CN115803873A - Protective cap, electronic device and method for manufacturing the protective cap - Google Patents
Protective cap, electronic device and method for manufacturing the protective cap Download PDFInfo
- Publication number
- CN115803873A CN115803873A CN202180049326.1A CN202180049326A CN115803873A CN 115803873 A CN115803873 A CN 115803873A CN 202180049326 A CN202180049326 A CN 202180049326A CN 115803873 A CN115803873 A CN 115803873A
- Authority
- CN
- China
- Prior art keywords
- protective cap
- frame
- frame portion
- cover
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001681 protective effect Effects 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000000034 method Methods 0.000 title description 22
- 239000000463 material Substances 0.000 claims abstract description 94
- 239000011521 glass Substances 0.000 claims abstract description 85
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 33
- 238000005304 joining Methods 0.000 claims abstract description 16
- 238000002834 transmittance Methods 0.000 claims description 34
- 229910000679 solder Inorganic materials 0.000 claims description 33
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 13
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000003466 welding Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 29
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 230000007423 decrease Effects 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 238000000605 extraction Methods 0.000 description 11
- 238000001465 metallisation Methods 0.000 description 10
- 229910010413 TiO 2 Inorganic materials 0.000 description 8
- 238000004031 devitrification Methods 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000005219 brazing Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 4
- 229910015363 Au—Sn Inorganic materials 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 239000006066 glass batch Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000007500 overflow downdraw method Methods 0.000 description 4
- 239000011224 oxide ceramic Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000005350 fused silica glass Substances 0.000 description 3
- 239000006060 molten glass Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000008395 clarifying agent Substances 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000003280 down draw process Methods 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- -1 that is Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/06—Containers; Seals characterised by the material of the container or its electrical properties
- H01L23/08—Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/20—Uniting glass pieces by fusing without substantial reshaping
- C03B23/203—Uniting glass sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/078—Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/04—Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Glass Compositions (AREA)
Abstract
保护帽(4)具备:框部(6)、覆盖框部(6)的一端开口的盖部(7)、以及将框部(6)与盖部(7)接合的接合部(8)。盖部(7)由石英玻璃形成,框部(6)由30~380℃的温度范围中的热膨胀系数为30×10‑7~100×10‑7/℃的玻璃材料形成。
The protective cap (4) includes a frame portion (6), a cover portion (7) covering an opening at one end of the frame portion (6), and a joint portion (8) joining the frame portion (6) and the cover portion (7). The cover part (7) is formed of quartz glass, and the frame part (6) is formed of a glass material having a thermal expansion coefficient of 30×10 -7 to 100×10 -7 /°C in a temperature range of 30 to 380°C.
Description
技术领域technical field
本发明涉及保护帽、电子装置及保护帽的制造方法。The invention relates to a protective cap, an electronic device and a manufacturing method of the protective cap.
背景技术Background technique
具备LED等电子部件的电子装置出于长寿命、节能等理由而被利用于照明、通信等各种领域中。Electronic devices including electronic components such as LEDs are used in various fields such as lighting and communication for reasons such as long life and energy saving.
在这种电子装置中,为了保护电子部件,有时以电子部件被收纳于内部的方式在搭载有电子部件的基材上盖上保护帽。In such electronic devices, in order to protect the electronic components, a protective cap may be placed on the base material on which the electronic components are mounted so that the electronic components are housed inside.
例如如专利文献1所公开的那样,保护帽具备围绕电子部件的周围的框部(在该文献中为第2构件)、和覆盖框部的一端开口的盖部(在该专利中为盖构件)。For example, as disclosed in
现有技术文献prior art literature
专利文献patent documents
专利文献1:国际公开第2015/190242号Patent Document 1: International Publication No. 2015/190242
发明内容Contents of the invention
发明所要解决的问题The problem to be solved by the invention
另外,石英玻璃具有不易吸收紫外区域的波长的光的特性。因此,在电子部件为紫外线LED等情况下,从提高保护帽的紫外线透射性的观点考虑,考虑了由石英玻璃分别构成框部及盖部。In addition, quartz glass has a characteristic of not easily absorbing light having wavelengths in the ultraviolet region. Therefore, when the electronic component is an ultraviolet LED or the like, from the viewpoint of improving the ultraviolet transmittance of the protective cap, it is conceivable to configure the frame portion and the cover portion with quartz glass.
然而,基材由金属、金属氧化物陶瓷、LTCC或金属氮化物陶瓷构成的情况较多,一般成为高膨胀系数材料。另一方面,框部由石英玻璃构成,所以成为低膨胀系数材料。因此,例如如果想要使用钎料将框部接合于基材,则基材及框部的膨胀系数差大,因此,难以使钎料的热膨胀系数与基材及框部各自的热膨胀系数匹配。也就是说,如果使钎料的热膨胀系数与基材的热膨胀系数匹配,则框部及钎料的热膨胀系数差变大,如果使钎料的热膨胀系数与框部匹配,则基材及钎料的热膨胀系数差变大。其结果是,容易在基材与框部的接合部或其附近产生残留应力而发生破损(例如裂纹等破裂)。如果接合部或其附近如此地发生破损,则存在电子部件的收纳空间的气密性降低、电子部件劣化的担忧。However, the base material is often made of metal, metal oxide ceramics, LTCC, or metal nitride ceramics, and is generally a high expansion coefficient material. On the other hand, since the frame part is made of quartz glass, it is a low expansion coefficient material. Therefore, for example, if it is desired to use solder to join the frame to the base, the difference in expansion coefficient between the base and the frame is large, making it difficult to match the thermal expansion coefficient of the solder to the respective thermal expansion coefficients of the base and the frame. That is to say, if the thermal expansion coefficient of the solder is matched with that of the base material, the difference between the thermal expansion coefficients of the frame and the solder becomes large, and if the thermal expansion coefficient of the solder is matched with the frame, the base material and the solder The difference in thermal expansion coefficient becomes larger. As a result, residual stress is easily generated in the joint portion between the base material and the frame portion or its vicinity, and breakage (such as cracks or the like) tends to occur. If the junction part or its vicinity is damaged in this way, the airtightness of the storage space of an electronic component may fall, and there exists a possibility that an electronic component may deteriorate.
本发明的课题在于,提供能够保持高的气密性的保护帽及电子装置。An object of the present invention is to provide a protective cap and an electronic device capable of maintaining high airtightness.
用于解决问题的手段means of solving problems
为了解决上述的问题而提出的本发明的保护帽的特征在于,具备:框部、覆盖框部的一端开口的盖部、以及将框部与盖部接合的接合部,盖部由石英玻璃形成,框部由30~380℃的温度范围中的热膨胀系数为30×10-7~100×10-7/℃的玻璃材料形成。这样一来,即使由石英玻璃构成盖部,框部的热膨胀系数也不仅与盖部匹配,而且与由金属、金属氧化物陶瓷、LTCC或金属氮化物陶瓷构成的基材的热膨胀系数也匹配。其结果是,即使使用例如钎料等将保护帽接合于基材,也不易在接合部或其附近发生破损,因此,能够保持高的气密性。此处,“石英玻璃”是指包含合成石英、熔融石英等、并且包含SiO2 90质量%以上的非结晶体。“30~380℃的温度范围中的热膨胀系数”例如可以使用市售的膨胀计进行测定。In order to solve the above-mentioned problems, the protection cap of the present invention is characterized in that it includes a frame portion, a cover portion covering the opening at one end of the frame portion, and a joint portion joining the frame portion and the cover portion, and the cover portion is formed of quartz glass. The frame portion is formed of a glass material having a thermal expansion coefficient of 30×10 -7 to 100×10 -7 /°C in a temperature range of 30 to 380°C. In this way, even if the cover is made of quartz glass, the thermal expansion coefficient of the frame matches not only that of the cover but also that of the base material made of metal, metal oxide ceramics, LTCC, or metal nitride ceramics. As a result, even if the protective cap is bonded to the base material using, for example, brazing filler metal, damage is less likely to occur at the bonded portion or its vicinity, and thus high airtightness can be maintained. Here, "quartz glass" refers to an amorphous body including synthetic quartz, fused silica, and the like, and containing 90% by mass or more of SiO 2 . "The thermal expansion coefficient in the temperature range of 30-380 degreeC" can be measured using a commercially available dilatometer, for example.
在上述的构成中,优选接合部是框部与盖部被直接熔接而形成的。这样一来,由于在框部与盖部之间未夹隔钎料等其他构件,因此,框部的热膨胀系数与盖部的热膨胀系数之差在某种程度上较大,也能够将框部与盖部可靠地接合。In the above configuration, it is preferable that the joint portion is formed by directly welding the frame portion and the lid portion. In this way, since other members such as solder are not interposed between the frame and the cover, the difference between the thermal expansion coefficient of the frame and the cover is somewhat large, and the frame can also be Engages securely with the cover.
在上述的构成中,框部的玻璃材料在光路长0.7mm、波长200nm下的透射率优选为10%以上。这样一来,除了由具有高紫外线的透射性的石英玻璃构成的盖部以外,框部也具有紫外线的透射性,因此,能够作为保护帽整体而实现高紫外线的透射性。此处,“光路长0.7mm、波长200nm下的透射率”可以在制作厚度0.7mm的测定试样之后供于测定,也可以采用在沿着玻璃材料的厚度方向测定透射率之后换算成光路长0.7mm的值。“波长200nm下的透射率”可以使用市售的分光高度计(例如,日立制作所制UV-3100)进行测定。In the above configuration, the glass material of the frame portion preferably has a transmittance of 10% or more at an optical path length of 0.7 mm and a wavelength of 200 nm. In this way, in addition to the cover portion made of quartz glass having high ultraviolet transmittance, the frame portion also has ultraviolet transmittance, and therefore high ultraviolet transmittance can be realized as the entire protective cap. Here, the "transmittance at an optical path length of 0.7 mm and a wavelength of 200 nm" can be measured after preparing a measurement sample with a thickness of 0.7 mm, or can be converted into an optical path length after measuring the transmittance along the thickness direction of the glass material. 0.7mm value. The "transmittance at a wavelength of 200 nm" can be measured using a commercially available spectroscopic altimeter (for example, UV-3100 manufactured by Hitachi, Ltd.).
在上述的构成中,框部的玻璃材料的应变点优选为430℃以上。这样一来,例如,在使用钎料将保护帽的框部接合于基材的情况下,能够通过钎焊时的加热(回流)抑制在框部产生应变。此处,“应变点”是指基于ASTM C336的方法测定的值。In the above configuration, the strain point of the glass material of the frame portion is preferably 430° C. or higher. In this way, for example, when the frame portion of the protective cap is joined to the base material using brazing filler metal, it is possible to suppress generation of strain in the frame portion by heating (reflow) during brazing. Here, "strain point" means the value measured based on the method of ASTM C336.
在上述的构成中,框部的玻璃材料的软化点优选为1000℃以下。这样一来,例如,在通过激光接合等将盖部与框部直接熔接的情况下,框部容易软化,因此,能够缩短盖部及框部的接合时间。此处,“软化点”是指基于ASTM C338的方法测定的值。In the above configuration, the softening point of the glass material of the frame portion is preferably 1000° C. or lower. In this way, for example, when the lid portion and the frame portion are directly welded by laser welding or the like, the frame portion tends to soften, and thus the time for joining the lid portion and the frame portion can be shortened. Here, "softening point" means the value measured based on the method of ASTM C338.
在上述的构成中,框部的玻璃材料优选以质量%计含有SiO2 50~80%、Al2O3+B2O31~45%、Li2O+Na2O+K2O 0~25%、MgO+CaO+SrO+BaO 0~25%作为组成。此处,“Al2O3+B2O3”为Al2O3及B2O3的合计量。“MgO+CaO+SrO+BaO”为MgO、CaO、SrO及BaO的合计量。In the above configuration, the glass material of the frame portion preferably contains 50 to 80% by mass of SiO 2 , 1 to 45% of Al 2 O 3 +B 2 O 3 , Li 2 O+Na 2 O+K 2 O 0 ~25%, MgO+CaO+SrO+BaO 0~25% as the composition. Here, "Al 2 O 3 +B 2 O 3 " is the total amount of Al 2 O 3 and B 2 O 3 . "MgO+CaO+SrO+BaO" is the total amount of MgO, CaO, SrO, and BaO.
在上述的构成中,优选在框部的内周面形成有反射膜。这样一来,在使用保护帽制作将光射出的电子装置的情况下,光的取出效率提高。In the above configuration, it is preferable that a reflective film is formed on the inner peripheral surface of the frame portion. In this way, when an electronic device that emits light is manufactured using the protective cap, the light extraction efficiency is improved.
在上述的构成中,优选在盖部的表面和背面中的至少一个上形成有防反射膜。这样一来,在使用保护帽制作将光射出的电子装置的情况下,光的取出效率提高。In the above configuration, it is preferable that an antireflection film is formed on at least one of the front surface and the rear surface of the cover. In this way, when an electronic device that emits light is manufactured using the protective cap, the light extraction efficiency is improved.
为了解决上述的问题而提出的本发明的电子装置的特征在于,具备:电子部件、搭载有电子部件的基材、以及上述的构成的保护帽,该保护帽以将电子部件收纳于内部的方式被接合于基材。这样一来,能够享有与以上说明的保护帽的对应构成同样的作用效果。The electronic device of the present invention proposed in order to solve the above-mentioned problems is characterized by comprising: an electronic component, a base material on which the electronic component is mounted, and a protective cap having the above-mentioned configuration, and the protective cap accommodates the electronic component inside. bonded to the substrate. In this way, the same operation and effect as the corresponding configuration of the protective cap described above can be enjoyed.
在上述的构成中,保护帽与基材优选通过钎料被接合。In the above configuration, the protective cap and the base material are preferably bonded by solder.
在上述的构成中,电子部件优选为紫外线LED。这样一来,可以提供能够实现高紫外线的取出效率的电子装置(发光装置)。In the above configuration, the electronic component is preferably an ultraviolet LED. In this way, an electronic device (light emitting device) capable of realizing high extraction efficiency of ultraviolet rays can be provided.
为了解决上述的问题而提出的本发明的保护帽的制造方法的特征在于:具备以下工序:准备工序,准备由石英玻璃形成的盖部、和由30~380℃的温度范围中的热膨胀系数为30×10-7~100×10-7/℃的玻璃材料构成的框部;接合工序,在以覆盖框部的一端开口部的方式使盖部与框部接触的状态下,对盖部及框部的接触部照射激光,由此将盖部与框部直接熔接。这样一来,能够享有与已说明的相对应的保护帽的构成同样的作用效果。In order to solve the above-mentioned problems, the manufacturing method of the protective cap of the present invention is characterized in that: it has the following steps: a preparatory step, preparing a cover portion made of quartz glass, and a coefficient of thermal expansion in the temperature range of 30 to 380° C. 30×10 -7 ~ 100×10 -7 /°C frame made of glass material; in the bonding process, the cover and the frame are placed in contact with each other so as to cover one end opening of the frame. The contact portion of the frame is irradiated with laser light, whereby the cover and the frame are directly welded. In this way, it is possible to enjoy the same effect as that of the configuration of the protective cap corresponding to that described above.
发明效果Invention effect
根据本发明,可以提供能够保持高的气密性的保护帽及电子装置。According to the present invention, a protective cap and an electronic device capable of maintaining high airtightness can be provided.
附图说明Description of drawings
图1是示出第一实施方式的电子装置的剖面图。FIG. 1 is a cross-sectional view showing an electronic device according to a first embodiment.
图2是图1的A-A剖面图。Fig. 2 is a cross-sectional view along line A-A of Fig. 1 .
图3是示出波长200~600nm下的BU-41及石英玻璃的透射率曲线的图表。FIG. 3 is a graph showing transmittance curves of BU-41 and quartz glass at wavelengths of 200 to 600 nm.
图4是示出第一实施方式的电子装置的制造工序的剖面图。4 is a cross-sectional view illustrating a manufacturing process of the electronic device according to the first embodiment.
图5是示出第一实施方式的电子装置的制造工序的剖面图。5 is a cross-sectional view illustrating a manufacturing process of the electronic device according to the first embodiment.
图6是示出第一实施方式的电子装置的制造工序的剖面图。6 is a cross-sectional view illustrating a manufacturing process of the electronic device according to the first embodiment.
图7是示出第一实施方式的电子装置的制造工序的剖面图。7 is a cross-sectional view illustrating a manufacturing process of the electronic device according to the first embodiment.
图8是示出第二实施方式的电子装置的剖面图。8 is a cross-sectional view showing an electronic device of a second embodiment.
图9是示出第二实施方式的电子装置的制造工序的剖面图。9 is a cross-sectional view illustrating a manufacturing process of the electronic device according to the second embodiment.
图10是示出第二实施方式的电子装置的制造工序的剖面图。10 is a cross-sectional view illustrating a manufacturing process of the electronic device according to the second embodiment.
图11是示出第二实施方式的电子装置的制造工序的剖面图。FIG. 11 is a cross-sectional view illustrating a manufacturing process of the electronic device according to the second embodiment.
图12是示出第二实施方式的电子装置的制造工序的俯视图。FIG. 12 is a plan view showing a manufacturing process of the electronic device according to the second embodiment.
图13是示出第三实施方式的框部的剖面图。Fig. 13 is a cross-sectional view showing a frame portion of a third embodiment.
具体实施方式Detailed ways
以下,参照附图对本发明的实施方式进行说明。需要说明的是,有时通过对在各实施方式中对应的构成要素标记相同符号,省略重复的说明。在各实施方式中仅对构成的一部分进行说明时,关于该构成的其他部分,可以应用先前说明的其他实施方式的构成。另外,不仅在各实施方式的说明中明示的构成的组合,只要不对组合造成障碍,则即使未明示,也可以将多个实施方式的构成彼此部分地组合。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code|symbol is attached|subjected to the component corresponding to each embodiment in some cases, and overlapping description is abbreviate|omitted. When only a part of the configuration is described in each embodiment, the configurations of other embodiments described above can be applied to other parts of the configuration. In addition, not only the combination of the configurations explicitly described in the description of the respective embodiments, but also the configurations of the plurality of embodiments may be partially combined, even if not explicitly stated, as long as it does not hinder the combination.
(第一实施方式)(first embodiment)
图1及图2示例出本发明的第一实施方式的电子装置1。1 and 2 illustrate an
本实施方式的电子装置1具备:电子部件2、搭载有电子部件2的基材3、以电子部件2被收纳于内部的方式配置于基材3的保护帽4、以及将基材3及保护帽4接合的接合部5。需要说明的是,在以下的说明中,为了方便,以基材3侧为下、并以保护帽4侧为上进行说明,但上下方向不限定于此。The
电子部件2没有特别限定,例如可举出:激光模块、LED、光传感器、摄像元件、光开关等光学器件。在本实施方式中,电子部件2为紫外线LED(发光元件),电子装置1为发光装置。The
基材3例如由金属、金属氧化物陶瓷、LTCC或金属氮化物陶瓷构成。作为金属,例如可举出:铜、金属硅等。作为金属氧化物陶瓷,例如可举出氧化铝等。作为LTCC,例如可举出:使包含结晶性玻璃和耐火性填料的复合粉末烧结而成的LTCC等。作为金属氮化物陶瓷,例如可举出氮化铝等。在本实施方式中,基材3由氮化铝构成。氮化铝在30~380℃的温度范围中的热膨胀系数例如为46×10-7/℃。另外,在本实施方式中,基材3是上表面3a及下表面3b均由平面构成的板状体。需要说明的是,基材3可以在上表面3a搭载有电子部件2的部分设置有凹部。The
保护帽4具备框部6、覆盖框部6的一端开口的盖部7、以及将框部6及盖部7接合的接合部8。需要说明的是,优选在保护帽4的表面形成各种功能膜,例如为了减少光反射损失,优选在盖部7的上下表面7a、7b中的至少一个上形成有防反射膜。防反射膜优选分别形成于盖部7的上下表面7a、7b。防反射膜可以仅形成于盖部7的上下表面7a、7b中的至少一个中与框部6的贯穿孔H对应的部分,也可以形成于整个面。作为防反射膜,例如优选为折射率相对较低的低折射率层与折射率相对较高的高折射率层交替层叠而成的电介质多层膜。由此,容易控制各波长下的反射率。防反射膜例如可以通过溅射法、CVD法等形成。从电子部件2射出的光的波段(例如,250~350nm)下的防反射膜的反射率例如优选为1%以下、0.5%以下、0.3%以下、特别是0.1%以下。The
框部6是在中心具有沿着厚度方向(上下方向)的贯穿孔H的筒状体。框部6围绕被收纳于与贯穿孔H对应的空间的电子部件2的周围。在图示例中,框部6由四方筒构成,但是也可以为圆筒等其他形状。需要说明的是,对于框部6的内壁面6c而言,为了提高从盖部7穿过的紫外线的取出效率,由随着从框部6的下端面6b侧朝向上端面6a侧而从内侧向外侧移动的倾斜面构成。内壁面6c可以是非倾斜面(垂直面)。贯穿孔H可以通过对框部6的原材料实施蚀刻加工、激光加工、喷砂加工等而形成。The
框部6由30~380℃的温度范围中的热膨胀系数为30×10-7~100×10-7/℃的玻璃材料构成。框部6的热膨胀系数优选为40×10-7/℃以上、50×10-7/℃以上、60×10-7/℃以上、特别优选为70×10-7/℃以上。另外,框部6的热膨胀系数优选为95×10-7/℃以下、特别优选为90×10-7/℃以下。这样一来,框部6的热膨胀系数与由金属、金属氮化物陶瓷等构成的基材3的热膨胀系数匹配。其结果是,即使例如使用钎料等将框部6接合于基材3,也不易在接合部8或其附近发生破损,因此,能够保持高的气密性。The
框部6的玻璃材料优选为紫外线透射玻璃。详细而言,在框部6的玻璃材料中,光路长0.7mm、波长200nm下的透射率优选为10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上,特别优选为80%以上。另外,在框部6的玻璃材料中,光路长0.7mm、波长250nm下的透射率优选为50%以上、60%以上、70%以上,特别优选为80%以上。此外,在框部6的玻璃材料中,将光路长0.7mm、波长250nm下的透射率设为T250、并将光路长0.7mm、波长300nm下的透射率设为T300时,T250/T300的值优选为0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.85以上,特别优选为0.9以上。这样一来,与石英玻璃相比,虽然紫外线的透射率差,但是可以使从由紫外线LED形成的电子部件2射出的光没有问题地透射,能够以高水平保持紫外线的取出效率。The glass material of the
在框部6的玻璃材料中,应变点优选为430℃以上、460℃以上、480℃以上、500℃以上、520℃以上、530℃以上、特别优选为550℃以上。这样一来,在使用钎料将框部6接合于基材3的情况下,能够抑制由于钎焊时的加热(例如300℃左右)而在框部6产生应变。In the glass material of the
在框部6的玻璃材料中,软化点优选为1000℃以下、950℃以下、900℃以下、850℃以下,特别优选为800℃以下。这样一来,在通过激光接合等将框部6及盖部7直接熔接的情况下,框部6容易地软化,因此,能够缩短接合时间。In the glass material of the
在框部6的玻璃材料中,102.5dPa·s时的温度优选为1580℃以下、1550℃以下、1520℃以下、1500℃以下、1480℃以下、特别优选为1470℃以下。102.5dPa·s时的温度过高时,熔融性降低,玻璃的制造成本容易高涨。此处,“102.5dPa·s时的温度”可以通过铂球提拉法进行测定。需要说明的是,102.5dPa·s时的温度相当于熔融温度,该温度越低,熔融性越提高。In the glass material of the
框部6的玻璃材料的液相温度优选为小于1150℃、1120℃以下、1100℃以下、1080℃以下、1050℃以下、1030℃以下、980℃以下、960℃以下、950℃以下,特别优选为940℃以下。另外,框部6的玻璃材料的液相粘度优选为104.0dPa·s以上、104.3dPa.s以上、104.5dPa·s以上、104.8dPa·s以上、105.1dPa·s以上、105.3dPa·s以上,特别优选为105.5dPa·s以上。这样一来,耐失透性提高。此处,“液相温度”是将穿过标准筛30目(500μm)而残留于50目(300μm)的玻璃粉末装入铂舟,在温度梯度炉中保持24小时后,通过显微镜观察对结晶析出的温度进行测定而得到的值。“液相粘度”是通过铂球提拉法对液相温度下的玻璃的粘度进行测定而得到的值。The liquidus temperature of the glass material of the
框部6的玻璃材料的杨氏模量优选为55GPa以上、60GPa以上、65GPa以上,特别优选为70GPa以上。杨氏模量过低时,容易发生框部6的变形、翘曲、破损。此处,“杨氏模量”是指通过共振法测定的值。The Young's modulus of the glass material of the
在框部6的玻璃材料中,作为玻璃组成,以质量%计优选为SiO2 50~80%、Al2O3+B2O3 1~45%、Li2O+Na2O+K2O 0~25%、MgO+CaO+SrO+BaO 0~25%。以下示出如上所述地限定各成分的含量的理由。需要说明的是,在各成分的含量的说明中,除了有特别说明的情况以外,%的表达表示质量%。Among the glass materials for the
SiO2是形成玻璃的骨架的主成分。SiO2的含量优选为50~80%、55~75%、58~70%,特别优选为60~68%。SiO2的含量过少时,杨氏模量、耐酸性容易降低。另一方面,SiO2的含量过多时,高温粘度变高,熔融性容易降低,此外,方石英等失透结晶容易析出,液相温度容易上升。SiO 2 is a main component forming the skeleton of glass. The content of SiO 2 is preferably 50-80%, 55-75%, 58-70%, particularly preferably 60-68%. When the content of SiO 2 is too small, Young's modulus and acid resistance tend to decrease. On the other hand, when the content of SiO 2 is too large, the high-temperature viscosity becomes high, the meltability tends to decrease, and devitrified crystals such as cristobalite tend to precipitate, and the liquidus temperature tends to rise.
Al2O3和B2O3是提高耐失透性的成分。Al2O3+B2O3的含量优选为1~40%、5~35%、10~30%,特别优选为15~25%。Al2O3+B2O3的含量过少时,玻璃容易失透。另一方面,Al2O3+B2O3的含量过多时,玻璃组成的成分平衡受损,反而玻璃容易失透。Al 2 O 3 and B 2 O 3 are components that improve devitrification resistance. The content of Al 2 O 3 +B 2 O 3 is preferably 1 to 40%, 5 to 35%, 10 to 30%, particularly preferably 15 to 25%. When the content of Al 2 O 3 +B 2 O 3 is too small, glass tends to devitrify. On the other hand, when the content of Al 2 O 3 +B 2 O 3 is too high, the component balance of the glass composition is impaired, and the glass tends to devitrify conversely.
Al2O3是提高杨氏模量的成分,并且是抑制分相、失透的成分。Al2O3的含量优选为1~20%、3~18%、特别优选为5~16%。Al2O3的含量过少时,杨氏模量容易降低,而且玻璃容易分相、失透。另一方面,Al2O3的含量过多时,高温粘度变高,熔融性容易降低。Al 2 O 3 is a component that increases Young's modulus and suppresses phase separation and devitrification. The content of Al 2 O 3 is preferably 1 to 20%, 3 to 18%, particularly preferably 5 to 16%. When the content of Al 2 O 3 is too small, the Young's modulus tends to decrease, and the glass tends to be phase-separated and devitrified. On the other hand, when the content of Al 2 O 3 is too large, the high-temperature viscosity becomes high, and the meltability tends to decrease.
B2O3是提高熔融性、耐失透性的成分,而且是改善损伤容易度、提高强度的成分。B2O3的含量优选为3~25%、5~22%、7~19%、特别优选为9~16%。B2O3的含量过少时,熔融性、耐失透性容易降低,而且对于氢氟酸系的药液的耐性容易降低。另一方面,B2O3的含量过多时,杨氏模量、耐酸性容易降低。B 2 O 3 is a component that improves meltability and devitrification resistance, and is a component that improves ease of damage and increases strength. The content of B 2 O 3 is preferably 3 to 25%, 5 to 22%, 7 to 19%, particularly preferably 9 to 16%. When the content of B 2 O 3 is too small, meltability and devitrification resistance tend to decrease, and resistance to hydrofluoric acid-based chemical solutions tends to decrease. On the other hand, when there is too much content of B2O3 , Young's modulus and acid resistance will fall easily.
Li2O、Na2O及K2O是降低高温粘性、显著提高熔融性、并且有助于玻璃原料的初期的熔融的成分。Li2O+Na2O+K2O的含量优选为0~25%、1~20%、4~15%、特别优选为7~13%。Li2O+Na2O+K2O的含量过少时,熔融性容易降低。另一方面,Na2O的含量过多时,存在热膨胀系数不适当地变高的担忧。Li 2 O, Na 2 O, and K 2 O are components that reduce high-temperature viscosity, remarkably improve meltability, and contribute to initial melting of glass raw materials. The content of Li 2 O+Na 2 O+K 2 O is preferably 0 to 25%, 1 to 20%, 4 to 15%, particularly preferably 7 to 13%. When the content of Li 2 O+Na 2 O+K 2 O is too small, the meltability tends to decrease. On the other hand, when there is too much content of Na2O , there exists a possibility that a thermal expansion coefficient may become high unduly.
Li2O是降低高温粘性、显著提高熔融性、并且有助于玻璃原料的初期的熔融的成分。Li2O的含量优选为0~5%、0~3%、0~1%,特别优选为0~0.1%。Li2O的含量过少时,熔融性容易降低,此外,存在热膨胀系数不适当地变低的担忧。另一方面,Li2O的含量过多时,玻璃容易分相。Li 2 O is a component that reduces high-temperature viscosity, remarkably improves meltability, and contributes to initial melting of glass raw materials. The content of Li 2 O is preferably 0 to 5%, 0 to 3%, and 0 to 1%, particularly preferably 0 to 0.1%. When the content of Li 2 O is too small, the meltability tends to decrease, and the thermal expansion coefficient may become unduly low. On the other hand, when the content of Li 2 O is too high, the glass tends to separate into phases.
Na2O是降低高温粘性、显著提高熔融性、并且有助于玻璃原料的初期的熔融的成分。而且是用于调整热膨胀系数的成分。Na2O的含量优选为0~25%、1~20%、3~18%、5~15%,特别优选为7~13%。Na2O的含量过少时,熔融性容易降低,此外,存在热膨胀系数不适当地变低的担忧。另一方面,Na2O的含量过多时,存在热膨胀系数不适当地变高的担忧。Na 2 O is a component that reduces high-temperature viscosity, remarkably improves meltability, and contributes to initial melting of glass raw materials. Furthermore, it is a component for adjusting the coefficient of thermal expansion. The content of Na 2 O is preferably 0 to 25%, 1 to 20%, 3 to 18%, 5 to 15%, particularly preferably 7 to 13%. When there is too little content of Na2O , meltability will fall easily, and there exists a possibility that a thermal expansion coefficient may become low unduly. On the other hand, when there is too much content of Na2O , there exists a possibility that a thermal expansion coefficient may become high unduly.
K2O是降低高温粘性、显著提高熔融性、并且有助于玻璃原料的初期的熔融的成分。而且是用于调整热膨胀系数的成分。K2O的含量优选为0~15%、0.1~10%,特别优选为1~5%。K2O的含量过多时,存在热膨胀系数不适当地变高的担忧。K 2 O is a component that reduces high-temperature viscosity, remarkably improves meltability, and contributes to initial melting of glass raw materials. Furthermore, it is a component for adjusting the coefficient of thermal expansion. The content of K 2 O is preferably 0 to 15%, 0.1 to 10%, particularly preferably 1 to 5%. When there is too much content of K2O , there exists a possibility that a thermal expansion coefficient may become high unduly.
MgO、CaO、SrO及BaO是降低高温粘性、提高熔融性的成分。MgO+CaO+SrO+BaO的含量优选为0~25%、0~15%、0.1~12%、1~5%。MgO+CaO+SrO+BaO的含量过多时,玻璃容易失透。MgO, CaO, SrO, and BaO are components that lower high-temperature viscosity and improve meltability. The content of MgO+CaO+SrO+BaO is preferably 0 to 25%, 0 to 15%, 0.1 to 12%, or 1 to 5%. When the content of MgO+CaO+SrO+BaO is too high, glass is likely to devitrify.
MgO是降低高温粘性、提高熔融性的成分,是碱土金属氧化物中显著提高杨氏模量的成分。MgO的含量优选为0~10%、0~8%、0~5%,特别优选为0~1%。MgO的含量过多时,耐失透性容易降低。MgO is a component that lowers high-temperature viscosity and improves meltability, and is a component that remarkably increases Young's modulus among alkaline earth metal oxides. The content of MgO is preferably 0-10%, 0-8%, 0-5%, particularly preferably 0-1%. When there is too much content of MgO, devitrification resistance will fall easily.
CaO是降低高温粘性、显著提高熔融性的成分。另外,在碱土金属氧化物中,导入原料比较廉价,因此,是将原料成本低廉化的成分。CaO的含量优选为0~15%、0.5~10%,特别优选为1~5%。CaO的含量过多时,玻璃容易失透。需要说明的是,CaO的含量过少时,难以享有上述效果。CaO is a component that lowers high-temperature viscosity and remarkably improves meltability. In addition, in alkaline earth metal oxides, since introduction of raw materials is relatively cheap, it is a component that reduces the cost of raw materials. The content of CaO is preferably 0 to 15%, 0.5 to 10%, particularly preferably 1 to 5%. When there is too much content of CaO, glass will become devitrified easily. In addition, when the content of CaO is too small, it becomes difficult to enjoy the said effect.
SrO是提高耐失透性的成分。SrO的含量优选为0~7%、0~5%、0~3%,特别优选为0%以上且小于1%。SrO的含量过多时,玻璃容易失透。SrO is a component that improves devitrification resistance. The content of SrO is preferably 0 to 7%, 0 to 5%, or 0 to 3%, particularly preferably 0% or more and less than 1%. When the content of SrO is too high, the glass tends to devitrify.
BaO是提高耐失透性的成分。BaO的含量优选为0~7%、0~5%、0~3%、0%以上且小于1%。BaO的含量过多时,玻璃容易失透。BaO is a component that improves devitrification resistance. The content of BaO is preferably 0 to 7%, 0 to 5%, 0 to 3%, 0% or more and less than 1%. When the content of BaO is too high, the glass is likely to devitrify.
除上述成分以外,还可以导入其他成分作为任意成分。需要说明的是,从可靠地享有本发明的效果的观点考虑,除上述成分以外的其他成分的含量以合计量计优选为10%以下、5%以下、特别是3%以下。In addition to the above-mentioned components, other components may also be introduced as optional components. In addition, from the viewpoint of reliably enjoying the effect of the present invention, the content of other components other than the above-mentioned components is preferably 10% or less, 5% or less, particularly 3% or less in total.
ZnO是提高熔融性的成分,但是如果在玻璃组成中大量含有,则玻璃容易失透。由此,ZnO的含量优选为0~5%、0~3%、0~1%、0%以上且小于1%,特别优选为0~0.1%。ZnO is a component that improves meltability, but if contained in a large amount in the glass composition, the glass is likely to devitrify. Therefore, the content of ZnO is preferably 0 to 5%, 0 to 3%, 0 to 1%, 0% or more and less than 1%, particularly preferably 0 to 0.1%.
ZrO2是提高耐酸性的成分,但是如果在玻璃组成中大量含有,则玻璃容易失透。由此,ZrO2的含量优选为0~5%、0~3%、0~1%、0~0.5%,特别优选为0.001~0.2%。ZrO 2 is a component that improves acid resistance, but if it is contained in a large amount in the glass composition, the glass will easily devitrify. Therefore, the content of ZrO 2 is preferably 0 to 5%, 0 to 3%, 0 to 1%, 0 to 0.5%, particularly preferably 0.001 to 0.2%.
Fe2O3与TiO2是降低在深紫外区域的透射率的成分。Fe2O3+TiO2的含量优选为100ppm以下、80ppm以下、60ppm以下、0.1~40ppm以下,特别优选为1~20ppm。Fe2O3+TiO2的含量过多时,玻璃着色,在深紫外区域的透射率容易降低。需要说明的是,Fe2O3+TiO2的含量过少时,必须使用高纯度的玻璃原料,导致配合料成本的高涨。Fe 2 O 3 and TiO 2 are components that lower the transmittance in the deep ultraviolet region. The content of Fe 2 O 3 +TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 0.1 to 40 ppm or less, particularly preferably 1 to 20 ppm. If the content of Fe 2 O 3 +TiO 2 is too high, the glass will be colored and the transmittance in the deep ultraviolet region will tend to decrease. It should be noted that when the content of Fe 2 O 3 +TiO 2 is too small, high-purity glass raw materials must be used, resulting in high cost of batch materials.
Fe2O3是降低在深紫外区域的透射率的成分。Fe2O3的含量优选为100ppm以下、80ppm以下、60ppm以下、40ppm以下、20ppm以下、10ppm以下,特别优选为1~8ppm。Fe2O3的含量过多时,玻璃着色,在深紫外区域的透射率容易降低。需要说明的是,Fe2O3的含量过少时,必须使用高纯度的玻璃原料,导致配合料成本的高涨。Fe 2 O 3 is a component that lowers the transmittance in the deep ultraviolet region. The content of Fe 2 O 3 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, particularly preferably 1 to 8 ppm. If the content of Fe 2 O 3 is too high, the glass will be colored and the transmittance in the deep ultraviolet region will tend to decrease. It should be noted that when the content of Fe 2 O 3 is too small, high-purity glass raw materials must be used, resulting in high cost of batch materials.
氧化铁中的Fe离子以Fe2+或Fe3+的状态存在。Fe2+的比例过少时,深紫外线的透射率容易降低。由此,氧化铁中的Fe2+/(Fe2++Fe3+)的质量比例优选为0.1以上、0.2以上、0.3以上、0.4以上,特别优选为0.5以上。Fe ions in iron oxide exist in the state of Fe 2+ or Fe 3+ . When the ratio of Fe 2+ is too small, the transmittance of deep ultraviolet light tends to decrease. Therefore, the mass ratio of Fe 2+ /(Fe 2+ +Fe 3+ ) in iron oxide is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, particularly preferably 0.5 or more.
TiO2是降低在深紫外区域的透射率的成分。TiO2的含量优选为100ppm以下、80ppm以下、60ppm以下、40ppm以下、20ppm以下、10ppm以下,特别优选为0.5~5ppm。TiO2的含量过多时,玻璃着色,在深紫外区域的透射率容易降低。需要说明的是,TiO2的含量过少时,必须使用高纯度的玻璃原料,导致配合料成本的高涨。TiO 2 is a component that lowers the transmittance in the deep ultraviolet region. The content of TiO 2 is preferably 100 ppm or less, 80 ppm or less, 60 ppm or less, 40 ppm or less, 20 ppm or less, 10 ppm or less, particularly preferably 0.5 to 5 ppm. When the content of TiO 2 is too high, the glass is colored and the transmittance in the deep ultraviolet region tends to decrease. It should be noted that when the content of TiO 2 is too small, high-purity glass raw materials must be used, resulting in high batch costs.
Sb2O3是作为澄清剂发挥作用的成分。Sb2O3的含量优选为1000ppm以下、800ppm以下、600ppm以下、400ppm以下、200ppm以下、100ppm以下,特别优选小于50ppm。Sb2O3的含量过多时,在深紫外区域的透射率容易降低。Sb 2 O 3 is a component functioning as a clarifying agent. The content of Sb 2 O 3 is preferably 1000 ppm or less, 800 ppm or less, 600 ppm or less, 400 ppm or less, 200 ppm or less, 100 ppm or less, particularly preferably less than 50 ppm. When the content of Sb 2 O 3 is too high, the transmittance in the deep ultraviolet region tends to decrease.
SnO2是作为澄清剂发挥作用的成分。SnO2的含量优选为2000ppm以下、1700ppm以下、1400ppm以下、1100ppm以下、800ppm以下、500ppm以下、200ppm以下,特别优选为100ppm以下。SnO2的含量过多时,在深紫外区域的透射率容易降低。SnO 2 is a component that functions as a clarifying agent. The content of SnO 2 is preferably 2000 ppm or less, 1700 ppm or less, 1400 ppm or less, 1100 ppm or less, 800 ppm or less, 500 ppm or less, 200 ppm or less, particularly preferably 100 ppm or less. When the content of SnO 2 is too high, the transmittance in the deep ultraviolet region tends to decrease.
F2、Cl2及SO3是作为澄清剂发挥作用的成分。F2+Cl2+SO3的含量优选为10~10000ppm。F2+Cl2+SO3的优选的下限范围为10ppm以上、20ppm以上、50ppm以上、100ppm以上、300ppm以上、特别是500ppm以上,优选的上限范围为3000ppm以下、2000ppm以下、1000ppm以下、特别是800ppm以下。另外,F2、Cl2、SO3各自的优选的下限范围为10ppm以上、20ppm以上、50ppm以上、100ppm以上、300ppm以上、特别是500ppm以上,优选的上限范围为3000ppm以下、2000ppm以下、1000ppm以下、特别是800ppm以下。这些成分的含量过少时,难以发挥澄清效果。另一方面,这些成分的含量过多时,存在澄清气体在玻璃中以泡的形式残存的担忧。F 2 , Cl 2 and SO 3 are components functioning as clarifiers. The content of F 2 +Cl 2 +SO 3 is preferably 10 to 10000 ppm. The preferred lower limit range of F2 + Cl2 + SO3 is 10ppm or more, 20ppm or more, 50ppm or more, 100ppm or more, 300ppm or more, especially 500ppm or more, and the preferred upper limit range is 3000ppm or less, 2000ppm or less, 1000ppm or less, especially Below 800ppm. In addition, each of F 2 , Cl 2 , and SO 3 has a preferable lower limit range of 10 ppm or more, 20 ppm or more, 50 ppm or more, 100 ppm or more, 300 ppm or more, especially 500 ppm or more, and a preferable upper limit range of 3000 ppm or less, 2000 ppm or less, and 1000 ppm or less. , Especially below 800ppm. When there are too few contents of these components, it becomes difficult to exhibit a clarification effect. On the other hand, when there are too many contents of these components, there exists a possibility that clear gas may remain as bubbles in glass.
框部6的玻璃材料例如可以如下所述地制作:通过调配各种玻璃原料,得到玻璃配合料后,将该玻璃配合料熔融,对所得到的熔融玻璃进行澄清、均质化,成形为规定形状而制作。The glass material for the
在框部6的玻璃材料的制造工序中,作为玻璃原料的一部分,优选使用还原剂。这样一来,玻璃中所含的Fe3+被还原,深紫外线的透射率提高。作为还原剂,可以使用木粉、碳粉末、金属铝、金属硅、氟化铝等材料,其中,优选金属硅、氟化铝。In the manufacturing process of the glass material of the
在框部6的玻璃材料的制造工序中,作为玻璃原料的一部分,优选使用金属硅,相对于玻璃配合料的总质量,其添加量优选为0.001~3质量%、0.005~2质量%、0.01~1质量%、特别是0.03~0.1质量%。金属硅的添加量过少时,玻璃中所含的Fe3+不被还原,深紫外线的透射率容易降低。另一方面,金属硅的添加量过多时,存在玻璃着色成茶色的倾向。In the manufacturing process of the glass material for the
作为玻璃原料的一部分,也优选使用氟化铝(AlF3),相对于玻璃配合料的总质量,其添加量换算成F2优选为0.01~5质量%、0.05~4质量%、0.1~3质量%、0.2~2质量%、0.3~1质量%。另一方面,氟化铝的添加量过多时,存在F2气体在玻璃中以泡的形式残存的担忧。氟化铝的添加量过少时,玻璃中所含的Fe3+未被还原,深紫外线的透射率容易降低。Aluminum fluoride (AlF 3 ) is also preferably used as a part of the glass raw material, and the added amount is preferably 0.01 to 5% by mass, 0.05 to 4% by mass, or 0.1 to 3% by mass in terms of F 2 relative to the total mass of the glass batch. % by mass, 0.2 to 2% by mass, and 0.3 to 1% by mass. On the other hand, when the amount of aluminum fluoride added is too large, F 2 gas may remain in the form of bubbles in the glass. When the amount of aluminum fluoride added is too small, the Fe 3+ contained in the glass is not reduced, and the transmittance of deep ultraviolet rays tends to decrease.
在框部6的玻璃材料的制造工序中,优选通过下拉法、特别是溢流下拉法成形为平板形状。溢流下拉法是使熔融玻璃从耐热性的流槽状结构物的两侧溢出,使所溢出的熔融玻璃在流槽状结构物的下顶端合流,并且沿下方进行延伸成形而将玻璃板成形的方法。在溢流下拉法中,应成为玻璃板的表面的面不与流槽状耐火物接触,以自由表面的状态成形。因此,容易制作薄型的玻璃板,并且即使不对表面进行研磨,也能够减小板厚偏差。其结果是,能够将玻璃板的制造成本低廉化。需要说明的是,流槽状结构物的结构、材质只要能够实现期望的尺寸、表面精度,就没有特别限定。另外,向下方进行延伸成形时,施加力的方法也没有特别限定。例如,可以采用使具有足够大的宽度的耐热性辊在与玻璃接触的状态下旋转并延伸的方法,也可以采用使多个成对的耐热性辊仅与玻璃的端面附近接触并延伸的方法。In the manufacturing process of the glass material of the
作为框部6的玻璃材料的成形方法,除了溢流下拉法以外,例如还可以选择狭缝下拉法、再拉法、浮法等。As a method for forming the glass material of the
作为框部6的玻璃材料,具体而言,例如可以使用日本电气硝子株式会公司制造的BU-41。BU-41在30~380℃的温度范围中的热膨胀系数例如为42×10-7/℃。As the glass material of the
框部6的厚度(上下方向尺寸)优选大于电子部件2,优选比电子部件2大0.01~1mm,更优选大0.05~0.5mm,最优选大0.1~0.2mm。The thickness (dimension in the vertical direction) of the
盖部7由石英玻璃构成。石英玻璃中包含熔融石英和合成石英。熔融石英玻璃在30~380℃的温度范围中的热膨胀系数例如为6.3×10-7/℃,合成石英玻璃在30~380℃的温度范围中的热膨胀系数例如为4.0×10-7/℃。另外,在本实施方式中,盖部7是上表面7a及下表面7b均由平面构成的板状体。The
盖部7的厚度(上下方向尺寸)优选为0.1~1.0mm,更优选为0.2~0.8mm,最优选为0.3~0.6mm。The thickness (dimension in the vertical direction) of the
如图2所示,在本实施方式中,将框部6及盖部7接合的接合部8由框部6与盖部7被直接熔接而成的熔接部9形成。熔接部9由激光接合形成。详细而言,熔接部9通过在激光的照射区域中将框部6及盖部7中的至少一者熔融后,使其熔融部固化而形成。也就是说,熔接部9例如由框部6及盖部7中的至少一种材料构成,优选实质上不包含除框部6及盖部7以外的材料。As shown in FIG. 2 , in the present embodiment, the
熔接部9沿着贯穿孔H以同心环状形成有多个(图例中为两个),也可以为一个。多个熔接部9相互在半径方向上分隔开,但是也可以在半径方向上重合。各熔接部9在俯视下构成为四角环状,但不限定于此,也可以构成为圆环状以外的环形状。A plurality of welded portions 9 (two in the illustration) are formed in concentric rings along the through hole H, and may be one. The plurality of welded
熔接部9在厚度方向上连续而跨越框部6和盖部7而形成。需要说明的是,在本实施方式中,在熔接部9的内部,框部6与盖部7之间没有界面。当然,也可以在熔接部9的内部,在框部6与盖部7之间残留有界面。The welded
熔接部9的宽度S1优选为10~200μm,更优选为10~100μm,最优选为10~50μm。熔接部9的厚度S2优选为10~200μm,更优选为10~150μm,最优选为10~100μm。The width S1 of the welded
熔接部9的平面方向的残留应力的最大值优选为10MPa以下,更优选为7MPa以下,最优选为5MPa以下。平面方向的残留应力的最大值是在具有10mm×10mm以上的尺寸的玻璃板中使用Uniopt公司制双折射测定机:ABR-10A对接合部附近的双折射(单位:nm)进行测定并换算成平面方向的残留应力的情况下的最大值。另外,通过光学上的双折射的测定、即正交的直线偏振波的光路差的测定,能够估算玻璃板中的残留应力值,由残留应力产生的偏差应力F(MPa)用F=D/CW式表示。“D”为光路差(nm),“W”为偏振波通过了的距离(cm),“C”为光弹性常数(比例定数),通常成为20~40(nm/cm)/(MPa)的值。需要说明的是,平面方向的残留应力中存在拉伸应力和压缩应力,在上述内容中,对两者的绝对值进行评价。The maximum value of the residual stress in the planar direction of the welded
将框部6及基材3接合的接合部5没有特别限定,在本实施方式中,从框部6的下端面6b侧起依次具备金属化层10和焊料层11。金属化层10是通过蒸镀、溅射等形成于保护帽4的框部6的下端面6b的金属膜,具有提高与焊料层11的密合性的作用。作为金属化层10,例如可以使用Cr、Ti、Ni、Pt、Au、Co及包含这些金属的合金层、或者这些金属、合金的多层膜等。作为焊料层(钎料)11,例如可以使用Au、Sn、Ag、Pb、及包含这些金属的合金、即Au-Sn系焊料、Sn-Ag系焊料、Pb系焊料等层。Au-Sn系焊料在30~380℃的温度范围中的热膨胀系数例如为175×10-7/℃。The
图3示出波长200~600nm下的BU-41(日本电气硝子株式会公司制)及石英玻璃的透射率曲线。如该图所示,石英玻璃在深紫外区域(例如,波长区域200~350nm)中不存在伴随着厚度的增加的透射率的降低,具有90%以上的透射率。另一方面,BU-41在深紫外区域中在厚度0.2mm时具有84%以上的透射率,厚度0.5mm时具有70%以上的透射率。也就是说,BU-41在深紫外区域中虽然比石英玻璃稍差,但是具有良好的透射率。在电子装置(发光装置)1的状态下,具体而言,盖部7及框部6均由厚度0.6mm的石英玻璃构成的情况下的紫外线的取出效率(电子部件(紫外线LED)2的输出倍率)平均为89%,在由厚度0.6mm的石英玻璃构成盖部7、由厚度0.6mm的BU-41构成框部6的情况下的紫外线的取出效率平均为88%。因此,即使由石英玻璃构成盖部7、由石英玻璃以外的具有紫外线透射性的玻璃材料(例如,BU-41)构成框部6,也能够以高水平保持紫外区域的光的取出效率。另外,在该情况下,框部6的热膨胀系数与基材3的热膨胀系数匹配,因此,即使使用钎料等将框部6接合于基材3,也不易在接合部5或其附近发生破损,能够保持高的气密性。FIG. 3 shows transmittance curves of BU-41 (manufactured by NEC Glass Co., Ltd.) and quartz glass at a wavelength of 200 to 600 nm. As shown in the figure, quartz glass has a transmittance of 90% or more without a decrease in transmittance due to an increase in thickness in the deep ultraviolet region (for example, a wavelength region of 200 to 350 nm). On the other hand, BU-41 has a transmittance of 84% or more at a thickness of 0.2 mm in the deep ultraviolet region, and has a transmittance of 70% or more at a thickness of 0.5 mm. That is, BU-41 has good transmittance although it is slightly inferior to quartz glass in the deep ultraviolet region. In the state of the electronic device (light-emitting device) 1, specifically, the extraction efficiency of ultraviolet rays (the output of the electronic component (ultraviolet LED) 2) when both the
图4~图7示例出本发明的第一实施方式的电子装置1的制造方法。4 to 7 illustrate a method of manufacturing the
为了得到保护帽4,本实施方式的电子装置1的制造方法具备:将盖部7与框部6接合的第一接合工序、和将搭载有电子部件2的基材3与保护帽4接合的第二接合工序。In order to obtain the
在第一接合工序中,首先,如图4所示,准备盖部7、和形成有金属化层10及焊料层11的框部6。接下来,使盖部7的下表面7b与框部6的上端面6a直接接触。在该状态下,如图5所示,通过激光照射装置12使激光L聚光于盖部7与框部6的接触部而进行照射。激光L从盖部7及框部6中的至少一侧照射。在本实施方式中,激光L从盖部7侧照射。由此,将接触部熔接而形成熔接部9,并且通过熔接部9将框部6与盖部7接合。In the first bonding step, first, as shown in FIG. 4 , the
盖部7的下表面7b及框部6的上端面6a各自的算术平均粗糙度Ra优选为2.0nm以下,更优选为1.0nm以下,进一步优选为0.5nm以下,最优选为0.2nm以下。算术平均粗糙度Ra是指通过基于JIS B0601:2001方法测定的值。这样一来,盖部7及框部6相互通过接合面间的分子间力(光学接触)而密合,因此,激光接合前的处理性提高。The arithmetic mean roughness Ra of the
作为激光L,可适当地使用具有皮秒级、飞秒级的脉冲宽度的超短脉冲激光。As the laser light L, an ultrashort pulse laser having a pulse width of the picosecond order or femtosecond order can be suitably used.
激光L的波长只要是从玻璃构件透射的波长,就没有特别地限定,例如优选为400~1600nm,更优选为500~1300nm。激光L的脉冲宽度优选为10ps以下,更优选为5ps以下,最优选为200fs~3ps。激光L的聚光直径优选为50μm以下,更优选为30μm以下,优选为20μm以下。The wavelength of the laser light L is not particularly limited as long as it is a wavelength transmitted through the glass member, and is, for example, preferably 400 to 1600 nm, more preferably 500 to 1300 nm. The pulse width of the laser light L is preferably 10 ps or less, more preferably 5 ps or less, and most preferably 200 fs to 3 ps. The focusing diameter of the laser light L is preferably 50 μm or less, more preferably 30 μm or less, and preferably 20 μm or less.
激光L的重复频率必须为使连续的热积累发生的程度,具体而言,优选为100kHz以上,更优选为200kHz以上,进一步优选为500kHz以上。The repetition frequency of the laser light L must be such that continuous heat accumulation occurs, and specifically, it is preferably 100 kHz or higher, more preferably 200 kHz or higher, and still more preferably 500 kHz or higher.
另外,优选利用将一个脉冲分配成多个、进一步缩短脉冲间隔而进行照射的方法(脉冲串式,burst mode)。由此,热蓄积容易发生,能够稳定地形成接合部8。In addition, it is preferable to utilize a method (burst mode) in which one pulse is divided into a plurality of pulses and the pulse interval is further shortened to irradiate. Thereby, heat accumulation is easy to generate|occur|produce, and the
如图6所示,激光L以在贯穿孔H的外侧描绘沿着贯穿孔H的环状轨道T的方式进行扫描。在该情况下,激光L以其照射区域R一边在环状轨道T上重合一边绕着环状轨道T一周的方式进行扫描。或者,激光L以环绕该环状轨道T多次的方式进行扫描。需要说明的是,在将熔接部9形成为多个同心环状的情况下,扫描激光L的环状轨道T也设定成多个同心环状。As shown in FIG. 6 , the laser light L is scanned so as to draw a circular track T along the through hole H outside the through hole H. As shown in FIG. In this case, the laser light L scans so that the irradiation area R overlaps the circular track T and goes around the circular track T once. Alternatively, the laser light L scans around the circular track T a plurality of times. In addition, when forming the
另外,可以通过以围绕贯穿孔H的方式使四根直线交叉成井字形,从而将接合部形成为框状。由此,可以一次制作多个保护帽4,因此,能够提高电子装置1的制造效率。In addition, the junction part can be formed in a frame shape by making four straight lines intersect in a square shape so as to surround the through hole H. FIG. Thereby, a plurality of
需要说明的是,对在上述的第一接合工序中金属化层10及焊料层11预先形成于框部6的情况进行了说明,但是也可以在第一接合工序之后(将盖部7及框部6接合之后)将这些层10、11形成于框部6。It should be noted that the case where the
在第二接合工序中,首先,如图7所示,准备在第一接合工序中得到的保护帽4、和搭载有电子部件2的基材3。接下来,使框部6的下端面6b与基材3的上表面3a隔着金属化层10及焊料层11接触。通过在该状态下进行加热,使焊料层11软化流动(回流),通过焊料层11将框部6与基材3接合。需要说明的是,焊料层11可以使用加热炉进行加热,也可以使用激光进行加热。In the second bonding step, first, as shown in FIG. 7 , the
(第二实施方式)(second embodiment)
图8示例出本发明的第二实施方式的电子装置1。在第二实施方式中,将框部6及基材3接合的接合部5的构成与第一实施方式不同。FIG. 8 illustrates an
在本实施方式中,接合部5由框部6与基材3被直接熔接而成的熔接部21形成。熔接部21通过激光接合形成。详细而言,熔接部21通过在激光的照射区域中将框部6及基材3中的至少一者熔融后使该熔融部固化而形成。也就是说,熔接部21例如由框部6及基材3中的至少一种材料构成,优选实质上不包含除框部6及基材3以外的材料。In the present embodiment, the joining
关于熔接部21的其他构成,与在第一实施方式中说明的熔接部9同样,因此,省略详细说明。The other configurations of the welded
图9~图12示例出本发明的第二实施方式的电子装置1的制造方法。9 to 12 illustrate a method of manufacturing the
为了得到保护帽4,本实施方式的电子装置1的制造方法具备:第一接合工序,将盖部7与框部6接合;和第二接合工序,将搭载有电子部件2的基材3与保护帽4接合。In order to obtain the
如图9及图10所示,第一接合工序与在第一实施方式中说明的第一接合工序同样,是使用从激光照射装置12射出的激光L将盖部7与框部6直接熔接的工序。需要说明的是,未在框部6形成金属化层10及焊料层11,框部6的下端面6b露出。As shown in FIGS. 9 and 10 , the first bonding step is the same as the first bonding step described in the first embodiment, in which the
如图11及图12所示,在第二接合工序中,首先,使在第一接合工序中得到的保护帽4的框部6的下端面6b、与基材3的上表面3a直接接触。在该状态下,通过激光照射装置12使激光L聚光于框部6与基材3的接触部而进行照射。激光L从框部6及基材3中、透射激光L的框部6侧照射。由此,将接触部熔接而形成熔接部21,并且通过熔接部21将框部6与基材3接合。As shown in FIGS. 11 and 12 , in the second bonding step, first, the
框部6的下端面6b及基材3的上表面3a各自的算术平均粗糙度Ra优选为2.0nm以下,更优选为1.0nm以下,进一步优选为0.5nm以下,最优选为0.2nm以下。这样一来,框部6及基材3相互通过接合面间的分子间力而密合,因此,激光接合前的处理性提高。The arithmetic mean roughness Ra of the
关于第二接合工序中使用的激光L的种类、波长、扫描方法等各种条件,可以应用与在第一实施方式中说明的第一接合工序同样的条件。Regarding various conditions such as the type, wavelength, and scanning method of the laser light L used in the second bonding step, the same conditions as those in the first bonding step described in the first embodiment can be applied.
需要说明的是,本发明不限定于上述的实施方式的构成,不限定于上述的作用效果。本发明可以在不脱离本发明的主旨的范围进行各种变更。It should be noted that the present invention is not limited to the configuration of the above-mentioned embodiment, nor is it limited to the above-mentioned operation and effect. Various modifications can be made in the present invention without departing from the scope of the present invention.
在上述的实施方式中,对将框部6与盖部7直接熔接的情况进行了说明,但框部6与盖部7的接合方法不限定于此。例如,框部6与盖部7可以经由粘接层(例如,玻璃粘接材)粘接在一起。In the above-mentioned embodiment, the case where the
在上述的实施方式中,可以在将框部6与基材3接合之后,将盖部7接合于框部6。在该情况下,可以在将框部6与基材3接合后,在基材3上搭载电子部件2,然后将盖部7接合于框部6。然而,在考虑了操作性的情况下,优选在将框部6与基材3接合之前,在基材3上搭载电子部件2。In the above-described embodiment, the
(第三实施方式)(third embodiment)
图13示例出本发明的第三实施方式的框部6。在本实施方式中,为了提高光的取出效率,在框部6的内周面6c形成有反射膜31。FIG. 13 illustrates a
反射膜31是将从电子部件2射出的光反射的层。反射膜31优选由例如含有铝、金等金属、氧化铝、氧化锆、二氧化钛等陶瓷的树脂涂料、玻璃糊等构成。
反射膜31的厚度例如优选为0.1~100μm。The thickness of the
从电子部件2射出的光的波段(例如,250~350nm)下的反射膜31的反射率优选为10%、20%、30%、40%、50%、60%以上,特别优选为70%以上。此处,反射率可以通过使用日立高新技术制UH-4150对250~350nm的波长范围的各波长下的透射率进行测定而计算出。The reflectance of the
作为将反射膜31形成于框部6的内周面6c的方法,期望利用喷涂法。在利用喷涂法的情况下,可以通过用在掩模保护框部6的上下端面6a、6b的平坦部的状态下,在框部6的内周面涂布喷涂液(成为反射膜的液体),然后,将掩模剥离,从而简单地在框部6的内周面6c形成反射膜31。需要说明的是,反射膜31的形成方法不限定于此,例如也可以利用浸涂法等。在利用浸涂法的情况下,可以通过将具有贯穿孔H的框部6浸渍于浸涂液(成为反射膜31的液体)中,然后,通过研磨等将形成于框部6的表面的不需要部分(上下端面6a、6b等)的反射膜31除去,从而在框部6的内周面6c形成反射膜31。在该情况下,将不需要部分的反射膜31除去时,对框部6的上端面6a进行研磨,由此可以调整与盖部7的接合时的面精度。As a method of forming the
实施例Example
以下,基于实施例对本发明详细地进行说明,但本发明不限定于这些实施例。Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
(1)关于保护帽A、B(1) Regarding protective caps A and B
通过钎料(金锡焊料:热膨胀系数176×10-7/℃)将由石英玻璃构成的盖部与由石英玻璃构成的框部接合,由此制作作为比较例的保护帽A。另外,通过激光照射将由石英玻璃构成的盖部、与由BU-41(热膨胀系数42×10-7/℃)构成的框部直接熔接,由此制作作为实施例的保护帽B。A cover portion made of quartz glass and a frame portion made of quartz glass were joined with solder (gold-tin solder: coefficient of thermal expansion: 176×10 −7 /° C.), thereby producing a protective cap A as a comparative example. In addition, a cover made of quartz glass and a frame made of BU-41 (thermal expansion coefficient: 42×10 −7 /° C.) were directly fused by laser irradiation to produce protective cap B as an example.
对于所得到的保护帽A、B,在与基材的接合部分依次进行Cr、Ni、Au的金属化成膜,从其上分别形成由Au-Sn系焊料构成的焊料层。For the protective caps A and B obtained, metallization films of Cr, Ni, and Au were sequentially formed on the bonded portion with the base material, and solder layers made of Au—Sn-based solder were respectively formed thereon.
使用形成有焊料层的保护帽A、B进行向氮化铝基材的加热安装而制作电子装置,对此时的保护帽的裂纹产生率进行测定。其结果是,在安装后的保护帽A产生了约4%的裂纹,在安装后的保护帽B未产生裂纹。Using the protective caps A and B on which the solder layer was formed, the electronic device was produced by thermal mounting to the aluminum nitride base material, and the rate of occurrence of cracks in the protective caps at this time was measured. As a result, about 4% of cracks occurred in the protective cap A after mounting, and no cracks occurred in the protective cap B after mounting.
(2)关于保护帽C、D(2) Regarding protective caps C and D
通过激光照射将在由石英玻璃构成的盖部的两面形成有紫外线的防反射膜的部件、与由BU-41构成的框部熔接,由此制作作为实施例的保护帽C。另外,通过激光照射,将在由石英玻璃构成的盖部的两面形成有紫外线的防反射膜的部件、与在由BU-41构成的框部的内周面形成有紫外线的反射膜的部件熔接,由此制作作为实施例的保护帽D。A protective cap C as an example was produced by welding a member having an ultraviolet antireflection film formed on both surfaces of a cover made of quartz glass and a frame made of BU-41 by laser irradiation. In addition, by laser irradiation, the part with the ultraviolet anti-reflection film formed on both surfaces of the cover part made of quartz glass and the part with the ultraviolet reflection film formed on the inner peripheral surface of the frame part made of BU-41 are welded. , thus making a protective cap D as an example.
对于所得到的保护帽C、D,在与基材的接合部分依次进行Cr、Ni、Au的金属化成膜,从其上分别形成由Au-Sn系焊料构成的焊料层。For the obtained protective caps C and D, Cr, Ni, and Au metallization films were successively formed at the joint portion with the base material, and solder layers made of Au—Sn-based solder were respectively formed thereon.
使用形成有焊料层的保护帽C、D进行向氮化铝基材的加热安装而制作电子装置,对其光取出效率进行测定。其结果是,使用了保护帽D的电子装置与使用了保护帽C的电子装置相比,光取出效率提高了3%。An electronic device was produced by heat-mounting to an aluminum nitride substrate using the protective caps C and D on which the solder layer was formed, and the light extraction efficiency thereof was measured. As a result, the light extraction efficiency of the electronic device using the protective cap D was 3% higher than that of the electronic device using the protective cap C.
在上述的实施例中,利用框部使用BU-41的例子对本发明进行了说明,但是除了BU-41以外,还可以使用表1所示的试样No.1~3的玻璃。需要说明的是,在下表中,Ps表示应变点,Ta表示退火点,Ts表示软化点,α表示热膨胀系数,E表示杨氏模量,TL表示液相温度,Logηat TL表示液相粘度。In the above-mentioned Examples, the present invention was described using an example in which BU-41 was used for the frame portion, but the glasses of sample Nos. 1 to 3 shown in Table 1 may be used other than BU-41. It should be noted that in the following table, Ps represents the strain point, Ta represents the annealing point, Ts represents the softening point, α represents the thermal expansion coefficient, E represents the Young's modulus, TL represents the liquidus temperature, and Logηat TL represents the liquidus viscosity.
[表1][Table 1]
附图标记说明Explanation of reference signs
1 电子装置1 electronics
2 电子部件2 electronic components
3 基材3 Substrate
4 保护帽4 protective caps
5 接合部5 junction
6 框部6 frame
7 盖部7 cover
8 接合部8 joint
9 熔接部9 welding part
10 金属化层10 metallization layers
11 焊料层11 Solder layer
21 熔接部21 welding part
Claims (12)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-122190 | 2020-07-16 | ||
JP2020122190 | 2020-07-16 | ||
JP2021013049A JP7549802B2 (en) | 2020-07-16 | 2021-01-29 | Protective cap, electronic device, and method for manufacturing protective cap |
JP2021-013049 | 2021-01-29 | ||
PCT/JP2021/021555 WO2022014201A1 (en) | 2020-07-16 | 2021-06-07 | Protective cap, electronic device, and protective cap production method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115803873A true CN115803873A (en) | 2023-03-14 |
Family
ID=79555160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180049326.1A Pending CN115803873A (en) | 2020-07-16 | 2021-06-07 | Protective cap, electronic device and method for manufacturing the protective cap |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20230039663A (en) |
CN (1) | CN115803873A (en) |
TW (1) | TW202218062A (en) |
WO (1) | WO2022014201A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI863154B (en) * | 2023-03-02 | 2024-11-21 | 聚嶸科技股份有限公司 | Ultrashort pulse laser welding system and method for welding composite material |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002289718A (en) * | 2001-03-27 | 2002-10-04 | Kyocera Corp | Solid-state imaging device |
JP2012054492A (en) * | 2010-09-03 | 2012-03-15 | Nk Works Kk | Semiconductor ultraviolet light-emitting element |
JP2012079550A (en) * | 2010-10-01 | 2012-04-19 | Nippon Electric Glass Co Ltd | Electric element package |
KR20170016815A (en) | 2014-06-09 | 2017-02-14 | 니폰 덴키 가라스 가부시키가이샤 | Light-emitting device |
EP3633431A1 (en) * | 2018-10-05 | 2020-04-08 | Indigo Diabetes N.V. | Weld protection for hermetic wafer-level sealing |
JP2021114578A (en) * | 2020-01-21 | 2021-08-05 | 日本電気硝子株式会社 | Protective cap, frame for the same, light-emitting device, and light-emitting device array |
-
2021
- 2021-06-07 KR KR1020237003152A patent/KR20230039663A/en active Pending
- 2021-06-07 WO PCT/JP2021/021555 patent/WO2022014201A1/en active Application Filing
- 2021-06-07 CN CN202180049326.1A patent/CN115803873A/en active Pending
- 2021-06-15 TW TW110121695A patent/TW202218062A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2022014201A1 (en) | 2022-01-20 |
TW202218062A (en) | 2022-05-01 |
KR20230039663A (en) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10882778B2 (en) | Glass substrate, laminated substrate, laminate, and method for producing semiconductor package | |
KR102436789B1 (en) | Laminate, manufacturing method of semiconductor package, semiconductor package, and electronic equipment | |
US12084374B2 (en) | Method for producing glass wafers for packaging electronic devices, and electronic component produced according to the method | |
WO2017212828A1 (en) | Method for producing hermetic package, and hermetic package | |
KR102657651B1 (en) | Infrared absorbing glass plate, manufacturing method thereof, and solid-state imaging device | |
CN115803873A (en) | Protective cap, electronic device and method for manufacturing the protective cap | |
TWI769209B (en) | Hermetic package | |
WO2020050031A1 (en) | Airtight package | |
WO2017179283A1 (en) | Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device | |
JP7549802B2 (en) | Protective cap, electronic device, and method for manufacturing protective cap | |
WO2018216587A1 (en) | Method for producing hermetic package, and hermetic package | |
CN115803872A (en) | Electronic device and method for manufacturing electronic device | |
JP7648986B2 (en) | Electronic device and method for manufacturing the same | |
JP7300089B2 (en) | Protective cap, light emitting device and method for manufacturing protective cap | |
KR20230017178A (en) | Support glass substrate and laminated substrate using the same | |
WO2024057823A1 (en) | Sealant-layer-equipped glass substrate and method for producing hermetic package | |
WO2020022278A1 (en) | Optical package | |
WO2018110163A1 (en) | Glass support substrate and laminate using same | |
TW202308061A (en) | Glass substrate with sealing material layer, and hermetic packaging manufacturing method | |
JP2023008800A (en) | Glass substrate with sealing material layer and method of manufacturing airtight package | |
CN117581355A (en) | Glass substrate with sealing material layer and method for manufacturing airtight package | |
JP2018095544A (en) | Glass support substrate and laminate using same | |
JP2022018818A (en) | Protective cap and electronic device | |
WO2024204573A1 (en) | Optical component, optical module comprising optical component, and production method for optical component | |
JP2009141234A (en) | Surface mounted component package and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |