[go: up one dir, main page]

CN115873085B - Application of soybean gene GmMAX2a in plant stress resistance - Google Patents

Application of soybean gene GmMAX2a in plant stress resistance Download PDF

Info

Publication number
CN115873085B
CN115873085B CN202210819798.7A CN202210819798A CN115873085B CN 115873085 B CN115873085 B CN 115873085B CN 202210819798 A CN202210819798 A CN 202210819798A CN 115873085 B CN115873085 B CN 115873085B
Authority
CN
China
Prior art keywords
gmmax2a
gene
seq
stress
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210819798.7A
Other languages
Chinese (zh)
Other versions
CN115873085A (en
Inventor
陈超
张旭
徐连醌
王海航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Normal University
Original Assignee
Harbin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Normal University filed Critical Harbin Normal University
Priority to CN202210819798.7A priority Critical patent/CN115873085B/en
Publication of CN115873085A publication Critical patent/CN115873085A/en
Application granted granted Critical
Publication of CN115873085B publication Critical patent/CN115873085B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开一种大豆基因GmMAX2a在植物抗逆中的应用,属于植物育种技术领域。为了提高植物的抗逆性,尤其是耐盐和耐碱。本发明提供一种大豆的基因GmMAX2a,以及大豆基因在植物抗逆中的应用,主要为抗NaCl胁迫和抗碱胁迫。为挖掘功能显著的基因和转基因分子育种提供了高效、科学的技术手段。

The invention discloses the application of soybean gene GmMAX2a in plant stress resistance, and belongs to the technical field of plant breeding. In order to improve the stress resistance of plants, especially salt and alkali tolerance. The invention provides a soybean gene GmMAX2a and the application of the soybean gene in plant stress resistance, mainly resistance to NaCl stress and alkali stress. It provides efficient and scientific technical means for mining genes with significant functions and transgenic molecular breeding.

Description

一种大豆基因GmMAX2a在植物抗逆中的应用Application of soybean gene GmMAX2a in plant stress resistance

技术领域Technical Field

本发明属于植物育种技术领域,具体涉及一种大豆基因GmMAX2a在植物抗逆中的应用。The invention belongs to the technical field of plant breeding, and particularly relates to application of a soybean gene GmMAX2a in plant stress resistance.

背景技术Background Art

如何提高作物耐碱性是农业生产亟待解决的重大问题。近年来,随着分子生物学的不断发展,利用日趋成熟的基因工程技术培育具有优良性状及良好耐逆功能作物新品种已成为现代作物改良的重要手段之一。随着现代分子生物学、生物信息学、基因工程、基因组与蛋白组学等前沿学科的迅猛发展,为挖掘功能显著的基因和转基因分子育种提供了高效、科学的技术手段。How to improve the alkali tolerance of crops is a major problem that needs to be solved in agricultural production. In recent years, with the continuous development of molecular biology, the use of increasingly mature genetic engineering technology to cultivate new crop varieties with excellent traits and good stress tolerance has become one of the important means of modern crop improvement. With the rapid development of cutting-edge disciplines such as modern molecular biology, bioinformatics, genetic engineering, genomics and proteomics, efficient and scientific technical means have been provided for the exploration of genes with significant functions and transgenic molecular breeding.

发明内容Summary of the invention

本发明的目的是为了提高植物的抗逆性,尤其是耐盐和耐碱。The purpose of the invention is to improve the stress resistance of plants, especially salt resistance and alkali resistance.

本发明提供一种大豆蛋白GmMAX2a,所述GmMAX2a的氨基酸序列如SEQ ID NO.4 所示。The present invention provides a soybean protein GmMAX2a, and the amino acid sequence of the GmMAX2a is shown in SEQ ID NO.4.

进一步地限定,编码大豆蛋白GmMAX2a的基因的核苷酸序列如SEQ ID NO.3所示。It is further defined that the nucleotide sequence of the gene encoding soybean protein GmMAX2a is shown in SEQ ID NO.3.

本发明公开一种含有上述的编码基因的载体。The invention discloses a vector containing the above coding gene.

本发明提供一种上述的大豆蛋白GmMAX2a、上述的编码基因或上述的载体在植物抗逆中的应用。The present invention provides an application of the soybean protein GmMAX2a, the encoding gene or the vector in plant stress resistance.

进一步地限定,所述植物抗逆为抗NaCl胁迫和抗碱胁迫。It is further defined that the plant stress resistance is resistance to NaCl stress and resistance to alkali stress.

进一步地限定,抗NaCl胁迫为利用75-125mmol/L NaCl条件下对拟南芥幼苗进行盐胁迫处理7天;所述抗碱胁迫为在0.5-0.7mmol/L NaHCO3条件下对拟南芥幼苗进行碱胁迫处理7天。It is further defined that the resistance to NaCl stress is to subject the Arabidopsis seedlings to salt stress treatment under 75-125 mmol/L NaCl for 7 days; the resistance to alkali stress is to subject the Arabidopsis seedlings to alkali stress treatment under 0.5-0.7 mmol/L NaHCO 3 for 7 days.

进一步地限定,所述的植物为单子叶植物和/或双子叶植物。It is further defined that the plant is a monocotyledonous plant and/or a dicotyledonous plant.

进一步地限定,所述双子叶植物具体可为豆科植物和/或十字花科植物和/或菊科植物;所述豆科植物可为大豆、百脉根、苜蓿或水黄皮;所述十字花科植物可为拟南芥或油菜;所述菊科植物可为向日葵;所述拟南芥可为拟南芥(哥伦比亚生态型col-0)。It is further defined that the dicotyledonous plant may specifically be a leguminous plant and/or a cruciferous plant and/or an Asteraceae plant; the leguminous plant may be soybean, Lotus japonica, alfalfa or Pongamia chinensis; the cruciferous plant may be Arabidopsis thaliana or rapeseed; the Asteraceae plant may be sunflower; and the Arabidopsis thaliana may be Arabidopsis thaliana (Columbia ecotype col-0).

本发明提供一种提高植物抗逆性的方法,所述方法的具体步骤如下:The present invention provides a method for improving plant stress resistance, and the specific steps of the method are as follows:

步骤1:将SEQ ID NO.3所示基因序列与pCAMBIA1300载体连接获得重组载体;Step 1: Connect the gene sequence shown in SEQ ID NO.3 with the pCAMBIA1300 vector to obtain a recombinant vector;

步骤2:将步骤1获得的重组载体转入到农杆菌中,获得重组农杆菌;Step 2: Transform the recombinant vector obtained in step 1 into Agrobacterium to obtain recombinant Agrobacterium;

步骤3:将步骤2获得的重组农杆菌侵染植物获得转基因植物。Step 3: Infect plants with the recombinant Agrobacterium obtained in step 2 to obtain transgenic plants.

进一步地限定,步骤2中所述的农杆菌为根癌农杆菌GV3101。It is further defined that the Agrobacterium in step 2 is Agrobacterium tumefaciens GV3101.

进一步地限定,步骤1中克隆SEQ ID NO.3所示基因序列的引物为SEQ ID NO.1和SEQ ID NO.2所示。It is further defined that the primers for cloning the gene sequence shown in SEQ ID NO.3 in step 1 are shown in SEQ ID NO.1 and SEQ ID NO.2.

有益效果:本发明发现了一种大豆耐盐碱基因GmMAX2a,对其进行组织定位分析,发现其在幼茎中的表达量明显高于其他组织。对GmMAX2a基因在盐、碱胁迫下进行基因表达模式分析,在这三种非生物胁迫下,GmMAX2a基因在大豆叶片和根中均有不同程度的响应,并且基因相对表达量受胁迫的时间调控,说明GmMAX2a基因在大豆响应盐、碱、胁迫的过程中有一定的作用。对GmMAX2a基因进行GUS染色分析,GmMAX2a基因的表达受到盐、碱胁迫的诱导,在各个时间点均可检测到GUS信号。本发明的实验证明,将该基因过表达于拟南芥中,可增强拟南芥幼苗期对盐碱胁迫的耐性,说明该基因可以为培育具有耐盐碱的转基因植物的研究奠定基础。对转基因拟南芥盐、碱胁迫相关Marker基因表达进行分析,发现在盐、碱条件下,RD29B、COR15A、RD29A等逆境胁迫标记基因在GmMAX2a过表达转基因拟南芥中均为上调表达,且表达量显著高于WT,GmMAX2a基因可能通过调节逆境胁迫诱导标记基因的表达水平来增强对盐、碱胁迫的耐受性。Beneficial effects: The present invention discovered a soybean salt-alkali tolerance gene GmMAX2a, and conducted tissue localization analysis on it, and found that its expression level in young stems was significantly higher than that in other tissues. The gene expression pattern of the GmMAX2a gene was analyzed under salt and alkali stress. Under these three abiotic stresses, the GmMAX2a gene responded to varying degrees in soybean leaves and roots, and the relative expression of the gene was regulated by the time of the stress, indicating that the GmMAX2a gene played a certain role in the process of soybean responding to salt, alkali, and stress. The GmMAX2a gene was subjected to GUS staining analysis, and the expression of the GmMAX2a gene was induced by salt and alkali stress, and GUS signals could be detected at various time points. The experiments of the present invention have shown that overexpressing the gene in Arabidopsis can enhance the tolerance of Arabidopsis to salt and alkali stress in the seedling stage, indicating that the gene can lay a foundation for the research on breeding transgenic plants with salt and alkali tolerance. The expression of salt- and alkali-related marker genes in transgenic Arabidopsis was analyzed. It was found that under salt and alkali conditions, stress marker genes such as RD29B, COR15A, and RD29A were upregulated in GmMAX2a-overexpressing transgenic Arabidopsis, and the expression levels were significantly higher than those in WT. The GmMAX2a gene may enhance tolerance to salt and alkali stress by regulating the expression levels of stress-induced marker genes.

抗盐胁迫具体为抗NaCl胁迫,体现为在NaCl胁迫的条件下:转基因植物的根长长于受体植物、转基因植物的鲜重高于受体植物。所述抗碱胁迫具体为抗NaHCO3胁迫,体现为在 NaHCO3胁迫的条件下:转基因植物的根长长于受体植物、转基因植物的鲜重高于受体植物。Salt stress resistance is specifically resistance to NaCl stress, which is reflected in that under the condition of NaCl stress: the root length of the transgenic plant is longer than that of the recipient plant, and the fresh weight of the transgenic plant is higher than that of the recipient plant. The alkali stress resistance is specifically resistance to NaHCO 3 stress, which is reflected in that under the condition of NaHCO 3 stress: the root length of the transgenic plant is longer than that of the recipient plant, and the fresh weight of the transgenic plant is higher than that of the recipient plant.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为GmMAX2a基因在大豆不同组织中的表达分析;FIG1 is an expression analysis of the GmMAX2a gene in different soybean tissues;

图2为GmMAX2a基因在盐、碱胁迫下不同时间点的表达量;200mmol/L NaCl:A-叶,B-根;50mmol/L NaHCO3:C-叶,D-根;Figure 2 shows the expression levels of the GmMAX2a gene at different time points under salt and alkali stress; 200mmol/L NaCl: A-leaf, B-root; 50mmol/L NaHCO 3 : C-leaf, D-root;

图3为不同胁迫下GmMAX2a基因启动子GUS染色;A:125mmol/L NaCl;B:50mmol/LNaHCO3Figure 3 shows GUS staining of the GmMAX2a gene promoter under different stresses; A: 125mmol/L NaCl; B: 50mmol/LNaHCO 3 ;

图4为转GmMAX2a基因拟南芥植株分子鉴定;FIG4 is a molecular identification of GmMAX2a gene-transfected Arabidopsis plants;

图5为GmMAX2a转基因拟南芥在盐胁迫下的表型、根长和鲜重;FIG5 shows the phenotype, root length and fresh weight of GmMAX2a transgenic Arabidopsis thaliana under salt stress;

图6为GmMAX2a转基因拟南芥在碱胁迫下的表型、根长和鲜重;FIG6 shows the phenotype, root length and fresh weight of GmMAX2a transgenic Arabidopsis under alkaline stress;

图7为盐胁迫相关Marker基因表达分析;Figure 7 is the expression analysis of Marker genes related to salt stress;

图8为碱胁迫相关Marker基因表达分析;Figure 8 is an analysis of alkaline stress-related Marker gene expression;

具体实施方式DETAILED DESCRIPTION

实施例1.大豆GmMAX2a基因的克隆Example 1. Cloning of soybean GmMAX2a gene

1、植物材料的处理1. Processing of plant materials

挑选饱满的大豆东农50种子于含6%次氯酸钠的溶液灭菌10min,倒净次氯酸钠,用无菌水冲洗3~4遍后放置于湿润的滤纸上,25℃暗培养4d催芽,待芽长到约1~2cm时,将其转移到盛有霍格兰培养液的钵中,用太空棉固定,使芽浸入培养液中,并将其放置于温室中培养。温室的生长条件为25℃/20℃(白天/晚上)、光周期为16小时光照/8小时黑暗。待幼苗长至3 周龄,取其叶片放入EP管中,置于-80℃保存。Select full soybean Dongnong 50 seeds and sterilize them in a solution containing 6% sodium hypochlorite for 10 minutes, pour out the sodium hypochlorite, rinse with sterile water 3 to 4 times, place on moist filter paper, and culture in the dark at 25℃ for 4 days to germinate. When the buds grow to about 1 to 2 cm, transfer them to a pot filled with Hogland culture solution, fix them with space cotton, immerse the buds in the culture solution, and place them in a greenhouse for culture. The growth conditions in the greenhouse are 25℃/20℃ (day/night) and the photoperiod is 16 hours of light/8 hours of darkness. When the seedlings grow to 3 weeks old, take their leaves and put them in EP tubes and store them at -80℃.

2、RNA提取2. RNA Extraction

采用Plant Total RNA Isolation Kit试剂盒(Foregene)提取上述3周龄大豆幼苗的叶的总RNA。Total RNA was extracted from the leaves of the 3-week-old soybean seedlings using the Plant Total RNA Isolation Kit (Foregene).

3、cDNA的获得3. Obtaining cDNA

以上述总RNA为模板,反转录得到cDNA。The total RNA was used as a template for reverse transcription to obtain cDNA.

4、PCR扩增4. PCR amplification

以上述cDNA为模板,采用Primer-KS和Primer-KAS引物进行PCR扩增,得到PCR扩增产物。引物序列如下:Using the above cDNA as a template, Primer-KS and Primer-KAS primers were used for PCR amplification to obtain PCR amplification products. The primer sequences are as follows:

Primer-KS:5’-ACGATGATAAGGGCGGTACCAATATCTTACCGGAGAATGGGC-3’ (SEQ IDNO.1);Primer-KS: 5’-ACGATGATAAGGGCGGTACCAATATCTTACCGGAGAATGGGC-3’ (SEQ IDNO.1);

Primer-KAS:5’-AGGCTACGTAGGATCCTTACATGTCAATCACATATTCGACG-3’(SEQ IDNO.2)。Primer-KAS: 5'-AGGCTACGTAGGATCCTTACATGTCAATCACATATTCGACG-3' (SEQ ID NO. 2).

PCR扩增体系(50μl):cDNA 1μl,Primer-F 1μl,Primer-R 1μl,Prime Star Mix12.5μl,ddH2O 9.5μl。PCR amplification system (50 μl): cDNA 1 μl, Primer-F 1 μl, Primer-R 1 μl, Prime Star Mix 12.5 μl, ddH 2 O 9.5 μl.

PCR扩增条件:98℃10s,52℃10s,72℃2min40s,35个循环;72℃5min;4℃终止反应。PCR amplification conditions: 98°C for 10 s, 52°C for 10 s, 72°C for 2 min 40 s, 35 cycles; 72°C for 5 min; terminate the reaction at 4°C.

将PCR扩增产物进行1%琼脂糖凝胶电泳检测,得到分子量约为2Kb的条带,用琼脂糖凝胶回收试剂盒(Omega Gel Extraction kit)回收PCR扩增产物;将其与pCAMBIA-1300载体连接,得到重组质粒,将其命名为pCAMBIA1300-GmMAX2a,并将其转化大肠杆菌DH5α感受态细胞后送交测序。The PCR amplification product was subjected to 1% agarose gel electrophoresis to obtain a band with a molecular weight of approximately 2Kb, and the PCR amplification product was recovered using an agarose gel extraction kit (Omega Gel Extraction kit); it was connected to the pCAMBIA-1300 vector to obtain a recombinant plasmid, which was named pCAMBIA1300-GmMAX2a, and was transformed into Escherichia coli DH5α competent cells and then sent for sequencing.

测序结果表明:PCR扩增得到大小为2157bp的扩增产物,将其命名为GmMAX2a基因,其核苷酸序列如SEQ ID NO.3所示。GmMAX2a氨基酸的序列如SEQ ID NO.4所示。The sequencing results showed that the PCR amplification obtained an amplification product of 2157 bp in size, which was named GmMAX2a gene, and its nucleotide sequence was shown in SEQ ID NO. 3. The amino acid sequence of GmMAX2a was shown in SEQ ID NO. 4.

ATGGGCGACGGCAGCATCGTGGGCCATCTCCCGGAGGAGATTCTGTTGAACGTGT TCGCGGCGGTTTCCGACACCCGCACGCGGAACGCGTTGTCGTTGGTATCGTGGAGCTTCTACCGGTTGGAGCGCAAGACGCGCACATCTCTCACGCTCCGCGGCAACGCGCGTGAC CTCCACCTCATCCCGACCTCCTTCAAGCACGTCACGCACCTCGACCTCTCCTTCCTCTCGCCGTGGGGCCACGCGCTCTTCTGCTCCTCCTCCTCCTCCGCCGCCGCCGCCGCCGTCG ACCACCAGCGACACCTCGCGCAACATCTCCGCGCCGCGTTCCCGCGCGTCACCTCACTCGCCGTCTACGCGCGTGACCCGGACACTCTCCGCCTCCTCCTCCTCTCCCCATGGCCGG AGCTCTCCGCCGTCAAGCTCGTCCGGTGGCACCAGCGCCCGCCGACCTCCGCGAACGAAGCCGACTTCGCTGAGCTCTTCAAGAAGTGCCGATCGCTCGCCTCCCTCGACCTCTCCT CCTACTACCACTGGACGGAGGACATCCCGACGGTGCTCGCCGCAAACCCTATCTCCGC CGCCTTTCTCCGCCGCCTCAACCTCCTAACAACCTCCTTAACAGAAGGATTCAAGTCTCACGAAATCGAATCGATCACCGCGTCGTGCCCTAACCTGGAGCACTTTCTCGCGGTCTGC AACTTCGATCGGAGATATATAGGGTCCGTCAGCGACGACACGCTGGTTTCTATTGCTTCCAATTGCCCAAAGCTATCGTTGCTTCACTTGGCCGATACGTCGTCGTTTTCAAGTCGCAG AGAGGAGGACGAGGGTTTCGACGGAGAAGACGCTAGCATTAGCCGCGCTGCTCTTATGACTTTGTTCTCTGGACTTCCTCTTTTGGAAGAGCTCGTGTTAGATGTTTGTAAAAATGTC AGAGAGAGTAGTTTCGCTTTTGAAGTGGTGGGTTCAAAGTGCCCTAATTTGAGGGTTCTAAAATTGGGACAGTTTCAAGGGATTTGCTTGGCCTTTGAGTCTCGGCTTGACGGAATTG CCCTTTGCCACGGGCTTCAATCGTTGTCTGTTGGTAACTGCGCGGACCTTGATGACATGGGGTTAATTGAGATTGCCAGGGGGTGTTCGAGACTGGTTAGATTTGAGCTTCAGGGTTG CAGGCTTGTGACGGAGCGTGGACTGAGGACCATGGCTTGTTTGCTTGGCAGGACTCTGATTGATGTCAGGGTTTCTTGCTGCGTAAACCTTGACACAGCTGCGACTCTCAGGGCTTT GGAGCCAATTCGCGAGCAGATTGAGCGGCTCCATGTGGATTGTGTGTGGAATGGGTTGAAGGAGAGTGATGGCCTGGGACATGGGTTTCTTAGTTTTGATTTGAATGGTTTGGATGAACAGGATGATGTGGGTAAACTCATGGATTACTACTTTGGGGGTGGAGAATGTGAGAAC ACAAGCAAAAGGAAGAGGCAGAGATGCGAGTATCAAATGAGGGTTCATGATTCCTTTT TGGAAAGCAATGGCAATGGTTTCTATGGCAAGAGCTGGGACAAGCTGCAGTATCTTTCTCTCTGGATAAAAGTTGGTGATCTCTTGACTCCATTGCCGGTGGCAGGGTTGGAAGATTG TCCCGTCTTGGAAGAGATTCGGATTAAGGTTGAAGGAGATTGTAGGGGGCAGCCAAAGCCAGCAGAGAGCGAATTTGGTCTCAGCATTCTGGCTTGTTATCCTCAGCTATTGAAGAT GCAGCTGGACTGTGGTGATACTAAAGGTTATGCTCTCACGGCACCCTCTGGGCAAATGGATTTGAGCCTGTGGGAGAGGTTTCTTCTGAATGGCATTGGCAGTTTGAGTCTCAGTGAGCTTCATTACTGGCCACCACAAGATGAGGATGTGAACCAGAGGAGTGTGTCACTTCCAGCTGCTGGCTTGCTACAAGAATGTTACACTTTGAGAAAGCTCTTCATTCACGGAACAGCA CATGAACATTTCATGAACTTTTTTCTTAAGATACAAAACCTTAGGGATGTACAGCTGAGAGAAGATTATTATCCAGCTCCTGAAAATGACATGAGTACAGAGATGAGGGTAGGTTCGT GCAGCCGCTTTGAAGATGCACTGAATAGGCGTCGAATATGTGATTGA(SEQ ID NO.3)ATGGGCGACGGCAGCATCGTGGGCCATCTCCCGGAGGAGATTCTGTTGAACGTGT TCGCGGCGGTTTCCGACACCCGCACGCGGAACGCGTTGTCGTTGGTATCGTGGAGCTTCTACCGGTTGGAGCGCAAGACGCGCACATCTCTCACGCTCCGCGGCAACGCGCGTGAC CTCCACCTCATCCCGACCTCCTTCAAGCACGTCACGCACCTCGACCTCCTTCCTCTCGCCGTGGGGCCACGCGCTCTTCT GTCCTCCTCCTCCTCCGCCGCCGCCGCCGCCGTCG ACCACCAGCGACACCTCGCGCAACATCTCCGCGCCGCGTTCCCGCGCGTCACCTCACTCGCCGTCTACGCGCGTGACCCGGACACTCTCCGCCTCCTCCTCCTCTCCCCATGGCCGG AGCTCTCCGCCGTCAAGCTCGTCCGGTGGCACCAGCGCCCGCCGACCTCCGCGAACGAAGCCGACTTCGCTGAGCTCTTCAAGAAGTGCCGATCGCTCGCCTCCCTCGACCTCTCCT CCTACTACCACTGGACGGAGGACATCCCGACGGTGCTCGCCGCAAACCCTATCTCCGCCGCCTTTCTCCGCCGCCTCAACCTCCTAACAACCTCCTTAACAGAAGGATTCAAGTCTCACGAAATCGAATCGATCACCGCGTCG TGCCCTAACCTGGAGCACTTTCTCGCGGTCTGC AACTTCGATCGGAGATATAGGGTCCGTCAGCGACGACACGCTGGTTTCTATTGCTTCCAATTGCCCAAAGCTATCGTTGCTTCACTTGGCCGATACGTCGTCGTTTTCAAGTCGCAG AGAGGAGGACGAGGGTTTCGACGGAGAAGACGCTAGCATTAGCCGCGCTGCTCTTATGACTTTGTTTCCTGGACTTCCTTTTGGAAGAGCTCGTGTTAGATGTTTGTAAAAATGTC AGAGAGAGTAGTTTCGCTTTTGAAGTGGTGGGTTCAAAGTGCCCTAATTTGAGGGTTCTAAAATTGGGACAGTTTCAAGGGATTTGCTTGGCCTTTGAGTCTCGGCTTGACGGAATTG CCCTTTGCCACGGGC TTCAATCGTTGTCTGTTGGTAACTGCGCGGACCTTGATGACATGGGGTTAATTGAGATTGCCAGGGGGTGTTCGAGACTGGTTAGATTTGAGCTTCAGGGTTG CAGGCTTGTGACGGAGCGTGGACTGAGGACCATGGCTTGTTTGCTTGGCAGGACTCTGATTGATGTCAGGGTTTCTTGCTGCGTAAACCTTGACACAGCTGCGACTTCCAGGCTTT GGAGCCAATTCGCGAGCAGATTGAGCGGCTCCATGTGGATTGTGTGTGGAATGGGTTGAAGGAGAGTGATGGCCTGGGACATGGGTTTCTTAGTTTTGATTTGAATGGTTTGGATGAACAGGATGATGTGGGTA AACTCATGGATTACTACTTTGGGGGTGGAGAATGTGAGAAC ACAAGCAAAAGGAAGAGGCAGAGATGCGAGTATCAAATGAGGGTTCATGATTCCTTTT TGGAAAGCAATGGCAATGGTTTCTATGGCAAGAGCTGGGACAAGCTGCAGTATCTTTCTCCTGGATAAAAGTTGGTGATCTCTTGACTCCATTGCCGGTGGCAGGGTTGGAAGATTG TCCCGTCTTGGAAGAGATTCGGATTAAGGTTGAAGGAGATTGTAGGGGGCAGCCAAAGCCAGCAGAGAGCGAATTTGGTCTCAGCATTCTGGCTTGTTATCCTCAGCTATTGAAGAT GCAGCTGGACTGTGGTGAT ACTAAAGGTTATGCTCTCACGGCACCCTCTGGGCAAATGGATTTGAGCCTGTGGGAGAGGTTTCTTCTGAATGGCATTGGCAGTTTGAGTCTCAGTGAGCTTCATTACTGGCCACCACAAGATGAGGATGTGAACCAGAGGAGTGTGTCACTTCCAGCTGCTGGCTTGCTACAAGAATGTTACACTTTGAGAAAGCTCTTCATTCACGGAACAGCA CATGAACATTTCATGAACTTTTTTCTTAAGATACAAAACCTTAGGGATGTACAGCTGAGAGAAGATTATTATCCAGCTCCTGAAAATGACATGAGTACAGAGATGAGGGTAGGTTCGT GCAGCCGCTTTGAAGATGCACTGAATAGGCGTCGAATATGTGATTGA (SEQ ID NO. 3)

MGDGSIVGHLPEEILLNVFAAVSDTRTRNALSLVSWSFYRLERKTRTSLTLRGNARDL HLIPTSFKHVTHLDLSFLSPWGHALFCSSSSSAAAAAVDHQRHLAQHLRAAFPRVTSLAVYARDPDTLRLLLLSPWPELSAVKLVRWHQRPPTSANEADFAELFKKCRSLASLDLSSYYHW TEDIPTVLAANPISAAFLRRLNLLTTSLTEGFKSHEIESITASCPNLEHFLAVCNFDRRYIGSVSDDTLVSIASNCPKLSLLHLADTSSFSSRREEDEGFDGEDASISRAALMTLFSGLPLLEELVL DVCKNVRESSFAFEVVGSKCPNLRVLKLGQFQGICLAFESRLDGIALCHGLQSLSVGNCADLDDMGLIEIARGCSRLVRFELQGCRLVTERGLRTMACLLGRTLIDVRVSCCVNLDTAATLR ALEPIREQIERLHVDCVWNGLKESDGLGHGFLSFDLNGLDEQDDVGKLMDYYFGGGECENTSKRKRQRCEYQMRVHDSFLESNGNGFYGKSWDKLQYLSLWIKVGDLLTPLPVAGLED CPVLEEIRIKVEGDCRGQPKPAESEFGLSILACYPQLLKMQLDCGDTKGYALTAPSGQMDL SLWERFLLNGIGSLSLSELHYWPPQDEDVNQRSVSLPAAGLLQECYTLRKLFIHGTAHEHFMNFFLKIQNLRDVQLREDYYPAPENDMSTEMRVGSCSRFEDALNRRRICD(SEQ ID NO.4)MGDGSIVGHLPEEILLNVFAAVSDTRTRNALSLVSWSFYRLERKTRTSLTLRGNARDL HLIPTSFKHVTHLDLSFLSPWGHALFCSSSSSAAAAAVDHQRHLAQHLRAAFPRVTSLAVYARDPDTLRLLLLSPWPELSAVKLVRWHQRPPTSANEADFAELFKKCRSLASLDLSSYYHW TEDIPTVLAANPISAAFLRRLNLLTTSLTEGFKSHEIESITASCPNLEHF LAVCNFDRRYIGSVSDDTLVSIASNCPKLSLLHLADTSSFSSRREEDEGFDGEDASISRAALMTLFSGLPLLEELVL DVCKNVRESSFAFEVVGSKCPNLRVLKLGQFQGICLAFESRLDGIALCHGLQSLSVGNCADLDDMGLIEIARGCSRLVRFELQGCRLVTERGLRTMACLLGRTLIDVRVSCCVNLDTAATLR ALEPIREQIERLHVDCVWNGLKESDGLGHGFLSFDLNGLDEQDDVGKLMDYYFGGGECENTSKRKRQRCEYQMRVHDSFLESNGNGFYGKSWDKLQYLSLWIKVGDLLTPLPVAGLED CPVLEEIRIKVEGDCRGQPKPAESEFGLSILACYPQLLKMQLDCGDTKGYALTAPSGQMDL SLWERFLLNGIGSLSLSELHYWPPQD EDVNQRSVSLPAAGLLQECYTLRKLFIHGTAHEHFMNFFLKIQNLRDVQLREDYYPAPENDMSTEMRVGSCSRFEDALNRRRRICD(SEQ ID NO.4)

实施例2.大豆GmMAX2a基因的表达特性分析Example 2. Analysis of expression characteristics of soybean GmMAX2a gene

一、大豆不同组织中GmMAX2a基因的相对表达量1. Relative expression of GmMAX2a gene in different soybean tissues

1、植物材料的处理1. Processing of plant materials

大豆种子用含6%次氯酸钠的溶液灭菌10min,在培养皿中用蒸馏水萌发4天。生长的幼苗被固定在泡沫板的孔上,并在含有1/2Hoagland营养液的黑色塑料容器中培养。温室的生长条件是25℃/20℃(白天/晚上)、光周期为16小时光照/8小时黑暗。选择生长状况良好的幼苗移入灭菌土中,待幼苗长至3月龄,迅速取野生大豆不同组织(包括幼叶、幼根、幼茎、根、茎、叶、花、荚),分别置于-80℃保存。Soybean seeds were sterilized with a solution containing 6% sodium hypochlorite for 10 minutes and germinated in a petri dish with distilled water for 4 days. The growing seedlings were fixed on the holes of the foam board and cultured in a black plastic container containing 1/2 Hoagland nutrient solution. The growth conditions in the greenhouse were 25°C/20°C (day/night) and the photoperiod was 16 hours of light/8 hours of darkness. Seedlings with good growth conditions were selected and moved into sterilized soil. When the seedlings grew to 3 months old, different tissues of wild soybean (including young leaves, young roots, young stems, roots, stems, leaves, flowers, and pods) were quickly taken and stored at -80°C.

2、总RNA的提取和cDNA的获得2. Extraction of total RNA and acquisition of cDNA

采用Plant Total RNA Isolation Kit试剂盒(Foregene)分别提取上述野生大豆不同组织(包括幼叶、幼根、幼茎、根、茎、叶、花、荚)的总RNA;以总RNA为模板,反转录获得cDNA。The Plant Total RNA Isolation Kit (Foregene) was used to extract total RNA from different tissues of the wild soybean (including young leaves, young roots, young stems, roots, stems, leaves, flowers, and pods); total RNA was used as a template for reverse transcription to obtain cDNA.

3、Real-time PCR3. Real-time PCR

以上述cDNA为模板,采用Primer-qS和Primer-qAS引物,通过Real-time PCR对GmMAX2a基因进行表达量检测。引物序列如下所示:Using the above cDNA as a template, Primer-qS and Primer-qAS primers were used to detect the expression of the GmMAX2a gene by real-time PCR. The primer sequences are as follows:

Primer-qS:5’-TCTTCATTCACGGAACAGCA-3’(SEQ ID NO.5);Primer-qS: 5’-TCTTCATTCACGGAACAGCA-3’ (SEQ ID NO.5);

Primer-qAS:5’-TCAATCACATATTCGACGCCT-3’(SEQ ID NO.6)。Primer-qAS: 5'-TCAATCACATATTCGACGCCT-3' (SEQ ID NO. 6).

Real-time PCR反应的条件:94℃10min→[94℃30s→64℃30s]×40→60℃30s→72℃10min→94℃2min。Real-time PCR reaction conditions: 94°C 10 min→[94°C 30 s→64°C 30 s]×40→60°C 30 s→72°C 10 min→94°C 2 min.

Real-time PCR采用比较CT法(ΔΔCT)计算基因表达量,以GmGAPDH为内参基因,以未经处理的样品作为对照。目标基因表达差异通过经过处理的样本相对于每个时间点未经处理的样本的倍数来表示。每个样品包括3次生物学重复和3次技术重复,数据取3次生物学重复的平均值,如果有一个数值的偏差比较大则取两个数据的平均值。原始数据经标准化处理。标准化处理后的数据经T-test进行差异显著性分析。相对表达量计算方法:2-ΔΔCT=2-(ΔCT处理-ΔCT对照)=2-[(CT处理目的基因-CT处理内参基因)-(CT对照目的基因 -CT对照内参基因)]。内参基因引物序列如下所示:Real-time PCR uses the comparative CT method ( ΔΔ CT) to calculate gene expression, with GmGAPDH as the internal reference gene and untreated samples as the control. The difference in target gene expression is expressed by the multiple of the treated sample relative to the untreated sample at each time point. Each sample includes 3 biological replicates and 3 technical replicates. The data is the average of 3 biological replicates. If one value has a large deviation, the average of the two data is taken. The original data is standardized. The standardized data is analyzed for significant differences by T-test. Relative expression calculation method: 2-ΔΔ CT = 2- ( Δ CT treatment - Δ CT control) = 2- [(CT treatment target gene - CT treatment internal reference gene) - (CT control target gene - CT control internal reference gene)]. The primer sequence of the internal reference gene is as follows:

GsGAPDH S:5'-GACTGGTATGGCATTCCGTGT-3'(SEQ ID NO.7);GsGAPDH S: 5'-GACTGGTATGGCATTCCGTGT-3' (SEQ ID NO. 7);

GsGAPDH AS:5'-GCCCTCTAGTTCCTCCTTGA -3'(SEQ ID NO.8)。GsGAPDH AS: 5'-GCCCTCTAGTTCCTCCTTGA-3' (SEQ ID NO. 8).

结果如图1所示:GmMAX2a基因在大豆各个组织中均有表达,且在幼茎中表达量相对较高,在幼根和幼叶中的表达量相对较低。而在成熟时期的根、茎、叶、花、荚中表达量没有明显差异,说明GmMAX2a基因在大豆中的表达具有时空特异性。The results are shown in Figure 1: GmMAX2a gene is expressed in all tissues of soybean, and the expression level is relatively high in young stems, and relatively low in young roots and young leaves. There is no significant difference in the expression level in roots, stems, leaves, flowers, and pods at the mature stage, indicating that the expression of GmMAX2a gene in soybean has temporal and spatial specificity.

二、大豆根和叶中的GmMAX2a基因在碱胁迫处理下不同时间的表达模式分析2. Analysis of the expression pattern of GmMAX2a gene in soybean roots and leaves at different times under alkaline stress

1、植物材料的处理1. Processing of plant materials

大豆种子用含6%次氯酸钠的溶液灭菌10min,在培养皿中用蒸馏水萌发4天。生长的幼苗被固定在泡沫板的孔上,并在含有1/2Hoagland营养液的黑色塑料容器中培养。温室的生长条件是25℃/20℃(白天/晚上)、光周期为16小时光照/8小时黑暗。待大豆幼苗长至18日龄,在200mmol/L NaCl条件下对大豆幼苗进行盐胁迫处理,在50mM NaHCO3(pH 8.5)条件下对大豆幼苗进行碱胁迫处理,分别在0h、1h、3h、6h、12h、24h各个时间点选取3株大豆,剪取其叶片及根尖3cm作为待测组织样品,迅速放于液氮中冷冻,然后置于-80℃保存。Soybean seeds were sterilized with a solution containing 6% sodium hypochlorite for 10 min and germinated in a petri dish with distilled water for 4 days. The growing seedlings were fixed on the holes of the foam board and cultured in a black plastic container containing 1/2 Hoagland nutrient solution. The growth conditions in the greenhouse were 25℃/20℃ (day/night) and the photoperiod was 16 hours of light/8 hours of darkness. When the soybean seedlings grew to 18 days old, they were subjected to salt stress under 200mmol/L NaCl and alkaline stress under 50mM NaHCO 3 (pH 8.5). Three soybean plants were selected at 0h, 1h, 3h, 6h, 12h, and 24h, and their leaves and root tips of 3cm were cut as tissue samples to be tested, quickly frozen in liquid nitrogen, and then stored at -80℃.

2、总RNA的提取和cDNA的获得2. Extraction of total RNA and acquisition of cDNA

采用Plant Total RNA Isolation Kit试剂盒(Foregene)分别提取上述步骤1获得的不同时间处理后的待测组织样品的总RNA;以获得总RNA为模板,反转录获得cDNA。The total RNA of the tissue samples to be tested obtained in step 1 after being treated for different time periods was extracted using the Plant Total RNA Isolation Kit (Foregene). The total RNA was used as a template for reverse transcription to obtain cDNA.

3、Real-time PCR3. Real-time PCR

以上述cDNA为模板,采用Primer-qS和Primer-qAS引物,通过Real-time PCR对GmMAX2a基因进行表达量检测。引物序列如下所示:Using the above cDNA as a template, Primer-qS and Primer-qAS primers were used to detect the expression of the GmMAX2a gene by real-time PCR. The primer sequences are as follows:

Primer-qS:5’-TCTTCATTCACGGAACAGCA-3’;Primer-qS: 5’-TCTTCATTCACGGAACAGCA-3’;

Primer-qAS:5’-TCAATCACATATTCGACGCCT-3’。Primer-qAS: 5’-TCAATCACATATTCGACGCCT-3’.

Real-time PCR反应的条件:94℃10min→[94℃30s→64℃30s]×40→60℃30s→72℃10min→94℃2min。Real-time PCR reaction conditions: 94°C 10 min→[94°C 30 s→64°C 30 s]×40→60°C 30 s→72°C 10 min→94°C 2 min.

Real-time PCR采用比较CT法(ΔΔCT)计算基因表达量,以野生大豆GsGAPDH基因为内参基因,以未经处理的样品作为对照。目标基因表达差异通过经过处理的样本相对于每个时间点未经处理的样本的倍数来表示。每个样品包括3次生物学重复和3次技术重复,数据取3次生物学重复的平均值,如果有一个数值的偏差比较大则取两个数据的平均值。原始数据经标准化处理。标准化处理后的数据经T-test进行差异显著性分析。相对表达量计算方法:2-ΔΔCT=2-(ΔCT处理-ΔCT对照)=2-[(CT处理目的基因-CT处理内参基因)-(CT对照目的基因-CT对照内参基因)]。内参基因引物序列如下所示:Real-time PCR uses the comparative CT method (ΔΔCT) to calculate gene expression, with the wild soybean GsGAPDH gene as the internal reference gene and the untreated sample as the control. The difference in target gene expression is expressed by the multiple of the treated sample relative to the untreated sample at each time point. Each sample includes 3 biological replicates and 3 technical replicates. The data is the average of 3 biological replicates. If one value has a large deviation, the average of the two data is taken. The original data is standardized. The standardized data is analyzed for significant differences by T-test. Relative expression calculation method: 2 -ΔΔCT = 2-(ΔCT treatment-ΔCT control) = 2-[(CT treatment target gene-CT treatment internal reference gene)-(CT control target gene-CT control internal reference gene)]. The primer sequence of the internal reference gene is as follows:

GsGAPDH S:5'-GACTGGTATGGCATTCCGTGT-3';GsGAPDH S: 5'-GACTGGTATGGCATTCCGTGT-3';

GsGAPDH AS:5'-GCCCTCTAGTTCCTCCTTGA-3'。GsGAPDH AS: 5'-GCCCTCTAGTTCCTCCTTGA-3'.

结果如图2所示:在这三种非生物胁迫下,GmMAX2a基因大豆叶片和根中均有不同程度的响应,并且基因相对表达量受胁迫的时间调控,说明GmMAX2a基因在大豆响应盐、碱胁迫的过程中有一定的作用。The results are shown in Figure 2: Under these three abiotic stresses, the GmMAX2a gene responded to varying degrees in soybean leaves and roots, and the relative expression level of the gene was regulated by the time of the stress, indicating that the GmMAX2a gene plays a certain role in the soybean response to salt and alkali stress.

三、GUS染色法分析GmMAX2a基因在拟南芥中的组织表达部位3. GUS staining analysis of tissue expression sites of GmMAX2a gene in Arabidopsis

1、植物材料的处理1. Processing of plant materials

挑选饱满的大豆东农50种子于含6%次氯酸钠的溶液灭菌10min,倒净次氯酸钠,用无菌水冲洗3~4遍后放置于湿润的滤纸上,25℃暗培养4d催芽,待芽长到约1~2cm时,将其转移到盛有霍格兰培养液的钵中,用太空棉固定,使芽浸入培养液中,并将其放置于温室中培养。温室的生长条件为25℃/20℃(白天/晚上)、光周期为16小时光照/8小时黑暗。待幼苗长至3周龄,取其叶片放入EP管中,置于-80℃保存。Select full soybean Dongnong 50 seeds and sterilize them in a solution containing 6% sodium hypochlorite for 10 minutes, pour out the sodium hypochlorite, rinse with sterile water 3 to 4 times, place on moist filter paper, and culture in the dark at 25°C for 4 days to germinate. When the buds grow to about 1 to 2 cm, transfer them to a pot filled with Hoagland culture solution, fix them with space cotton, immerse the buds in the culture solution, and place them in a greenhouse for culture. The growth conditions in the greenhouse are 25°C/20°C (day/night) and the photoperiod is 16 hours of light/8 hours of darkness. When the seedlings grow to 3 weeks old, take their leaves and put them in EP tubes and store them at -80°C.

2、基因组DNA的提取2. Extraction of genomic DNA

按照Plant DNA Isolation Kit(Foregene)试剂盒说明书步骤提取上述大豆根部的基因组DNA。The genomic DNA of the soybean roots was extracted according to the instructions of the Plant DNA Isolation Kit (Foregene).

3、GmMAX2a-pro基因的获得3. Acquisition of GmMAX2a-pro gene

以上述大豆根部的基因组DNA为模板,采用GmMAX2a-pS和GmMAX2a-pAS引物进行PCR扩增,得到PCR扩增产物,即GmMAX2a-pro(含有GmMAX2a基因的启动子序列)。The genomic DNA of the soybean root was used as a template and PCR amplification was performed using primers GmMAX2a-pS and GmMAX2a-pAS to obtain a PCR amplification product, namely GmMAX2a-pro (containing the promoter sequence of the GmMAX2a gene).

GmMAX2a-pS:5'-CGGGATCCAAGGCCAACAGTAAAGACAGGGAC-3'(SEQ ID NO.9);GmMAX2a-pS: 5'-CGGGATCCAAGGCCAACAGTAAAGACAGGGAC-3' (SEQ ID NO. 9);

GmMAX2a-pAS:5'-CATGCCATGGTATCCGGTAAGATATTTCCCAATTC-3'(SEQ ID NO.10)。GmMAX2a-pAS: 5'-CATGCCATGGTATCCGGTAAGATATTTCCCAATTC-3' (SEQ ID NO. 10).

PCR扩增体系(50μl):cDNA 1μl,Primer-F 1μl,Primer-R 1μl,Prime Star Mix12.5μl, ddH2O 9.5μl。PCR amplification system (50 μl): cDNA 1 μl, Primer-F 1 μl, Primer-R 1 μl, Prime Star Mix 12.5 μl, ddH2O 9.5 μl.

PCR扩增条件:98℃10s,60℃10s,72℃2min40s,35个循环;72℃5min;4℃终止反应。PCR amplification conditions: 98°C for 10 s, 60°C for 10 s, 72°C for 2 min 40 s, 35 cycles; 72°C for 5 min; terminate the reaction at 4°C.

将PCR扩增产物进行1%琼脂糖凝胶电泳检测,得到分子量约为2.2Kb的条带,用琼脂糖凝胶回收试剂盒(Omega Gel Extraction kit)回收PCR扩增产物。将该回收片段(PCR扩增产物)与pCAMBIA-3301连接,并将连接产物转化大肠杆菌DH5α感受态细胞,根据pCAMBIA-3301载体上的卡那霉素抗性标记筛选阳性克隆并送交公司测序。The PCR amplification product was subjected to 1% agarose gel electrophoresis to obtain a band with a molecular weight of about 2.2Kb, and the PCR amplification product was recovered using an agarose gel recovery kit (Omega Gel Extraction kit). The recovered fragment (PCR amplification product) was connected to pCAMBIA-3301, and the connection product was transformed into Escherichia coli DH5α competent cells. Positive clones were selected based on the kanamycin resistance marker on the pCAMBIA-3301 vector and sent to the company for sequencing.

测序结果表明:PCR扩增得到大小为2200bp的扩增产物,将其命名为GmMAX2a-pro基因,其核苷酸序列如SEQ ID NO.11所示。The sequencing results showed that: the PCR amplification obtained an amplification product of 2200 bp in size, which was named GmMAX2a-pro gene, and its nucleotide sequence was shown in SEQ ID NO.11.

TAAAAAAAACTAAGCTTTAAGTAGTTATTTAAAAGGTTTTCCCATTATCTTGTTATT GTTTTAGTGTTTTAATGATAGCAAATATGTTGATATTTTAATGACTTTTAAAAAATTAATGTTATAATATACCTGTTTTGAAGACATTAATTTTACAAAAGAAATTAATATAAAAATAAAAA AAATGGTTCAACACATAAATGAGTAATATATTAATACTTTATTTTTAAAAAAAGTACTTTATTTGTACCTAAAAATACTTTAGTTTTTTCAAAAGAATGCAATACTTATCCCTTAAAATTCT ACGAAAAGGCCAACAGTAAAGACAGGGACAATTGAATCCATCAAATGTATCTTGATTCTTGCCGGTAGCAGGCTCGTGCAAGGTGCAAATCAGCTAATGCGTTTGGATTTTTGTCAAC ACCTTATATATATATATATATATATATATATATATATATATATATAAGTAAAACTTAAAATAATTTTTGGTCTAAGTGCAGGTTTCTAAACAATTTGGATAAGCGAGAATTTATAAATTTACTTT TAAATAATTTCGTTTTATAAAGTGGAGTTTAATTAAAAATAAAGTAAATTCTACTTGATTTTTTAAAGATTATCTTTACAATAAAATTGAATATGAAAATTTTAACTTGATATAAATTAATAC TTTTCTTAATTCAAAGTATATTTAAGTGGCGTTGGATTCGACTTTTTGGGATATTATTTTTTCAATGACAATAATAAGATTTTTTTAAATTACTTTACTATTTTTTATTTTTAATTAAAAAATT ATTTATATATTTTAGGTTTACAATATTATGTTTAACTTAGTCATGTTTAATTAAGAATGAACCACAAGGGTCTTCTAATTGTAGGAAATTTGAGTAGTAAGTTAAATGTCGTAAGTTCTAG CATCAGAGGTAACCTTTGTAATAATAATAATAATAATAATAATAATAATAATAATAAAAAATAGACAATGGGTTCGAAAATGCAAAATATAAGTCAGACGTTCTAAAGGCCAGCTAGAAT TAAATTATCAGTGTCTAATTATTAGTTTAAAGATCACATATAGAAACTAAATGAATTTTTTAAAAAAAAAAAATTATAAACAACGTTGTTAGTAGTACATTTTTATCATAGTCTTTAACAA AAATTATCTATTATTTTTCACTTATAAACTTTATTAAATTGTAAACAAAATCGTTAACTAGTGATGCCAAGTAAGGCGTGCAACACTAATGTGTGTTCCAAATCCCAATCCCTGCCAAATATAGAAGCATTAGCCAAATAGAAAAAACCGCCCAAGATTCTAAAGAAGAAAAGGAAAG CCAAAAAAATAAAACTCTTCAAAATACTATTTCTTTTATAATACTTTTTATATTCATTAAAATTTATGAAATATATAACATTATAAAAATATTAAATAAAAAGTAAAAGCTACACAATAATA TATTAAAACATTAAACTATTGCTTGATGTCGGCATGTCGCTGAACTAACAAGTGAAAATA GACTCAAATTTTATAAATAAATTCTCAATATTGAATTTTGTGATGATTAAAAGTGATTAATCAAATTTTAGAGGAGATATTATGTATCAATGAGTTAAAAAATATTTAAACTACTTTTCTAT AATAATATTAGTATGAAGTATCAAATTAATTAAAACCTTATAATAATAAAAACAAATTTGAAGTGAGTCAATATACAAGTATTGAATAGATTATGCGAAGTAGGAGGGAAGGGTGTTTAT GTAATGTGTATGGACCCATCCAATCCTGTATGGTTTGTCTGTATTAATTTTCCTTTTCCTTCATACGTGCAGAGAGATTTCGTAAGCACCATTAGACCCATTCCCTTGGCATGGCTATCTTTCACTAAAAACCAAACACACCCTAATTTTCCATTCTCTCTAAACTAAACTTTCCTTCCATATCGTATTCACGTGGGTCTGCATGCCCCCAACAAAAACCCCTCCCAAAAACTATCCATT AATATTTAATACCATCCCTCTCCTTACCCTAATTTAACATCATACACCCAATCCATTTTCCTCTCTTTCTCTAGAGTAAGAGTATCATACCACTCAGCTCAAAAATTTAATAAAAAAAAATA GAGATTTTTTTTTTTAATTTTATAATTTTGGTGAAAATAGTAAGAGATAGAGAGGTGGGAATTGGGAAATATCTTACCGGAGA(SEQ ID NO.11)TAAAAAAAACTAAGCTTTAAGTAGTTATTTAAAAGGTTTTCCCATTATCTTGTTATT GTTTTAGTGTTTTAATGATAGCAAATATGTTGATATTTTAATGACTTTTAAAAAATTAATGTTATAATATACCTGTTTTGAAGACATTAATTTTACAAAAGAAATTAATATAAAAATAAAAAAAATGGTTCAACACATAAATGAGTAATATATTAATACTTTATTTTTAAAAAAAGTACTTTATTTGTACCTAAAAATACTTTAGTTTTTTCAAAA GAATGCAATACTTATCCCTTAAAATTCT ACGAAAAGGCCAACAGTAAAGACAGGGACAATTGAATCCATCAAATGTATCTTGATTCTTGCCGGTAGCAGGCTCGTGCAAGGTGCAAATCAGCTAATGCGTTTGGATTTTTGTCAAC ACCTTATATATATATATATATATATATATATATATATATAAGTAAAACTTAAAATAATTTTTGGTCTAAGTGCAGGTTTCTAAACAATTTGGATAAGCGAGAATTTATAAATTTACTTT TAAAATAATTTCGTTTTATAAAAGTGGAGTTTAATTAAAAATAAAGTAAATTCTACTTGATTTTTTAAAGATTATCTTTACAATAAAATTGAATATGAAAATTTTAACTTGATATAAATTCAAA GTATATTTAAGTGGCGTTGGATTCGACTTTTTGGGATATTATTTTTTCAATGACAATAATAAGATTTTTTTAAATTACTTTACTATTTTTTATTTTTAATTAAAAAATT ATTTATATATTTAGGTTTTACAATATTATGTTTAACTTAGTCATGTTTAATTAAGAATGAACCACAAGGGTCTTCTAATTGTAGGAAATTTGAGTAGTAAGTTAAATGTCGTAAGTTCTAG CATCAGAGGTAACCTTTGTAATAATAATAATAATAATAATAATAATAAAAAATAGACAATGGGTTCGAAAATGCAAAATATAAGTCAGACGTTCTAAAGGCCAGCTAGAAT TAAATTATCAGTGTCTAATTATTAGTTTAAAGATCACATATAGAAACTAAATGAATTTTTTAAAAAAAAAAAATTATAAACAACGTTGTTAGTAGTACATTTTTATCATAGTCTTTAACAA AAATTATCTATTATTTTTCACTTATAAACTTTATTAAA TTGTAAACAAAATCGTTAACTAGTGATGCCAAGTAAGGCGTGCAACACTAATGTGTGTTCCAAATCCCAATCCCTGCCAAATATAGAAGCATTAGCCAAATAGAAAAAACCGCCCAAGATTCTAAAGAAGAAAAGGAAAG CCAAAAAAATAAAACTCTTCAAAATACTATTTCTTTTATAATACTTTTTATAATTCATTAAAATTTATGAAATATATAACATTATAAAAATATTAAATAAAAAGTAAAAGCTACACAATAATA TATTAAAACATTAAACTATTGCTTGATGTCGGCATGTCGCTGAACTAACAAGTGAAAATA GACTCAAATTTTATAAATAAATTCTCAATATTGAATTTTGTGATGATTAAAAGTGATTAATCAAATTTTAGAGGAGATATTATGTATCAATGAGTTAAAAAAATTATT TAAACTACTTTTCTAT AATAATATTAGTATGAAGTATCAAATTAATTAAAACCTTATAATAATAAAAACAAATTTGAAGTGAGTCAATATACAAGTATTGAATAGATTATGCGAAGTAGGAGGGAAGGGTGTTTAT GTAATGTGTATGGACCCATCCAATCCTGTATGGTTTGTCTGTATTAATTTTCCTTTTCCTTCATACGTGCAGAGAGATTTCGTAAGCACCATTAGACCCATTCCCTTGGCATGGCTATCTTTCACTAAAAACCAAACACACCCTAATTTTCCATTCTCTCTAAACTAAACTTTCCTTCCATATCGTATTCACGTGGGTCTGCATGCCCCCAAAAACCCCTCCCAAAAACTATCCATT AATATTTAATACCATCCCTCTCCTTACCCTAATTTA ACATCATACACCCAATCCATTTCCTCTCTTTCTCTAGAGTAAGAGTATCATACCACTCAGCTCAAAAATTTAATAAAAAAAAATA GAGATTTTTTTTTTTAATTTTATAATTTTGGTGAAAATAGTAAGAGATAGAGAGGTGGGAATTGGGAAATATCTTACCGGAGA (SEQ ID NO. 11)

4、重组载体pCAMBIA3301-GmMAX2aPromoter:GUS的获得4. Obtaining the recombinant vector pCAMBIA3301-GmMAX2aPromoter:GUS

在pCAMBIA3301载体的BamH I和Nco I酶切位点之间插入如SEQ ID NO.11所示的GmMAX2a-pro基因,得到重组载体pCAMBIA3301-GmMAX2aPromoter:GUS。并对其进行测序验证。The GmMAX2a-pro gene shown in SEQ ID NO.11 was inserted between the BamH I and Nco I restriction sites of the pCAMBIA3301 vector to obtain the recombinant vector pCAMBIA3301-GmMAX2aPromoter:GUS, which was then sequenced for verification.

测序结果表明:重组载体pCAMBIA3301-GmMAX2aPromoter:GUS为将pCAMBIA3301载体的BamH I和Nco I酶切位点间的DNA序列替换为SEQ ID NO.11所示的GmMAX2a-pro 基因,并保持pCAMBIA3301载体的其他序列不变得到的载体。The sequencing results showed that the recombinant vector pCAMBIA3301-GmMAX2aPromoter:GUS was obtained by replacing the DNA sequence between the BamH I and Nco I restriction sites of the pCAMBIA3301 vector with the GmMAX2a-pro gene shown in SEQ ID NO.11, while keeping the other sequences of the pCAMBIA3301 vector unchanged.

5、转基因拟南芥的获得5. Obtaining transgenic Arabidopsis

将上述重组载体pCAMBIA3301-GmMAX2aPromoter:GUS转化至农杆菌GV3101中,通过花序浸润法侵染拟南芥,获得转基因株系。The above recombinant vector pCAMBIA3301-GmMAX2aPromoter:GUS was transformed into Agrobacterium GV3101, and Arabidopsis thaliana was infected by the inflorescence infiltration method to obtain a transgenic strain.

6、盐、碱胁迫处理6. Salt and alkali stress treatment

对步骤5获得的六叶期的转基因拟南芥幼苗分别进行盐(125mmol/L NaCl)、碱(50mmol/L NaHCO3)胁迫处理,分别在0h、1h、3h、6h、和12h时间点取转基因拟南芥幼苗,并用含X-Gluc的染色液对其染色。The transgenic Arabidopsis seedlings at the six-leaf stage obtained in step 5 were subjected to salt (125mmol/L NaCl) and alkali (50mmol/L NaHCO 3 ) stress treatments, and the transgenic Arabidopsis seedlings were taken at 0h, 1h, 3h, 6h, and 12h, and stained with a staining solution containing X-Gluc.

结果如图3所示:未受到胁迫情况下(CK),在转基因拟南芥中未检测到GUS信号。在盐胁迫(125mmol/L NaCl)胁迫12h时,在叶中和叶柄基部的叶腋处GUS染色最深,而根部也有较深的染色,这时GmMAX2a基因表达量最高;其次在盐胁迫1h和6h时,也检测到了GUS信号,染色主要集中在叶片和叶柄(图3-A)。碱胁迫(50mmol/L NaHCO3)3h 时,拟南芥叶片、叶腋和茎的颜色明显更深,但根部几乎没有GUS信号表达;而在1h时, GUS表达位主要在茎上;碱胁迫6h和12h的染色情况没有明显差别。以上结果表明, GmMAX2a基因的表达受到盐、碱胁迫的诱导,在各个时间点均可检测到GUS信号。The results are shown in Figure 3: No GUS signal was detected in transgenic Arabidopsis without stress (CK). At 12h of salt stress (125mmol/L NaCl), GUS staining was deepest in the axils of the leaves and petiole base, and there was also deep staining in the roots, at which time the expression of the GmMAX2a gene was the highest; secondly, at 1h and 6h of salt stress, GUS signals were also detected, and staining was mainly concentrated in the leaves and petioles (Figure 3-A). At 3h of alkali stress (50mmol/L NaHCO 3 ), the color of Arabidopsis leaves, axils and stems was significantly darker, but there was almost no GUS signal expression in the roots; at 1h, GUS expression was mainly in the stems; there was no significant difference in staining at 6h and 12h of alkali stress. The above results show that the expression of the GmMAX2a gene is induced by salt and alkali stress, and GUS signals can be detected at all time points.

实施例3.转GmMAX2a拟南芥植株的获得及在其盐、碱胁迫下的表型分析Example 3. Obtaining GmMAX2a-transgenic Arabidopsis plants and analyzing their phenotypes under salt and alkali stress

一、转GmMAX2a拟南芥植株的获得1. Obtaining GmMAX2a-transgenic Arabidopsis plants

1、GmMAX2a基因的获得1. Acquisition of GmMAX2a gene

以实施例1中的步骤4得到的pCAMBIA1300-GmMAX2a为模板,采用引物Primer-ES和Primer-EAS进行PCR扩增,得到PCR扩增产物,即GmMAX2a基因。引物序列如下:Using pCAMBIA1300-GmMAX2a obtained in step 4 of Example 1 as a template, PCR amplification was performed using primers Primer-ES and Primer-EAS to obtain a PCR amplification product, namely the GmMAX2a gene. The primer sequences are as follows:

Primer-ES:5’-ACGATGATAAGGGCGGTACCAATATCTTACCGGAGAATGGGC-3’;Primer-ES: 5’-ACGATGATAAGGGCGGTACCAATATCTTACCGGAGAATGGGC-3’;

Primer-EAS:5’-AGGCTACGTAGGATCCTTACATGTCAATCACATATTCGACG-3’。Primer-EAS: 5’-AGGCTACGTAGGATCCTTACATGTCAATCACATATTCGACG-3’.

PCR扩增体系(50μl):cDNA 1μl,Primer-F 1μl,Primer-R 1μl,Prime Star Mix12.5μl, ddH2O 9.5μl。PCR amplification system (50 μl): cDNA 1 μl, Primer-F 1 μl, Primer-R 1 μl, Prime Star Mix 12.5 μl, ddH 2 O 9.5 μl.

PCR扩增条件:98℃10s,52℃10s,72℃2min40s,35个循环;72℃5min;4℃终止反应。PCR amplification conditions: 98°C for 10 s, 52°C for 10 s, 72°C for 2 min 40 s, 35 cycles; 72°C for 5 min; terminate the reaction at 4°C.

2、植物表达载体的获得2. Obtaining plant expression vector

用限制性内切酶对pCAMBIA 1300载体和上述PCR扩增产物进行酶切,连接,得到重组载体pCAMBIA 1300-GmMAX2a,并对其进行测序验证。The pCAMBIA 1300 vector and the PCR amplification product were digested with restriction endonucleases and ligated to obtain the recombinant vector pCAMBIA 1300-GmMAX2a, which was then sequenced and verified.

测序结果表明:重组载体pCAMBIA 1300-GmMAX2a为将pCAMBIA 1300载体的酶切位点之间的DNA片段替换为SEQ ID NO.3所示的GmMAX2a基因,并保持pCAMBIA1300载体的其他序列不变得到的载体。The sequencing results showed that the recombinant vector pCAMBIA 1300-GmMAX2a was obtained by replacing the DNA fragment between the restriction sites of the pCAMBIA 1300 vector with the GmMAX2a gene shown in SEQ ID NO.3, while keeping the other sequences of the pCAMBIA1300 vector unchanged.

3、转化3. Conversion

采用冻融法,将重组载体pCAMBIA1300-GmMAX2a转化至根癌农杆菌GV3101中,经PCR鉴定得到阳性转化子(含有序列表中序列1所示的GmMAX2a基因的转化子),用于侵染拟南芥植株。The recombinant vector pCAMBIA1300-GmMAX2a was transformed into Agrobacterium tumefaciens GV3101 by freeze-thaw method, and positive transformants (transformants containing the GmMAX2a gene shown in sequence 1 in the sequence table) were obtained by PCR identification and used to infect Arabidopsis plants.

4、转GmMAX2a拟南芥的获得4. Obtaining GmMAX2a-transgenic Arabidopsis

将含有重组载体pCAMBIA 1300-GmMAX2a的农杆菌通过Floral-dip法侵染野生型拟南芥(哥伦比亚生态型col-0),将侵染过的拟南芥进行培养,得到T0代转GmMAX2a拟南芥种子。将T0代转GmMAX2a拟南芥种子表面消毒后,播种于含25mg/L固杀草 (glufosinate-ammonium,Sigma,45520)的1/2MS培养基上筛选,得到T1代转GmMAX2a 拟南芥幼苗。如此重复,直至得到T3代转GmMAX2a拟南芥纯合体株系。Agrobacterium containing the recombinant vector pCAMBIA 1300-GmMAX2a was used to infect wild-type Arabidopsis thaliana (Columbia ecotype col-0) by the Floral-dip method, and the infected Arabidopsis thaliana was cultured to obtain T 0 generation GmMAX2a transgenic Arabidopsis thaliana seeds. After surface disinfection of T 0 generation GmMAX2a transgenic Arabidopsis thaliana seeds, they were sown on 1/2MS medium containing 25 mg/L glufosinate-ammonium (Sigma, 45520) for screening to obtain T 1 generation GmMAX2a transgenic Arabidopsis thaliana seedlings. This process was repeated until a T 3 generation GmMAX2a transgenic Arabidopsis thaliana homozygous strain was obtained.

提取T3代转GmMAX2a拟南芥幼苗的基因组DNA,进行RT-PCR鉴定。具体步骤如下:Extract genomic DNA from T3 generation GmMAX2a transgenic Arabidopsis seedlings and perform RT-PCR identification. The specific steps are as follows:

提取步骤一获得的T3代转GmMAX2a拟南芥植株的总RNA,反转录得到cDNA;以cDNA为模板,分别采用Primer-qS和Primer-qAS引物对、Actin S和Actin AS引物对,通过RT-PCR对GmMAX2a基因进行表达量检测,得到PCR扩增产物。引物序列如下所示:The total RNA of the T3 transgenic GmMAX2a Arabidopsis plants obtained in step 1 was extracted and reverse transcribed to obtain cDNA; using the cDNA as a template, the Primer-qS and Primer-qAS primer pairs, Actin S and Actin AS primer pairs were used to detect the expression of the GmMAX2a gene by RT-PCR to obtain PCR amplification products. The primer sequences are as follows:

Primer-qS:5’-ACGATGATAAGGGCGGTACCAATATCTTACCGGAGAATGGGC-3’;Primer-qS: 5’-ACGATGATAAGGGCGGTACCAATATCTTACCGGAGAATGGGC-3’;

Primer-qAS:5’-AGGCTACGTAGGATCCTTACATGTCAATCACATATTCGACG-3’。Primer-qAS: 5’-AGGCTACGTAGGATCCTTACATGTCAATCACATATTCGACG-3’.

Actin S:5’-TTACCCGATGGGCAAGTC-3’;Actin S: 5’-TTACCCGATGGGCAAGTC-3’;

Actin AS:5’-GCTCATACGGTCAGCGATAC-3’。Actin AS: 5’-GCTCATACGGTCAGCGATAC-3’.

PCR扩增体系(50μl):cDNA 1μl,Primer-F 1μl,Primer-R 1μl,Prime Star Mix12.5μl, ddH2O 9.5μl。PCR amplification system (50 μl): cDNA 1 μl, Primer-F 1 μl, Primer-R 1 μl, Prime Star Mix 12.5 μl, ddH 2 O 9.5 μl.

PCR扩增条件:PCR amplification conditions:

GmMAX2a:[98℃10s→52℃10s→72℃2min40s]×35→72℃5min→4℃终止反应;GmMAX2a: [98℃10s→52℃10s→72℃2min40s]×35→72℃5min→4℃ to terminate the reaction;

Actin 2:[98℃10s→52℃10s→72℃2min40s]×35→72℃5min→4℃终止反应。Actin 2: [98℃10s→52℃10s→72℃2min40s]×35→72℃5min→4℃ to terminate the reaction.

将PCR扩增产物进行1%琼脂糖凝胶电泳,检测结果如图4所示:野生型拟南芥植株的 RT-PCR无扩增产物,而T3代转GmMAX2a拟南芥纯合株系#5、T3代转GmMAX2a拟南芥纯合株系#8都可以扩增出目的条带,表明外源基因GmMAX2a基因不但已顺利整合到拟南芥的基因组上,而且能够在转基因拟南芥中正常转录表达。选取T3代转GmMAX2a拟南芥纯合株系#5和T3代转GmMAX2a拟南芥纯合株系#8用于下一步的表型分析。The PCR amplification products were subjected to 1% agarose gel electrophoresis, and the test results are shown in Figure 4: There was no amplification product in the RT-PCR of the wild-type Arabidopsis plants, while the T3 generation GmMAX2a-transformed Arabidopsis homozygous strain # 5 and the T3 generation GmMAX2a-transformed Arabidopsis homozygous strain #8 could amplify the target band, indicating that the exogenous gene GmMAX2a gene has not only been successfully integrated into the Arabidopsis genome, but can also be transcribed and expressed normally in transgenic Arabidopsis. The T3 generation GmMAX2a-transformed Arabidopsis homozygous strain #5 and the T3 generation GmMAX2a-transformed Arabidopsis homozygous strain #8 were selected for the next phenotypic analysis.

二、转GmMAX2a拟南芥植株在盐、碱胁迫下的表型分析2. Phenotypic analysis of transgenic GmMAX2a Arabidopsis plants under salt and alkaline stress

1、转GmMAX2a拟南芥在盐、碱处理下的幼苗期表型及根长1. Seedling phenotype and root length of transgenic GmMAX2a Arabidopsis under salt and alkali treatments

选取饱满的野生型拟南芥(哥伦比亚生态型)、T3代转GmMAX2a拟南芥纯合株系#5和T3代转GmMAX2a拟南芥纯合株系#8种子,用5%次氯酸钠消毒液消毒10min后,于4℃春化3d,播种于1/2MS固体培养基上。5d后,挑选长势一致的转GmMAX2a拟南芥和野生型拟南芥幼苗水平摆放于含不同浓度NaCl(75mmol/L、100mmol/L、125mmol/L)、不同浓度NaHCO3(0.5mmol/L、0.6mmol/L、0.7mmol/L)胁迫培养基的平皿中,竖直生长, 7d后观察记录各处理组和非处理组的拟南芥鲜重(每10株幼苗进行一次称重)和根长,所有实验技术重复和生物学重复各3次。每次实验每个株系10株。Select plump seeds of wild-type Arabidopsis thaliana (Columbia ecotype), T3 generation GmMAX2a transgenic Arabidopsis thaliana homozygous line #5 and T3 generation GmMAX2a transgenic Arabidopsis thaliana homozygous line #8, disinfect with 5% sodium hypochlorite disinfectant for 10 minutes, vernalize at 4℃ for 3 days, and sow on 1/2MS solid medium. After 5 days, select GmMAX2a transgenic Arabidopsis thaliana and wild-type Arabidopsis thaliana seedlings with consistent growth and place them horizontally in plates containing different concentrations of NaCl (75mmol/L, 100mmol/L, 125mmol/L) and different concentrations of NaHCO 3 (0.5mmol/L, 0.6mmol/L, 0.7mmol/L) stress medium, grow vertically, observe and record the fresh weight (every 10 seedlings are weighed once) and root length of Arabidopsis thaliana in each treatment group and non-treatment group after 7 days, all experiments are repeated 3 times for each technical and biological replicates. Ten plants of each strain were tested in each experiment.

结果如图5和图6所示:在正常条件下(即无任何胁迫未处理,control),T3代转GmMAX2a 拟南芥纯合株系#5和T3代转GmMAX2a拟南芥纯合株系#8与野生型拟南芥的生长发育并没有显著差异,表明导入的GmMAX2a基因并未在幼苗期对拟南芥的生长、发育造成影响。The results are shown in Figures 5 and 6: Under normal conditions (i.e., no stress and no treatment, control), there was no significant difference in the growth and development of the T3 generation GmMAX2a-transgenic Arabidopsis homozygous line #5 and the T3 generation GmMAX2a-transgenic Arabidopsis homozygous line #8 and the wild-type Arabidopsis, indicating that the introduced GmMAX2a gene did not affect the growth and development of Arabidopsis at the seedling stage.

而在培养基中添加了75mmol/L、100mmol/L、125mmol/L NaCl后,三个株系的生长都受到了不同程度的抑制,其中75mmol/L NaCl胁迫时,转基因株系#5、#8的根长明显比WT更长,叶片更大,颜色更深,在125mmol/L NaCl胁迫时,WT出现子叶白化现象,生长受到严重抑制,植株几乎死亡,转基因株系生长也受到明显抑制,但生长状况整体优于WT。根长和鲜重的统计结果表明,盐胁迫下转基因株系#5、#8的幼苗主根长度和鲜重高于WT,说明GmMAX2a基因可能参与植物对盐胁迫的响应,使其对盐胁迫的适应能力更强。After adding 75mmol/L, 100mmol/L, and 125mmol/L NaCl to the culture medium, the growth of the three strains was inhibited to varying degrees. Under 75mmol/L NaCl stress, the root length of transgenic strains #5 and #8 was significantly longer than that of WT, and the leaves were larger and darker in color. Under 125mmol/L NaCl stress, WT showed cotyledon albinism, and its growth was severely inhibited, and the plant almost died. The growth of transgenic strains was also significantly inhibited, but the overall growth condition was better than WT. The statistical results of root length and fresh weight showed that the main root length and fresh weight of transgenic strains #5 and #8 seedlings under salt stress were higher than those of WT, indicating that the GmMAX2a gene may be involved in the plant's response to salt stress, making it more adaptable to salt stress.

在含有0.5mmol/L、0.6mmol/L、0.7mmol/L NaHCO3培养基中胁迫后,三个株系长势出现差异,在0.5mmol/L NaHCO3培养基中长势差异最明显,0.7mmol/L NaHCO3培养基中WT、转基因株系#5、#8的根部生长都受到了较大影响,主要表现在侧根生长受抑制,叶片出现萎蔫。根长和鲜重的统计结果与盐胁迫相似,转基因株系#5、#8的幼苗主根长度和鲜重都高于WT,以上结果表明GmMAX2a基因可以减轻碱胁迫对转基因拟南芥幼苗生长发育的损害,但是随着NaHCO3浓度增高,对各个株系生长抑制作用加强,WT和两个过表达株系根长和鲜重的差异逐渐缩小。After being stressed in the medium containing 0.5mmol/L, 0.6mmol/L, and 0.7mmol/L NaHCO 3 , the growth of the three strains showed differences, and the growth difference was most obvious in the 0.5mmol/L NaHCO 3 medium. The root growth of WT, transgenic strains #5, and #8 in the 0.7mmol/L NaHCO 3 medium was greatly affected, mainly manifested in the inhibition of lateral root growth and wilting of leaves. The statistical results of root length and fresh weight were similar to those of salt stress. The main root length and fresh weight of transgenic strains #5 and #8 were higher than those of WT. The above results show that the GmMAX2a gene can alleviate the damage of alkaline stress to the growth and development of transgenic Arabidopsis seedlings, but with the increase of NaHCO 3 concentration, the growth inhibition of each strain is strengthened, and the difference in root length and fresh weight between WT and the two overexpression strains gradually narrows.

实施例4.转基因拟南芥盐、碱胁迫相关Marker基因表达量测定Example 4. Determination of the expression of marker genes related to salt and alkaline stress in transgenic Arabidopsis

1、植物材料的处理1. Processing of plant materials

剪取获得的植物材料GmMAX2a转基因过表达拟南芥株系#8作为待测组织样品,迅速放于液氮中冷冻,然后置于-80℃保存。The plant material GmMAX2a transgenic overexpressing Arabidopsis thaliana line #8 was cut and used as the tissue sample to be tested, which was quickly frozen in liquid nitrogen and then stored at -80°C.

2、总RNA的提取和cDNA的获得2. Extraction of total RNA and acquisition of cDNA

采用Plant Total RNA Isolation Kit试剂盒(Foregene)分别提取上述步骤1获得的不同时间处理后的待测组织样品的总RNA;以获得总RNA为模板,反转录获得cDNA。The total RNA of the tissue samples to be tested obtained in step 1 after being treated for different time periods was extracted using the Plant Total RNA Isolation Kit (Foregene). The total RNA was used as a template for reverse transcription to obtain cDNA.

3、Real-time PCR3. Real-time PCR

以上述cDNA为模板,采用盐、碱胁迫相关Marker基因引物,通过Real-time PCR对GmMAX2a基因进行表达量检测。引物序列如下所示:Using the above cDNA as a template and using salt and alkali stress-related marker gene primers, the expression level of the GmMAX2a gene was detected by Real-time PCR. The primer sequences are as follows:

盐胁迫相关Marker基因:RD29B、SOS1、NXH1、AtRD22、KIN1、COR15A。Salt stress-related marker genes: RD29B, SOS1, NXH1, AtRD22, KIN1, and COR15A.

RD29B-S:5’-TGAAGGAGACGCAACAAGGG-3’(SEQ ID NO.12);RD29B-S: 5’-TGAAGGAGACGCAACAAGGG-3’ (SEQ ID NO. 12);

RD29B-AS:5’-CAACGGTGGTGCCAAGTGAT-3’(SEQ ID NO.13)。RD29B-AS: 5'-CAACGGTGGTGCCAAGTGAT-3' (SEQ ID NO. 13).

SOS1-S:5’-CGGCAGCATGGTTAATGTGTAC-3’(SEQ ID NO.14);SOS1-S: 5’-CGGCAGCATGGTTAATGTGTAC-3’ (SEQ ID NO. 14);

SOS1-AS:5’-TTGGCTGAAACGAGACCTTGA-3(SEQ ID NO.15)’。SOS1-AS: 5'-TTGGCTGAAACGAGACCTTGA-3 (SEQ ID NO. 15)'.

NXH1-S:5’-CCACTCGAACCGTGCATTACT-3’(SEQ ID NO.16);NXH1-S: 5’-CCACTCGAACCGTGCATTACT-3’ (SEQ ID NO. 16);

NXH1-AS:5’-CTCAAGCCTTACTAAGATCAGGAGG-3’(SEQ ID NO.17)。NXH1-AS: 5'-CTCAAGCCTTACTAAGATCAGGAGG-3' (SEQ ID NO. 17).

AtRD22-S:5’-CCCATTCGCGGTGTTCTACT-3’(SEQ ID NO.18);AtRD22-S: 5’-CCCATTCGCGGTGTTCTACT-3’ (SEQ ID NO. 18);

AtRD22-AS:5’-CCAAGTGGTTTGGGTTCCAA-3’(SEQ ID NO.19);AtRD22-AS: 5’-CCAAGTGGTTTGGGTTCCAA-3’ (SEQ ID NO. 19);

KIN1-S:5’-AACAAGAATGCCTTCCAAGC-3’(SEQ ID NO.20);KIN1-S: 5’-AACAAGAATGCCTTCCAAGC-3’ (SEQ ID NO. 20);

KIN1-AS:5’-CGCATCCGATACACTCTTTC-3’(SEQ ID NO.21);KIN1-AS: 5’-CGCATCCGATACACTCTTTC-3’ (SEQ ID NO. 21);

COR15A-S:5’-AATTTCAAGCACTTAAACTCGT-3’(SEQ ID NO.22);COR15A-S: 5’-AATTTCAAGCACTTAAACTCGT-3’ (SEQ ID NO. 22);

COR15A-AS:5’-AGAATGTGACGGTGACTGTG-3’(SEQ ID NO.23);COR15A-AS: 5’-AGAATGTGACGGTGACTGTG-3’ (SEQ ID NO. 23);

碱胁迫相关Marker基因:RD29A、COR47、COR15A、KIN1、H+-APase、NADP-ME。Alkaline stress-related marker genes: RD29A, COR47, COR15A, KIN1, H+-APase, and NADP-ME.

RD29A-S:5’-GGCGTAACAGGTAAACCTAGAG-3’(SEQ ID NO.24);RD29A-S: 5’-GGCGTAACAGGTAAACCTAGAG-3’ (SEQ ID NO. 24);

RD29A-AS:5’-TCCGATGTAAACGTCGTCC-3’(SEQ ID NO.25);RD29A-AS: 5’-TCCGATGTAAACGTCGTCC-3’ (SEQ ID NO. 25);

COR47-S:5’-GGAGTACAAGAACAACGTTCCCGA-3’(SEQ ID NO.26);COR47-S: 5’-GGAGTACAAGAACAACGTTCCCGA-3’ (SEQ ID NO. 26);

COR47-AS:5’-TGTCGTCGCTGGTGATTCCTCT-3’(SEQ ID NO.27);COR47-AS: 5’-TGTCGTCGCTGGTGATTCCTCT-3’ (SEQ ID NO. 27);

COR15A-S:5’-AATTTCAAGCACTTAAACTCGT-3’(SEQ ID NO.28);COR15A-S: 5’-AATTTCAAGCACTTAAACTCGT-3’ (SEQ ID NO. 28);

COR15A-AS:5’-AGAATGTGACGGTGACTGTG-3’(SEQ ID NO.29);COR15A-AS: 5’-AGAATGTGACGGTGACTGTG-3’ (SEQ ID NO. 29);

KIN1-S:5’-AACAAGAATGCCTTCCAAGC-3’(SEQ ID NO.30);KIN1-S: 5’-AACAAGAATGCCTTCCAAGC-3’ (SEQ ID NO. 30);

KIN1-AS:5’-CGCATCCGATACACTCTTTCC-3’(SEQ ID NO.31);KIN1-AS: 5’-CGCATCCGATACACTCTTTCC-3’ (SEQ ID NO. 31);

H+-APase-S:5’-TTTGGATTATAAACCTCACTATATG-3’(SEQ ID NO.32);H+-APase-S: 5’-TTTGGATTATAAACCTCACTATATG-3’ (SEQ ID NO. 32);

H+-APase-AS:5’-CCAGTCATTCCAACAATATGC-3’(SEQ ID NO.33);H+-APase-AS: 5’-CCAGTCATTCCAACAATATGC-3’ (SEQ ID NO. 33);

NADP-ME-S:5’-TGGTCTGATCTACCCGCCATT-3’(SEQ ID NO.34);NADP-ME-S: 5’-TGGTCTGATCTACCCGCCATT-3’ (SEQ ID NO. 34);

NADP-ME-AS:5’-CGCCAATCCGAGGTCATAGG-3’(SEQ ID NO.35);NADP-ME-AS: 5’-CGCCAATCCGAGGTCATAGG-3’ (SEQ ID NO. 35);

Real-time PCR反应的条件:94℃10min→[94℃30s→64℃30s]×40→60℃30s→72℃10min→94℃2min。Real-time PCR reaction conditions: 94°C 10 min→[94°C 30 s→64°C 30 s]×40→60°C 30 s→72°C 10 min→94°C 2 min.

Real-time PCR采用比较CT法(ΔΔCT)计算基因表达量,以野生大豆GsGAPDH基因为内参基因,以未经处理的样品作为对照。目标基因表达差异通过经过处理的样本相对于每个时间点未经处理的样本的倍数来表示。每个样品包括3次生物学重复和3次技术重复,数据取3次生物学重复的平均值,如果有一个数值的偏差比较大则取两个数据的平均值。原始数据经标准化处理。标准化处理后的数据经T-test进行差异显著性分析。相对表达量计算方法:2-ΔΔCT=2-(ΔCT处理-ΔCT对照)=2-[(CT处理目的基因-CT处理内参基因)-(CT对照目的基因-CT对照内参基因)]。内参基因引物序列如下所示:Real-time PCR uses the comparative CT method ( ΔΔ CT) to calculate gene expression, with wild soybean GsGAPDH gene as the internal reference gene and untreated samples as the control. The difference in target gene expression is expressed by the multiple of the treated sample relative to the untreated sample at each time point. Each sample includes 3 biological replicates and 3 technical replicates. The data is the average of 3 biological replicates. If one value has a large deviation, the average of the two data is taken. The original data is standardized. The standardized data is analyzed for significant differences by T-test. Relative expression calculation method: 2-ΔΔ CT = 2- ( Δ CT treatment - Δ CT control) = 2- [(CT treatment target gene - CT treatment internal reference gene) - (CT control target gene - CT control internal reference gene)]. The primer sequence of the internal reference gene is as follows:

Actin2-S:5’-TTACCCGATGGGCAAGTC-3’;Actin2-S: 5’-TTACCCGATGGGCAAGTC-3’;

Actin2-AS:5’-GCTCATACGGTCAGCGATAC-3’。Actin2-AS: 5’-GCTCATACGGTCAGCGATAC-3’.

结果如图7、8所示:在盐胁迫下,GmMAX2a过表达转基因拟南芥中的6个Marker基因在3-6h间的相对表达量均高于0h,并且GmMAX2a过表达转基因拟南芥中的表达量都显著高于WT。其中,RD29B、SOS1、NXH1、AtRD22和COR15A在胁迫6h时,在GmMAX2a 过表达转基因拟南芥中相对表达量高于WT并且差异极显著;KIN1在盐胁迫3h后表达量存在极显著差异。The results are shown in Figures 7 and 8: Under salt stress, the relative expression levels of the six marker genes in GmMAX2a overexpressing transgenic Arabidopsis were higher than those at 0h between 3-6h, and the expression levels in GmMAX2a overexpressing transgenic Arabidopsis were significantly higher than those in WT. Among them, the relative expression levels of RD29B, SOS1, NXH1, AtRD22 and COR15A in GmMAX2a overexpressing transgenic Arabidopsis were higher than those in WT at 6h of stress, and the difference was extremely significant; the expression level of KIN1 was extremely significantly different after 3h of salt stress.

经50mmol/L NaHCO3处理3h和6h后,对WT和GmMAX2a转基因拟南芥中的6个碱胁迫相关Marker基因相对表达量进行分析,GmMAX2a转基因拟南芥中的6个Marker基因的相对表达量都显著高于0h。GmMAX2a转基因拟南芥中RD29A、COR15A、KIN1、H+-APase、 NADP-ME基因相对表达量在碱处理3h时达到极显著水平,随着处理时间延长表达量也出现下降趋势,但都高于WT;COR47的表达量始终高于WT,在碱处理3h和6h时的基因相对表达量都达到极显著水平。After 50mmol/L NaHCO 3 treatment for 3h and 6h, the relative expression levels of 6 alkaline stress-related marker genes in WT and GmMAX2a transgenic Arabidopsis were analyzed. The relative expression levels of the 6 marker genes in GmMAX2a transgenic Arabidopsis were significantly higher than those at 0h. The relative expression levels of RD29A, COR15A, KIN1, H+-APase, and NADP-ME genes in GmMAX2a transgenic Arabidopsis reached extremely significant levels at 3h of alkali treatment, and the expression levels also showed a downward trend with the extension of treatment time, but they were all higher than WT; the expression level of COR47 was always higher than WT, and the relative expression levels of the genes at 3h and 6h of alkali treatment reached extremely significant levels.

以上结果表明,在盐、碱条件下,RD29B、COR15A、RD29A等逆境胁迫标记基因在GmMAX2a过表达转基因拟南芥中均为上调表达,且表达量显著高于WT,因此GmMAX2a 基因可能通过调节逆境胁迫诱导标记基因的表达水平来增强对盐、碱胁迫的耐受性。The above results showed that under salt and alkali conditions, stress marker genes such as RD29B, COR15A, and RD29A were upregulated in GmMAX2a overexpressing transgenic Arabidopsis, and the expression levels were significantly higher than those in WT. Therefore, the GmMAX2a gene may enhance tolerance to salt and alkali stress by regulating the expression levels of stress-induced marker genes.

不同胁迫下鲜重数据(g):Fresh weight data under different stresses (g):

表1CKTable 1CK

WTWT #5#5 #8#8 CK-1CK-1 0.05040.0504 0.05910.0591 0.0540.054 CK-2CK-2 0.04970.0497 0.05180.0518 0.05020.0502 CK-3CK-3 0.05580.0558 0.05210.0521 0.05660.0566 AVERAGEAVERAGE 0.0519666670.051966667 0.0543333330.054333333 0.05360.0536

碱胁迫:Alkaline stress:

表2NaHCO3 0.5mMTable 2 NaHCO 3 0.5 mM

WTWT #5#5 #8#8 NaHCO3-0.5-1NaHCO3-0.5-1 0.04460.0446 0.0590.059 0.05820.0582 NaHCO3-0.5-2NaHCO3-0.5-2 0.04160.0416 0.05350.0535 0.0530.053 NaHCO3-0.5-3NaHCO3-0.5-3 0.04300.0430 0.05590.0559 0.05520.0552 AVERAGEAVERAGE 0.0430666670.043066667 0.0561333330.056133333 0.0554666670.055466667

表3NaHCO3 0.6mMTable 3 NaHCO 3 0.6 mM

表4NaHCO3 0.7mMTable 4 NaHCO 3 0.7 mM

WTWT #5#5 #8#8 NaHCO3-0.7-1NaHCO3-0.7-1 0.04460.0446 0.03730.0373 0.03520.0352 NaHCO3-0.7-2NaHCO3-0.7-2 0.02970.0297 0.03670.0367 0.03260.0326 NaHCO3-0.7-3NaHCO3-0.7-3 0.03030.0303 0.03680.0368 0.03970.0397 AVERAGEAVERAGE 0.0348666670.034866667 0.0369333330.036933333 0.0358333330.035833333

盐胁迫Salt stress

表5:NaCl 75mMTable 5: NaCl 75mM

WTWT #5#5 #8#8 NaCl-75-1NaCl-75-1 0.02570.0257 0.0270.027 0.04740.0474 NaCl-75-2NaCl-75-2 0.06910.0691 0.07820.0782 0.050.05 NaCl-75-3NaCl-75-3 0.03580.0358 0.06280.0628 0.06280.0628 AVERAGEAVERAGE 0.0435333330.043533333 0.0560.056 0.05340.0534

表6NaCl 100mMTable 6 NaCl 100mM

WTWT #5#5 #8#8 NaCl-100-1NaCl-100-1 0.02440.0244 0.05260.0526 0.03990.0399 NaCl-100-2NaCl-100-2 0.02580.0258 0.02250.0225 0.03250.0325 NaCl-100-3NaCl-100-3 0.02570.0257 0.0380.038 0.02470.0247 AVERAGEAVERAGE 0.02530.0253 0.03770.0377 0.0323666670.032366667

表7NaCl 125mMTable 7 NaCl 125mM

WTWT #5#5 #8#8 NaCl-125-1NaCl-125-1 0.02080.0208 0.04180.0418 0.03210.0321 NaCl-125-2NaCl-125-2 0.01910.0191 0.0350.035 0.02570.0257 NaCl-125-3NaCl-125-3 0.02010.0201 0.02980.0298 0.03430.0343 AVERAGEAVERAGE 0.020.02 0.0355333330.035533333 0.03070.0307

不同胁迫下根长数据(cm):Root length data under different stresses (cm):

表11CKTable 11CK

表12Table 12

表13Table 13

表14Table 14

表15Table 15

表16Table 16

Claims (5)

1. Soybean proteinGmMAX2aThe application of a gene encoding soybean protein GmMAX2a or a vector containing the gene encoding soybean protein GmMAX2a in plant stress tolerance is characterized in that the amino acid sequence of the GmMAX2a is shown as SEQ ID NO. 4; the nucleotide sequence of the gene for encoding the soybean protein GmMAX2a is shown as SEQ ID NO. 3; the stress resistance of the plant is alkali stress resistance; the plant is dicotyledon.
2. The use according to claim 1, wherein the alkali stress resistance is between 0.5 and 0.7mmol/L NaHCO 3 Arabidopsis seedlings were subjected to alkali stress treatment for 7 days under the conditions.
3. A method for improving alkali stress resistance of dicotyledonous plants, comprising the specific steps of:
step 1: connecting a gene sequence shown in SEQ ID NO.3 with a pCAMBIA1300 vector to obtain a recombinant vector;
step 2: transferring the recombinant vector obtained in the step 1 into agrobacterium to obtain recombinant agrobacterium;
step 3: and (3) infecting the plant with the recombinant agrobacterium obtained in the step (2) to obtain a transgenic plant.
4. A method according to claim 3, wherein the agrobacterium in step 2 is agrobacterium tumefaciens GV3101.
5. The method according to claim 3, wherein the primers for cloning the gene sequence shown in SEQ ID NO.3 in step 1 are shown in SEQ ID NO.1 and SEQ ID NO. 2.
CN202210819798.7A 2022-07-10 2022-07-10 Application of soybean gene GmMAX2a in plant stress resistance Active CN115873085B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210819798.7A CN115873085B (en) 2022-07-10 2022-07-10 Application of soybean gene GmMAX2a in plant stress resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210819798.7A CN115873085B (en) 2022-07-10 2022-07-10 Application of soybean gene GmMAX2a in plant stress resistance

Publications (2)

Publication Number Publication Date
CN115873085A CN115873085A (en) 2023-03-31
CN115873085B true CN115873085B (en) 2023-11-10

Family

ID=85769459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210819798.7A Active CN115873085B (en) 2022-07-10 2022-07-10 Application of soybean gene GmMAX2a in plant stress resistance

Country Status (1)

Country Link
CN (1) CN115873085B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117778413B (en) * 2023-12-28 2024-10-29 东北农业大学 GLMFR1 gene for improving biological and abiotic stress capability of soybean and application thereof
CN118421655A (en) * 2024-03-13 2024-08-02 哈尔滨师范大学 Plant stress resistance related gene GsCYP93D1, recombinant plasmid and application thereof
CN119331886B (en) * 2024-12-23 2025-03-18 海南大学三亚南繁研究院 A soybean cytochrome b5 gene and its application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923888A (en) * 2014-03-11 2014-07-16 中国农业科学院作物科学研究所 Cotton GhMAX2b gene, coding protein and application
CN105585620A (en) * 2016-03-07 2016-05-18 哈尔滨师范大学 Soybean protein GmAIRP1 and application of coding gene of soybean protein GmAIRP1 in stress resistance plant cultivation
CN106749584A (en) * 2017-01-19 2017-05-31 东北农业大学 A kind of and plant alkali resistance GAP-associated protein GAP GsERF71 and its encoding gene and application
CN107058380A (en) * 2016-11-03 2017-08-18 山东农业大学 Application of the MdMAX2 genes in stress resistance of plant is improved

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923888A (en) * 2014-03-11 2014-07-16 中国农业科学院作物科学研究所 Cotton GhMAX2b gene, coding protein and application
CN105585620A (en) * 2016-03-07 2016-05-18 哈尔滨师范大学 Soybean protein GmAIRP1 and application of coding gene of soybean protein GmAIRP1 in stress resistance plant cultivation
CN107058380A (en) * 2016-11-03 2017-08-18 山东农业大学 Application of the MdMAX2 genes in stress resistance of plant is improved
CN106749584A (en) * 2017-01-19 2017-05-31 东北农业大学 A kind of and plant alkali resistance GAP-associated protein GAP GsERF71 and its encoding gene and application

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AppleF-BoxProteinMd MAX2RegulatesPlantPhot omorphogenesisandStressR esponse;Jian-Ping An 等;Frontiers in Plant Science;第7卷;Article168 5 *
NAVEED UR REHMAN.大豆独脚金内酯合成和信号路径相关基因全基因组分析及几个GmMAX基因功能分析.《中国博士学位论文全文数据库农业科技辑》.2020,(2020年第05期),摘要第2段. *
SMXLs regulate seed germination under salinity and drought stress in soybean;Xujun Fu等;Plant Growth Regulation;第(2022) 96卷;397–408 *
XP_014632266.1.GenBank.2021,FEATURES和ORIGIN部分. *
Xujun Fu等.SMXLs regulate seed germination under salinity and drought stress in soybean.Plant Growth Regulation.2022,第(2022) 96卷397–408. *
大豆独脚金内酯合成和信号路径相关基因全基因组分析及几个GmMAX 基因功能分析;NAVEED UR REHMAN;《中国博士学位论文全文数据库农业科技辑》;参见全文 *
大豆独脚金内酯合成和信号路径相关基因全基因组分析及几个GmMAX基因功能分析;NAVEED UR REHMAN;《中国博士学位论文全文数据库农业科技辑》(2020年第05期);摘要第2段 *

Also Published As

Publication number Publication date
CN115873085A (en) 2023-03-31

Similar Documents

Publication Publication Date Title
CN115873085B (en) Application of soybean gene GmMAX2a in plant stress resistance
CN105255915B (en) Application of the arabidopsis AtGDSL genes in the anti-sclerotiniose of rape and in promoting seed to sprout
CN110128514B (en) Cold tolerance-related protein CTB4b and its encoding gene and application in rice booting stage
CN112226455A (en) A rice grain length and grain weight related protein and its encoding gene and application
CN106520798A (en) Identification and application of cotton drought-resistance related gene GhDRP1
CN101812462A (en) Application of rice GT transcription factor family gene OsGT gamma-1 in controlling salt tolerance of rice
CN105504034A (en) Application of protein MYB37 and encoding gene thereof to regulation and control over drought resistance of plants
CN111454972A (en) The cold resistance gene PtrBADH of Citrus aurantium and its application in genetic improvement of plant cold resistance
CN106893731A (en) Soybean xyloglucan transferase hydrolase gene GmXTH1 and application
CN103183731A (en) Dendrobe DnMYB type transcription factor, coding gene, carrier and engineering bacteria and application thereof
CN104945492A (en) Plant stress tolerance associated protein TaAREB3 as well as encoding gene and application thereof
CN105175522B (en) Crowtoe AP2/ERF transcription factors and its encoding gene and application
CN111394500B (en) A method for identifying whether a plant sample to be tested is derived from the SbSNAC1-382 event or its progeny
CN116622666A (en) Methods for regulating plant drought resistance and application of TaMPK3 in regulating plant drought resistance
CN102351950A (en) Rice drought-tolerance related transcription factor gene OsWTF1, and coding protein and application thereof
CN102659936B (en) Plant-stress-tolerance related protein, its encoding gene and application
CN107630026B (en) Erythraldehyde dehydrogenase gene and its encoded protein of extreme dry tooth costum
CN106191059A (en) Application in Herba Capsellae peroxidase gene promoter and improvement plant cold resistance thereof
CN104829698A (en) Plant stress resistance-associated protein and its coding gene GsCHX19 and use
CN117535342B (en) Method for increasing alfalfa yield and/or branch number, protein used therein and related biological materials
CN102827262A (en) OsMIOX protein and coding gene and drought defying application thereof
CN103014018B (en) Rape bnrabgdi3 gene and application thereof
CN118421655A (en) Plant stress resistance related gene GsCYP93D1, recombinant plasmid and application thereof
CN118726379A (en) A soybean salt tolerance related gene GmCIPK12 and its encoded protein and application
CN106811448A (en) Cotton tyrosine phosphatase GhPTP1 and its encoding gene and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant