CN115896762A - Palladium-free activation chemical copper deposition process for resin substrate - Google Patents
Palladium-free activation chemical copper deposition process for resin substrate Download PDFInfo
- Publication number
- CN115896762A CN115896762A CN202211174546.XA CN202211174546A CN115896762A CN 115896762 A CN115896762 A CN 115896762A CN 202211174546 A CN202211174546 A CN 202211174546A CN 115896762 A CN115896762 A CN 115896762A
- Authority
- CN
- China
- Prior art keywords
- substrate
- resin substrate
- electroless copper
- solution
- palladium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 131
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 88
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 87
- 239000010949 copper Substances 0.000 title claims abstract description 87
- 229920005989 resin Polymers 0.000 title claims abstract description 35
- 239000011347 resin Substances 0.000 title claims abstract description 35
- 238000005137 deposition process Methods 0.000 title claims abstract description 8
- 239000000126 substance Substances 0.000 title claims description 23
- 230000004913 activation Effects 0.000 title claims description 10
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims abstract description 62
- 238000005238 degreasing Methods 0.000 claims abstract description 30
- 230000008021 deposition Effects 0.000 claims abstract description 26
- 238000007788 roughening Methods 0.000 claims abstract description 24
- 238000007747 plating Methods 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims abstract description 18
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 229920000128 polypyrrole Polymers 0.000 claims abstract description 11
- 238000009835 boiling Methods 0.000 claims abstract description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 66
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 25
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 claims description 16
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 15
- 238000002791 soaking Methods 0.000 claims description 9
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 8
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 claims description 8
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 8
- 230000002378 acidificating effect Effects 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 abstract description 24
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 abstract description 20
- 239000010970 precious metal Substances 0.000 abstract description 12
- 229910052763 palladium Inorganic materials 0.000 abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000002699 waste material Substances 0.000 abstract description 6
- 238000006555 catalytic reaction Methods 0.000 abstract description 4
- 239000004033 plastic Substances 0.000 abstract description 4
- 230000003197 catalytic effect Effects 0.000 abstract description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 66
- 238000007654 immersion Methods 0.000 description 24
- 239000003822 epoxy resin Substances 0.000 description 19
- 229920000647 polyepoxide Polymers 0.000 description 19
- 229940074439 potassium sodium tartrate Drugs 0.000 description 14
- 238000001556 precipitation Methods 0.000 description 14
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 14
- 238000001994 activation Methods 0.000 description 9
- 238000003958 fumigation Methods 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 239000012286 potassium permanganate Substances 0.000 description 7
- 239000001488 sodium phosphate Substances 0.000 description 7
- 229910000162 sodium phosphate Inorganic materials 0.000 description 7
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 6
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XBIAGSJDARBSKG-UHFFFAOYSA-N 1-hydroxypyrrole Chemical compound ON1C=CC=C1 XBIAGSJDARBSKG-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 241000212749 Zesius chrysomallus Species 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 230000002844 continuous effect Effects 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical compound [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemically Coating (AREA)
Abstract
本发明涉及一种树脂基板无钯活化化学沉铜工艺,该工艺包括以下步骤:(1)对树脂基板依次进行除油处理、粗化处理,得到预处理的树脂基板;(2)将预处理的树脂基板浸入吡咯溶液中,浸泡一段时间,再将树脂基板浸入氯化铁溶液,静置一段时间,得到带有聚吡咯膜的基板,将该带有聚吡咯膜的基板放置于沸腾水的上方,使水蒸气对带有聚吡咯膜的基板进行熏蒸,再经洗涤得到活化基板;(3)将活化基板浸入化学沉铜液中,进行化学沉铜,获得化学镀铜层。与现有技术相比,本发明以吡咯负载胶体铁作为化学镀铜的催化活性位,实现非导电塑料基板表面的化学沉铜,替代了贵金属的使用,解决了贵金属催化反应废液难处理的问题,并降低了生产成本。
The invention relates to a resin substrate-free palladium-activated electroless copper deposition process, which comprises the following steps: (1) sequentially performing degreasing treatment and roughening treatment on the resin substrate to obtain a pretreated resin substrate; (2) pretreatment Immerse the resin substrate in the pyrrole solution for a period of time, then immerse the resin substrate in the ferric chloride solution, and let it stand for a period of time to obtain a substrate with a polypyrrole film. Place the substrate with the polypyrrole film in a boiling water bath above, fumigate the substrate with the polypyrrole film with water vapor, and then wash to obtain an activated substrate; (3) immerse the activated substrate in an electroless copper deposition solution for electroless copper deposition to obtain an electroless copper plating layer. Compared with the prior art, the present invention uses pyrrole-loaded colloidal iron as the catalytic active site of electroless copper plating, realizes electroless copper deposition on the surface of non-conductive plastic substrates, replaces the use of precious metals, and solves the difficult problem of precious metal catalytic reaction waste liquid problems and reduce production costs.
Description
技术领域technical field
本发明属于非金属表面处理技术领域,涉及一种树脂基板无钯活化化学沉铜工艺。The invention belongs to the technical field of non-metallic surface treatment, and relates to a palladium-free activation electroless copper deposition process for a resin substrate.
背景技术Background technique
随着信息社会的不断发展,印刷电路板(Printed Circuit Board,PCB)成为了现代电子设备的必需部件,并向着轻、薄、短、小的趋势发展,所以电子产品的集成度越来越高,故而高密度互连电路板和多层板的应用越来越广泛,电路板层间互连的技术要求也越来越高。孔金属化是电路板互连的关键技术,而化学沉铜技术由于其镀层性能优良、结合强度高、耐磨、耐腐蚀、工艺简单等优点,成为了印刷电路板孔金属化的主流。传统的塑料基板表面的金属化即化学沉铜需要借助金、钯等贵金属对非导电基体表面进行催化活化处理,使得沉铜液中的铜离子在基体表面形成具有自催化能力的铜金属层。而金、钯等贵金属的使用也增加了生产成本,贵金属催化反应废液难处理,故而寻找新的无钯活化方法成为了现有技术的研究热点。With the continuous development of the information society, printed circuit board (Printed Circuit Board, PCB) has become an essential part of modern electronic equipment, and is developing towards the trend of light, thin, short and small, so the integration of electronic products is getting higher and higher , Therefore, the application of high-density interconnection circuit boards and multilayer boards is becoming more and more extensive, and the technical requirements for interconnection between circuit board layers are also getting higher and higher. Hole metallization is the key technology for circuit board interconnection, and electroless copper plating technology has become the mainstream of printed circuit board hole metallization due to its excellent coating performance, high bonding strength, wear resistance, corrosion resistance, and simple process. The metallization of the surface of the traditional plastic substrate, that is, electroless copper deposition, requires the use of precious metals such as gold and palladium to catalyze and activate the surface of the non-conductive substrate, so that the copper ions in the copper deposition solution form a copper metal layer with self-catalytic ability on the surface of the substrate. The use of precious metals such as gold and palladium also increases production costs, and precious metal catalytic reaction waste liquid is difficult to handle, so finding new palladium-free activation methods has become a research hotspot in the prior art.
发明内容Contents of the invention
本发明的目的就是为了提供一种树脂基板无钯活化化学沉铜工艺,以克服现有技术中以下缺陷:塑料基板表面化学沉铜需要借助金、钯等贵金属对非导电基体表面进行催化活化处理,增加了生产成本,或产生的贵金属催化反应废液难处理。The purpose of the present invention is to provide a palladium-free activated electroless copper deposition process for resin substrates, so as to overcome the following defects in the prior art: electroless copper deposition on the surface of plastic substrates requires the use of gold, palladium and other precious metals to carry out catalytic activation treatment on the surface of non-conductive substrates , increase the production cost, or the precious metal catalytic reaction waste liquid produced is difficult to handle.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种树脂基板无钯活化化学沉铜工艺,包括以下步骤:A resin substrate-free palladium-activated electroless copper deposition process, comprising the following steps:
(1)对树脂基板依次进行除油处理、粗化处理,得到预处理的树脂基板;(1) performing degreasing treatment and roughening treatment on the resin substrate in sequence to obtain a pretreated resin substrate;
(2)将所得预处理的树脂基板浸入吡咯溶液中,浸泡一段时间,再将树脂基板浸入氯化铁溶液,静置一段时间,得到带有聚吡咯膜的基板,将该带有聚吡咯膜的基板放置于沸腾水的上方,使水蒸气对带有聚吡咯膜的基板进行熏蒸,再经洗涤得到活化基板;(2) Immerse the obtained pretreated resin substrate in the pyrrole solution, soak for a period of time, then immerse the resin substrate in the ferric chloride solution, and let it stand for a period of time to obtain a substrate with a polypyrrole film. The substrate is placed above the boiling water, so that the water vapor fumigates the substrate with the polypyrrole film, and then the activated substrate is obtained by washing;
(3)将所得活化基板浸入化学沉铜液中,进行化学沉铜,获得化学镀铜层。(3) Immersing the obtained activated substrate into an electroless copper deposition solution to perform electroless copper deposition to obtain an electroless copper plating layer.
进一步的,步骤(1)中,除油处理的具体过程为:Further, in step (1), the specific process of oil removal treatment is:
将树脂基板浸入碱性除油液中,浸泡一段时间,然后洗涤,即完成除油处理。The resin substrate is immersed in an alkaline degreasing solution for a period of time, and then washed to complete the degreasing treatment.
更进一步的,浸泡过程中,碱性除油液的温度为60℃。Furthermore, during the soaking process, the temperature of the alkaline degreasing solution is 60°C.
更进一步的,浸泡时间为5min。Furthermore, the soaking time is 5 minutes.
更进一步的,碱性除油液的组分包括氢氧化钠30g/L、磷酸钠50g/L、碳酸钠30g/L和OP-10 10ml/L。Furthermore, the components of the alkaline degreasing solution include sodium hydroxide 30g/L, sodium phosphate 50g/L, sodium carbonate 30g/L and OP-10 10ml/L.
进一步的,步骤(1)中,粗化处理的具体过程为:Further, in step (1), the specific process of coarsening processing is:
将经过除油处理的树脂基板浸入酸性粗化液中,浸泡一段时间,然后洗涤,即完成粗化处理。The resin substrate that has undergone degreasing treatment is immersed in an acidic roughening solution for a period of time, and then washed to complete the roughening treatment.
更进一步的,浸泡过程中,酸性粗化液的温度为70℃。Furthermore, during the soaking process, the temperature of the acidic roughening solution is 70°C.
更进一步的,浸泡时间为3min。Furthermore, the soaking time is 3 minutes.
更进一步的,酸性粗化液的组分包括高锰酸钾80g/L和氢氧化钠40g/L。Furthermore, the components of the acidic roughening solution include potassium permanganate 80g/L and sodium hydroxide 40g/L.
进一步的,步骤(2)中,吡咯溶液为吡咯的乙醇溶液,其中吡咯与乙醇的体积比为1:(1-3)。Further, in step (2), the pyrrole solution is an ethanol solution of pyrrole, wherein the volume ratio of pyrrole to ethanol is 1:(1-3).
进一步的,步骤(2)中,在吡咯溶液中的浸泡时间为1-10分钟。Further, in step (2), the soaking time in the pyrrole solution is 1-10 minutes.
进一步的,步骤(2)中,氯化铁溶液的浓度为0.5-2mol/L。Further, in step (2), the concentration of the ferric chloride solution is 0.5-2mol/L.
进一步的,步骤(2)中,静置时间为10-30分钟。静置后在树脂基板表面会形成聚吡咯膜。Further, in step (2), the standing time is 10-30 minutes. After standing still, a polypyrrole film will be formed on the surface of the resin substrate.
进一步的,步骤(2)中,熏蒸时间为0.5-2h。熏蒸后,树脂基板上负载上胶体铁,然后用去离子水清洗后待用。Further, in step (2), the fumigation time is 0.5-2h. After fumigation, colloidal iron is loaded on the resin substrate, and then cleaned with deionized water before use.
进一步的,步骤(3)中,化学沉铜液的组分包括酒石酸钾钠80g/L、氢氧化钠15g/L、碳酸钠7g/L、酒石酸钾钠8g/L、五水硫酸铜20g/L、氯化镍2g/L和甲醛37%30ml/L。Further, in step (3), the components of the chemical copper precipitation solution include potassium sodium tartrate 80g/L, sodium hydroxide 15g/L, sodium carbonate 7g/L, potassium sodium tartrate 8g/L, copper sulfate pentahydrate 20g/L L, nickel chloride 2g/L and formaldehyde 37% 30ml/L.
进一步的,步骤(3)中,化学沉铜时间为1-4h。经化学沉铜制得具有良好结合力的均匀的铜层,该铜层导电性良好,可以作为导电层用于后续的铜层电镀。Further, in step (3), the electroless copper precipitation time is 1-4h. A uniform copper layer with good bonding force is prepared by electroless copper deposition. The copper layer has good conductivity and can be used as a conductive layer for subsequent copper layer electroplating.
本发明提供一种树脂基板无钯活化化学沉铜工艺,解决了现有技术中的采用贵金属钯作为活化原料的高成本及废液排放造成的污染问题,同时在基板表面覆上了一层致密连续的化学镀铜层。The invention provides a resin substrate palladium-free activated chemical precipitation copper process, which solves the high cost of using precious metal palladium as the activation raw material and the pollution caused by waste liquid discharge in the prior art, and at the same time covers a layer of dense copper on the surface of the substrate. Continuous electroless copper layer.
本发明提供的树脂基板表面无钯活化化学镀铜工艺,采用三价铁代替传统的贵金属钯对基板表面进行催化活化,未使用贵金属钯,解决了含钯废液的难处理问题,降低了生产成本。本发明采用活化工艺,得到了表面活性位点多且分布较均匀的活化位点,化学镀铜后得到了平整致密的镀层。The palladium-free activated chemical copper plating process on the surface of resin substrates provided by the present invention uses ferric iron instead of traditional precious metal palladium to catalyze the surface of the substrate, and does not use precious metal palladium, which solves the difficult problem of palladium-containing waste liquid and reduces production costs. cost. The invention adopts an activation process to obtain many active sites on the surface and evenly distributed activation sites, and obtains a smooth and dense plating layer after electroless copper plating.
通过本发明步骤除油的实施,使基板表面没有油污,有利于后续化学物质与基体表面的接触,粗化处理的实施能够将基板的比表面积进行适当程度的增大,提高后续附着物与基板的接触面积,提高后续膜层与基体的结合力。经过除油和粗化处理之后的基板表面,应该具有良好的与水溶液接触的能力及膜层与基体接触的面积。这个前处理操作有利于吡咯分子充分与基板接触,由于分子与基板的相互作用是一个动力学过程,因此,需要有足够的浸泡时间来实现分子在基板表面的最大吸附已达到后续反应成膜的有效数量。吡咯的成膜需要通过三价铁的氧化来完成,因此,三氯化铁的浓度和时间决定了吡咯氧化膜的氧化速度和氧化程度,只有合适的时间才能让吡咯完成有效的氧化变成具有合适分子链长的聚吡咯膜来吸附和容纳三价铁离子。水分子熏蒸的过程实现了三价铁胶态的转化,使其更加安全的固定在聚吡咯长链分子的框架中,变成后续化学镀铜反应的催化剂。由于化学镀铜的过程具有核形成和核生长的过程,足够的化学沉铜时间有利于铜核形成和生长,进而形成具有连续效果的铜膜。因此,足够的化学沉铜时间是必须的,但过长的化学沉铜时间会导致铜的生长过度,晶粒过大,导致镀层粗糙,甚至镀层过厚。本发明提供的实验参数达到均匀沉铜的目的,也实现了得到有效均匀化学沉铜面的目的。Through the implementation of degreasing in the steps of the present invention, the surface of the substrate is free from oil stains, which is conducive to the contact of subsequent chemical substances with the surface of the substrate. The implementation of roughening treatment can increase the specific surface area of the substrate to an appropriate degree, and improve the adhesion of subsequent attachments to the substrate. The contact area can improve the bonding force between the subsequent film layer and the substrate. After degreasing and roughening, the surface of the substrate should have a good ability to contact the aqueous solution and the contact area between the film layer and the substrate. This pretreatment operation is conducive to the full contact of pyrrole molecules with the substrate. Since the interaction between molecules and substrates is a dynamic process, it is necessary to have enough soaking time to achieve the maximum adsorption of molecules on the substrate surface and to achieve the film formation of subsequent reactions. valid quantity. The film formation of pyrrole needs to be completed by the oxidation of ferric iron. Therefore, the concentration and time of ferric chloride determine the oxidation speed and degree of oxidation of the pyrrole oxide film. Polypyrrole membrane with suitable molecular chain length to absorb and accommodate ferric ions. The process of water molecule fumigation realizes the colloidal transformation of ferric iron, making it more securely fixed in the framework of polypyrrole long-chain molecules, and becomes a catalyst for the subsequent electroless copper plating reaction. Since the process of electroless copper plating has the process of nucleation formation and nucleation growth, sufficient electroless copper deposition time is conducive to the formation and growth of copper nuclei, and then forms a copper film with continuous effect. Therefore, sufficient electroless copper deposition time is necessary, but too long electroless copper deposition time will lead to excessive growth of copper, too large grains, resulting in rough coating, or even too thick coating. The experimental parameters provided by the present invention achieve the purpose of uniform copper deposition, and also achieve the purpose of obtaining an effective and uniform chemical deposition copper surface.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明直接以吡咯负载胶体铁作为化学镀铜的催化活性位,实现非导电塑料基板表面的化学沉铜,替代了钯、银等贵金属的使用,解决了贵金属催化反应废液难处理的问题,同时降低了生产成本;(1) The present invention directly uses pyrrole-loaded colloidal iron as the catalytic active site of electroless copper plating, realizes electroless copper deposition on the surface of non-conductive plastic substrates, replaces the use of precious metals such as palladium and silver, and solves the difficult treatment of precious metal catalytic reaction waste liquid problems, while reducing production costs;
(2)本发明提供的活化工艺操作稳定、不存在敏化液(亚锡离子)不稳定等工艺操作难题,活化工艺稳定可靠,消除了活化液失效的问题,提高了工艺稳定性,便于生产控制,有利于保证产品的质量。(2) The activation process provided by the present invention is stable in operation, and there are no process operation problems such as instability of the sensitizing solution (stannous ion), the activation process is stable and reliable, the problem of failure of the activation solution is eliminated, the process stability is improved, and production is convenient Control is conducive to ensuring the quality of products.
附图说明Description of drawings
图1为实施例1的环氧树脂基板表面化学沉铜后的表面形貌扫描电镜图;Fig. 1 is the scanning electron micrograph of the surface topography after the electroless copper deposition on the surface of the epoxy resin substrate of embodiment 1;
图2为实施例1沉铜的X光电子能谱测试图;Fig. 2 is the X-photoelectron energy spectrum test figure of embodiment 1 sinking copper;
图3为实施例3的环氧树脂基板表面化学沉铜后的表面形貌扫描电镜图。FIG. 3 is a scanning electron microscope image of the surface morphology of the epoxy resin substrate surface after electroless copper deposition in Example 3. FIG.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. This embodiment is carried out on the premise of the technical solution of the present invention, and detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
以下各实施例中,如无特别说明的原料或处理技术,则表明所采用的均为本领域的常规市售原料产品或常规处理技术。In each of the following examples, if there is no specific raw material or processing technology, it is shown that all conventional commercially available raw material products or conventional processing technologies in the art are adopted.
实施例1:Example 1:
1)对FR-4玻璃纤维环氧树脂板进行除油处理,除油液配方为:氢氧化钠30g/L,磷酸钠50g/L,碳酸钠30g/L,OP-10 10ml/L,将环氧树脂基板浸入除油液中,浸入温度为60℃,浸入时间为5min。1) Carry out degreasing treatment to FR-4 glass fiber epoxy resin board, the formula of degreasing liquid is: sodium hydroxide 30g/L, sodium phosphate 50g/L, sodium carbonate 30g/L, OP-10 10ml/L, will The epoxy resin substrate is immersed in the degreasing solution, the immersion temperature is 60°C, and the immersion time is 5min.
2)对基板进行粗化处理,粗化液配方为:高锰酸钾80g/L,氢氧化钠40g/L,将环氧树脂基板浸入粗化液中,浸入温度为70℃,浸入时间为3min。2) Roughen the substrate. The formula of the roughening solution is: potassium permanganate 80g/L, sodium hydroxide 40g/L, and the epoxy resin substrate is immersed in the roughening solution. The immersion temperature is 70°C and the immersion time is 3min.
3)将基板进行活化:配制吡咯溶液:吡咯、乙醇体积比1:2,氯化铁溶液:1mol/L。先将基板置于吡咯溶液中,静置5分钟,然后将基板置入三氯化铁溶液,静置30分钟,30分钟后,取出基板置于沸腾的水蒸气上方,蒸汽熏蒸30分钟,然后将基板转入去离子水清洗干净。3) Activate the substrate: prepare pyrrole solution: volume ratio of pyrrole to ethanol is 1:2, ferric chloride solution: 1mol/L. First place the substrate in the pyrrole solution and let it stand for 5 minutes, then put the substrate in the ferric chloride solution and let it stand for 30 minutes. After 30 minutes, take out the substrate and place it on the boiling water vapor, steam fumigation for 30 minutes, and then Transfer the substrate to deionized water to clean it.
4)将第三步清洗后基板进行化学沉铜处理,化学沉铜液中,配方为酒石酸钾钠80g/L,氢氧化钠15g/L,碳酸钠7g/L;酒石酸钾钠8g/L,五水硫酸铜20g/L,氯化镍2g/L,甲醛37%30ml/L。化学沉铜时间为4h,基板上得到一层均匀的红色铜层。图1为实施例1的环氧树脂基板表面化学沉铜后的扫描电镜图,由图1可知,化学沉铜的铜晶胞均匀附着。图2是沉铜的X光电子能谱测试图,证实所得物质是铜镀层。4) After the third step of cleaning, the substrate is subjected to chemical copper precipitation treatment. In the chemical copper precipitation solution, the formula is potassium sodium tartrate 80g/L, sodium hydroxide 15g/L, sodium carbonate 7g/L; potassium sodium tartrate 8g/L, Copper sulfate pentahydrate 20g/L, nickel chloride 2g/L, formaldehyde 37% 30ml/L. The electroless copper deposition time is 4h, and a uniform red copper layer is obtained on the substrate. FIG. 1 is a scanning electron microscope image of the surface of the epoxy resin substrate in Example 1 after electroless copper deposition. It can be seen from FIG. 1 that the copper unit cells of the electroless copper deposition are evenly attached. Fig. 2 is an X-ray photoelectron spectrum test diagram of deposited copper, which confirms that the obtained substance is a copper coating.
实施例2:Example 2:
1)对FR-4玻璃纤维环氧树脂板进行除油处理,除油液配方为:氢氧化钠30g/L,磷酸钠50g/L,碳酸钠30g/L,OP-10 10ml/L,将环氧树脂基板浸入除油液中,浸入温度为60℃,浸入时间为5min。1) Carry out degreasing treatment to FR-4 glass fiber epoxy resin board, the formula of degreasing liquid is: sodium hydroxide 30g/L, sodium phosphate 50g/L, sodium carbonate 30g/L, OP-10 10ml/L, will The epoxy resin substrate is immersed in the degreasing solution, the immersion temperature is 60°C, and the immersion time is 5min.
2)对基板进行粗化处理,粗化液配方为:高锰酸钾80g/L,氢氧化钠40g/L,将环氧树脂基板浸入粗化液中,浸入温度为70℃,浸入时间为3min。2) Roughen the substrate. The formula of the roughening solution is: potassium permanganate 80g/L, sodium hydroxide 40g/L, and the epoxy resin substrate is immersed in the roughening solution. The immersion temperature is 70°C and the immersion time is 3min.
3)将基板进行活化:配制吡咯液浓度:吡咯、乙醇体积比1:1,氯化铁溶液:0.5mol/L。先将基板置于吡咯溶液中,静置1分钟,然后将基板置入三氯化铁溶液,静置20分钟,20分钟后,取出基板置于沸腾的水蒸气上方,蒸汽熏蒸60分钟,然后将基板转入去离子水清洗干净。3) Activate the substrate: prepare pyrrole solution concentration: volume ratio of pyrrole to ethanol is 1:1, ferric chloride solution: 0.5mol/L. First place the substrate in the pyrrole solution and let it stand for 1 minute, then put the substrate in the ferric chloride solution and let it stand for 20 minutes. After 20 minutes, take out the substrate and place it on the boiling water vapor, steam fumigation for 60 minutes, and then Transfer the substrate to deionized water to clean it.
4)将第三步清洗后基板进行化学沉铜处理,化学沉铜液中,配方为酒石酸钾钠80g/L,氢氧化钠15g/L,碳酸钠7g/L;酒石酸钾钠8g/L,五水硫酸铜20g/L,氯化镍2g/L、甲醛37%30ml/L。化学沉铜时间为2h,基板上得到一层均匀的红色铜层。4) After the third step of cleaning, the substrate is subjected to chemical copper precipitation treatment. In the chemical copper precipitation solution, the formula is potassium sodium tartrate 80g/L, sodium hydroxide 15g/L, sodium carbonate 7g/L; potassium sodium tartrate 8g/L, Copper sulfate pentahydrate 20g/L, nickel chloride 2g/L, formaldehyde 37% 30ml/L. The electroless copper deposition time is 2 hours, and a uniform red copper layer is obtained on the substrate.
实施例3:Example 3:
1)对FR-4玻璃纤维环氧树脂板进行除油处理,除油液配方为:氢氧化钠30g/L,磷酸钠50g/L,碳酸钠30g/L,OP-10 10ml/L,将环氧树脂基板浸入除油液中,浸入温度为60℃,浸入时间为5min。1) Carry out degreasing treatment to FR-4 glass fiber epoxy resin board, the formula of degreasing liquid is: sodium hydroxide 30g/L, sodium phosphate 50g/L, sodium carbonate 30g/L, OP-10 10ml/L, will The epoxy resin substrate is immersed in the degreasing solution, the immersion temperature is 60°C, and the immersion time is 5min.
2)对基板进行粗化处理,粗化液配方为:高锰酸钾80g/L,氢氧化钠40g/L,将基板浸入粗化液中,浸入温度为70℃,浸入时间为3min。2) Roughen the substrate, the formula of the roughening solution is: potassium permanganate 80g/L, sodium hydroxide 40g/L, immerse the substrate in the roughening solution, the immersion temperature is 70°C, and the immersion time is 3min.
3)将基板进行活化:配制吡咯液浓度:吡咯、乙醇体积比1:3,氯化铁溶液:2mol/L。先将基板置于吡咯溶液中,静置10分钟,然后将基板置入三氯化铁溶液,静置10分钟,10分钟后,取出基板置于沸腾的水蒸气上方,蒸汽熏蒸2小时,然后将基板转入去离子水清洗干净。3) Activate the substrate: prepare pyrrole solution concentration: volume ratio of pyrrole to ethanol is 1:3, ferric chloride solution: 2mol/L. First place the substrate in the pyrrole solution and let it stand for 10 minutes, then put the substrate in the ferric chloride solution and let it stand for 10 minutes. After 10 minutes, take out the substrate and place it on the boiling water vapor, steam fumigation for 2 hours, and then Transfer the substrate to deionized water to clean it.
4)将第三步清洗后基板进行化学沉铜处理,化学沉铜液中,配方为酒石酸钾钠80g/L,氢氧化钠15g/L,碳酸钠7g/L;酒石酸钾钠8g/L,五水硫酸铜20g/L,氯化镍2g/L、甲醛37%30ml/L。化学沉铜时间为1h,基板上得到一层均匀的红色铜层,如图3所示,基板表面的晶胞堆叠。4) After the third step of cleaning, the substrate is subjected to chemical copper precipitation treatment. In the chemical copper precipitation solution, the formula is potassium sodium tartrate 80g/L, sodium hydroxide 15g/L, sodium carbonate 7g/L; potassium sodium tartrate 8g/L, Copper sulfate pentahydrate 20g/L, nickel chloride 2g/L, formaldehyde 37% 30ml/L. The electroless copper deposition time is 1h, and a uniform red copper layer is obtained on the substrate. As shown in Figure 3, the unit cells on the substrate surface are stacked.
实施例4:Example 4:
1)对FR-4玻璃纤维环氧树脂板进行除油处理,除油液配方为:氢氧化钠30g/L,磷酸钠50g/L,碳酸钠30g/L,OP-10 10ml/L,将环氧树脂基板浸入除油液中,浸入温度为60℃,浸入时间为5min。1) Carry out degreasing treatment to FR-4 glass fiber epoxy resin board, the formula of degreasing liquid is: sodium hydroxide 30g/L, sodium phosphate 50g/L, sodium carbonate 30g/L, OP-10 10ml/L, will The epoxy resin substrate is immersed in the degreasing solution, the immersion temperature is 60°C, and the immersion time is 5min.
2)对基板进行粗化处理,粗化液配方为:高锰酸钾80g/L,氢氧化钠40g/L,将基板浸入粗化液中,浸入温度为70℃,浸入时间为3min。2) Roughen the substrate, the formula of the roughening solution is: potassium permanganate 80g/L, sodium hydroxide 40g/L, immerse the substrate in the roughening solution, the immersion temperature is 70°C, and the immersion time is 3min.
3)将基板进行活化:配制吡咯液浓度:吡咯、乙醇体积比1:3,氯化铁溶液:2mol/L。先将基板至于吡咯溶液中,静置10分钟,然后将基板置入三氯化铁溶液,静置10分钟,10分钟后,取出基板置于沸腾的水蒸气上方,蒸汽熏蒸2小时,然后将基板转入去离子水清洗干净。3) Activate the substrate: prepare pyrrole solution concentration: volume ratio of pyrrole to ethanol is 1:3, ferric chloride solution: 2mol/L. First place the substrate in the pyrrole solution and let it stand for 10 minutes, then put the substrate in the ferric chloride solution and let it stand for 10 minutes. After 10 minutes, take out the substrate and place it on the boiling water vapor, steam fumigation for 2 hours, and then put Substrates were rinsed in deionized water.
4)将第三步清洗后基板进行化学沉铜处理,化学沉铜液中,配方为酒石酸钾钠80g/L,氢氧化钠15g/L,碳酸钠7g/L;酒石酸钾钠8g/L,五水硫酸铜20g/L,氯化镍2g/L、甲醛37%30ml/L。化学沉铜时间为4h,基板上得到一层均匀的红色铜层,基板表面的晶胞堆叠更加明显。4) After the third step of cleaning, the substrate is subjected to chemical copper precipitation treatment. In the chemical copper precipitation solution, the formula is potassium sodium tartrate 80g/L, sodium hydroxide 15g/L, sodium carbonate 7g/L; potassium sodium tartrate 8g/L, Copper sulfate pentahydrate 20g/L, nickel chloride 2g/L, formaldehyde 37% 30ml/L. The electroless copper deposition time is 4 hours, and a uniform red copper layer is obtained on the substrate, and the unit cell stacking on the substrate surface is more obvious.
对比例1:Comparative example 1:
与实施例1相比,绝大部分均相同,除了本对比例中,省去了在吡咯溶液中浸泡这一工序。Compared with Example 1, most of them are the same, except that in this comparative example, the process of soaking in the pyrrole solution is omitted.
1)对FR-4玻璃纤维环氧树脂板进行除油处理,除油液配方为:氢氧化钠30g/L,磷酸钠50g/L,碳酸钠30g/L,OP-10 10ml/L,将环氧树脂基板浸入除油液中,浸入温度为60℃,浸入时间为5min。1) Carry out degreasing treatment to FR-4 glass fiber epoxy resin board, the formula of degreasing liquid is: sodium hydroxide 30g/L, sodium phosphate 50g/L, sodium carbonate 30g/L, OP-10 10ml/L, will The epoxy resin substrate is immersed in the degreasing solution, the immersion temperature is 60°C, and the immersion time is 5min.
2)对基板进行粗化处理,粗化液配方为:高锰酸钾80g/L,氢氧化钠40g/L,将环氧树脂基板浸入粗化液中,浸入温度为70℃,浸入时间为3min。2) Roughen the substrate. The formula of the roughening solution is: potassium permanganate 80g/L, sodium hydroxide 40g/L, and the epoxy resin substrate is immersed in the roughening solution. The immersion temperature is 70°C and the immersion time is 3min.
3)将基板进行活化:配制氯化铁溶液:1mol/L。将基板置于三氯化铁溶液,静置30分钟,30分钟后将基板取出,基板置于沸腾的水蒸气上方,蒸汽熏蒸30分钟,然后将基板转入去离子水清洗干净。3) Activate the substrate: prepare ferric chloride solution: 1mol/L. Put the substrate in the ferric chloride solution, let it stand for 30 minutes, take out the substrate after 30 minutes, place the substrate above the boiling water vapor, fumigate with the steam for 30 minutes, and then transfer the substrate to deionized water to clean it.
4)将第三步清洗后基板进行化学沉铜处理,化学沉铜液中,配方为酒石酸钾钠80g/L,氢氧化钠15g/L,碳酸钠7g/L;酒石酸钾钠8g/L,五水硫酸铜20g/L,氯化镍2g/L,甲醛37%30ml/L。化学沉铜时间为4h,基板表面出现零星的红色斑点,没有形成均匀的红色铜层。4) After the third step of cleaning, the substrate is subjected to chemical copper precipitation treatment. In the chemical copper precipitation solution, the formula is potassium sodium tartrate 80g/L, sodium hydroxide 15g/L, sodium carbonate 7g/L; potassium sodium tartrate 8g/L, Copper sulfate pentahydrate 20g/L, nickel chloride 2g/L, formaldehyde 37% 30ml/L. The electroless copper deposition time is 4 hours, sporadic red spots appear on the surface of the substrate, and no uniform red copper layer is formed.
对比例2:Comparative example 2:
与实施例2相比,绝大部分均相同,除了本对比例中,省去了蒸汽熏蒸这一工序。Compared with Example 2, most of them are the same, except that in this comparative example, the process of steam fumigation is omitted.
1)对FR-4玻璃纤维环氧树脂板进行除油处理,除油液配方为:氢氧化钠30g/L,磷酸钠50g/L,碳酸钠30g/L,OP-10 10ml/L,将环氧树脂基板浸入除油液中,浸入温度为60℃,浸入时间为5min。1) Carry out degreasing treatment to FR-4 glass fiber epoxy resin board, the formula of degreasing liquid is: sodium hydroxide 30g/L, sodium phosphate 50g/L, sodium carbonate 30g/L, OP-10 10ml/L, will The epoxy resin substrate is immersed in the degreasing solution, the immersion temperature is 60°C, and the immersion time is 5min.
2)对基板进行粗化处理,粗化液配方为:高锰酸钾80g/L,氢氧化钠40g/L,将环氧树脂基板浸入粗化液中,浸入温度为70℃,浸入时间为3min。2) Roughen the substrate. The formula of the roughening solution is: potassium permanganate 80g/L, sodium hydroxide 40g/L, and the epoxy resin substrate is immersed in the roughening solution. The immersion temperature is 70°C and the immersion time is 3min.
3)将基板进行活化:配制吡咯溶液:吡咯、乙醇体积比1:1,氯化铁溶液:0.5mol/L。将基板置于吡咯溶液中,静置1分钟,然后将基板置入三氯化铁溶液,静置20分钟,20分钟后将基板转入去离子水清洗干净。3) Activate the substrate: prepare pyrrole solution: volume ratio of pyrrole to ethanol is 1:1, ferric chloride solution: 0.5mol/L. Put the substrate in the pyrrole solution, let it stand for 1 minute, then put the substrate in the ferric chloride solution, let it stand for 20 minutes, and after 20 minutes, turn the substrate into deionized water and clean it.
4)将第三步清洗后基板进行化学沉铜处理,化学沉铜液中,配方为酒石酸钾钠80g/L,氢氧化钠15g/L,碳酸钠7g/L;酒石酸钾钠8g/L,五水硫酸铜20g/L,氯化镍2g/L、甲醛37%30ml/L。化学沉铜时间为2h,基板表面无均匀的红色铜层。4) After the third step of cleaning, the substrate is subjected to chemical copper precipitation treatment. In the chemical copper precipitation solution, the formula is potassium sodium tartrate 80g/L, sodium hydroxide 15g/L, sodium carbonate 7g/L; potassium sodium tartrate 8g/L, Copper sulfate pentahydrate 20g/L, nickel chloride 2g/L, formaldehyde 37% 30ml/L. The electroless copper deposition time is 2h, and there is no uniform red copper layer on the surface of the substrate.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The above descriptions of the embodiments are for those of ordinary skill in the art to understand and use the invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative efforts. Therefore, the present invention is not limited to the above-mentioned embodiments. Improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211174546.XA CN115896762A (en) | 2022-09-26 | 2022-09-26 | Palladium-free activation chemical copper deposition process for resin substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211174546.XA CN115896762A (en) | 2022-09-26 | 2022-09-26 | Palladium-free activation chemical copper deposition process for resin substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115896762A true CN115896762A (en) | 2023-04-04 |
Family
ID=86477293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211174546.XA Pending CN115896762A (en) | 2022-09-26 | 2022-09-26 | Palladium-free activation chemical copper deposition process for resin substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115896762A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4023619A1 (en) * | 1990-07-25 | 1991-09-19 | Daimler Benz Ag | Metallising electrically insulating substrate surface - by first impregnating with oxidant and gas phase deposition of conductive polymer, esp. used for fibre material |
CN102644065A (en) * | 2012-03-30 | 2012-08-22 | 山东建筑大学 | Plastic metalizing method |
TW201404841A (en) * | 2012-07-24 | 2014-02-01 | Ai-Hui Qiu | Conductive colloid, conductive film electrode material and preparation method thereof |
CN104561956A (en) * | 2014-12-27 | 2015-04-29 | 广东致卓精密金属科技有限公司 | High-activity chemical copper plating solution and chemical copper plating method |
CN105506991A (en) * | 2016-01-14 | 2016-04-20 | 复旦大学 | Preparing method for copper ammonia fiber conductive textile |
CN112246108A (en) * | 2020-09-18 | 2021-01-22 | 浙江师范大学 | Polypyrrole-nickel conductive composite separation membrane and preparation method and application thereof |
-
2022
- 2022-09-26 CN CN202211174546.XA patent/CN115896762A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4023619A1 (en) * | 1990-07-25 | 1991-09-19 | Daimler Benz Ag | Metallising electrically insulating substrate surface - by first impregnating with oxidant and gas phase deposition of conductive polymer, esp. used for fibre material |
CN102644065A (en) * | 2012-03-30 | 2012-08-22 | 山东建筑大学 | Plastic metalizing method |
TW201404841A (en) * | 2012-07-24 | 2014-02-01 | Ai-Hui Qiu | Conductive colloid, conductive film electrode material and preparation method thereof |
CN104561956A (en) * | 2014-12-27 | 2015-04-29 | 广东致卓精密金属科技有限公司 | High-activity chemical copper plating solution and chemical copper plating method |
CN105506991A (en) * | 2016-01-14 | 2016-04-20 | 复旦大学 | Preparing method for copper ammonia fiber conductive textile |
CN112246108A (en) * | 2020-09-18 | 2021-01-22 | 浙江师范大学 | Polypyrrole-nickel conductive composite separation membrane and preparation method and application thereof |
Non-Patent Citations (2)
Title |
---|
席慧智等: "材料化学导论", 31 August 2017, 哈尔滨工业大学出版社, pages: 67 - 68 * |
张玉龙等: "高技术复合材料制备手册", 31 May 2002, 国防工业出版社, pages: 579 - 580 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4198799B2 (en) | Electroless plating method | |
CN107313030B (en) | Non-metallic substrate electroless plating without palladium activation and method for electroless plating of low active metals | |
CN110724943A (en) | Palladium-free activating solution before chemical nickel plating on copper surface, preparation method and nickel plating method | |
JPS6133077B2 (en) | ||
CN111763930B (en) | Non-palladium activated copper plating process and sensitizer and activator thereof | |
CN114369955B (en) | Method for preparing high-performance electromagnetic shielding paper by using carbon fiber | |
CN106048564A (en) | ABS plastic surface palladium-free activation metallization method | |
CN102936726A (en) | Multiple-layer metallization processing method for epoxy resin package electronic component surface | |
CN101798238B (en) | Ceramic metallizing method | |
CN115896762A (en) | Palladium-free activation chemical copper deposition process for resin substrate | |
CN106350789B (en) | A kind of preparation method of metal layer for electromagnetic shielding film | |
CN117702095B (en) | Preparation method of composite copper foil | |
JP2871828B2 (en) | Direct metallization of printed circuit boards | |
CN111732456A (en) | A kind of ceramic conductive material and its preparation method and application | |
CN116083890A (en) | A kind of base material surface treatment method and its application | |
CN116334916A (en) | Light flexible electromagnetic shielding fiber membrane material and preparation method and application thereof | |
JPH03170680A (en) | Direct metal covering of nonconductive supporting body | |
CN102925876A (en) | Pretreatment method suitable for phenolic resin composite material chemical plating | |
CN110312376A (en) | A kind of whole hole technique of strength oil removing for printed wiring board hole metallization | |
CN112609217A (en) | Blackening solution and cyanide-free zinc-plating cadmium-free electroplating blackening process | |
CN106917078B (en) | A kind of displacement plating palladium method for copper surface | |
ANDREEV et al. | Three methods for PCB via metallization-investigation and discussion | |
CN118039731A (en) | Battery piece and preparation method thereof | |
CN114164421B (en) | Method for depositing activated film on copper surface by using reverse displacement deposition solution | |
CN105586580A (en) | Method for medium-low temperature quick chemical plating of Ni-P based on copper leaching and plating pretreatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |