electrode, and the second electrode 10 is a silver electrode or a silver/aluminum electrode.

第三方面,本申请实施例提供一种光伏组件1000,包括如前述太阳能电池通过电连接形成的电池串。In a third aspect, the embodiment of the present application provides a photovoltaic module 1000, including a battery string formed by electrical connection of solar cells as described above.

具体地,请参阅图10,光伏组件1000包括第一盖板200、第一封装胶层300、太阳能电池串、第二封装胶层400和第二盖板500。Specifically, please refer to FIG. 10 , the photovoltaic module 1000 includes a first cover plate 200 , a first encapsulation adhesive layer 300 , solar cell strings, a second encapsulation adhesive layer 400 and a second cover plate 500 .

在一些实施方式中,太阳能电池串包括通过导电带连接的多个如前所述的太阳能电池100,太阳能电池100之间的连接方式可以是部分层叠,也可以是拼接。In some embodiments, the solar cell string includes a plurality of solar cells 100 connected by conductive strips, and the connection between the solar cells 100 may be partial lamination or splicing.

在一些实施方式中,第一盖板200、第二盖板500可以为透明或不透明的盖板,例如玻璃盖板、塑料盖板。In some embodiments, the first cover 200 and the second cover 500 may be transparent or opaque covers, such as glass cover or plastic cover.

第一封装胶层300的两侧分别与第一盖板200、电池串接触贴合,第二封装胶层400的两侧分别与第二盖板500、电池串接触贴合。其中,第一封装胶层300、第二封装胶层400分别可以乙烯-乙酸乙烯共聚物(EVA)胶膜、聚乙烯辛烯共弹性体(POE)胶膜或者聚对苯二甲酸乙二醇酯(PET)胶膜。Both sides of the first encapsulation adhesive layer 300 are in contact with the first cover plate 200 and the battery strings respectively, and both sides of the second encapsulation adhesive layer 400 are respectively in contact with the second cover plate 500 and the battery strings. Wherein, the first encapsulation adhesive layer 300 and the second encapsulation adhesive layer 400 can be ethylene-vinyl acetate copolymer (EVA) film, polyethylene octene co-elastomer (POE) film or polyethylene terephthalate Ester (PET) film.

光伏组件1000还可以采用侧边全包围式封装,即采用封装胶带对光伏组件1000的侧边完全包覆封装,以防止光伏组件1000在层压过程中发生层压偏移的现象。The photovoltaic module 1000 can also be packaged with full side encapsulation, that is, the sides of the photovoltaic module 1000 are completely covered and packaged with packaging tape, so as to prevent the lamination deviation of the photovoltaic module 1000 during the lamination process.

光伏组件1000还包括封边部件,该封边部件固定封装于光伏组件1000的部分边缘。该封边部件可以固定封装于光伏组件1000上的靠近拐角处的边缘。该封边部件可以为耐高温胶带。该耐高温胶带具有较优异的耐高温特性,在层压过程中不会发生分解或脱落,能够保证对光伏组件1000的可靠封装。其中,耐高温胶带的两端分别固定于第二盖板500和第一盖板200。该耐高温胶带的两端可以分别与第二盖板500和第一盖板200粘接,而其中部能够实现对光伏组件1000的侧边的限位,防止光伏组件1000在层压过程中发生层压偏移。The photovoltaic module 1000 also includes an edge sealing component, which is fixed and packaged on a part of the edge of the photovoltaic module 1000 . The edge sealing component can be fixed and packaged on the edge near the corner of the photovoltaic module 1000 . The sealing part can be high temperature resistant tape. The high-temperature-resistant tape has excellent high-temperature-resistant properties, will not decompose or fall off during the lamination process, and can ensure reliable packaging of the photovoltaic module 1000 . Wherein, two ends of the high temperature resistant adhesive tape are respectively fixed on the second cover plate 500 and the first cover plate 200 . The two ends of the high temperature resistant tape can be bonded to the second cover 500 and the first cover 200 respectively, and the middle part can realize the limit of the side of the photovoltaic module 1000 to prevent the photovoltaic module 1000 from being damaged during the lamination process. Lamination offset.

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (12)

1. A solar cell, the solar cell comprising:
a semiconductor substrate having oppositely disposed first and second surfaces;
an emitter electrode and a first passivation layer positioned on the first surface of the semiconductor substrate;
a tunneling layer located on the second surface of the semiconductor substrate;
the first doped conductive layer and the blocking layer are positioned on the surface of the tunneling layer, wherein the first doped conductive layer is positioned between the tunneling layer and the blocking layer, and the first doped conductive layer and the blocking layer correspond to a metalized area;
the second doped conductive layer is positioned on the surface of the tunneling layer, the second doped conductive layer covers the tunneling layer and the blocking layer of the non-metalized area, the blocking layer is used for blocking the migration of doped elements in the second doped conductive layer into the first doped conductive layer, and the doping concentration of the second doped conductive layer is larger than that of the first doped conductive layer;
The second passivation layer is positioned on the surface of the second doped conductive layer;
a second electrode penetrating the second passivation layer and contacting the second doped conductive layer, and a first electrode penetrating the first passivation layer and contacting the emitter.
2. The solar cell according to claim 1, wherein a ratio of a width of the first doped conductive layer to a width of the blocking layer is 1 (1-2).
3. The solar cell of claim 1, wherein the surface area of the tunneling layer in contact with the first doped conductive layer is denoted as S1 and the sum of the surface area of the tunneling layer in contact with the first doped conductive layer and the surface area of the tunneling layer in contact with the second doped conductive layer is denoted as S2, S1: s2=1: (5-50).
4. The solar cell of claim 1, wherein the doping element in the first doped conductive layer comprises at least one of boron, phosphorus, gallium, and arsenic; and/or the doping concentration of the first doped conductive layer is 1E18 cm -3 ~1.5E21cm -3 The method comprises the steps of carrying out a first treatment on the surface of the And/or the thickness of the first doped conductive layer is 20 nm-150 nm.
5. The solar cell of claim 1, wherein the doping element in the second doped conductive layer comprises at least one of boron, phosphorus, gallium, and arsenic; and/or the doping concentration of the second doped conductive layer is 5E18 cm -3 ~2E21cm -3 The method comprises the steps of carrying out a first treatment on the surface of the And/or the thickness of the second doped conductive layer is 20 nm-200 nm.
6. The solar cell of claim 1, wherein the blocking layer comprises at least one of silicon oxide, silicon carbide, silicon nitride, and magnesium fluoride; and/or the thickness of the retardation layer is 0.5 nm-4 nm.
7. The solar cell of claim 1, wherein a thickness of the first doped conductive layer is less than a thickness of the second doped conductive layer.
8. The solar cell of claim 1, wherein a doping concentration of the second doped conductive layer in the non-metallized region is greater than a doping concentration of the second doped conductive layer in the metallized region.
9. The solar cell of claim 1, wherein the doping concentration of the first doped conductive layer decreases in sequence along the direction of the first doped conductive layer toward the tunneling layer.
10. The solar cell of claim 1, wherein a doping concentration of the first doped conductive layer toward the second doped conductive layer is greater than a doping concentration of the first doped conductive layer away from the second doped conductive layer, parallel to a plane in which the tunneling layer is located.
11. A method of manufacturing a solar cell, comprising the steps of:
providing a semiconductor substrate, wherein the semiconductor substrate comprises a first surface and a second surface which are oppositely arranged;
forming an emitter on the first surface of the semiconductor substrate after the texturing;
forming a tunneling layer on a second surface of the semiconductor substrate;
forming a first non-conductive layer on the surface of the tunneling layer, wherein the first non-conductive layer corresponds to a metalized area and a non-metalized area;
forming a blocking layer on the surface of the first non-conductive layer, wherein the blocking layer corresponds to a metalized area;
forming a second non-conductive layer on the surfaces of the first non-conductive layer and the blocking layer, and carrying out doping treatment on the second non-conductive layer so that the second non-conductive layer and the first non-conductive layer positioned in a non-metalized area are converted into a second doped conductive layer, and the first non-conductive layer positioned in a metalized area is converted into a first doped conductive layer, wherein the doping concentration of the second doped conductive layer is larger than that of the first doped conductive layer;
forming a second passivation layer on the surface of the second doped conductive layer and forming a first passivation layer on the surface of the emitter;
And forming a second electrode on the surface of the second passivation layer and forming a first electrode on the surface of the first passivation layer.
12. A photovoltaic module, characterized in that it comprises a cover plate, a layer of encapsulating material and a solar cell string comprising a solar cell according to any one of claims 1 to 10 or a solar cell manufactured according to the manufacturing method of claim 11.
CN202310172661.1A 2023-02-22 2023-02-22 Solar cell, preparation method thereof and photovoltaic module Active CN115985981B (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202310172661.1A CN115985981B (en) 2023-02-22 2023-02-22 Solar cell, preparation method thereof and photovoltaic module
CN202310608687.6A CN116581174A (en) 2023-02-22 2023-02-22 Solar cell, preparation method thereof and photovoltaic module
JP2023105399A JP7427833B1 (en) 2023-02-22 2023-06-27 Solar cells and their manufacturing methods, solar power generation modules
KR1020230087294A KR102741653B1 (en) 2023-02-22 2023-07-05 Solar Cell, Method for Manufacturing Solar Cell, and Photovoltaic Module
US18/365,170 US12183841B2 (en) 2023-02-22 2023-08-03 Solar cell and manufacturing method thereof, and photovoltaic module
AU2023210662A AU2023210662B2 (en) 2023-02-22 2023-08-04 Solar cell and manufacturing method thereof, and photovoltaic module
EP23189628.3A EP4421879B1 (en) 2023-02-22 2023-08-04 Solar cell and manufacturing method thereof
JP2024008327A JP2024119744A (en) 2023-02-22 2024-01-23 Solar cell and its manufacturing method, solar power generation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310172661.1A CN115985981B (en) 2023-02-22 2023-02-22 Solar cell, preparation method thereof and photovoltaic module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310608687.6A Division CN116581174A (en) 2023-02-22 2023-02-22 Solar cell, preparation method thereof and photovoltaic module

Publications (2)

Publication Number Publication Date
CN115985981A CN115985981A (en) 2023-04-18
CN115985981B true CN115985981B (en) 2023-06-20

Family

ID=85968288

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310608687.6A Pending CN116581174A (en) 2023-02-22 2023-02-22 Solar cell, preparation method thereof and photovoltaic module
CN202310172661.1A Active CN115985981B (en) 2023-02-22 2023-02-22 Solar cell, preparation method thereof and photovoltaic module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310608687.6A Pending CN116581174A (en) 2023-02-22 2023-02-22 Solar cell, preparation method thereof and photovoltaic module

Country Status (6)

Country Link
US (1) US12183841B2 (en)
EP (1) EP4421879B1 (en)
JP (2) JP7427833B1 (en)
KR (1) KR102741653B1 (en)
CN (2) CN116581174A (en)
AU (1) AU2023210662B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116581174A (en) 2023-02-22 2023-08-11 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module
CN117038748B (en) * 2023-10-08 2024-02-06 晶科能源(海宁)有限公司 Solar cells and preparation methods thereof, photovoltaic modules
CN120051030A (en) * 2023-11-15 2025-05-27 通威太阳能(成都)有限公司 Solar cell manufacturing method and solar cell
CN117476796B (en) * 2023-11-28 2025-07-15 正泰新能科技股份有限公司 TOPCon battery and TOPCon battery preparation method
CN118763137B (en) * 2024-09-05 2025-02-21 隆基绿能科技股份有限公司 Solar cell and preparation method
CN120129341A (en) * 2025-05-12 2025-06-10 浙江晶科能源有限公司 Solar cell and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899243A (en) * 2021-10-29 2022-08-12 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055036A1 (en) * 2008-12-19 2010-07-08 Q-Cells Se solar cell
JP5058184B2 (en) 2009-01-23 2012-10-24 三菱電機株式会社 Method for manufacturing photovoltaic device
WO2011035090A1 (en) * 2009-09-17 2011-03-24 Tetrasun, Inc. Selective transformation in functional films, and solar cell applications thereof
EP4092757A1 (en) * 2013-04-03 2022-11-23 Lg Electronics Inc. Method for fabricating a solar cell
KR101613843B1 (en) 2013-04-23 2016-04-20 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR102045001B1 (en) * 2013-06-05 2019-12-02 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR102053139B1 (en) * 2013-09-09 2019-12-06 엘지전자 주식회사 Solar cell
KR101622091B1 (en) 2014-08-20 2016-05-18 엘지전자 주식회사 Solar cell and method for manufacuring the same
EP3509112B1 (en) * 2014-11-28 2020-10-14 LG Electronics Inc. Solar cell and method for manufacturing the same
KR102397002B1 (en) * 2015-02-10 2022-05-11 엘지전자 주식회사 Solar cell
KR102547804B1 (en) * 2016-06-17 2023-06-28 오씨아이 주식회사 Bifacial silicon solar cell and method for manufacturing the same
KR102586115B1 (en) * 2016-08-10 2023-10-10 오씨아이 주식회사 Bifacial silicon solar cell
KR101995833B1 (en) * 2016-11-14 2019-07-03 엘지전자 주식회사 Solar cell and method for manufacturing the same
CN110140223B (en) * 2016-12-12 2022-08-12 洛桑联邦理工学院 Silicon heterojunction solar cell and method of manufacture
US11804558B2 (en) * 2017-12-29 2023-10-31 Maxeon Solar Pte. Ltd. Conductive contacts for polycrystalline silicon features of solar cells
EP3783668B1 (en) * 2018-06-22 2023-08-30 Jingao Solar Co., Ltd. Crystalline silicon solar cell and preparation method therefor, and photovoltaic assembly
CN209232797U (en) 2018-10-17 2019-08-09 晶澳太阳能有限公司 Silica-based solar cell and photovoltaic module
CN210897294U (en) * 2019-10-29 2020-06-30 苏州阿特斯阳光电力科技有限公司 Solar cell
CN112201701B (en) * 2020-09-30 2024-05-03 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN112349798B (en) * 2020-10-27 2024-03-08 浙江晶科能源有限公司 Solar cells and manufacturing methods
CN112289873B (en) * 2020-10-30 2022-05-20 浙江晶科能源有限公司 Solar cell
CN112331742B (en) 2020-11-10 2024-11-08 帝尔激光科技(无锡)有限公司 A selective emitter passivation contact solar cell and its preparation method
CN112466961B (en) * 2020-11-19 2024-05-10 晶科绿能(上海)管理有限公司 Solar cell and method for manufacturing the same
CN213519984U (en) 2020-12-10 2021-06-22 苏州阿特斯阳光电力科技有限公司 Solar battery
CN112736159A (en) * 2020-12-31 2021-04-30 三江学院 Preparation method of selective polycrystalline silicon thickness and doping concentration battery structure
CN114038928B (en) * 2021-11-25 2023-09-15 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module
CN114709277B (en) 2022-05-31 2022-09-23 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module
CN217606835U (en) * 2022-07-11 2022-10-18 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN115172477B (en) * 2022-07-26 2023-08-25 浙江晶科能源有限公司 Solar cells and photovoltaic modules
CN115394881A (en) * 2022-09-30 2022-11-25 滁州捷泰新能源科技有限公司 A TOPCON battery with phosphorus concentration gradient distribution and its manufacturing method
CN115411151A (en) 2022-09-30 2022-11-29 滁州捷泰新能源科技有限公司 Novel solar cell and manufacturing method thereof
CN115411152A (en) * 2022-10-11 2022-11-29 滁州捷泰新能源科技有限公司 A method of manufacturing a solar cell
CN115458617B (en) 2022-11-04 2023-03-24 浙江晶科能源有限公司 Solar cells and photovoltaic modules
CN116581174A (en) * 2023-02-22 2023-08-11 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899243A (en) * 2021-10-29 2022-08-12 浙江晶科能源有限公司 Solar cell, preparation method thereof and photovoltaic module

Also Published As

Publication number Publication date
EP4421879B1 (en) 2025-02-19
US20240282877A1 (en) 2024-08-22
JP7427833B1 (en) 2024-02-05
KR20240130586A (en) 2024-08-29
JP2024119716A (en) 2024-09-03
CN116581174A (en) 2023-08-11
JP2024119744A (en) 2024-09-03
AU2023210662B2 (en) 2025-05-29
US12183841B2 (en) 2024-12-31
CN115985981A (en) 2023-04-18
KR102741653B1 (en) 2024-12-16
AU2023210662A1 (en) 2024-09-05
EP4421879A1 (en) 2024-08-28

Similar Documents

Publication Publication Date Title
CN115985981B (en) Solar cell, preparation method thereof and photovoltaic module
CN114709294B (en) Solar cell, preparation method thereof and photovoltaic module
CN115241298B (en) Solar cells and preparation methods thereof, photovoltaic modules
CN115172477B (en) Solar cells and photovoltaic modules
CN114709277B (en) Solar cell, preparation method thereof and photovoltaic module
CN111668318A (en) Photovoltaic module, solar cell and preparation method thereof
JP7336569B1 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF, PHOTOVOLTAIC MODULE
CN115172478B (en) Solar cell and photovoltaic module
CN116666478A (en) Solar cell, preparation method thereof and photovoltaic module
CN115241299A (en) Solar cell and photovoltaic module
CN115274868B (en) Solar cell and photovoltaic module
CN114695579A (en) Solar cells and photovoltaic modules
CN118888617A (en) Solar cell and preparation method thereof, photovoltaic module
CN114256361A (en) Solar cell and photovoltaic module
CN115036384A (en) N-type TOPCon solar cell and manufacturing method thereof
CN117038748B (en) Solar cells and preparation methods thereof, photovoltaic modules
CN118156336A (en) Solar cell, preparation method thereof and photovoltaic module
CN116504870A (en) Solar cell manufacturing method and solar cell
CN115172479A (en) Solar cell, preparation method thereof and photovoltaic module
CN116013998A (en) Solar cell and its preparation method, photovoltaic module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant