CN115882016A - Estimation method for water content distribution of proton exchange membrane fuel cell membrane - Google Patents
Estimation method for water content distribution of proton exchange membrane fuel cell membrane Download PDFInfo
- Publication number
- CN115882016A CN115882016A CN202211328530.XA CN202211328530A CN115882016A CN 115882016 A CN115882016 A CN 115882016A CN 202211328530 A CN202211328530 A CN 202211328530A CN 115882016 A CN115882016 A CN 115882016A
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- data
- temperature
- water content
- current density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 88
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 239000012528 membrane Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 20
- 210000000170 cell membrane Anatomy 0.000 title claims abstract description 8
- 210000004027 cell Anatomy 0.000 claims abstract description 79
- 230000014509 gene expression Effects 0.000 claims abstract description 37
- 238000012360 testing method Methods 0.000 claims abstract description 23
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 17
- 238000001739 density measurement Methods 0.000 claims abstract description 5
- 230000002441 reversible effect Effects 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 11
- 206010013496 Disturbance in attention Diseases 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 238000011056 performance test Methods 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 238000007405 data analysis Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000012495 reaction gas Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010946 mechanistic model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 temperature Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
本发明公开了质子交换膜燃料电池膜水含量分布的估计方法,包括以下步骤:步骤一、连接实验设备:单片燃料电池、具有温度、电流密度测量所需的多传感器PCB板和燃料电池测试平台通过连接线连接在一起;步骤二、预热燃料电池:将燃料电池预热至测试所需的温度;本发明通过记录电压电流、电流密度温度数据分析对PCB板测量数据的不同维度,采用插值算法将测量数据扩展至数据维度相同,以便于平面内相同位置处的数据一一对应;根据燃料电池输出电压表达式各损耗与温度、电流密度的关系计算平面内各位置处的欧姆损耗,并通过其与膜水含量的关系表达式,得到燃料电池平面内水含量的分布特征。
The invention discloses a method for estimating the water content distribution of a proton exchange membrane fuel cell membrane, comprising the following steps: Step 1, connecting experimental equipment: a single-chip fuel cell, a multi-sensor PCB board with temperature and current density measurements required, and fuel cell testing The platforms are connected together through connecting wires; step 2, preheating the fuel cell: preheating the fuel cell to the temperature required for the test; the present invention analyzes the different dimensions of the measured data of the PCB board by recording voltage, current, current density and temperature data, and adopts The interpolation algorithm expands the measured data to the same data dimension, so that the data at the same position in the plane corresponds to each other; calculate the ohmic loss at each position in the plane according to the relationship between each loss of the fuel cell output voltage expression and the temperature and current density, And the distribution characteristics of the water content in the plane of the fuel cell are obtained through the relationship expression between it and the water content of the membrane.
Description
技术领域Technical Field
本发明涉及质子交换膜燃料电池领域,具体为质子交换膜燃料电池膜水含量分布的估计方法。The invention relates to the field of proton exchange membrane fuel cells, in particular to a method for estimating water content distribution of a proton exchange membrane fuel cell membrane.
背景技术Background Art
质子交换膜燃料电池作为一种能量转化装置,通过氢气与氧气发生电化学反应产生水,将化学能转化为电能及热能,质子交换膜燃料电池是一种多物理场耦合的非线性复杂系统,其运行过程涉及热、电、流体(气、液)等多物理场耦合现象,其输出性能受到负载电流、运行温度、反应气体流量、膜水含量等参数的综合影响,水在燃料电池内部,不仅是生成物,其还可用于对反应气体及质子交换膜的增湿,在质子交换膜燃料电池运行过程中,适量的水能够降低膜内阻从而提升输出性能,过量的水则会占据气体扩散层的孔隙、堵塞流道等从而阻碍反应气体传输、降低输出性能,少量的水则难以湿润质子交换膜从而导致膜电阻增加降低输出性能,在燃料电池运行过程中,与内部水含量关联密切的水管理故障,水淹、膜干是最常发生的故障类型,其产生的原因与运行电流等级、反应气体湿度、温度、气体流量、排水周期等有关,其表现为燃料电池输出性能下降、电压波动等,此外,严重的水管理故障会造成不可逆的输出性能下降与内部结构损坏,降低剩余使用寿命,因此,在实际运行的质子交换膜燃料电池系统中,快速精准地评估内部水含量,使其运行于合适的水含量范围,对维持稳定性、增强耐久性和延长运行寿命十分重要,近年来的商业化进程中,质子交换膜燃料电池在大尺寸、高功率特点上获得了较快的发展。对于大尺寸燃料电池,平面内水含量的分布及局部特征会影响其输出性能及使用寿命,因此,探究燃料电池平面内的膜水含量分布,避免运行过程中出现局部的水管理故障具有重要意义。As an energy conversion device, proton exchange membrane fuel cells produce water through the electrochemical reaction of hydrogen and oxygen, converting chemical energy into electrical energy and thermal energy. Proton exchange membrane fuel cells are a nonlinear complex system coupled with multiple physical fields. Their operation process involves multiple physical field coupling phenomena such as heat, electricity, and fluid (gas, liquid). Their output performance is comprehensively affected by parameters such as load current, operating temperature, reaction gas flow, and membrane water content. Water inside the fuel cell is not only a product, it can also be used to humidify the reaction gas and proton exchange membrane. During the operation of the proton exchange membrane fuel cell, an appropriate amount of water can reduce the internal resistance of the membrane and thus improve the output performance. Excessive water will occupy the pores of the gas diffusion layer, block the flow channel, etc., thereby hindering the transmission of the reaction gas and reducing the output performance. A small amount of water will make it difficult to wet the proton exchange membrane. The increase in membrane resistance reduces the output performance. During the operation of the fuel cell, water management failures are closely related to the internal water content. Water flooding and membrane drying are the most common types of failures. The causes are related to the operating current level, the humidity of the reaction gas, temperature, gas flow, drainage cycle, etc., which are manifested as a decrease in fuel cell output performance and voltage fluctuations. In addition, serious water management failures will cause irreversible output performance degradation and internal structural damage, reducing the remaining service life. Therefore, in the actual operation of the proton exchange membrane fuel cell system, it is very important to quickly and accurately evaluate the internal water content and operate it in the appropriate water content range to maintain stability, enhance durability and extend the operating life. In the commercialization process in recent years, proton exchange membrane fuel cells have achieved rapid development in large size and high power characteristics. For large-size fuel cells, the distribution and local characteristics of water content in the plane will affect its output performance and service life. Therefore, it is of great significance to explore the distribution of membrane water content in the fuel cell plane to avoid local water management failures during operation.
在现有的燃料电池水含量评估方法中,基于模型的方法十分常见,该方法通过建立质子交换膜燃料电池燃料电池的一维机理模型或半经验半机理模型,并经输出电压、阻抗谱等实验数据验证模型准确性;根据模型与膜水含量的关系,通过电压响应或阻抗谱反映运行时燃料电池内部膜水含量变化,此外,借助仿真软件建立二维/三维的燃料电池机理模型来模拟燃料电池内部水含量的分布特征,并且构建实时仿真评估内部水含量的变化及液态水的传输过程,实验检测的方法同样应用于燃料电池的水含量评估,运行过程中,燃料电池反应气体的进出口压力降变化能够实时的反映其内部的水含量特征,并且主要反映流场内的水含量,可视化实验如中子成像,直接成像,核磁共振成像和X射线扫描成像等实验方法可以观测到平面内水含量的分布特征。Among the existing fuel cell water content assessment methods, model-based methods are very common. This method establishes a one-dimensional mechanism model or a semi-empirical and semi-mechanistic model of a proton exchange membrane fuel cell, and verifies the accuracy of the model through experimental data such as output voltage and impedance spectrum; based on the relationship between the model and the membrane water content, the voltage response or impedance spectrum is used to reflect the changes in the membrane water content inside the fuel cell during operation. In addition, a two-dimensional/three-dimensional fuel cell mechanism model is established with the help of simulation software to simulate the distribution characteristics of the water content inside the fuel cell, and a real-time simulation is constructed to evaluate the changes in the internal water content and the transmission process of liquid water. The experimental detection method is also applied to the water content assessment of the fuel cell. During operation, the changes in the inlet and outlet pressure drops of the fuel cell reaction gas can reflect the internal water content characteristics in real time, and mainly reflect the water content in the flow field. Visualization experiments such as neutron imaging, direct imaging, nuclear magnetic resonance imaging and X-ray scanning imaging can observe the distribution characteristics of the water content in the plane.
但是,传统的燃料电池膜水含量分布的估计方法存在以下缺点:However, the traditional method for estimating the water content distribution of fuel cell membranes has the following disadvantages:
(1)基于一维模型的方法仅针对垂直于平面的水含量特征进行估计,并未考虑燃料电池平面内不同位置处的水含量分布;多维模型存在着仿真耗时长、计算设备要求高以及难以实验验证等不足。(1) The method based on the one-dimensional model only estimates the water content characteristics perpendicular to the plane, and does not consider the distribution of water content at different positions in the fuel cell plane; the multi-dimensional model has the disadvantages of long simulation time, high requirements for computing equipment, and difficulty in experimental verification.
(2)通过压力降的实验方法在表征平面内水含量分布存在困难;对于可视化实验而言,实验测试昂贵、技术要求高、成本高。(2) The experimental method of pressure drop has difficulties in characterizing the distribution of water content in a plane; for visualization experiments, experimental testing is expensive, technically demanding, and costly.
发明内容Summary of the invention
本发明的目的在于提供质子交换膜燃料电池膜水含量分布的估计方法,以解决上述背景技术中提出的基于一维模型的方法仅针对垂直于平面的水含量特征进行估计,并未考虑燃料电池平面内不同位置处的水含量分布;多维模型存在着仿真耗时长、计算设备要求高以及难以实验验证等不足,通过压力降的实验方法在表征平面内水含量分布存在困难;对于可视化实验而言,实验测试昂贵、技术要求高、成本高的问题。The purpose of the present invention is to provide a method for estimating the water content distribution of a proton exchange membrane fuel cell membrane, so as to solve the problem that the method based on a one-dimensional model proposed in the above background technology only estimates the water content characteristics perpendicular to the plane, and does not consider the water content distribution at different positions in the fuel cell plane; the multi-dimensional model has the disadvantages of long simulation time, high requirements for computing equipment and difficulty in experimental verification, and the experimental method of pressure drop is difficult to characterize the water content distribution in the plane; for visualization experiments, the experimental test is expensive, the technical requirements are high and the cost is high.
为实现上述目的,本发明提供如下技术方案:质子交换膜燃料电池膜水含量分布的估计方法,包括以下步骤:To achieve the above object, the present invention provides the following technical solution: A method for estimating the water content distribution of a proton exchange membrane fuel cell membrane, comprising the following steps:
步骤一、连接实验设备:单片燃料电池、具有温度、电流密度测量所需的多传感器PCB板和燃料电池测试平台通过连接线连接在一起;Step 1: Connect the experimental equipment: the monolithic fuel cell, the multi-sensor PCB board required for temperature and current density measurement, and the fuel cell test platform are connected together through connecting wires;
步骤二、预热燃料电池:将燃料电池预热至测试所需的温度;Step 2: Preheat the fuel cell: preheat the fuel cell to the temperature required for the test;
步骤三、加载电流:加载电流进行稳态性能测试,直至燃料电池输出电压出现骤降甚至为0时,停止加载;
步骤四、记录电压电流:记录下燃料电池的输出电压及总输出电流,通过PCB板的数据采集装置,记录下各传感器的电流密度、温度的数据,用于后续分析;Step 4: Record voltage and current: Record the output voltage and total output current of the fuel cell, and record the current density and temperature data of each sensor through the data acquisition device of the PCB board for subsequent analysis;
步骤五、电流密度温度数据分析:将燃料电池运行测试过程中PCB板采集数据以数据矩阵的形式按顺序进行表示,电流密度、温度分布数据的表达式分别为:Step 5: Current density and temperature data analysis: The data collected by the PCB board during the fuel cell operation test is expressed in sequence in the form of a data matrix. The expressions of current density and temperature distribution data are:
步骤六、采用插值算法对数据维度进行扩展:采用插值算法对数据维度进行扩展,分段三次Hermite插值对温度分布数据进行插值计算,包括向内插值与向外插值,扩展后的温度分布表达式为:为使插值后的温度分布数据尽量维持原始数据的分布特性,采用数据标准差量化分别量化插值前后的温度分布均匀性,并根据该值作为反馈调整插值算法,以选出更好的插值算法,测量温度数据的标准差为:插值计算后温度数据的标准差为:Step 6: Use interpolation algorithm to expand the data dimension: Use interpolation algorithm to expand the data dimension, and perform interpolation calculation on the temperature distribution data by piecewise cubic Hermite interpolation, including inward interpolation and outward interpolation. The expanded temperature distribution expression is: In order to make the interpolated temperature distribution data maintain the distribution characteristics of the original data as much as possible, the data standard deviation is used to quantify the uniformity of the temperature distribution before and after interpolation, and the interpolation algorithm is adjusted based on this value as feedback to select a better interpolation algorithm. The standard deviation of the measured temperature data is: The standard deviation of the temperature data after interpolation is:
步骤七、数据一一对应:局部电流密度、温度数据一一对应,插值计算后,温度分布数据矩阵扩展为与电流密度分布数据矩阵具有相同的维度,设置一个位置函数f表示该位置处的电流密度、温度,其表达式为:
f(a,b)=(ia,b,ta,b),1≤a≤m,1≤b≤n(6);f(a,b)=(i a,b ,t a,b ),1≤a≤m,1≤b≤n(6);
步骤八、构建半经验模型:构建燃料电池输出电压的半经验模型,输出电压的表达式为:U=Erev-ηact-ηohm-ηconc(7),热力学可逆电压通过能斯特方程表示:阳极、阴极的活化损耗表达式为:欧姆损耗的经验表达式为:浓差损耗的表达式为:Step 8: Construct a semi-empirical model: Construct a semi-empirical model of the fuel cell output voltage. The output voltage is expressed as: U = E rev -η act -η ohm -η conc (7). The thermodynamic reversible voltage is expressed by the Nernst equation: The activation loss expressions of anode and cathode are: The empirical expression for ohmic loss is: The expression of concentration loss is:
步骤九、反推水含量:水含量改写为欧姆损耗的表达式,反推平面内水含量分布。将步骤六中的式(10)改写为:式中,ξ为水含量,j为电流密度,T为温度,δmem为膜厚度,A为膜电极活性面积,ηohm为活化损耗;对于燃料电池而言,平面内各位置输出电压相同。根据步骤五中不同位置处电流密度、温度分布,结合步骤六中输出电压模型中与电流密度、温度相关的表达式,可以将不同位置处的电压表示为:U=U(a,b)=Erev(a,b)-ηact,a(a,b)-ηact,c(a,b)-ηohm(a,b)-ηconc(a,b)(13),由步骤六中式(10)可知,水含量与欧姆损耗相关,于是测量位置处的欧姆损耗可以表示为:ηohm(a,b)=Erev(a,b)-U-ηact,a(a,b)-ηact,c(a,b)-ηconc(a,b)(14),由此可知,不同位置处的欧姆损耗在电流密度、温度分布不均匀的情况下并不相同,因此,平面内各位置处的膜水含量存在差异,则式(12)可改写为:ξ(a,b)=g(η(a,b),f(a,b))(15),将步骤五中式(6)的电流密度、温度分布数据f(a,b)代入涉及步骤六、步骤七的式(8-15)中,计算出PCB板测量燃料电池平面内不同位置处的水含量数据,从而得到内部水含量的分布特征。Step 9: Reverse the water content: Rewrite the water content into an expression of ohmic loss, and reverse the distribution of water content in the plane. Rewrite equation (10) in
作为本发明的一种优选技术方案,所述步骤三中电流加载的增量为50mA/cm2或100mA/cm2。As a preferred technical solution of the present invention, the increment of current loading in step three is 50 mA/cm 2 or 100 mA/cm 2 .
作为本发明的一种优选技术方案,所述步骤五中式(1)、(2)中,下表m,n,j,l表示对应传感器的位置,k表示测试时间序列,i表示电流密度(单位mA/cm2),T,t表示温度(单位℃)。As a preferred technical solution of the present invention, in the formulas (1) and (2) in
作为本发明的一种优选技术方案,所述步骤六中式(4)、(5)中,s为描述分布均匀性的标准差,E表示分布数据的平均值,下标real、interp分别表示实际测量数据及插值计算后的数据,下标a、b表示分布数据中局部温度的采样位置。As a preferred technical solution of the present invention, in the formulas (4) and (5) in step six, s is the standard deviation describing the uniformity of distribution, E represents the average value of the distribution data, the subscripts real and interp represent the actual measured data and the data after interpolation calculation, respectively, and the subscripts a and b represent the sampling positions of the local temperature in the distribution data.
作为本发明的一种优选技术方案,所述步骤七中式(6)中,a、b代表位置坐标,i、t表示该位置处的电流密度、温度值。As a preferred technical solution of the present invention, in formula (6) in step seven, a and b represent position coordinates, and i and t represent current density and temperature values at the position.
作为本发明的一种优选技术方案,所述步骤八中式(7)中,U为单片燃料电池的输出电压,Erev、ηact、ηohm、ηconc分别为可逆电压、活化损耗、欧姆损耗及浓差损耗。As a preferred technical solution of the present invention, in formula (7) in step eight, U is the output voltage of the single fuel cell, and E rev , η act , η ohm , and η conc are reversible voltage, activation loss, ohmic loss, and concentration loss, respectively.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the present invention has the following beneficial effects:
1、通过记录电压电流、电流密度温度数据分析对PCB板测量数据的不同维度,采用插值算法将测量数据扩展至数据维度相同,以便于平面内相同位置处的数据一一对应;1. By recording the voltage, current, current density and temperature data, we analyze the different dimensions of the PCB board measurement data, and use the interpolation algorithm to expand the measurement data to the same data dimension, so that the data at the same position in the plane correspond one to one;
2、根据燃料电池输出电压表达式各损耗与温度、电流密度的关系计算平面内各位置处的欧姆损耗,并通过其与膜水含量的关系表达式,得到燃料电池平面内水含量的分布特征;2. Calculate the ohmic loss at each position in the plane based on the relationship between each loss and temperature and current density in the fuel cell output voltage expression, and obtain the distribution characteristics of the water content in the fuel cell plane through the expression of its relationship with the membrane water content;
3、燃料电池平面内各位置处电压相等,将其与一维燃料电池输出电压模型相结合,代入电流密度与温度的分布数据计算不同位置处的欧姆损耗;通过欧姆损耗与膜水含量的关系式计算个位置对应的水含量,反推膜水含量在平面内分布特征,实现平面内膜水含量的估计以及解决其难以观测的问题。3. The voltage at each position in the plane of the fuel cell is equal. Combine it with the one-dimensional fuel cell output voltage model, substitute the distribution data of current density and temperature to calculate the ohmic loss at different positions; calculate the water content corresponding to each position through the relationship between ohmic loss and membrane water content, and reversely infer the distribution characteristics of membrane water content in the plane, so as to estimate the membrane water content in the plane and solve the problem of its difficulty in observation.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的流程图;Fig. 1 is a flow chart of the present invention;
图2为本发明燃料电池组件与PCB板位置图;FIG2 is a diagram showing the positions of the fuel cell assembly and the PCB board of the present invention;
图3为本发明的测试系统示意图;FIG3 is a schematic diagram of a test system of the present invention;
图4为本发明燃料电池性能测试曲线图;FIG4 is a graph showing the performance test of a fuel cell according to the present invention;
图5为本发明插值计算前后的温度分布图;FIG5 is a temperature distribution diagram before and after interpolation calculation of the present invention;
图6为本发明电流密度、温度分布热图;FIG6 is a thermal diagram of current density and temperature distribution according to the present invention;
图7为本发明燃料电池平面内水含量分布图。FIG. 7 is a diagram showing the distribution of water content in the plane of the fuel cell of the present invention.
具体实施方式DETAILED DESCRIPTION
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
请参阅图1-7,本发明提供了质子交换膜燃料电池膜水含量分布的估计方法,包括以下步骤:Referring to FIGS. 1-7 , the present invention provides a method for estimating the water content distribution of a proton exchange membrane fuel cell membrane, comprising the following steps:
步骤一、连接实验设备:单片燃料电池、具有温度、电流密度测量所需的多传感器PCB板和燃料电池测试平台通过连接线连接在一起;Step 1: Connect the experimental equipment: the monolithic fuel cell, the multi-sensor PCB board required for temperature and current density measurement, and the fuel cell test platform are connected together through connecting wires;
步骤二、预热燃料电池:将燃料电池预热至测试所需的温度;Step 2: Preheat the fuel cell: preheat the fuel cell to the temperature required for the test;
步骤三、加载电流:加载电流进行稳态性能测试,直至燃料电池输出电压出现骤降甚至为0时,停止加载;
步骤四、记录电压电流:记录下燃料电池的输出电压及总输出电流,通过PCB板的数据采集装置,记录下各传感器的电流密度、温度的数据,用于后续分析;Step 4: Record voltage and current: Record the output voltage and total output current of the fuel cell, and record the current density and temperature data of each sensor through the data acquisition device of the PCB board for subsequent analysis;
步骤五、电流密度温度数据分析:将燃料电池运行测试过程中PCB板采集数据以数据矩阵的形式按顺序进行表示,电流密度、温度分布数据的表达式分别为:Step 5: Current density and temperature data analysis: The data collected by the PCB board during the fuel cell operation test is expressed in sequence in the form of a data matrix. The expressions of current density and temperature distribution data are:
步骤六、采用插值算法对数据维度进行扩展:采用插值算法对数据维度进行扩展,分段三次Hermite插值对温度分布数据进行插值计算,包括向内插值与向外插值,扩展后的温度分布表达式为:为使插值后的温度分布数据尽量维持原始数据的分布特性,采用数据标准差量化分别量化插值前后的温度分布均匀性,并根据该值作为反馈调整插值算法,以选出更好的插值算法,测量温度数据的标准差为:插值计算后温度数据的标准差为:Step 6: Use interpolation algorithm to expand the data dimension: Use interpolation algorithm to expand the data dimension, and perform interpolation calculation on the temperature distribution data by piecewise cubic Hermite interpolation, including inward interpolation and outward interpolation. The expanded temperature distribution expression is: In order to make the interpolated temperature distribution data maintain the distribution characteristics of the original data as much as possible, the data standard deviation is used to quantify the uniformity of the temperature distribution before and after interpolation, and the interpolation algorithm is adjusted based on this value as feedback to select a better interpolation algorithm. The standard deviation of the measured temperature data is: The standard deviation of the temperature data after interpolation is:
步骤七、数据一一对应:局部电流密度、温度数据一一对应,插值计算后,温度分布数据矩阵扩展为与电流密度分布数据矩阵具有相同的维度,设置一个位置函数f表示该位置处的电流密度、温度,其表达式为:
f(a,b)=(ia,b,ta,b),1≤a≤m,1≤b≤n(6);f(a,b)=(i a,b ,t a,b ),1≤a≤m,1≤b≤n(6);
步骤八、构建半经验模型:构建燃料电池输出电压的半经验模型,输出电压的表达式为:U=Erev-ηact-ηohm-ηconc(7),热力学可逆电压通过能斯特方程表示:阳极、阴极的活化损耗表达式为:欧姆损耗的经验表达式为:浓差损耗的表达式为:Step 8: Construct a semi-empirical model: Construct a semi-empirical model of the fuel cell output voltage. The output voltage is expressed as: U = E rev -η act -η ohm -η conc (7). The thermodynamic reversible voltage is expressed by the Nernst equation: The activation loss expressions of anode and cathode are: The empirical expression for ohmic loss is: The expression of concentration loss is:
步骤九、反推水含量:水含量改写为欧姆损耗的表达式,反推平面内水含量分布。将步骤六中的式(10)改写为:Step 9: Reverse the water content: Rewrite the water content into an expression of ohmic loss, and reverse the distribution of water content in the plane. Rewrite equation (10) in
式中,ξ为水含量,j为电流密度,T为温度,δmem为膜厚度,A为膜电极活性面积,ηohm为活化损耗;对于燃料电池而言,平面内各位置输出电压相同。根据步骤五中不同位置处电流密度、温度分布,结合步骤六中输出电压模型中与电流密度、温度相关的表达式,可以将不同位置处的电压表示为:U=U(a,b)=Erev(a,b)-ηact,a(a,b)-ηact,c(a,b)-ηohm(a,b)-ηconc(a,b)(13),由步骤六中式(10)可知,水含量与欧姆损耗相关,于是测量位置处的欧姆损耗可以表示为:ηohm(a,b)=Erev(a,b)-U-ηact,a(a,b)-ηact,c(a,b)-ηconc(a,b)(14),由此可知,不同位置处的欧姆损耗在电流密度、温度分布不均匀的情况下并不相同,因此,平面内各位置处的膜水含量存在差异,则式(12)可改写为:ξ(a,b)=g(η(a,b),f(a,b))(15),将步骤五中式(6)的电流密度、温度分布数据f(a,b)代入涉及步骤六、步骤七的式(8-15)中,计算出PCB板测量燃料电池平面内不同位置处的水含量数据,从而得到内部水含量的分布特征。 Where ξ is the water content, j is the current density, T is the temperature, δ mem is the membrane thickness, A is the membrane electrode active area, and η ohm is the activation loss. For fuel cells, the output voltage at each position in the plane is the same. According to the current density and temperature distribution at different positions in
步骤三中电流加载的增量为50mA/cm2或100mA/cm2。The increment of current loading in
步骤五中式(1)、(2)中,下表m,n,j,l表示对应传感器的位置,k表示测试时间序列,i表示电流密度(单位mA/cm2),T,t表示温度(单位℃)。In
步骤六中式(4)、(5)中,s为描述分布均匀性的标准差,E表示分布数据的平均值,下标real、interp分别表示实际测量数据及插值计算后的数据,下标a、b表示分布数据中局部温度的采样位置。In
步骤七中式(6)中,a、b代表位置坐标,i、t表示该位置处的电流密度、温度值。In
步骤八中式(7)中,U为单片燃料电池的输出电压,Erev、ηact、ηohm、ηconc分别为可逆电压、活化损耗、欧姆损耗及浓差损耗。In step eight, in formula (7), U is the output voltage of the single fuel cell, and E rev , η act , η ohm , and η conc are the reversible voltage, activation loss, ohmic loss, and concentration loss, respectively.
本发明在使用时:单片燃料电池、具有温度、电流密度测量所需的多传感器PCB板和燃料电池测试平台通过连接线连接在一起,PCB板的位置处于流场板与电流采集板之间,在测试之前,将燃料电池预热至测试所需的温度;随后加载电流进行稳态性能测试,即极化曲线测试。电流加载的增量选择合适的值,通常为50mA/cm2或100mA/cm2,直至燃料电池输出电压出现骤降甚至为0时,停止加载,结束测试,记录下燃料电池的输出电压及总输出电流,通过PCB板的数据采集装置,记录下各传感器的电流密度、温度的数据,用于后续分析,将燃料电池运行测试过程中PCB板采集数据以数据矩阵的形式按顺序进行表示,电流密度、温度分布数据的表达式分别为: 采用插值算法对数据维度进行扩展,分段三次Hermite插值对温度分布数据进行插值计算,包括向内插值与向外插值,扩展后的温度分布表达式为:为使插值后的温度分布数据尽量维持原始数据的分布特性,采用数据标准差量化分别量化插值前后的温度分布均匀性,并根据该值作为反馈调整插值算法,以选出更好的插值算法,测量温度数据的标准差为:插值计算后温度数据的标准差为:局部电流密度、温度数据一一对应,插值计算后,温度分布数据矩阵扩展为与电流密度分布数据矩阵具有相同的维度,设置一个位置函数f表示该位置处的电流密度、温度,其表达式为:f(a,b)=(ia,b,ta,b),1≤a≤m,1≤b≤n(6),构建燃料电池输出电压的半经验模型,输出电压的表达式为:U=Erev-ηact-ηohm-ηconc(7),热力学可逆电压通过能斯特方程表示:(8),阳极、阴极的活化损耗表达式为:欧姆损耗的经验表达式为:浓差损耗的表达式为:水含量改写为欧姆损耗的表达式,反推平面内水含量分布,将式(10)改写为:式中,ξ为水含量,j为电流密度,T为温度,δmem为膜厚度,A为膜电极活性面积,ηohm为活化损耗;对于燃料电池而言,平面内各位置输出电压相同。根据步骤五中不同位置处电流密度、温度分布,结合输出电压模型中与电流密度、温度相关的表达式,可以将不同位置处的电压表示为:U=U(a,b)=Erev(a,b)-ηact,a(a,b)-ηact,c(a,b)-ηohm(a,b)-ηconc(a,b)(13),由式(10)可知,水含量与欧姆损耗相关,于是测量位置处的欧姆损耗可以表示为:ηohm(a,b)=Erev(a,b)-U-ηact,a(a,b)-ηact,c(a,b)-ηconc(a,b)(14),由此可知,不同位置处的欧姆损耗在电流密度、温度分布不均匀的情况下并不相同,因此,平面内各位置处的膜水含量存在差异,则式(12)可改写为:ξ(a,b)=g(η(a,b),f(a,b))(15),将(6)的电流密度、温度分布数据f(a,b)代入式(8-15)中,计算出PCB板测量燃料电池平面内不同位置处的水含量数据,从而得到内部水含量的分布特征。When the present invention is used: a monolithic fuel cell, a multi-sensor PCB board with temperature and current density measurement and a fuel cell test platform are connected together through a connecting line, and the PCB board is located between the flow field plate and the current acquisition board. Before the test, the fuel cell is preheated to the temperature required for the test; then the current is loaded to perform a steady-state performance test, i.e., a polarization curve test. The increment of current loading is selected to be a suitable value, usually 50mA/ cm2 or 100mA/ cm2 , until the output voltage of the fuel cell drops sharply or even reaches 0, then the loading is stopped, the test is ended, the output voltage and total output current of the fuel cell are recorded, and the current density and temperature data of each sensor are recorded through the data acquisition device of the PCB board for subsequent analysis. The data collected by the PCB board during the fuel cell operation test is sequentially represented in the form of a data matrix, and the expressions of the current density and temperature distribution data are respectively: The interpolation algorithm is used to expand the data dimension, and the temperature distribution data is interpolated by piecewise cubic Hermite interpolation, including inward interpolation and outward interpolation. The expanded temperature distribution expression is: In order to make the interpolated temperature distribution data maintain the distribution characteristics of the original data as much as possible, the data standard deviation is used to quantify the uniformity of the temperature distribution before and after interpolation, and the interpolation algorithm is adjusted based on this value as feedback to select a better interpolation algorithm. The standard deviation of the measured temperature data is: The standard deviation of the temperature data after interpolation is: The local current density and temperature data correspond one to one. After interpolation calculation, the temperature distribution data matrix is expanded to have the same dimension as the current density distribution data matrix. A position function f is set to represent the current density and temperature at the position. Its expression is: f(a,b)=(i a,b ,t a,b ),1≤a≤m,1≤b≤n(6). A semi-empirical model of the fuel cell output voltage is constructed. The expression of the output voltage is: U=E rev -η act -η ohm -η conc (7). The thermodynamic reversible voltage is expressed by the Nernst equation: (8), the activation loss expressions of anode and cathode are: The empirical expression for ohmic loss is: The expression of concentration loss is: The water content is rewritten as an expression of ohmic loss, and the distribution of water content in the plane is reversed, and equation (10) is rewritten as: Where ξ is the water content, j is the current density, T is the temperature, δ mem is the membrane thickness, A is the membrane electrode active area, and η ohm is the activation loss. For fuel cells, the output voltage at each position in the plane is the same. According to the current density and temperature distribution at different positions in
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Although the present invention has been described in detail with reference to the aforementioned embodiments, it is still possible for those skilled in the art to modify the technical solutions described in the aforementioned embodiments, or to make equivalent substitutions for some of the technical features therein. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention should be included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211328530.XA CN115882016B (en) | 2022-10-26 | 2022-10-26 | Method for estimating membrane water content distribution of proton exchange membrane fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211328530.XA CN115882016B (en) | 2022-10-26 | 2022-10-26 | Method for estimating membrane water content distribution of proton exchange membrane fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115882016A true CN115882016A (en) | 2023-03-31 |
CN115882016B CN115882016B (en) | 2024-11-15 |
Family
ID=85759035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211328530.XA Active CN115882016B (en) | 2022-10-26 | 2022-10-26 | Method for estimating membrane water content distribution of proton exchange membrane fuel cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115882016B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118095142A (en) * | 2024-04-22 | 2024-05-28 | 武汉理工大学 | A method and system for estimating water content in a fuel cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080160358A1 (en) * | 2005-01-04 | 2008-07-03 | Filippo Parodi | Method and System of Operating Molten Carbonate Fuel Cells |
CN106960970A (en) * | 2017-02-23 | 2017-07-18 | 天津大学 | Proton Exchange Membrane Fuel Cells internal water distribution forecasting method |
US20180196108A1 (en) * | 2017-01-09 | 2018-07-12 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method and device for observing a state of a fuel-cell electrochemical system |
CN111540929A (en) * | 2020-05-08 | 2020-08-14 | 电子科技大学 | Air-cooled fuel cell stack with current and temperature matrix distribution online detection function |
-
2022
- 2022-10-26 CN CN202211328530.XA patent/CN115882016B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080160358A1 (en) * | 2005-01-04 | 2008-07-03 | Filippo Parodi | Method and System of Operating Molten Carbonate Fuel Cells |
US20180196108A1 (en) * | 2017-01-09 | 2018-07-12 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method and device for observing a state of a fuel-cell electrochemical system |
CN106960970A (en) * | 2017-02-23 | 2017-07-18 | 天津大学 | Proton Exchange Membrane Fuel Cells internal water distribution forecasting method |
CN111540929A (en) * | 2020-05-08 | 2020-08-14 | 电子科技大学 | Air-cooled fuel cell stack with current and temperature matrix distribution online detection function |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118095142A (en) * | 2024-04-22 | 2024-05-28 | 武汉理工大学 | A method and system for estimating water content in a fuel cell |
Also Published As
Publication number | Publication date |
---|---|
CN115882016B (en) | 2024-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111199110B (en) | Method and system for predicting low-temperature starting performance of fuel cell | |
Chen et al. | Mechanism analysis of starvation in PEMFC based on external characteristics | |
CN113097542B (en) | A Modeling and Simulation Method of Fuel Cell Air System Based on Amesim | |
CN112038671B (en) | Method and system for estimating temperature distribution of solid oxide fuel cell | |
Tang et al. | Experimental study of PEM fuel cell temperature characteristic and corresponding automated optimal temperature calibration model | |
CN111261903B (en) | Model-based proton exchange membrane fuel cell impedance online estimation method | |
CN107681181B (en) | Performance diagnosis method of fuel cell | |
Xiao et al. | Water distribution and performance variation in a transparent PEMFC with large active area | |
Aslam et al. | Simultaneous direct visualisation of liquid water in the cathode and anode serpentine flow channels of proton exchange membrane (PEM) fuel cells | |
CN114824373B (en) | Simulation test combined fuel cell performance optimization method, device and equipment | |
CN112289385B (en) | Electrochemical impedance spectrum prediction method for high-power proton exchange membrane fuel cell stack | |
CN114048772A (en) | Fault diagnosis method, system and storage medium for fuel cell device | |
CN115966738B (en) | Method for reproducing internal temperature dynamic response of compressed proton exchange membrane fuel cell | |
CN113488680B (en) | SIMULINK-based cold start modeling simulation test method for fuel cell stack | |
CN108448132B (en) | Device and method for simulating temperature distribution of fuel cell stack under different working conditions | |
CN114171760A (en) | Fuel Cell Test Method Combined with Simulation Model | |
CN116799256A (en) | Analysis method of parameter distribution of water-cooled fuel cells based on multi-physics model | |
CN115207417A (en) | A method for calculating the current density distribution of large-area fuel cells | |
CN115882016B (en) | Method for estimating membrane water content distribution of proton exchange membrane fuel cell | |
CN116742053A (en) | Method and device for estimating water content of proton exchange membrane of fuel cell | |
WO2025129996A1 (en) | Metal plate fuel cell multi-physical-field modeling and orthogonal test analysis method | |
CN116231013A (en) | Method for establishing fault embedded model of fuel cell | |
Zhao et al. | A novel pre-diagnosis method for health status of proton exchange membrane fuel cell stack based on entropy algorithms | |
CN113991149B (en) | Fuel cell stack inlet air temperature testing method and device and storage medium | |
CN118825338A (en) | Fuel cell fault determination method, device and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |