WO2018216587A1 - Method for producing hermetic package, and hermetic package - Google Patents
Method for producing hermetic package, and hermetic package Download PDFInfo
- Publication number
- WO2018216587A1 WO2018216587A1 PCT/JP2018/019032 JP2018019032W WO2018216587A1 WO 2018216587 A1 WO2018216587 A1 WO 2018216587A1 JP 2018019032 W JP2018019032 W JP 2018019032W WO 2018216587 A1 WO2018216587 A1 WO 2018216587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sealing material
- material layer
- glass
- ceramic substrate
- less
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000011521 glass Substances 0.000 claims abstract description 227
- 239000003566 sealing material Substances 0.000 claims abstract description 224
- 239000000919 ceramic Substances 0.000 claims abstract description 90
- 239000000758 substrate Substances 0.000 claims abstract description 66
- 238000010030 laminating Methods 0.000 claims abstract description 6
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 33
- 229910052797 bismuth Inorganic materials 0.000 claims description 28
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 20
- 239000005365 phosphate glass Substances 0.000 claims description 18
- FJOLTQXXWSRAIX-UHFFFAOYSA-K silver phosphate Chemical compound [Ag+].[Ag+].[Ag+].[O-]P([O-])([O-])=O FJOLTQXXWSRAIX-UHFFFAOYSA-K 0.000 claims description 18
- 229940019931 silver phosphate Drugs 0.000 claims description 18
- 229910000161 silver phosphate Inorganic materials 0.000 claims description 18
- 229910052714 tellurium Inorganic materials 0.000 claims description 18
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 18
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 16
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 8
- 239000002241 glass-ceramic Substances 0.000 claims description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 abstract description 63
- 239000010410 layer Substances 0.000 description 163
- 239000000843 powder Substances 0.000 description 43
- 239000002585 base Substances 0.000 description 33
- 239000000945 filler Substances 0.000 description 28
- 238000004031 devitrification Methods 0.000 description 27
- 239000002245 particle Substances 0.000 description 22
- 230000007423 decrease Effects 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 16
- 230000001070 adhesive effect Effects 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 10
- 230000003746 surface roughness Effects 0.000 description 9
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000001771 impaired effect Effects 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- 229910018068 Li 2 O Inorganic materials 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- -1 mol% Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000005388 borosilicate glass Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007496 glass forming Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000005361 soda-lime glass Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229910000174 eucryptite Inorganic materials 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- CUVLMZNMSPJDON-UHFFFAOYSA-N 1-(1-butoxypropan-2-yloxy)propan-2-ol Chemical compound CCCCOCC(C)OCC(C)O CUVLMZNMSPJDON-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- JDSQBDGCMUXRBM-UHFFFAOYSA-N 2-[2-(2-butoxypropoxy)propoxy]propan-1-ol Chemical compound CCCCOC(C)COC(C)COC(C)CO JDSQBDGCMUXRBM-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- 229940088601 alpha-terpineol Drugs 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QUBMWJKTLKIJNN-UHFFFAOYSA-B tin(4+);tetraphosphate Chemical compound [Sn+4].[Sn+4].[Sn+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QUBMWJKTLKIJNN-UHFFFAOYSA-B 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052844 willemite Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
- 229910000500 β-quartz Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/06—Containers; Seals characterised by the material of the container or its electrical properties
- H01L23/08—Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/10—Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
Definitions
- the present invention relates to a method for manufacturing a hermetic package and a hermetic package, and more specifically, manufacturing a hermetic package in which a ceramic substrate and a glass lid are hermetically sealed by a sealing process using laser light (hereinafter referred to as laser sealing).
- laser sealing a sealing process using laser light
- the present invention relates to a method and an airtight package manufactured by the method.
- the airtight package generally includes a ceramic base, a light-transmitting glass lid, and internal elements housed therein.
- the sealed portion is hardly deteriorated by moisture in the surrounding environment, and it becomes easy to ensure the airtight reliability of the airtight package.
- the glass powder has a higher softening temperature than the organic resin adhesive, there is a risk that the internal element is thermally deteriorated during sealing.
- laser sealing has attracted attention in recent years. According to laser sealing, only the portion to be sealed can be locally heated, and the ceramic base and the glass lid can be hermetically integrated without thermally deteriorating the internal elements.
- the thermal conductivity of the ceramic substrate is higher than when laser sealing the glass substrate and the glass lid, and the temperature of the ceramic substrate rises during laser sealing. Therefore, there is a problem that the sealing material layer and the ceramic substrate are difficult to react and it is difficult to ensure the laser sealing strength.
- the reactivity between the sealing material layer and the ceramic substrate can be increased.
- the portion in contact with the locally heated sealing material layer in the glass lid is locally increased. Since a large temperature difference occurs in the unheated part, the glass lid is easily damaged by the thermal shock, and there arises a problem that the airtight reliability in the airtight package cannot be secured.
- the present invention has been made in view of the above circumstances, and its technical problem is that when laser sealing a ceramic substrate and a glass lid, both laser sealing strength and airtight reliability can be achieved at a high level.
- the idea is to create an airtight package manufacturing method.
- the inventor formed the first sealing material layer on the ceramic substrate and the second sealing material layer on the glass lid, and then the first sealing material layer and the second sealing material layer.
- the present inventors have found that the above technical problem can be solved when laser sealing is performed in a state in which the adhesive material layer is in contact, and the present invention proposes. That is, in the method for manufacturing an airtight package of the present invention, a ceramic substrate is prepared, a step of forming a first sealing material layer on the ceramic substrate, a glass lid is prepared, and a second is formed on the glass lid.
- a step of forming a sealing material layer a step of laminating and arranging the ceramic base and the glass lid so that the first sealing material layer and the second sealing material layer are in contact, and laser light from the glass lid side.
- the first sealing material layer and the second sealing material layer are hermetically sealed to form an airtight package.
- a step of obtaining a step of obtaining.
- a first sealing material layer is formed on a ceramic substrate and a second sealing material layer is formed on a glass lid, and then the first sealing material layer and the second sealing material layer are formed. It is characterized in that laser sealing is performed in a state where the adhesive material layer is in contact. In this way, since the sealing material layer is formed on the ceramic substrate and the glass lid by firing in an electric furnace or the like before laser sealing, a strong reaction layer can be formed on the surface layer of the ceramic substrate, and glass A strong reaction layer can also be formed on the surface of the lid.
- both the first sealing material layer and the second sealing material layer are softened and flowed and melted at the time of laser sealing, the ceramic base and the glass lid can be easily hermetically integrated. Furthermore, since the local heating temperature at the time of laser sealing can be lowered, not only is the glass lid difficult to break due to thermal shock, but also heat transmitted to the internal elements due to heat conduction can be reduced. As a result, the laser sealing strength and the hermetic reliability of the hermetic package can be enhanced at the same time, and thermal deterioration of the internal elements can be prevented.
- the first sealing material layer contains at least one of bismuth glass, silver phosphate glass, and tellurium glass, and the second sealing material. It is preferable that the layer contains one or more of bismuth glass, silver phosphate glass, and tellurium glass.
- Bismuth glass especially bismuth glass containing a transition metal oxide in the glass composition, has a feature that it is easy to form a reaction layer on the surface of the ceramic substrate during laser sealing compared to other glass systems. Have.
- the mechanical strength of the sealing material layer can be increased, and the thermal expansion coefficient of the sealing material layer can be reduced.
- Silver phosphate glass and tellurium glass are easier to soften and flow at a lower temperature than bismuth glass, and can reduce thermal distortion that occurs after laser sealing, thus improving thermal and mechanical reliability. It has the feature that it can be. Furthermore, silver phosphate glass and tellurium glass, like bismuth glass, can increase the mechanical strength of the sealing material layer when mixed with refractory filler powder, and the thermal expansion of the sealing material layer. The coefficient can be reduced.
- bismuth-based glass refers to glass mainly composed of Bi 2 O 3 , and specifically refers to glass containing 25 mol% or more of Bi 2 O 3 in the glass composition.
- “Silver phosphate glass” refers to a glass mainly composed of Ag 2 O and P 2 O 5 , specifically, 20 mol% of Ag 2 O and P 2 O 5 in the total amount in the glass composition. It refers to the glass containing above. “Tellurium-based glass” refers to glass containing TeO 2 as a main component, and specifically refers to glass containing 20 mol% or more of TeO 2 in the glass composition.
- the method for manufacturing an airtight package of the present invention has an average thickness of the first sealing material layer of less than 8.0 ⁇ m, an average thickness of the second sealing material layer of less than 8.0 ⁇ m, and the first sealing material layer. It is preferable to regulate the sum of the average thickness of the material layer and the average thickness of the second sealing material layer to less than 15.0 ⁇ m. In this way, since the residual stress in the hermetic package after laser sealing is reduced, the hermetic reliability of the hermetic package can be improved.
- the average width of the first sealing material layer is restricted to less than 2000 ⁇ m and the average width of the second sealing material layer is restricted to less than 2000 ⁇ m. In this way, since the residual stress in the hermetic package after laser sealing is reduced, the hermetic reliability of the hermetic package can be improved.
- a ceramic base having a base and a frame provided on the base, and to form a first sealing material layer on the top of the frame.
- the manufacturing method of the hermetic package of the present invention further includes a step of polishing the surface of the first sealing material layer.
- the ceramic substrate is glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof.
- the sensor element or the LED element is accommodated in the frame portion of the ceramic substrate.
- the hermetic package of the present invention is a hermetic package having a ceramic base and a glass lid, wherein the ceramic base has a base and a frame provided on the base, and a bismuth-based material is formed on the top of the frame of the ceramic base.
- a first sealing material layer containing at least one of glass, silver phosphate glass, and tellurium glass is formed, and bismuth glass, silver phosphate glass, and tellurium glass are formed on the glass lid.
- a second sealing material layer containing any one or more of the above is formed, and the first sealing material layer and the second sealing material layer are hermetically integrated in a state of contact arrangement It is characterized by that.
- the first sealing material layer contains bismuth-based glass containing a transition metal oxide in the glass composition, and the second sealing material layer transitions in the glass composition. It is preferable to contain a bismuth glass containing a metal oxide.
- the hermetic package of the present invention has an average thickness of the first sealing material layer of less than 8.0 ⁇ m, an average thickness of the second sealing material layer of less than 8.0 ⁇ m, and the first sealing material layer.
- the total of the average thickness of the adhesive material layer and the average thickness of the second sealing material layer is preferably less than 15.0 ⁇ m.
- the average width of the first sealing material layer is less than 2000 ⁇ m and the average width of the second sealing material layer is less than 2000 ⁇ m.
- the ceramic substrate is glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof.
- the sensor element or the LED element is accommodated in the frame portion of the ceramic substrate.
- the method for manufacturing an airtight package according to the present invention comprises preparing a ceramic substrate, forming a first sealing material layer on the ceramic substrate, preparing a glass lid, and second sealing on the glass lid. Forming a material layer.
- the ceramic substrate preferably has a base and a frame provided on the base. In this way, it becomes easy to accommodate an internal element such as a sensor chip in the space in the ceramic substrate.
- the frame portion of the ceramic base is preferably formed in a frame shape along the outer peripheral edge region of the ceramic base. In this way, the effective area that functions as a device can be expanded. Furthermore, internal elements such as sensor chips can be easily accommodated in the frame portion of the ceramic substrate, and wiring bonding and the like can be easily performed.
- the surface roughness Ra of the surface of the region where the sealing material layer is disposed at the top of the frame is preferably less than 1.0 ⁇ m. If the surface roughness Ra of the surface increases, the accuracy of laser sealing tends to decrease.
- the “surface roughness Ra” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
- the ceramic substrate is preferably one of glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof (for example, aluminum nitride and glass ceramic integrated). Since the glass ceramic can easily form the thermal via, it is possible to appropriately prevent the airtight package from excessively generating heat during the operation of the internal element. Since aluminum nitride and aluminum oxide have good heat dissipation, it is possible to appropriately prevent the airtight package from excessively generating heat during the operation of the internal element.
- Glass pigment, aluminum nitride, and aluminum oxide may have a black pigment dispersed therein.
- the ceramic substrate can absorb the laser light transmitted through the sealing material layer.
- the heat flow toward the ceramic base having high thermal conductivity can be reduced during laser sealing, laser sealing can be performed efficiently.
- a ceramic substrate in which a black pigment is dispersed has a property of absorbing laser light to be irradiated, that is, a thickness of 0.5 mm and a total light transmittance of 10 at the wavelength of the laser light to be irradiated (for example, 808 nm). % Or less (preferably 5% or less). In this way, the ceramic substrate can be efficiently heated.
- the thickness of the base of the ceramic substrate is preferably 0.1 to 2.5 mm, particularly preferably 0.2 to 1.5 mm. Thereby, thickness reduction of an airtight package can be achieved.
- the average thickness of the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably less than 8.0 ⁇ m, particularly 1.0 ⁇ m or more and less than 6.0 ⁇ m. Furthermore, the sum of the average thickness of the first sealing material layer and the average thickness of the second sealing material layer is preferably less than 15.0 ⁇ m, in particular less than 12.0 ⁇ m.
- the smaller the average thickness of the sealing material layer the more the stress remaining in the sealing portion after laser sealing can be reduced even if the thermal expansion coefficients of the sealing material layer, the ceramic substrate and the glass lid are mismatched. . In addition, the accuracy of laser sealing can be increased. Examples of the method for regulating the average thickness of the sealing material layer as described above include a method of thinly applying a sealing material paste and a method of polishing the surface of the sealing material layer.
- the average width of the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably less than 2000 ⁇ m, less than 1200 ⁇ m, particularly 200 ⁇ m or more and less than 800 ⁇ m.
- the average width of the sealing material layer is narrowed, the stress remaining in the sealing portion after laser sealing can be reduced.
- the width of the frame portion of the ceramic substrate can be reduced, and the effective area that functions as a device of an airtight package can be expanded.
- the surface roughness Ra of the sealing material layer is preferably less than 0.5 ⁇ m and not more than 0.2 ⁇ m, particularly 0.01 to 0.15 ⁇ m. It is. If it does in this way, the adhesiveness of a 1st sealing material layer and a 2nd sealing material layer will improve, and the precision of laser sealing will improve.
- the “surface roughness Ra” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
- the method of polishing the surface of the sealing material layer the particle size of the refractory filler powder contained in the sealing material layer is reduced. A method is mentioned.
- the first sealing material layer and the second sealing material layer may have the same material configuration, and may contain glass powder having the same glass composition. In this way, the first sealing material layer and the second sealing material layer have the same behavior with respect to heat such as fluidity and thermal expansion coefficient, so that the laser sealing process can be easily controlled.
- the first sealing material layer and the second sealing material layer may have different material configurations, and may contain glass powders having different glass compositions.
- the thermal expansion coefficients of the first sealing material layer and the second sealing material layer can be individually adjusted, the first sealing material layer, the second sealing material layer, the ceramic It becomes easy to optimize the thermal expansion coefficient between the base and the glass lid. As a result, it becomes easy to prevent breakage of the glass lid or the like after laser sealing.
- the sealing material layer is a sintered body of a sealing material and is softened and deformed during laser sealing.
- Various glass for example, bismuth glass, silver phosphate glass, tellurium glass, tin phosphate glass, vanadium glass, etc.
- the sealing material can be used as the sealing material, and in particular, the laser sealing strength is ensured.
- the content of the transition metal oxide in the glass is preferably 1 mol% or more, 3 mol% or more, 5 mol% or more, 10 mol% or more, particularly 15 to 30 mol%, in order to improve the laser absorption characteristics.
- the bismuth-based glass may contain, as a glass composition, mol% of Bi 2 O 3 28 to 60%, B 2 O 3 15 to 37%, ZnO 1 to 30%, and transition metal oxide 0 to 40%. preferable.
- mol% of Bi 2 O 3 28 to 60%
- B 2 O 3 15 to 37% of B 2 O 3 15 to 37%
- ZnO 1 to 30% of ZnO 1 to 30%
- transition metal oxide 0 to 40% preferable.
- % display points out mol%.
- Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 28 to 60%, 33 to 55%, particularly preferably 35 to 45%.
- the content of Bi 2 O 3 is too small, too high softening point, the fluidity tends to decrease.
- the content of Bi 2 O 3 is too large, the glass is liable to be devitrified at the time of laser sealing, and fluidity is liable to decrease due to the devitrification.
- B 2 O 3 is an essential component as a glass forming component, and its content is preferably 15 to 37%, 20 to 33%, particularly preferably 25 to 30%. If the content of B 2 O 3 is too small, it becomes difficult to form a glass network, so that the glass is easily devitrified at the time of laser sealing. On the other hand, when the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
- ZnO is a component that enhances devitrification resistance, and its content is preferably 1 to 30%, 3 to 25%, 5 to 22%, particularly preferably 9 to 20%.
- the content of ZnO is out of the above range, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
- the transition metal oxide is a component having laser absorption characteristics, and its content is 0 to 40%, 1 to 40%, 3 to 40%, 5 to 40%, 12 to 40%, particularly 15 to 30 mol%. Is preferred. When there is too much content of a transition metal oxide, devitrification resistance will fall easily.
- the CuO content is preferably 0 to 40%, 5 to 35%, 10 to 30%, particularly preferably 15 to 25%.
- the CuO content is preferably 0 to 40%, 5 to 35%, 10 to 30%, particularly preferably 15 to 25%.
- the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely.
- it is necessary to introduce a large amount of Bi 2 O 3 into the glass composition In order to lower the softening point of bismuth-based glass, it is necessary to introduce a large amount of Bi 2 O 3 into the glass composition.
- the content of Bi 2 O 3 is increased, the glass is not sealed during laser sealing. It becomes easy to devitrify, and fluidity tends to decrease due to this devitrification. In particular, when the Bi 2 O 3 content is 30% or more, the tendency becomes remarkable.
- As a countermeasure if CuO is added, devitrification of the glass can be effectively suppressed even if the content of Bi 2 O 3 is 30% or more.
- Fe 2 O 3 is a component that enhances devitrification resistance and laser absorption characteristics, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 3%. When the content of Fe 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
- MnO is a component that enhances laser absorption characteristics.
- the content of MnO is preferably 0 to 25%, in particular 5 to 15%. When there is too much content of MnO, devitrification resistance will fall easily.
- MoO 3 is a component that enhances laser absorption characteristics.
- the content of MoO 3 is preferably 0 to 25%, in particular 5 to 15%. When the content of MoO 3 is too large, the devitrification resistance is liable to decrease.
- SiO 2 is a component that increases water resistance, but has an action of increasing the softening point. For this reason, the content of SiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 2%, particularly preferably 0 to 1%. If the content of SiO 2 is too large, the glass tends to be devitrified during laser sealing.
- Al 2 O 3 is a component that enhances water resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 2%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
- Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
- MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
- Sb 2 O 3 is a component that enhances devitrification resistance, and its content is preferably 0 to 5%, particularly preferably 0 to 2%.
- content of Sb 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
- the silver phosphate glass contains, as a glass composition, mol%, Ag 2 O 10 to 50%, P 2 O 5 10 to 35%, ZnO 3 to 25%, transition metal oxide 0 to 30%. Is preferred. In addition, in description of the glass composition range of silver phosphate glass,% display points out mol%.
- Ag 2 O is a component that increases the water resistance because it lowers the melting point of the glass and hardly dissolves in water.
- the content of Ag 2 O is preferably 10 to 50%, particularly preferably 20 to 40%. If Ag 2 O content is too small, the viscosity of the glass becomes high, the flowability tends to decline, water resistance tends to decrease. On the other hand, when the content of Ag 2 O is too large, vitrification tends to be difficult.
- P 2 O 5 is a component that lowers the melting point of glass. Its content is preferably 10 to 35%, particularly preferably 15 to 25%. When the content of P 2 O 5 is too small, vitrification tends to be difficult. On the other hand, when the content of P 2 O 5 is too large, weather resistance, water resistance tends to decrease.
- ZnO is a component that enhances devitrification resistance, and its content is preferably 3 to 25%, 5 to 22%, particularly preferably 9 to 20%.
- the content of ZnO is out of the above range, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
- the transition metal oxide is a component having laser absorption characteristics, and its content is preferably 0 to 30%, 1 to 30%, particularly preferably 3 to 15%. When there is too much content of a transition metal oxide, devitrification resistance will fall easily.
- the content of CuO is preferably 0 to 30%, 1 to 30%, particularly 3 to 15%. When there is too much content of CuO, the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely.
- TeO 2 is a glass forming component and a component that lowers the melting point of glass.
- the content of TeO 2 is preferably 0 to 40%, particularly 10 to 30%.
- Nb 2 O 5 is a component that improves water resistance.
- the content of Nb 2 O 5 is preferably 0 to 25%, particularly 1 to 12%. When the content of Nb 2 O 5 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
- Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
- MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
- the tellurium-based glass preferably contains TeO 2 20 to 80%, Nb 2 O 5 0 to 25%, and transition metal oxide 0 to 40% in terms of glass composition.
- % display indicates mol%.
- TeO 2 is a glass forming component and a component that lowers the melting point of glass.
- the content of TeO 2 is preferably 20 to 80%, particularly preferably 40 to 75%.
- Nb 2 O 5 is a component that improves water resistance.
- the content of Nb 2 O 5 is preferably 0 to 25%, 1 to 20%, particularly preferably 5 to 15%. When the content of Nb 2 O 5 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
- the transition metal oxide is a component having laser absorption characteristics, and its content is preferably 0 to 40%, 5 to 30%, particularly preferably 15 to 25%. When there is too much content of a transition metal oxide, devitrification resistance will fall easily.
- the CuO content is preferably 0 to 40%, 5 to 30%, particularly preferably 15 to 25%.
- the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely.
- Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
- MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
- the average particle diameter D 50 of the glass powder less than 15 ⁇ m, 0.5 ⁇ 10 ⁇ m, particularly 0.8 ⁇ 5 [mu] m is preferred. As the average particle diameter D 50 of the glass powder is small, the softening point of the glass powder is lowered.
- the sealing material layer may contain a refractory filler powder.
- the sealing material layer preferably contains 50 to 100% by volume of glass and 0 to 50% by volume of refractory filler powder, and contains 55 to 85% by volume of glass and 15 to 45% by volume of refractory filler powder. More preferably, it contains 60 to 80% by volume of glass and 20 to 40% by volume of refractory filler powder. If the refractory filler powder is added, the thermal expansion coefficient of the sealing material is easily matched with the thermal expansion coefficient of the ceramic substrate and the glass lid. As a result, it becomes easy to prevent a situation in which undue stress remains in the sealed portion after laser sealing. On the other hand, when the content of the refractory filler powder is too large, the glass content is relatively decreased, so that the surface smoothness of the sealing material layer is lowered and the accuracy of laser sealing is likely to be lowered.
- refractory filler powder it is preferable to use one or more selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, ⁇ -eucryptite, and ⁇ -quartz solid solution.
- These refractory filler powders have a low mechanical expansion coefficient, a high mechanical strength, and a good compatibility with bismuth glass, silver phosphate glass, tellurium glass, and the like.
- the average particle diameter D 50 of the refractory filler powder is preferably less than 2 [mu] m, especially 0.1 ⁇ m or more and less than 1.5 [mu] m.
- the average particle diameter D 50 of the refractory filler powder is too large, the surface smoothness of the sealing material layer is liable to lower, likely the average thickness of the sealing material layer is increased, as a result, the laser sealing precision Tends to decrease.
- the 99% particle size D 99 of the refractory filler powder is preferably less than 5 ⁇ m, 4 ⁇ m or less, particularly 0.3 ⁇ m or more and 3 ⁇ m or less. If the 99% particle size D 99 of the refractory filler powder is too large, the surface smoothness of the sealing material layer tends to decrease, and the average thickness of the sealing material layer tends to increase, resulting in laser sealing. Accuracy is likely to decrease.
- “99% particle diameter D 99 ” refers to a value measured on a volume basis by a laser diffraction method.
- “average particle diameter D 50 ” and “99% particle diameter D 99 ” indicate values measured on a volume basis by a laser diffraction method.
- the sealing material layer may further contain a laser absorbing material in order to enhance the laser absorption characteristics.
- a laser absorbing material in order to enhance the laser absorption characteristics.
- the content of the laser absorbing material in the sealing material is preferably 10% by volume or less, 5% by volume or less, 1% by volume or less, and 0.5% by volume or less, particularly preferably not substantially contained.
- a laser absorbing material may be introduced in an amount of 1% by volume or more, particularly 3% by volume or more in order to improve the laser absorption characteristics.
- the laser absorber Cu-based oxides, Fe-based oxides, Cr-based oxides, Mn-based oxides, spinel-type composite oxides, and the like can be used.
- the thermal expansion coefficient of the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably 55 ⁇ 10 ⁇ 7 to 105 ⁇ 10 ⁇ 7 / ° C., 60 ⁇ 10 ⁇ 7. ⁇ 82 ⁇ 10 ⁇ 7 / ° C., in particular 65 ⁇ 10 ⁇ 7 to 76 ⁇ 10 ⁇ 7 / ° C. In this way, the thermal expansion coefficient of the sealing material layer matches the thermal expansion coefficient of the ceramic base or the glass lid, and the stress remaining in the sealing portion is reduced.
- the difference in thermal expansion coefficient between the sealing material layer and the ceramic substrate is preferably less than 65 ⁇ 10 ⁇ 7 / ° C., particularly 25 ⁇ 10 ⁇ 7 / ° C. or less, and the difference in thermal expansion coefficient between the sealing material layer and the glass lid is 75 ⁇ It is preferably less than 10 ⁇ 7 / ° C., particularly preferably 25 ⁇ 10 ⁇ 7 / ° C. or less, and the difference in thermal expansion coefficient between the first sealing material layer and the second sealing material layer is less than 30 ⁇ 10 ⁇ 7 / ° C. It is preferably less than 10 ⁇ 10 ⁇ 7 / ° C., particularly preferably 5 ⁇ 10 ⁇ 7 / ° C. or less. If the difference between these thermal expansion coefficients is too large, the stress remaining in the sealed portion is unduly high, and the long-term reliability of the hermetic package may be reduced.
- the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably formed by applying and sintering a sealing material paste. .
- the sealing material paste is a mixture of a sealing material and a vehicle.
- the vehicle usually contains a solvent and a resin.
- the resin is added for the purpose of adjusting the viscosity of the paste.
- surfactant, a thickener, etc. can also be added as needed.
- the produced sealing material paste is applied to the surface of the ceramic substrate or the glass lid using an applicator such as a dispenser or a screen printer.
- the sealing material paste is preferably applied in a frame shape along the top of the frame portion of the ceramic substrate, and is preferably applied in a frame shape along the outer peripheral edge region of the glass lid. In this way, the space for accommodating the internal element can be expanded in the hermetic package.
- the sealing material paste is preferably applied on the center line in the width direction at the top of the frame portion of the ceramic substrate. In this way, heat conduction to the ceramic substrate side during laser sealing can be made uniform.
- the sealing material paste is usually produced by kneading the sealing material and the vehicle with a three-roller or the like.
- a vehicle usually includes a resin and a solvent.
- the resin used for the vehicle acrylic ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, polypropylene carbonate, methacrylic ester and the like can be used.
- Solvents used in vehicles include N, N′-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DM O), N-methyl-2-pyrrolidone and the like can be used.
- DMF N′-dimethylformamide
- ⁇ -BL ⁇ -
- glass lid Various glass can be used as the glass lid.
- alkali-free glass, borosilicate glass, and soda lime glass can be used.
- the thickness of the glass lid is preferably 0.01 to 2.0 mm, 0.1 to 1 mm, particularly preferably 0.2 to 0.7 mm. Thereby, thickness reduction of an airtight package can be achieved.
- a functional film may be formed on the surface of the glass lid on the inner element side, or a functional film may be formed on the outer surface of the glass lid.
- an antireflection film is preferable as the functional film.
- the glass lid is preferably a glass plate laminate in which the first glass plate and the second glass plate are laminated and integrated via an adhesive.
- Various glasses can be used for the first glass plate and the second glass plate.
- alkali-free glass, alkali borosilicate glass, and soda lime glass can be used.
- a glass plate laminated body is comprised with two glass plates, you may laminate
- the same glass may be used for the first glass plate and the second glass plate. That is, you may have the same glass composition. In this way, since various characteristics such as the refractive index and the thermal expansion coefficient of the two coincide, it is possible to suppress the warpage of the glass lid, the reflection on the bonding surface, and the like.
- different glasses may be used for the first glass plate and the second glass plate. That is, you may have a different glass composition.
- the thermal expansion coefficient of the second glass plate is not restricted by the thermal expansion coefficient of the ceramic substrate, so that the thermal expansion coefficient of the ceramic substrate and the first glass plate are closely matched, and productivity is improved.
- a good glass plate can be used for the second glass plate. As a result, it becomes easy to achieve both the airtight reliability of the airtight package and the production cost.
- the adhesive for laminating the first glass plate and the second glass plate can be used as the adhesive for laminating the first glass plate and the second glass plate, but it is possible to use a photo-curing adhesive or a thermo-curing adhesive having excellent light transmittance. preferable.
- the thickness of the adhesive is preferably less than 500 ⁇ m, particularly preferably less than 100 ⁇ m. If the thickness of the adhesive is too thick, the transparency of the glass lid tends to be lowered.
- the refractive index nd of the adhesive is preferably within the range of the refractive index nd ⁇ 0.1 of the first glass plate, and preferably within the range of the refractive index nd ⁇ 0.1 of the second glass plate. preferable. If the refractive index nd of the adhesive is inconsistent with the refractive index nd of the first glass plate and the refractive index nd of the second glass plate, the interface between the adhesive and the first glass plate, the adhesive and the second Light is easily reflected at the interface of the glass plate. For the same reason, the refractive index nd of the first glass plate is preferably in the range of the refractive index nd ⁇ 0.1 of the second glass plate.
- the manufacturing method of the hermetic package of the present invention includes a step of laminating and arranging the ceramic base and the glass lid so that the first sealing material layer and the second sealing material layer are in contact with each other.
- the glass lid may be disposed below the ceramic substrate, but it is preferable to dispose the glass lid above the ceramic substrate from the viewpoint of laser sealing efficiency.
- the first sealing material layer and the second sealing material layer are arranged so that the center lines in the width direction of the first sealing material layer and the second sealing material layer overlap each other. It is preferable to arrange the sealing material layer in contact. In this way, the accuracy of laser sealing can be increased.
- the manufacturing method of the hermetic package of the present invention includes a first sealing material layer formed by irradiating a laser beam from the glass lid side and softening and deforming the first sealing material layer and the second sealing material layer. A step of hermetically sealing the second sealing material layer to obtain an airtight package;
- a semiconductor laser a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
- the atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
- the glass lid When performing laser sealing, if the glass lid is preheated at a temperature of 100 ° C. or higher and not higher than the heat resistant temperature of the light emitting element inside the substrate, cracking of the glass lid due to thermal shock can be suppressed. Moreover, if an annealing laser is irradiated from the glass lid side immediately after laser sealing, it is possible to suppress breakage of the glass lid due to thermal shock.
- the ceramic substrate When performing laser sealing, if the ceramic substrate is preheated at a temperature of 100 ° C. or higher and not higher than the heat resistant temperature of the light emitting element inside the substrate, heat conduction to the ceramic substrate side may be hindered during laser sealing. Laser sealing can be performed efficiently.
- the hermetic package of the present invention is an airtight package having a ceramic base and a glass lid, the ceramic base having a base and a frame provided on the base, and at least bismuth on the top of the frame of the ceramic base.
- a first sealing material layer containing glass is formed, a second sealing material layer containing at least bismuth glass is formed on the glass lid, and the first sealing material layer and The second sealing material layer is hermetically integrated in a state of contact arrangement. Since the technical features of the hermetic package of the present invention have already been described in the explanation column of the method of manufacturing the hermetic package of the present invention, detailed description thereof will be omitted for the sake of convenience.
- FIG. 1 is a conceptual cross-sectional view for explaining an embodiment of the present invention.
- the hermetic package 1 includes a ceramic base 10 and a glass lid 11.
- the ceramic substrate 10 has a base portion 12 and further has a frame portion 13 on the outer peripheral edge of the base portion 12. Further, the internal element 14 is accommodated in the frame portion 13 of the ceramic base 10.
- a first sealing material layer 16 is formed on the top portion 15 of the frame portion 13. The surface of the first sealing material layer 16 is polished in advance, and the surface roughness Ra is 0.15 ⁇ m or less.
- the width of the first sealing material layer 16 is slightly smaller than the width of the frame portion 13.
- the first sealing material layer 16 is obtained by sintering a sealing material, and the sealing material includes a bismuth glass containing a transition metal oxide in a glass composition and a refractory filler powder. Contains. An electrical wiring (not shown) that electrically connects the internal element 14 and the outside is formed in the ceramic substrate 10.
- a frame-shaped second sealing material layer 17 is formed on the surface of the glass lid 11.
- the second sealing material layer 17 is obtained by sintering the sealing material, and has substantially the same material configuration as that of the first sealing material layer 16, and the sealing material changes during the glass composition. It contains bismuth glass containing metal oxide and refractory filler powder.
- the width of the second sealing material layer 17 is substantially the same as the width of the first sealing material layer 16. Furthermore, the thickness of the second sealing material layer 17 is slightly smaller than the thickness of the first sealing material layer 16.
- the ceramic substrate 10 and the glass lid 11 are laminated so that the glass lid 11 is on top and the center lines in the width direction of the first sealing material layer 16 and the second sealing material layer 17 are in contact with each other. Has been. Thereafter, the laser beam L emitted from the laser irradiation device 18 is irradiated along the first sealing material layer 16 and the second sealing material layer 17 from the glass lid 11 side. Thereby, after the first sealing material layer 16 and the second sealing material layer 17 are softened and flowed, the ceramic base 10 and the glass lid 11 are hermetically sealed, and the hermetic structure of the hermetic package 1 is formed. .
- a sealing material A was prepared by mixing bismuth-based glass powder at a ratio of 73% by volume and refractory filler powder at a rate of 27% by volume.
- the average particle diameter D 50 of the bismuth-based glass powder is 1.0 ⁇ m
- the 99% particle diameter D 99 is 2.5 ⁇ m
- the average particle diameter D 50 of the refractory filler powder is 1.0 ⁇ m, 99% particle diameter D. 99 was 2.5 ⁇ m.
- the bismuth-based glass has a glass composition of mol%, Bi 2 O 3 39%, B 2 O 3 23.7%, ZnO 14.1%, Al 2 O 3 2.7%, CuO 20%, Fe 2 O 3 0.6% is contained.
- the refractory filler powder is ⁇ -eucryptite.
- the thermal expansion coefficient of the obtained sealing material A was measured, the thermal expansion coefficient was 70 ⁇ 10 ⁇ 7 / ° C.
- the thermal expansion coefficient was measured with a push rod type TMA apparatus, and the measurement temperature range was 30 to 300 ° C.
- sealing material B 65% by volume of silver phosphate glass powder and 35% by volume of refractory filler powder were mixed to prepare sealing material B.
- the silver phosphate glass has a glass composition of mol%, Ag 2 O 32%, P 2 O 5 22%, TeO 2 27%, ZnO 11%, Nb 2 O 5 3%, CuO 5%. Contains.
- the refractory filler powder is NbZr (PO 4 ) 3 .
- the thermal expansion coefficient of the obtained sealing material B was measured, the thermal expansion coefficient was 77 ⁇ 10 ⁇ 7 / ° C.
- the thermal expansion coefficient was measured with a push rod type TMA apparatus, and the measurement temperature range was 30 to 150 ° C.
- the average particle diameter D 50 of the tellurium-based glass powder is 1.0 ⁇ m
- the 99% particle diameter D 99 is 2.5 ⁇ m
- the average particle diameter D 50 of the refractory filler powder is 1.0 ⁇ m
- 99% particle diameter D. 99 was 2.5 ⁇ m.
- the tellurium type glass contains TeO 2 72%, Nb 2 O 5 8%, and CuO 20% as a glass composition.
- the refractory filler powder is Zr 2 (WO 4 ) (PO 4 ) 2 .
- the thermal expansion coefficient of the obtained sealing material C was measured, the thermal expansion coefficient was 74 ⁇ 10 ⁇ 7 / ° C.
- the thermal expansion coefficient was measured with a push rod type TMA apparatus, and the temperature range for measurement was 30 to 250 ° C.
- a ceramic substrate having a frame portion as shown in FIG. 1 (length 30 mm ⁇ width 30 mm ⁇ base thickness 0.8 mm, thermal expansion coefficient 70 ⁇ 10 ⁇ 7 / ° C.
- the first sealing material layer was formed on the top of the frame part.
- the ceramic substrate is composed of the materials shown in the table, and the frame portion has a frame shape with a width of 2 mm and a height of 1.0 mm.
- a second sealing material layer was formed along the outer peripheral edge of the glass lid (length 30 mm ⁇ width 30 mm) described in the table using the sealing material described in the table.
- alkali borosilicate glass is BDA manufactured by Nippon Electric Glass
- non-alkali glass is OA-10G manufactured by Nippon Electric Glass
- silica lime glass is a commercially available window glass.
- Glass ceramic is obtained by sintering a laminated sheet of green sheets containing glass powder and refractory filler powder.
- the powder is further uniform in a three-roll mill. Kneaded until dispersed into a paste to obtain a sealing material paste.
- the above-mentioned sealing material paste was printed in a frame shape on the top of the frame portion of the ceramic substrate by a screen printer.
- the sealing material paste was printed in a frame shape by a screen printer along the outer peripheral edge of the glass lid.
- a first sealing material layer having an average thickness of 6.0 ⁇ m and an average width of 500 ⁇ m, and A second sealing material layer was formed.
- the glass lid side has a wavelength of 808 nm and an output of 8 to 8
- the ceramic base and the glass lid were hermetically sealed to obtain each hermetic package.
- the obtained airtight package was evaluated for cracks and airtight reliability after laser sealing.
- the crack after laser sealing is evaluated by observing the sealed portion with an optical microscope as “ ⁇ ” when there is no crack and “ ⁇ ” when there is a crack.
- the airtight reliability of the obtained airtight package was evaluated by a temperature cycle test. More specifically, after the temperature cycle test was performed on the obtained airtight package, the vicinity of the sealing material layer was observed, and no change, cracking, peeling, or the like was observed. Airtight reliability was evaluated as “x” when alteration, cracking, peeling, or the like was observed.
- the conditions of the temperature cycle test are 125 ° C. to 55 ° C. and 1000 cycles.
- HAST Highly Accelerated Temperature and Humidity Stress test
- the hermetic package of the present invention is suitable for an airtight package in which internal elements such as a sensor chip and an LED are mounted, but also accommodates a piezoelectric vibration element or a wavelength conversion element in which quantum dots are dispersed in a resin. It can be suitably applied to an airtight package or the like.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Glass Compositions (AREA)
- Led Device Packages (AREA)
Abstract
This method for producing a hermetic package is characterized by comprising: a step for preparing a ceramic substrate and forming a first sealing material layer on the ceramic substrate; a step for preparing a glass cover and forming a second sealing material layer on the glass cover; a step for laminating the ceramic substrate and the glass cover upon each other so that the first sealing material layer and the second sealing material layer are in contact with each other; and a step for obtaining a hermetic package by hermetically sealing the first sealing material layer and the second sealing material layer against each other by irradiating the first sealing material layer and the second sealing material layer with laser light from the glass cover side, thereby softening and deforming the first sealing material layer and the second sealing material layer.
Description
本発明は、気密パッケージの製造方法及び気密パッケージに関し、具体的には、レーザー光を用いた封着処理(以下、レーザー封着)により、セラミック基体とガラス蓋を気密封着する気密パッケージの製造方法及びその方法で作製された気密パッケージに関する。
The present invention relates to a method for manufacturing a hermetic package and a hermetic package, and more specifically, manufacturing a hermetic package in which a ceramic substrate and a glass lid are hermetically sealed by a sealing process using laser light (hereinafter referred to as laser sealing). The present invention relates to a method and an airtight package manufactured by the method.
気密パッケージは、一般的に、セラミック基体と、光透過性を有するガラス蓋と、それらの内部に収容される内部素子と、を備えている。
The airtight package generally includes a ceramic base, a light-transmitting glass lid, and internal elements housed therein.
気密パッケージの内部に実装されるセンサーチップ等の内部素子は、周囲環境から浸入する水分により劣化する虞がある。従来まで、セラミック基体とガラス蓋とを一体化するために、低温硬化性を有する有機樹脂系接着剤が使用されていた。しかし、有機樹脂系接着剤は、水分や気体を完全に遮蔽できないため、内部素子を経時的に劣化させる虞がある。
内部 Internal elements such as sensor chips mounted inside the airtight package may deteriorate due to moisture entering from the surrounding environment. Conventionally, an organic resin adhesive having low-temperature curability has been used to integrate the ceramic substrate and the glass lid. However, since the organic resin adhesive cannot completely shield moisture and gas, there is a possibility that the internal element deteriorates with time.
一方、ガラス粉末と耐火性フィラー粉末を含む封着材料を用いると、封着部分が周囲環境の水分で劣化し難くなり、気密パッケージの気密信頼性を確保し易くなる。
On the other hand, when a sealing material containing glass powder and refractory filler powder is used, the sealed portion is hardly deteriorated by moisture in the surrounding environment, and it becomes easy to ensure the airtight reliability of the airtight package.
しかし、ガラス粉末は、有機樹脂系接着剤よりも軟化温度が高いため、封着時に内部素子を熱劣化させる虞がある。このような事情から、近年、レーザー封着が注目されている。レーザー封着によれば、封着すべき部分のみを局所的に加熱することが可能であり、内部素子を熱劣化させることなく、セラミック基体とガラス蓋とを気密一体化することができる。
However, since the glass powder has a higher softening temperature than the organic resin adhesive, there is a risk that the internal element is thermally deteriorated during sealing. In recent years, laser sealing has attracted attention in recent years. According to laser sealing, only the portion to be sealed can be locally heated, and the ceramic base and the glass lid can be hermetically integrated without thermally deteriorating the internal elements.
ところで、セラミック基体とガラス蓋とをレーザー封着する場合、ガラス基体とガラス蓋とをレーザー封着する場合に比べて、セラミック基体の熱伝導度が高く、レーザー封着時にセラミック基体の温度が上昇し難いため、封着材料層とセラミック基体が反応し難く、レーザー封着強度を確保し難いという問題がある。
By the way, when laser sealing the ceramic substrate and the glass lid, the thermal conductivity of the ceramic substrate is higher than when laser sealing the glass substrate and the glass lid, and the temperature of the ceramic substrate rises during laser sealing. Therefore, there is a problem that the sealing material layer and the ceramic substrate are difficult to react and it is difficult to ensure the laser sealing strength.
一方、レーザー光の出力を高くすると、封着材料層とセラミック基体の反応性を高めることができるが、その場合、ガラス蓋において局所的に加熱された封着材料層に接する部分と局所的に加熱されていない部分で大きな温度差が生じるため、ガラス蓋がサーマルショックで破損し易くなり、気密パッケージ内の気密信頼性を確保できないという問題が生じる。
On the other hand, when the output of the laser beam is increased, the reactivity between the sealing material layer and the ceramic substrate can be increased. In this case, the portion in contact with the locally heated sealing material layer in the glass lid is locally increased. Since a large temperature difference occurs in the unheated part, the glass lid is easily damaged by the thermal shock, and there arises a problem that the airtight reliability in the airtight package cannot be secured.
そこで、本発明は、上記事情に鑑みなされたものであり、その技術的課題は、セラミック基体とガラス蓋をレーザー封着する場合に、レーザー封着強度と気密信頼性を高いレベルで両立し得る気密パッケージの製造方法を創案することである。
Therefore, the present invention has been made in view of the above circumstances, and its technical problem is that when laser sealing a ceramic substrate and a glass lid, both laser sealing strength and airtight reliability can be achieved at a high level. The idea is to create an airtight package manufacturing method.
本発明者は、鋭意検討の結果、セラミック基体上に第一の封着材料層、ガラス蓋上に第二の封着材料層を形成した後、第一の封着材料層と第二の封着材料層を接触させた状態でレーザー封着を行うと、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の気密パッケージの製造方法は、セラミック基体を用意すると共に、セラミック基体上に第一の封着材料層を形成する工程と、ガラス蓋を用意すると共に、ガラス蓋上に第二の封着材料層を形成する工程と、第一の封着材料層と第二の封着材料層が接触するように、セラミック基体とガラス蓋を積層配置する工程と、ガラス蓋側からレーザー光を照射し、第一の封着材料層と第二の封着材料層を軟化変形させることにより、第一の封着材料層と第二の封着材料層を気密封着して、気密パッケージを得る工程と、を備えることを特徴とする。
As a result of intensive studies, the inventor formed the first sealing material layer on the ceramic substrate and the second sealing material layer on the glass lid, and then the first sealing material layer and the second sealing material layer. The present inventors have found that the above technical problem can be solved when laser sealing is performed in a state in which the adhesive material layer is in contact, and the present invention proposes. That is, in the method for manufacturing an airtight package of the present invention, a ceramic substrate is prepared, a step of forming a first sealing material layer on the ceramic substrate, a glass lid is prepared, and a second is formed on the glass lid. A step of forming a sealing material layer, a step of laminating and arranging the ceramic base and the glass lid so that the first sealing material layer and the second sealing material layer are in contact, and laser light from the glass lid side. By irradiating and softening and deforming the first sealing material layer and the second sealing material layer, the first sealing material layer and the second sealing material layer are hermetically sealed to form an airtight package. And a step of obtaining.
本発明の気密パッケージの製造方法は、セラミック基体上に第一の封着材料層、ガラス蓋上に第二の封着材料層を形成した後、第一の封着材料層と第二の封着材料層を接触させた状態でレーザー封着を行うことを特徴にしている。このようにすれば、レーザー封着前に、電気炉焼成等によりセラミック基体とガラス蓋上に封着材料層が形成されるため、セラミック基体の表層に強固な反応層を形成し得ると共に、ガラス蓋の表層にも強固な反応層を形成することができる。またレーザー封着時に、第一の封着材料層と第二の封着材料層の双方が軟化流動して溶け合うため、セラミック基体とガラス蓋とを容易に気密一体化することができる。更にレーザー封着時の局所加熱温度を低温化し得るため、ガラス蓋がサーマルショックで破損し難くなるだけでなく、内部素子に対して熱伝導により伝搬する熱を軽減することができる。結果として、気密パッケージのレーザー封着強度と気密信頼性を同時に高めることができ、且つ内部素子の熱劣化を防止することができる。
In the method for manufacturing an airtight package of the present invention, a first sealing material layer is formed on a ceramic substrate and a second sealing material layer is formed on a glass lid, and then the first sealing material layer and the second sealing material layer are formed. It is characterized in that laser sealing is performed in a state where the adhesive material layer is in contact. In this way, since the sealing material layer is formed on the ceramic substrate and the glass lid by firing in an electric furnace or the like before laser sealing, a strong reaction layer can be formed on the surface layer of the ceramic substrate, and glass A strong reaction layer can also be formed on the surface of the lid. Further, since both the first sealing material layer and the second sealing material layer are softened and flowed and melted at the time of laser sealing, the ceramic base and the glass lid can be easily hermetically integrated. Furthermore, since the local heating temperature at the time of laser sealing can be lowered, not only is the glass lid difficult to break due to thermal shock, but also heat transmitted to the internal elements due to heat conduction can be reduced. As a result, the laser sealing strength and the hermetic reliability of the hermetic package can be enhanced at the same time, and thermal deterioration of the internal elements can be prevented.
また、本発明の気密パッケージの製造方法は、第一の封着材料層が、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラスの何れか一種以上を含有し、且つ第二の封着材料層が、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラスの何れか一種以上を含有することが好ましい。ビスマス系ガラス、特にガラス組成中に遷移金属酸化物を含むビスマス系ガラスは、他のガラス系と比較して、レーザー封着の際に、セラミック基体の表層に反応層を形成し易いという特長を有する。また、耐火性フィラー粉末を導入すると、封着材料層の機械的強度を高めることができ、且つ封着材料層の熱膨張係数を低下させることができる。銀リン酸系ガラスとテルル系ガラスは、ビスマス系ガラスと比較して、低温で軟化流動し易く、レーザー封着後に生じる熱歪みを低減し得るため、熱的信頼性及び機械的信頼性を高めることができるという特長を有する。更に、銀リン酸系ガラスとテルル系ガラスは、ビスマス系ガラスと同様に、耐火性フィラー粉末を混合すると、封着材料層の機械的強度を高めることができ、且つ封着材料層の熱膨張係数を低下させることができる。ここで、「ビスマス系ガラス」とは、Bi2O3を主成分とするガラスを指し、具体的にはガラス組成中にBi2O3を25モル%以上含むガラスを指す。「銀リン酸系ガラス」とは、Ag2OとP2O5を主成分とするガラスを指し、具体的にはガラス組成中にAg2OとP2O5を合量で20モル%以上含むガラスを指す。「テルル系ガラス」とは、TeO2を主成分とするガラスを指し、具体的にはガラス組成中にTeO2を20モル%以上含むガラスを指す。
Further, in the method for producing an airtight package of the present invention, the first sealing material layer contains at least one of bismuth glass, silver phosphate glass, and tellurium glass, and the second sealing material. It is preferable that the layer contains one or more of bismuth glass, silver phosphate glass, and tellurium glass. Bismuth glass, especially bismuth glass containing a transition metal oxide in the glass composition, has a feature that it is easy to form a reaction layer on the surface of the ceramic substrate during laser sealing compared to other glass systems. Have. Moreover, when a refractory filler powder is introduced, the mechanical strength of the sealing material layer can be increased, and the thermal expansion coefficient of the sealing material layer can be reduced. Silver phosphate glass and tellurium glass are easier to soften and flow at a lower temperature than bismuth glass, and can reduce thermal distortion that occurs after laser sealing, thus improving thermal and mechanical reliability. It has the feature that it can be. Furthermore, silver phosphate glass and tellurium glass, like bismuth glass, can increase the mechanical strength of the sealing material layer when mixed with refractory filler powder, and the thermal expansion of the sealing material layer. The coefficient can be reduced. Here, “bismuth-based glass” refers to glass mainly composed of Bi 2 O 3 , and specifically refers to glass containing 25 mol% or more of Bi 2 O 3 in the glass composition. “Silver phosphate glass” refers to a glass mainly composed of Ag 2 O and P 2 O 5 , specifically, 20 mol% of Ag 2 O and P 2 O 5 in the total amount in the glass composition. It refers to the glass containing above. “Tellurium-based glass” refers to glass containing TeO 2 as a main component, and specifically refers to glass containing 20 mol% or more of TeO 2 in the glass composition.
また、本発明の気密パッケージの製造方法は、第一の封着材料層の平均厚みを8.0μm未満、第二の封着材料層の平均厚みを8.0μm未満、且つ第一の封着材料層の平均厚みと第二の封着材料層の平均厚みの合計を15.0μm未満に規制することが好ましい。このようにすれば、レーザー封着後の気密パッケージ内での残留応力が小さくなるため、気密パッケージの気密信頼性を高めることができる。
In addition, the method for manufacturing an airtight package of the present invention has an average thickness of the first sealing material layer of less than 8.0 μm, an average thickness of the second sealing material layer of less than 8.0 μm, and the first sealing material layer. It is preferable to regulate the sum of the average thickness of the material layer and the average thickness of the second sealing material layer to less than 15.0 μm. In this way, since the residual stress in the hermetic package after laser sealing is reduced, the hermetic reliability of the hermetic package can be improved.
また、本発明の気密パッケージの製造方法は、第一の封着材料層の平均幅を2000μm未満、且つ第二の封着材料層の平均幅を2000μm未満に規制することが好ましい。このようにすれば、レーザー封着後の気密パッケージ内での残留応力が小さくなるため、気密パッケージの気密信頼性を高めることができる。
In the method for manufacturing an airtight package of the present invention, it is preferable that the average width of the first sealing material layer is restricted to less than 2000 μm and the average width of the second sealing material layer is restricted to less than 2000 μm. In this way, since the residual stress in the hermetic package after laser sealing is reduced, the hermetic reliability of the hermetic package can be improved.
また、本発明の気密パッケージの製造方法は、基部と基部上に設けられた枠部とを有するセラミック基体を用い、枠部の頂部に第一の封着材料層を形成することが好ましい。
In addition, in the method for manufacturing an airtight package of the present invention, it is preferable to use a ceramic base having a base and a frame provided on the base, and to form a first sealing material layer on the top of the frame.
また、本発明の気密パッケージの製造方法は、更に、第一の封着材料層の表面を研磨する工程を備えることが好ましい。
Moreover, it is preferable that the manufacturing method of the hermetic package of the present invention further includes a step of polishing the surface of the first sealing material layer.
また、本発明の気密パッケージの製造方法は、セラミック基体が、ガラスセラミック、窒化アルミニウム、酸化アルミニウムの何れか、或いはこれらの複合材料であることが好ましい。
In the method for manufacturing an airtight package of the present invention, it is preferable that the ceramic substrate is glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof.
また、本発明の気密パッケージの製造方法は、セラミック基体の枠部内に、センサー素子又はLED素子を収容することが好ましい。
Further, in the method for manufacturing an airtight package of the present invention, it is preferable that the sensor element or the LED element is accommodated in the frame portion of the ceramic substrate.
本発明の気密パッケージは、セラミック基体とガラス蓋とを有する気密パッケージにおいて、セラミック基体が、基部と基部上に設けられた枠部とを有し、セラミック基体の枠部の頂部上に、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラスの何れか一種以上を含有する第一の封着材料層が形成されており、ガラス蓋上に、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラスの何れか一種以上を含有する第二の封着材料層が形成されており、且つ第一の封着材料層と第二の封着材料層が接触配置された状態で気密一体化されていることを特徴とする。
The hermetic package of the present invention is a hermetic package having a ceramic base and a glass lid, wherein the ceramic base has a base and a frame provided on the base, and a bismuth-based material is formed on the top of the frame of the ceramic base. A first sealing material layer containing at least one of glass, silver phosphate glass, and tellurium glass is formed, and bismuth glass, silver phosphate glass, and tellurium glass are formed on the glass lid. A second sealing material layer containing any one or more of the above is formed, and the first sealing material layer and the second sealing material layer are hermetically integrated in a state of contact arrangement It is characterized by that.
また、本発明の気密パッケージは、第一の封着材料層が、ガラス組成中に遷移金属酸化物を含むビスマス系ガラスを含有し、且つ第二の封着材料層が、ガラス組成中に遷移金属酸化物を含むビスマス系ガラスを含有することが好ましい。
In the hermetic package of the present invention, the first sealing material layer contains bismuth-based glass containing a transition metal oxide in the glass composition, and the second sealing material layer transitions in the glass composition. It is preferable to contain a bismuth glass containing a metal oxide.
また、本発明の気密パッケージは、第一の封着材料層の平均厚みが8.0μm未満であり、第二の封着材料層の平均厚みが8.0μm未満であり、且つ第一の封着材料層の平均厚みと第二の封着材料層の平均厚みの合計が15.0μm未満であることが好ましい。
The hermetic package of the present invention has an average thickness of the first sealing material layer of less than 8.0 μm, an average thickness of the second sealing material layer of less than 8.0 μm, and the first sealing material layer. The total of the average thickness of the adhesive material layer and the average thickness of the second sealing material layer is preferably less than 15.0 μm.
また、本発明の気密パッケージは、第一の封着材料層の平均幅が2000μm未満であり、且つ第二の封着材料層の平均幅が2000μm未満であることが好ましい。
In the hermetic package of the present invention, it is preferable that the average width of the first sealing material layer is less than 2000 μm and the average width of the second sealing material layer is less than 2000 μm.
また、本発明の気密パッケージは、セラミック基体が、ガラスセラミック、窒化アルミニウム、酸化アルミニウムの何れか、或いはこれらの複合材料であることが好ましい。
In the hermetic package of the present invention, it is preferable that the ceramic substrate is glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof.
また、本発明の気密パッケージは、セラミック基体の枠部内に、センサー素子又はLED素子が収容されていることが好ましい。
In the hermetic package of the present invention, it is preferable that the sensor element or the LED element is accommodated in the frame portion of the ceramic substrate.
本発明の気密パッケージの製造方法は、セラミック基体を用意すると共に、セラミック基体上に第一の封着材料層を形成する工程と、ガラス蓋を用意すると共に、ガラス蓋上に第二の封着材料層を形成する工程とを有する。
The method for manufacturing an airtight package according to the present invention comprises preparing a ceramic substrate, forming a first sealing material layer on the ceramic substrate, preparing a glass lid, and second sealing on the glass lid. Forming a material layer.
セラミック基体は、基部と基部上に設けられた枠部とを有することが好ましい。このようにすれば、セラミック基体内の空間にセンサーチップ等の内部素子を収容し易くなる。セラミック基体の枠部は、セラミック基体の外周端縁領域に沿って、額縁状に形成されていることが好ましい。このようにすれば、デバイスとして機能する有効面積を拡大することができる。更にセンサーチップ等の内部素子をセラミック基体の枠部内に収容し易くなり、且つ配線接合等も行い易くなる。
The ceramic substrate preferably has a base and a frame provided on the base. In this way, it becomes easy to accommodate an internal element such as a sensor chip in the space in the ceramic substrate. The frame portion of the ceramic base is preferably formed in a frame shape along the outer peripheral edge region of the ceramic base. In this way, the effective area that functions as a device can be expanded. Furthermore, internal elements such as sensor chips can be easily accommodated in the frame portion of the ceramic substrate, and wiring bonding and the like can be easily performed.
枠部の頂部における封着材料層が配される領域の表面の表面粗さRaは1.0μm未満であることが好ましい。この表面の表面粗さRaが大きくなると、レーザー封着の精度が低下し易くなる。ここで、「表面粗さRa」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。
The surface roughness Ra of the surface of the region where the sealing material layer is disposed at the top of the frame is preferably less than 1.0 μm. If the surface roughness Ra of the surface increases, the accuracy of laser sealing tends to decrease. Here, the “surface roughness Ra” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter.
セラミック基体は、ガラスセラミック、窒化アルミニウム、酸化アルミニウムの何れか、或いはこれらの複合材料(例えば、窒化アルミニウムとガラスセラミックを一体化したもの)であることが好ましい。ガラスセラミックは、サーマルビアを容易に形成し得るため、内部素子の動作時に、気密パッケージが過度に発熱する事態を適正に防止することができる。窒化アルミニウムと酸化アルミニウムは、放熱性が良好であるため、内部素子の動作時に、気密パッケージが過度に発熱する事態を適正に防止することができる。
The ceramic substrate is preferably one of glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof (for example, aluminum nitride and glass ceramic integrated). Since the glass ceramic can easily form the thermal via, it is possible to appropriately prevent the airtight package from excessively generating heat during the operation of the internal element. Since aluminum nitride and aluminum oxide have good heat dissipation, it is possible to appropriately prevent the airtight package from excessively generating heat during the operation of the internal element.
ガラスセラミック、窒化アルミニウム、酸化アルミニウムは、黒色顔料が分散されていても良い。このようにすれば、セラミック基体が、封着材料層を透過したレーザー光を吸収することができる。その結果、レーザー封着の際に熱伝導度の高いセラミック基体側への熱流動を低下させることができるため、効率良くレーザー封着することができる。
Glass pigment, aluminum nitride, and aluminum oxide may have a black pigment dispersed therein. In this way, the ceramic substrate can absorb the laser light transmitted through the sealing material layer. As a result, since the heat flow toward the ceramic base having high thermal conductivity can be reduced during laser sealing, laser sealing can be performed efficiently.
黒色顔料が分散されているセラミック基体の場合は、照射すべきレーザー光を吸収する性質を有すること、つまり厚み0.5mm、照射すべきレーザー光の波長(例えば808nm)における全光線透過率が10%以下(望ましくは5%以下)であることが好ましい。このようにすれば、効率良くセラミック基体を加熱することができる。
In the case of a ceramic substrate in which a black pigment is dispersed, it has a property of absorbing laser light to be irradiated, that is, a thickness of 0.5 mm and a total light transmittance of 10 at the wavelength of the laser light to be irradiated (for example, 808 nm). % Or less (preferably 5% or less). In this way, the ceramic substrate can be efficiently heated.
セラミック基体の基部の厚みは0.1~2.5mm、特に0.2~1.5mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。
The thickness of the base of the ceramic substrate is preferably 0.1 to 2.5 mm, particularly preferably 0.2 to 1.5 mm. Thereby, thickness reduction of an airtight package can be achieved.
封着材料層(第一の封着材料層及び/又は第二の封着材料層)の平均厚みは、好ましくは8.0μm未満、特に1.0μm以上、且つ6.0μm未満である。更に第一の封着材料層の平均厚みと第二の封着材料層の平均厚みの合計は、好ましくは15.0μm未満、特に12.0μm未満である。封着材料層の平均厚みが小さい程、封着材料層、セラミック基体及びガラス蓋の熱膨張係数が不整合であっても、レーザー封着後に封着部分に残留する応力を低減することができる。またレーザー封着の精度を高めることもできる。なお、上記のように封着材料層の平均厚みを規制する方法としては、封着材料ペーストを薄く塗布する方法、封着材料層の表面を研磨処理する方法が挙げられる。
The average thickness of the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably less than 8.0 μm, particularly 1.0 μm or more and less than 6.0 μm. Furthermore, the sum of the average thickness of the first sealing material layer and the average thickness of the second sealing material layer is preferably less than 15.0 μm, in particular less than 12.0 μm. The smaller the average thickness of the sealing material layer, the more the stress remaining in the sealing portion after laser sealing can be reduced even if the thermal expansion coefficients of the sealing material layer, the ceramic substrate and the glass lid are mismatched. . In addition, the accuracy of laser sealing can be increased. Examples of the method for regulating the average thickness of the sealing material layer as described above include a method of thinly applying a sealing material paste and a method of polishing the surface of the sealing material layer.
封着材料層(第一の封着材料層及び/又は第二の封着材料層)の平均幅は、好ましくは2000μm未満、1200μm未満、特に200μm以上、且つ800μm未満である。封着材料層の平均幅を狭くすると、レーザー封着後に封着部分に残留する応力を低減することができる。更にセラミック基体の枠部の幅を狭小化することができ、気密パッケージのデバイスとして機能する有効面積を拡大することができる。
The average width of the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably less than 2000 μm, less than 1200 μm, particularly 200 μm or more and less than 800 μm. When the average width of the sealing material layer is narrowed, the stress remaining in the sealing portion after laser sealing can be reduced. Furthermore, the width of the frame portion of the ceramic substrate can be reduced, and the effective area that functions as a device of an airtight package can be expanded.
封着材料層(第一の封着材料層及び/又は第二の封着材料層)の表面粗さRaは、好ましくは0.5μm未満、0.2μm以下、特に0.01~0.15μmである。このようにすれば、第一の封着材料層と第二の封着材料層の密着性が向上し、レーザー封着の精度が向上する。ここで、「表面粗さRa」は、例えば、触針式又は非接触式のレーザー膜厚計や表面粗さ計により測定することができる。なお、上記のように封着材料層の表面粗さRaを規制する方法としては、封着材料層の表面を研磨処理する方法、封着材料層に含まれる耐火性フィラー粉末の粒度を小さくする方法が挙げられる。
The surface roughness Ra of the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably less than 0.5 μm and not more than 0.2 μm, particularly 0.01 to 0.15 μm. It is. If it does in this way, the adhesiveness of a 1st sealing material layer and a 2nd sealing material layer will improve, and the precision of laser sealing will improve. Here, the “surface roughness Ra” can be measured by, for example, a stylus type or non-contact type laser film thickness meter or surface roughness meter. In addition, as a method of regulating the surface roughness Ra of the sealing material layer as described above, the method of polishing the surface of the sealing material layer, the particle size of the refractory filler powder contained in the sealing material layer is reduced. A method is mentioned.
第一の封着材料層と第二の封着材料層は、同一の材料構成としてもよく、ガラス組成が同じガラス粉末を含有していてもよい。このようにすれば、第一の封着材料層と第二の封着材料層の流動性や熱膨張係数等の熱に対する挙動が同じになるため、レーザー封着工程を制御し易くなる。
The first sealing material layer and the second sealing material layer may have the same material configuration, and may contain glass powder having the same glass composition. In this way, the first sealing material layer and the second sealing material layer have the same behavior with respect to heat such as fluidity and thermal expansion coefficient, so that the laser sealing process can be easily controlled.
第一の封着材料層と第二の封着材料層は、異なる材料構成としてもよく、ガラス組成が異なるガラス粉末を含有していてもよい。このようにすれば、第一の封着材料層と第二の封着材料層の熱膨張係数を個別に調整し得るため、第一の封着材料層、第二の封着材料層、セラミック基体及びガラス蓋間の熱膨張係数を適正化し易くなる。結果として、レーザー封着後にガラス蓋等の破損を防止し易くなる。
The first sealing material layer and the second sealing material layer may have different material configurations, and may contain glass powders having different glass compositions. In this way, since the thermal expansion coefficients of the first sealing material layer and the second sealing material layer can be individually adjusted, the first sealing material layer, the second sealing material layer, the ceramic It becomes easy to optimize the thermal expansion coefficient between the base and the glass lid. As a result, it becomes easy to prevent breakage of the glass lid or the like after laser sealing.
封着材料層は、封着材料の焼結体であり、レーザー封着時に軟化変形するものである。封着材料として、種々のガラス(例えば、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラス、リン酸錫系ガラス、バナジウム系ガラス等)が使用可能であり、特にレーザー封着強度を確保する観点から、ガラス組成中に遷移金属酸化物を含むガラスを用いるが好ましい。ガラス中の遷移金属酸化物の含有量は、レーザー吸収特性を高めるために1モル%以上、3モル%以上、5モル%以上、10モル%以上、特に15~30モル%が好ましい。
The sealing material layer is a sintered body of a sealing material and is softened and deformed during laser sealing. Various glass (for example, bismuth glass, silver phosphate glass, tellurium glass, tin phosphate glass, vanadium glass, etc.) can be used as the sealing material, and in particular, the laser sealing strength is ensured. From the viewpoint, it is preferable to use a glass containing a transition metal oxide in the glass composition. The content of the transition metal oxide in the glass is preferably 1 mol% or more, 3 mol% or more, 5 mol% or more, 10 mol% or more, particularly 15 to 30 mol%, in order to improve the laser absorption characteristics.
ビスマス系ガラスは、ガラス組成として、モル%で、Bi2O3 28~60%、B2O3 15~37%、ZnO 1~30%、遷移金属酸化物 0~40%を含有することが好ましい。なお、ビスマス系ガラスのガラス組成範囲の説明において、%表示はモル%を指す。
The bismuth-based glass may contain, as a glass composition, mol% of Bi 2 O 3 28 to 60%, B 2 O 3 15 to 37%, ZnO 1 to 30%, and transition metal oxide 0 to 40%. preferable. In addition, in description of the glass composition range of bismuth-type glass,% display points out mol%.
各成分の含有範囲を上記のように限定した理由を以下に説明する。
The reason for limiting the content range of each component as described above will be described below.
Bi2O3は、軟化点を低下させるための主要成分であり、その含有量は28~60%、33~55%、特に35~45%が好ましい。Bi2O3の含有量が少な過ぎると、軟化点が高くなり過ぎて、流動性が低下し易くなる。一方、Bi2O3の含有量が多過ぎると、レーザー封着時にガラスが失透し易くなり、この失透に起因して、流動性が低下し易くなる。
Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 28 to 60%, 33 to 55%, particularly preferably 35 to 45%. When Bi 2 content of O 3 is too small, too high softening point, the fluidity tends to decrease. On the other hand, when the content of Bi 2 O 3 is too large, the glass is liable to be devitrified at the time of laser sealing, and fluidity is liable to decrease due to the devitrification.
B2O3は、ガラス形成成分として必須の成分であり、その含有量は15~37%、20~33%、特に25~30%が好ましい。B2O3の含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、レーザー封着時にガラスが失透し易くなる。一方、B2O3の含有量が多過ぎると、ガラスの粘性が高くなり、流動性が低下し易くなる。
B 2 O 3 is an essential component as a glass forming component, and its content is preferably 15 to 37%, 20 to 33%, particularly preferably 25 to 30%. If the content of B 2 O 3 is too small, it becomes difficult to form a glass network, so that the glass is easily devitrified at the time of laser sealing. On the other hand, when the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
ZnOは、耐失透性を高める成分であり、その含有量は1~30%、3~25%、5~22%、特に9~20%が好ましい。ZnOの含有量が上記範囲外になると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。
ZnO is a component that enhances devitrification resistance, and its content is preferably 1 to 30%, 3 to 25%, 5 to 22%, particularly preferably 9 to 20%. When the content of ZnO is out of the above range, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
遷移金属酸化物は、レーザー吸収特性を有する成分であり、その含有量は0~40%、1~40%、3~40%、5~40%、12~40%、特に15~30モル%が好ましい。遷移金属酸化物の含有量が多過ぎると、耐失透性が低下し易くなる。
The transition metal oxide is a component having laser absorption characteristics, and its content is 0 to 40%, 1 to 40%, 3 to 40%, 5 to 40%, 12 to 40%, particularly 15 to 30 mol%. Is preferred. When there is too much content of a transition metal oxide, devitrification resistance will fall easily.
CuOを添加すれば、レーザー吸収特性を高めることができる。CuOの含有量は0~40%、5~35%、10~30%、特に15~25%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。なお、ビスマス系ガラスの軟化点を下げるためには、ガラス組成中にBi2O3を多量に導入する必要があるが、Bi2O3の含有量を増加させると、レーザー封着時にガラスが失透し易くなり、この失透に起因して流動性が低下し易くなる。特に、Bi2O3の含有量が30%以上になると、その傾向が顕著になる。この対策として、CuOを添加すれば、Bi2O3の含有量が30%以上であっても、ガラスの失透を効果的に抑制することができる。
If CuO is added, the laser absorption characteristics can be enhanced. The CuO content is preferably 0 to 40%, 5 to 35%, 10 to 30%, particularly preferably 15 to 25%. When there is too much content of CuO, the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely. In order to lower the softening point of bismuth-based glass, it is necessary to introduce a large amount of Bi 2 O 3 into the glass composition. However, if the content of Bi 2 O 3 is increased, the glass is not sealed during laser sealing. It becomes easy to devitrify, and fluidity tends to decrease due to this devitrification. In particular, when the Bi 2 O 3 content is 30% or more, the tendency becomes remarkable. As a countermeasure, if CuO is added, devitrification of the glass can be effectively suppressed even if the content of Bi 2 O 3 is 30% or more.
Fe2O3は、耐失透性とレーザー吸収特性を高める成分であり、その含有量は0~10%、0.1~5%、特に0.5~3%が好ましい。Fe2O3の含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
Fe 2 O 3 is a component that enhances devitrification resistance and laser absorption characteristics, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.5 to 3%. When the content of Fe 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
MnOは、レーザー吸収特性を高める成分である。MnOの含有量は、好ましくは0~25%、特に5~15%である。MnOの含有量が多過ぎると、耐失透性が低下し易くなる。
MnO is a component that enhances laser absorption characteristics. The content of MnO is preferably 0 to 25%, in particular 5 to 15%. When there is too much content of MnO, devitrification resistance will fall easily.
MoO3は、レーザー吸収特性を高める成分である。MoO3の含有量は、好ましくは0~25%、特に5~15%である。MoO3の含有量が多過ぎると、耐失透性が低下し易くなる。
MoO 3 is a component that enhances laser absorption characteristics. The content of MoO 3 is preferably 0 to 25%, in particular 5 to 15%. When the content of MoO 3 is too large, the devitrification resistance is liable to decrease.
上記成分以外にも、例えば、以下の成分を添加してもよい。
In addition to the above components, for example, the following components may be added.
SiO2は、耐水性を高める成分であるが、軟化点を上昇させる作用を有する。このため、SiO2の含有量は0~5%、0~3%、0~2%、特に0~1%が好ましい。また、SiO2の含有量が多過ぎると、レーザー封着時にガラスが失透し易くなる。
SiO 2 is a component that increases water resistance, but has an action of increasing the softening point. For this reason, the content of SiO 2 is preferably 0 to 5%, 0 to 3%, 0 to 2%, particularly preferably 0 to 1%. If the content of SiO 2 is too large, the glass tends to be devitrified during laser sealing.
Al2O3は、耐水性を高める成分であり、その含有量は0~10%、0~5%、特に0.1~2%が好ましい。Al2O3の含有量が多過ぎると、軟化点が不当に上昇する虞がある。
Al 2 O 3 is a component that enhances water resistance, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 2%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
Li2O、Na2O及びK2Oは、耐失透性を低下させる成分である。よって、Li2O、Na2O及びK2Oの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。
Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。
MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
Sb2O3は、耐失透性を高める成分であり、その含有量は0~5%、特に0~2%が好ましい。Sb2O3の含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
Sb 2 O 3 is a component that enhances devitrification resistance, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. When the content of Sb 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
銀リン酸系ガラスは、ガラス組成として、モル%で、Ag2O 10~50%、P2O5 10~35%、ZnO 3~25%、遷移金属酸化物 0~30%を含有することが好ましい。なお、銀リン酸系ガラスのガラス組成範囲の説明において、%表示はモル%を指す。
The silver phosphate glass contains, as a glass composition, mol%, Ag 2 O 10 to 50%, P 2 O 5 10 to 35%, ZnO 3 to 25%, transition metal oxide 0 to 30%. Is preferred. In addition, in description of the glass composition range of silver phosphate glass,% display points out mol%.
Ag2Oは、ガラスを低融点化させると共に、水に溶け難いため、耐水性を高める成分である。Ag2Oの含有量は10~50%、特に20~40%が好ましい。Ag2Oの含有量が少な過ぎると、ガラスの粘性が高くなって、流動性が低下し易くなると共に、耐水性が低下し易くなる。一方、Ag2Oの含有量が多過ぎると、ガラス化が困難になる。
Ag 2 O is a component that increases the water resistance because it lowers the melting point of the glass and hardly dissolves in water. The content of Ag 2 O is preferably 10 to 50%, particularly preferably 20 to 40%. If Ag 2 O content is too small, the viscosity of the glass becomes high, the flowability tends to decline, water resistance tends to decrease. On the other hand, when the content of Ag 2 O is too large, vitrification tends to be difficult.
P2O5は、ガラスを低融点化させる成分である。その含有量は10~35%、特に15~25%が好ましい。P2O5の含有量が少な過ぎると、ガラス化が困難になる。一方、P2O5の含有量が多過ぎると、耐候性、耐水性が低下し易くなる。
P 2 O 5 is a component that lowers the melting point of glass. Its content is preferably 10 to 35%, particularly preferably 15 to 25%. When the content of P 2 O 5 is too small, vitrification tends to be difficult. On the other hand, when the content of P 2 O 5 is too large, weather resistance, water resistance tends to decrease.
ZnOは、耐失透性を高める成分であり、その含有量は3~25%、5~22%、特に9~20%が好ましい。ZnOの含有量が上記範囲外になると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。
ZnO is a component that enhances devitrification resistance, and its content is preferably 3 to 25%, 5 to 22%, particularly preferably 9 to 20%. When the content of ZnO is out of the above range, the component balance of the glass composition is impaired, and the devitrification resistance tends to decrease.
遷移金属酸化物は、レーザー吸収特性を有する成分であり、その含有量は0~30%、1~30%、特に3~15%が好ましい。遷移金属酸化物の含有量が多過ぎると、耐失透性が低下し易くなる。
The transition metal oxide is a component having laser absorption characteristics, and its content is preferably 0 to 30%, 1 to 30%, particularly preferably 3 to 15%. When there is too much content of a transition metal oxide, devitrification resistance will fall easily.
CuOを添加すれば、レーザー吸収特性を高めることができる。CuOの含有量は0~30%、1~30%、特に3~15%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
If CuO is added, the laser absorption characteristics can be improved. The content of CuO is preferably 0 to 30%, 1 to 30%, particularly 3 to 15%. When there is too much content of CuO, the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely.
上記成分以外にも、例えば、以下の成分を添加してもよい。
In addition to the above components, for example, the following components may be added.
TeO2は、ガラス形成成分であり、ガラスを低融点化させる成分である。TeO2の含有量は0~40%、特に10~30%が好ましい。
TeO 2 is a glass forming component and a component that lowers the melting point of glass. The content of TeO 2 is preferably 0 to 40%, particularly 10 to 30%.
Nb2O5は、耐水性を高める成分である。Nb2O5の含有量は0~25%、特に1~12%が好ましい。Nb2O5の含有量が多過ぎると、ガラスの粘性が高くなって、流動性が低下し易くなる。
Nb 2 O 5 is a component that improves water resistance. The content of Nb 2 O 5 is preferably 0 to 25%, particularly 1 to 12%. When the content of Nb 2 O 5 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
Li2O、Na2O及びK2Oは、耐失透性を低下させる成分である。よって、Li2O、Na2O及びK2Oの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。
Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。
MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
テルル系ガラスは、ガラス組成として、モル%で、TeO2 20~80%、Nb2O5 0~25%、遷移金属酸化物 0~40%を含有することが好ましい。なお、テルル系ガラスのガラス組成範囲の説明において、%表示はモル%を指す。
The tellurium-based glass preferably contains TeO 2 20 to 80%, Nb 2 O 5 0 to 25%, and transition metal oxide 0 to 40% in terms of glass composition. In the description of the glass composition range of tellurium-based glass,% display indicates mol%.
TeO2は、ガラス形成成分であり、ガラスを低融点化させる成分である。TeO2の含有量は20~80%、特に40~75%が好ましい。
TeO 2 is a glass forming component and a component that lowers the melting point of glass. The content of TeO 2 is preferably 20 to 80%, particularly preferably 40 to 75%.
Nb2O5は、耐水性を高める成分である。Nb2O5の含有量は0~25%、1~20%、特に5~15%が好ましい。Nb2O5の含有量が多過ぎると、ガラスの粘性が高くなって、流動性が低下し易くなる。
Nb 2 O 5 is a component that improves water resistance. The content of Nb 2 O 5 is preferably 0 to 25%, 1 to 20%, particularly preferably 5 to 15%. When the content of Nb 2 O 5 is too large, the viscosity of the glass becomes high, the fluidity tends to decrease.
遷移金属酸化物は、レーザー吸収特性を有する成分であり、その含有量は0~40%、5~30%、特に15~25%が好ましい。遷移金属酸化物の含有量が多過ぎると、耐失透性が低下し易くなる。
The transition metal oxide is a component having laser absorption characteristics, and its content is preferably 0 to 40%, 5 to 30%, particularly preferably 15 to 25%. When there is too much content of a transition metal oxide, devitrification resistance will fall easily.
CuOを添加すれば、レーザー吸収特性を高めることができる。CuOの含有量は0~40%、5~30%、特に15~25%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。
If CuO is added, the laser absorption characteristics can be improved. The CuO content is preferably 0 to 40%, 5 to 30%, particularly preferably 15 to 25%. When there is too much content of CuO, the component balance of a glass composition will be impaired and devitrification resistance will fall easily conversely.
上記成分以外にも、例えば、以下の成分を添加してもよい。
In addition to the above components, for example, the following components may be added.
Li2O、Na2O及びK2Oは、耐失透性を低下させる成分である。よって、Li2O、Na2O及びK2Oの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。
Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~20%、0~10%、特に0~5%である。
MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 20%, 0 to 10%, particularly 0 to 5%, respectively.
ガラス粉末の平均粒径D50は15μm未満、0.5~10μm、特に0.8~5μmが好ましい。ガラス粉末の平均粒径D50が小さい程、ガラス粉末の軟化点が低下する。
The average particle diameter D 50 of the glass powder less than 15μm, 0.5 ~ 10μm, particularly 0.8 ~ 5 [mu] m is preferred. As the average particle diameter D 50 of the glass powder is small, the softening point of the glass powder is lowered.
封着材料層(第一の封着材料層及び/又は第二の封着材料層)は、耐火性フィラー粉末を含有していてもよい。封着材料層は、50~100体積%のガラスと0~50体積%の耐火性フィラー粉末を含有することが好ましく、55~85体積%のガラスと15~45体積%の耐火性フィラー粉末を含有することが更に好ましく、60~80体積%のガラスと20~40体積%の耐火性フィラー粉末を含有することが特に好ましい。耐火性フィラー粉末を添加すれば、封着材料の熱膨張係数が、セラミック基体とガラス蓋の熱膨張係数に整合し易くなる。その結果、レーザー封着後に封着部分に不当な応力が残留する事態を防止し易くなる。一方、耐火性フィラー粉末の含有量が多過ぎると、ガラスの含有量が相対的に少なくなるため、封着材料層の表面平滑性が低下して、レーザー封着の精度が低下し易くなる。
The sealing material layer (the first sealing material layer and / or the second sealing material layer) may contain a refractory filler powder. The sealing material layer preferably contains 50 to 100% by volume of glass and 0 to 50% by volume of refractory filler powder, and contains 55 to 85% by volume of glass and 15 to 45% by volume of refractory filler powder. More preferably, it contains 60 to 80% by volume of glass and 20 to 40% by volume of refractory filler powder. If the refractory filler powder is added, the thermal expansion coefficient of the sealing material is easily matched with the thermal expansion coefficient of the ceramic substrate and the glass lid. As a result, it becomes easy to prevent a situation in which undue stress remains in the sealed portion after laser sealing. On the other hand, when the content of the refractory filler powder is too large, the glass content is relatively decreased, so that the surface smoothness of the sealing material layer is lowered and the accuracy of laser sealing is likely to be lowered.
耐火性フィラー粉末として、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウイレマイト、β-ユークリプタイト、β-石英固溶体から選ばれる一種又は二種以上を用いることが好ましい。これらの耐火性フィラー粉末は、熱膨張係数が低いことに加えて、機械的強度が高く、しかもビスマス系ガラス、銀リン酸系ガラス、テルル系ガラス等との適合性が良好である。
As the refractory filler powder, it is preferable to use one or more selected from cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, β-eucryptite, and β-quartz solid solution. These refractory filler powders have a low mechanical expansion coefficient, a high mechanical strength, and a good compatibility with bismuth glass, silver phosphate glass, tellurium glass, and the like.
耐火性フィラー粉末の平均粒径D50は、好ましくは2μm未満、特に0.1μm以上、且つ1.5μm未満である。耐火性フィラー粉末の平均粒径D50が大き過ぎると、封着材料層の表面平滑性が低下し易くなると共に、封着材料層の平均厚みが大きくなり易く、結果として、レーザー封着の精度が低下し易くなる。
The average particle diameter D 50 of the refractory filler powder is preferably less than 2 [mu] m, especially 0.1μm or more and less than 1.5 [mu] m. When the average particle diameter D 50 of the refractory filler powder is too large, the surface smoothness of the sealing material layer is liable to lower, likely the average thickness of the sealing material layer is increased, as a result, the laser sealing precision Tends to decrease.
耐火性フィラー粉末の99%粒径D99は、好ましくは5μm未満、4μm以下、特に0.3μm以上、且つ3μm以下である。耐火性フィラー粉末の99%粒径D99が大き過ぎると、封着材料層の表面平滑性が低下し易くなると共に、封着材料層の平均厚みが大きくなり易く、結果として、レーザー封着の精度が低下し易くなる。ここで、「99%粒径D99」は、レーザー回折法により体積基準で測定した値を指す。ここで、「平均粒径D50」と「99%粒径D99」は、レーザー回折法により体積基準で測定した値を指す。
The 99% particle size D 99 of the refractory filler powder is preferably less than 5 μm, 4 μm or less, particularly 0.3 μm or more and 3 μm or less. If the 99% particle size D 99 of the refractory filler powder is too large, the surface smoothness of the sealing material layer tends to decrease, and the average thickness of the sealing material layer tends to increase, resulting in laser sealing. Accuracy is likely to decrease. Here, “99% particle diameter D 99 ” refers to a value measured on a volume basis by a laser diffraction method. Here, “average particle diameter D 50 ” and “99% particle diameter D 99 ” indicate values measured on a volume basis by a laser diffraction method.
封着材料層(第一の封着材料層及び/又は第二の封着材料層)は、レーザー吸収特性を高めるために、更にレーザー吸収材を含んでもよいが、レーザー吸収材は、ガラスの失透を助長する作用を有する。よって、封着材料中のレーザー吸収材の含有量は、好ましくは10体積%以下、5体積%以下、1体積%以下、0.5体積%以下、特に実質的に含有しないことが好ましい。ガラスの耐失透性が良好である場合は、レーザー吸収特性を高めるために、レーザー吸収材を1体積%以上、特に3体積%以上導入してもよい。なお、レーザー吸収材として、Cu系酸化物、Fe系酸化物、Cr系酸化物、Mn系酸化物及びこれらのスピネル型複合酸化物等が使用可能である。
The sealing material layer (the first sealing material layer and / or the second sealing material layer) may further contain a laser absorbing material in order to enhance the laser absorption characteristics. Has the effect of promoting devitrification. Therefore, the content of the laser absorbing material in the sealing material is preferably 10% by volume or less, 5% by volume or less, 1% by volume or less, and 0.5% by volume or less, particularly preferably not substantially contained. When the devitrification resistance of the glass is good, a laser absorbing material may be introduced in an amount of 1% by volume or more, particularly 3% by volume or more in order to improve the laser absorption characteristics. As the laser absorber, Cu-based oxides, Fe-based oxides, Cr-based oxides, Mn-based oxides, spinel-type composite oxides, and the like can be used.
封着材料層(第一の封着材料層及び/又は第二の封着材料層)の熱膨張係数は、好ましくは55×10-7~105×10-7/℃、60×10-7~82×10-7/℃、特に65×10-7~76×10-7/℃である。このようにすれば、封着材料層の熱膨張係数が、セラミック基体やガラス蓋の熱膨張係数に整合して、封着部分に残留する応力が小さくなる。
The thermal expansion coefficient of the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably 55 × 10 −7 to 105 × 10 −7 / ° C., 60 × 10 −7. ˜82 × 10 −7 / ° C., in particular 65 × 10 −7 to 76 × 10 −7 / ° C. In this way, the thermal expansion coefficient of the sealing material layer matches the thermal expansion coefficient of the ceramic base or the glass lid, and the stress remaining in the sealing portion is reduced.
封着材料層とセラミック基体の熱膨張係数差は65×10-7/℃未満、特に25×10-7/℃以下が好ましく、また封着材料層とガラス蓋の熱膨張係数差は75×10-7/℃未満、特に25×10-7/℃以下が好ましく、更に第一の封着材料層と第二の封着材料層の熱膨張係数差は30×10-7/℃未満、10×10-7/℃未満、特に5×10-7/℃以下が好ましい。これらの熱膨張係数差が大き過ぎると、封着部分に残留する応力が不当に高くなり、気密パッケージの長期信頼性が低下する虞がある。
The difference in thermal expansion coefficient between the sealing material layer and the ceramic substrate is preferably less than 65 × 10 −7 / ° C., particularly 25 × 10 −7 / ° C. or less, and the difference in thermal expansion coefficient between the sealing material layer and the glass lid is 75 × It is preferably less than 10 −7 / ° C., particularly preferably 25 × 10 −7 / ° C. or less, and the difference in thermal expansion coefficient between the first sealing material layer and the second sealing material layer is less than 30 × 10 −7 / ° C. It is preferably less than 10 × 10 −7 / ° C., particularly preferably 5 × 10 −7 / ° C. or less. If the difference between these thermal expansion coefficients is too large, the stress remaining in the sealed portion is unduly high, and the long-term reliability of the hermetic package may be reduced.
本発明の気密パッケージの製造方法において、封着材料層(第一の封着材料層及び/又は第二の封着材料層)は、封着材料ペーストの塗布、焼結により形成することが好ましい。このようにすれば、封着材料層の寸法精度を高めることができる。ここで、封着材料ペーストは、封着材料とビークルの混合物である。そして、ビークルは、通常、溶媒と樹脂を含む。樹脂は、ペーストの粘性を調整する目的で添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。作製された封着材料ペーストは、ディスペンサーやスクリーン印刷機等の塗布機を用いて、セラミック基体やガラス蓋の表面に塗布される。
In the method for manufacturing an airtight package of the present invention, the sealing material layer (the first sealing material layer and / or the second sealing material layer) is preferably formed by applying and sintering a sealing material paste. . In this way, the dimensional accuracy of the sealing material layer can be increased. Here, the sealing material paste is a mixture of a sealing material and a vehicle. The vehicle usually contains a solvent and a resin. The resin is added for the purpose of adjusting the viscosity of the paste. Moreover, surfactant, a thickener, etc. can also be added as needed. The produced sealing material paste is applied to the surface of the ceramic substrate or the glass lid using an applicator such as a dispenser or a screen printer.
封着材料ペーストは、セラミック基体の枠部の頂部に沿って、額縁状に塗布されることが好ましく、またガラス蓋の外周端縁領域に沿って、額縁状に塗布されることが好ましい。このようにすれば、気密パッケージ内に内部素子を収容する空間を広げることができる。
The sealing material paste is preferably applied in a frame shape along the top of the frame portion of the ceramic substrate, and is preferably applied in a frame shape along the outer peripheral edge region of the glass lid. In this way, the space for accommodating the internal element can be expanded in the hermetic package.
封着材料ペーストは、セラミック基体の枠部の頂部において幅方向の中心線上に塗布されることが好ましい。このようにすれば、レーザー封着時のセラミック基体側への熱伝導を均一化することができる。
The sealing material paste is preferably applied on the center line in the width direction at the top of the frame portion of the ceramic substrate. In this way, heat conduction to the ceramic substrate side during laser sealing can be made uniform.
封着材料ペーストは、通常、三本ローラー等により、封着材料とビークルを混練することにより作製される。ビークルは、通常、樹脂と溶剤を含む。ビークルに用いる樹脂として、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、ポリプロピレンカーボネート、メタクリル酸エステル等が使用可能である。ビークルに用いる溶剤として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。
The sealing material paste is usually produced by kneading the sealing material and the vehicle with a three-roller or the like. A vehicle usually includes a resin and a solvent. As the resin used for the vehicle, acrylic ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, polypropylene carbonate, methacrylic ester and the like can be used. Solvents used in vehicles include N, N′-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl Ether, diethylene glycol monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether , Tripropylene glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DM O), N-methyl-2-pyrrolidone and the like can be used.
ガラス蓋として、種々のガラスが使用可能である。例えば、無アルカリガラス、ホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。
Various glass can be used as the glass lid. For example, alkali-free glass, borosilicate glass, and soda lime glass can be used.
ガラス蓋の板厚は0.01~2.0mm、0.1~1mm、特に0.2~0.7mmが好ましい。これにより、気密パッケージの薄型化を図ることができる。
The thickness of the glass lid is preferably 0.01 to 2.0 mm, 0.1 to 1 mm, particularly preferably 0.2 to 0.7 mm. Thereby, thickness reduction of an airtight package can be achieved.
ガラス蓋の内部素子側の表面に機能膜を形成してもよく、ガラス蓋の外側の表面に機能膜を形成してもよい。特に機能膜として反射防止膜が好ましい。これにより、ガラス蓋の表面で反射する光を低減することができる。
A functional film may be formed on the surface of the glass lid on the inner element side, or a functional film may be formed on the outer surface of the glass lid. In particular, an antireflection film is preferable as the functional film. Thereby, the light reflected on the surface of the glass lid can be reduced.
またガラス蓋は、第一のガラス板と第二のガラス板が接着剤を介して積層一体化されたガラス板積層体であることが好ましい。
The glass lid is preferably a glass plate laminate in which the first glass plate and the second glass plate are laminated and integrated via an adhesive.
第一のガラス板と第二のガラス板は、種々のガラスが使用可能である。例えば、無アルカリガラス、アルカリホウケイ酸ガラス、ソーダ石灰ガラスが使用可能である。なお、ガラス板積層体は、二枚のガラス板で構成されることが好ましいが、必要に応じて、別の板状体を更に積層させてもよい。
Various glasses can be used for the first glass plate and the second glass plate. For example, alkali-free glass, alkali borosilicate glass, and soda lime glass can be used. In addition, although it is preferable that a glass plate laminated body is comprised with two glass plates, you may laminate | stack another plate-shaped body further as needed.
第一のガラス板と第二のガラス板は、同一のガラスを用いてもよい。つまり同一のガラス組成を有していてもよい。このようにすれば、両者の屈折率、熱膨張係数等の各種特性が一致するため、ガラス蓋の反りや貼り合わせ面での反射等を抑制することができる。
The same glass may be used for the first glass plate and the second glass plate. That is, you may have the same glass composition. In this way, since various characteristics such as the refractive index and the thermal expansion coefficient of the two coincide, it is possible to suppress the warpage of the glass lid, the reflection on the bonding surface, and the like.
また、第一のガラス板と第二のガラス板は、異種のガラスを用いてもよい。つまり異種のガラス組成を有していてもよい。このようにすれば、第二のガラス板の熱膨張係数がセラミック基体の熱膨張係数に制約されなくなるため、セラミック基体と第一のガラス板の熱膨張係数を厳密に整合させつつ、生産性の良いガラス板を第二のガラス板に使用することができる。結果として、気密パッケージの気密信頼性と生産コストを両立し易くなる。
Also, different glasses may be used for the first glass plate and the second glass plate. That is, you may have a different glass composition. In this way, the thermal expansion coefficient of the second glass plate is not restricted by the thermal expansion coefficient of the ceramic substrate, so that the thermal expansion coefficient of the ceramic substrate and the first glass plate are closely matched, and productivity is improved. A good glass plate can be used for the second glass plate. As a result, it becomes easy to achieve both the airtight reliability of the airtight package and the production cost.
第一のガラス板と第二のガラス板を貼り合わせるための接着剤は、種々の材料が使用可能であるが、光透過性に優れる光硬化型接着剤や熱硬化型接着剤を用いることが好ましい。そして、接着剤の厚みは500μm未満、特に100μm未満が好ましい。接着剤の厚みが厚過ぎると、ガラス蓋の透明性が低下し易くなる。
Various materials can be used as the adhesive for laminating the first glass plate and the second glass plate, but it is possible to use a photo-curing adhesive or a thermo-curing adhesive having excellent light transmittance. preferable. The thickness of the adhesive is preferably less than 500 μm, particularly preferably less than 100 μm. If the thickness of the adhesive is too thick, the transparency of the glass lid tends to be lowered.
接着剤の屈折率ndは、第一のガラス板の屈折率nd±0.1の範囲内であることが好ましく、第二のガラス板の屈折率nd±0.1の範囲内であることが好ましい。接着剤の屈折率ndが、第一のガラス板の屈折率ndと第二のガラス板の屈折率ndに不整合であると、接着剤と第一のガラス板の界面及び接着剤と第二のガラス板の界面で光が反射し易くなる。同様の理由で、第一のガラス板の屈折率ndは、第二のガラス板の屈折率nd±0.1の範囲内であることが好ましい。
The refractive index nd of the adhesive is preferably within the range of the refractive index nd ± 0.1 of the first glass plate, and preferably within the range of the refractive index nd ± 0.1 of the second glass plate. preferable. If the refractive index nd of the adhesive is inconsistent with the refractive index nd of the first glass plate and the refractive index nd of the second glass plate, the interface between the adhesive and the first glass plate, the adhesive and the second Light is easily reflected at the interface of the glass plate. For the same reason, the refractive index nd of the first glass plate is preferably in the range of the refractive index nd ± 0.1 of the second glass plate.
本発明の気密パッケージの製造方法は、第一の封着材料層と第二の封着材料層が接触するように、セラミック基体とガラス蓋を積層配置する工程を有する。この場合、ガラス蓋をセラミック基体の下方に配置してもよいが、レーザー封着の効率の観点から、ガラス蓋をセラミック基体の上方に配置することが好ましい。
The manufacturing method of the hermetic package of the present invention includes a step of laminating and arranging the ceramic base and the glass lid so that the first sealing material layer and the second sealing material layer are in contact with each other. In this case, the glass lid may be disposed below the ceramic substrate, but it is preferable to dispose the glass lid above the ceramic substrate from the viewpoint of laser sealing efficiency.
セラミック基体とガラス蓋を積層配置する際に、第一の封着材料層と第二の封着材料層の幅方向の中心線同士が重なるように、第一の封着材料層と第二の封着材料層を接触配置することが好ましい。このようにすれば、レーザー封着の精度を高めることができる。
When laminating and arranging the ceramic base and the glass lid, the first sealing material layer and the second sealing material layer are arranged so that the center lines in the width direction of the first sealing material layer and the second sealing material layer overlap each other. It is preferable to arrange the sealing material layer in contact. In this way, the accuracy of laser sealing can be increased.
本発明の気密パッケージの製造方法は、ガラス蓋側からレーザー光を照射し、第一の封着材料層と第二の封着材料層を軟化変形させることにより、第一の封着材料層と第二の封着材料層を気密封着して、気密パッケージを得る工程を有する。
The manufacturing method of the hermetic package of the present invention includes a first sealing material layer formed by irradiating a laser beam from the glass lid side and softening and deforming the first sealing material layer and the second sealing material layer. A step of hermetically sealing the second sealing material layer to obtain an airtight package;
レーザーとして、種々のレーザーを使用することができる。特に、半導体レーザー、YAGレーザー、CO2レーザー、エキシマレーザー、赤外レーザーは、取扱いが容易な点で好ましい。
Various lasers can be used as the laser. In particular, a semiconductor laser, a YAG laser, a CO 2 laser, an excimer laser, and an infrared laser are preferable in terms of easy handling.
レーザー封着を行う雰囲気は特に限定されず、大気雰囲気でもよく、窒素雰囲気等の不活性雰囲気でもよい。
The atmosphere for laser sealing is not particularly limited, and may be an air atmosphere or an inert atmosphere such as a nitrogen atmosphere.
レーザー封着を行う際に、(100℃以上、且つ基体内部の発光素子の耐熱温度以下)の温度でガラス蓋を予備加熱すると、サーマルショックによるガラス蓋の割れを抑制することができる。またレーザー封着直後に、ガラス蓋側からアニールレーザーを照射すると、サーマルショックによるガラス蓋の割れを抑制することができる。
When performing laser sealing, if the glass lid is preheated at a temperature of 100 ° C. or higher and not higher than the heat resistant temperature of the light emitting element inside the substrate, cracking of the glass lid due to thermal shock can be suppressed. Moreover, if an annealing laser is irradiated from the glass lid side immediately after laser sealing, it is possible to suppress breakage of the glass lid due to thermal shock.
レーザー封着を行う際に、(100℃以上、且つ基体内部の発光素子の耐熱温度以下)の温度でセラミック基体を予備加熱すると、レーザー封着時にセラミック基体側への熱伝導を阻害し得るため、効率良くレーザー封着を行うことができる。
When performing laser sealing, if the ceramic substrate is preheated at a temperature of 100 ° C. or higher and not higher than the heat resistant temperature of the light emitting element inside the substrate, heat conduction to the ceramic substrate side may be hindered during laser sealing. Laser sealing can be performed efficiently.
ガラス蓋を押圧した状態でレーザー封着を行うことが好ましい。これにより、レーザー封着時に封着材料層の軟化変形を促進することができる。
It is preferable to perform laser sealing while pressing the glass lid. Thereby, the softening deformation of the sealing material layer can be promoted at the time of laser sealing.
本発明の気密パッケージは、セラミック基体とガラス蓋とを有する気密パッケージにおいて、セラミック基体が、基部と基部上に設けられた枠部とを有し、セラミック基体の枠部の頂部上に、少なくともビスマス系ガラスを含む第一の封着材料層が形成されており、ガラス蓋上に、少なくともビスマス系ガラスを含む第二の封着材料層が形成されており、且つ第一の封着材料層と第二の封着材料層が接触配置された状態で気密一体化されていることを特徴とする。本発明の気密パッケージの技術的特徴は、本発明の気密パッケージの製造方法の説明欄に記載済みであるため、その部分については、便宜上、詳細な説明を省略する。
The hermetic package of the present invention is an airtight package having a ceramic base and a glass lid, the ceramic base having a base and a frame provided on the base, and at least bismuth on the top of the frame of the ceramic base. A first sealing material layer containing glass is formed, a second sealing material layer containing at least bismuth glass is formed on the glass lid, and the first sealing material layer and The second sealing material layer is hermetically integrated in a state of contact arrangement. Since the technical features of the hermetic package of the present invention have already been described in the explanation column of the method of manufacturing the hermetic package of the present invention, detailed description thereof will be omitted for the sake of convenience.
以下、図面を参照しながら、本発明を説明する。図1は、本発明の一実施形態を説明するための断面概念図である。気密パッケージ1は、セラミック基体10とガラス蓋11を備えている。セラミック基体10は基部12を有し、更に基部12の外周端縁上に枠部13を有している。また、セラミック基体10の枠部13内に内部素子14が収容されている。そして、この枠部13の頂部15には第一の封着材料層16が形成されている。第一の封着材料層16の表面は、予め研磨処理されており、その表面粗さRaが0.15μm以下になっている。そして、第一の封着材料層16の幅は、枠部13の幅よりも若干小さくなっている。更に、第一の封着材料層16は、封着材料を焼結させたものであり、その封着材料は、ガラス組成中に遷移金属酸化物を含むビスマス系ガラスと耐火性フィラー粉末とを含有している。なお、セラミック基体10内には、内部素子14と外部を電気的に接続する電気配線(図示されていない)が形成されている。
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a conceptual cross-sectional view for explaining an embodiment of the present invention. The hermetic package 1 includes a ceramic base 10 and a glass lid 11. The ceramic substrate 10 has a base portion 12 and further has a frame portion 13 on the outer peripheral edge of the base portion 12. Further, the internal element 14 is accommodated in the frame portion 13 of the ceramic base 10. A first sealing material layer 16 is formed on the top portion 15 of the frame portion 13. The surface of the first sealing material layer 16 is polished in advance, and the surface roughness Ra is 0.15 μm or less. The width of the first sealing material layer 16 is slightly smaller than the width of the frame portion 13. Further, the first sealing material layer 16 is obtained by sintering a sealing material, and the sealing material includes a bismuth glass containing a transition metal oxide in a glass composition and a refractory filler powder. Contains. An electrical wiring (not shown) that electrically connects the internal element 14 and the outside is formed in the ceramic substrate 10.
ガラス蓋11の表面には、額縁状の第二の封着材料層17が形成されている。第二の封着材料層17は、封着材料を焼結させたものであり、第一の封着材料層16と略同様の材料構成であり、その封着材料は、ガラス組成中に遷移金属酸化物を含むビスマス系ガラスと耐火性フィラー粉末とを含有している。そして、第二の封着材料層17の幅は、第一の封着材料層16の幅と略同様である。更に、第二の封着材料層17の厚みは、第一の封着材料層16の厚みよりも若干小さくなっている。
A frame-shaped second sealing material layer 17 is formed on the surface of the glass lid 11. The second sealing material layer 17 is obtained by sintering the sealing material, and has substantially the same material configuration as that of the first sealing material layer 16, and the sealing material changes during the glass composition. It contains bismuth glass containing metal oxide and refractory filler powder. The width of the second sealing material layer 17 is substantially the same as the width of the first sealing material layer 16. Furthermore, the thickness of the second sealing material layer 17 is slightly smaller than the thickness of the first sealing material layer 16.
ガラス蓋11が上方になり、且つ第一の封着材料層16と第二の封着材料層17の幅方向の中心線同士が接触するように、セラミック基体10とガラス蓋11とが積層配置されている。その後、レーザー照射装置18から出射したレーザー光Lが、ガラス蓋11側から第一の封着材料層16と第二の封着材料層17に沿って照射される。これにより、第一の封着材料層16と第二の封着材料層17が軟化流動した後、セラミック基体10とガラス蓋11が気密封着されて、気密パッケージ1の気密構造が形成される。
The ceramic substrate 10 and the glass lid 11 are laminated so that the glass lid 11 is on top and the center lines in the width direction of the first sealing material layer 16 and the second sealing material layer 17 are in contact with each other. Has been. Thereafter, the laser beam L emitted from the laser irradiation device 18 is irradiated along the first sealing material layer 16 and the second sealing material layer 17 from the glass lid 11 side. Thereby, after the first sealing material layer 16 and the second sealing material layer 17 are softened and flowed, the ceramic base 10 and the glass lid 11 are hermetically sealed, and the hermetic structure of the hermetic package 1 is formed. .
以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
Hereinafter, the present invention will be described in detail based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
まず、ビスマス系ガラス粉末を73体積%、耐火性フィラー粉末を27体積%の割合で混合して、封着材料Aを作製した。ここで、ビスマス系ガラス粉末の平均粒径D50を1.0μm、99%粒径D99を2.5μmとし、耐火性フィラー粉末の平均粒径D50を1.0μm、99%粒径D99を2.5μmとした。なお、ビスマス系ガラスは、ガラス組成として、モル%で、Bi2O3 39%、B2O3 23.7%、ZnO 14.1%、Al2O3 2.7%、CuO 20%、Fe2O3 0.6%を含有している。また耐火性フィラー粉末はβ-ユークリプタイトである。
First, a sealing material A was prepared by mixing bismuth-based glass powder at a ratio of 73% by volume and refractory filler powder at a rate of 27% by volume. Here, the average particle diameter D 50 of the bismuth-based glass powder is 1.0 μm, the 99% particle diameter D 99 is 2.5 μm, and the average particle diameter D 50 of the refractory filler powder is 1.0 μm, 99% particle diameter D. 99 was 2.5 μm. The bismuth-based glass has a glass composition of mol%, Bi 2 O 3 39%, B 2 O 3 23.7%, ZnO 14.1%, Al 2 O 3 2.7%, CuO 20%, Fe 2 O 3 0.6% is contained. The refractory filler powder is β-eucryptite.
得られた封着材料Aの熱膨張係数を測定したところ、その熱膨張係数は、70×10-7/℃であった。なお、熱膨張係数は、押棒式TMA装置で測定したものであり、その測定温度範囲は30~300℃である。
When the thermal expansion coefficient of the obtained sealing material A was measured, the thermal expansion coefficient was 70 × 10 −7 / ° C. The thermal expansion coefficient was measured with a push rod type TMA apparatus, and the measurement temperature range was 30 to 300 ° C.
次に、銀リン酸系ガラス粉末を65体積%、耐火性フィラー粉末を35体積%の割合で混合して、封着材料Bを作製した。ここで、銀リン酸系ガラス粉末の平均粒径D50を1.0μm、99%粒径D99を2.5μmとし、耐火性フィラー粉末の平均粒径D50を1.0μm、99%粒径D99を2.5μmとした。なお、銀リン酸系ガラスは、ガラス組成として、モル%で、Ag2O 32%、P2O5 22%、TeO2 27%、ZnO 11%、Nb2O5 3%、CuO 5%を含有している。また耐火性フィラー粉末はNbZr(PO4)3である。
Next, 65% by volume of silver phosphate glass powder and 35% by volume of refractory filler powder were mixed to prepare sealing material B. Here, 1.0 .mu.m average particle diameter D 50 of the silver phosphate glass powder, 99% particle diameter D 99 and 2.5 [mu] m, 1.0 .mu.m average particle diameter D 50 of the refractory filler powder, 99% particle the diameter D 99 was 2.5 [mu] m. The silver phosphate glass has a glass composition of mol%, Ag 2 O 32%, P 2 O 5 22%, TeO 2 27%, ZnO 11%, Nb 2 O 5 3%, CuO 5%. Contains. The refractory filler powder is NbZr (PO 4 ) 3 .
得られた封着材料Bの熱膨張係数を測定したところ、その熱膨張係数は、77×10-7/℃であった。なお、熱膨張係数は、押棒式TMA装置で測定したものであり、その測定温度範囲は30~150℃である。
When the thermal expansion coefficient of the obtained sealing material B was measured, the thermal expansion coefficient was 77 × 10 −7 / ° C. The thermal expansion coefficient was measured with a push rod type TMA apparatus, and the measurement temperature range was 30 to 150 ° C.
更に、テルル系ガラス粉末を69体積%、耐火性フィラー粉末を31体積%の割合で混合して、封着材料Cを作製した。ここで、テルル系ガラス粉末の平均粒径D50を1.0μm、99%粒径D99を2.5μmとし、耐火性フィラー粉末の平均粒径D50を1.0μm、99%粒径D99を2.5μmとした。なお、テルル系ガラスは、ガラス組成として、モル%で、TeO2 72%、Nb2O5 8%、CuO 20%を含有している。また耐火性フィラー粉末はZr2(WO4)(PO4)2である。
Furthermore, 69% by volume of tellurium glass powder and 31% by volume of refractory filler powder were mixed to prepare sealing material C. Here, the average particle diameter D 50 of the tellurium-based glass powder is 1.0 μm, the 99% particle diameter D 99 is 2.5 μm, and the average particle diameter D 50 of the refractory filler powder is 1.0 μm, 99% particle diameter D. 99 was 2.5 μm. In addition, the tellurium type glass contains TeO 2 72%, Nb 2 O 5 8%, and CuO 20% as a glass composition. The refractory filler powder is Zr 2 (WO 4 ) (PO 4 ) 2 .
得られた封着材料Cの熱膨張係数を測定したところ、その熱膨張係数は、74×10-7/℃であった。なお、熱膨張係数は、押棒式TMA装置で測定したものであり、その測定温度範囲は30~250℃である。
When the thermal expansion coefficient of the obtained sealing material C was measured, the thermal expansion coefficient was 74 × 10 −7 / ° C. The thermal expansion coefficient was measured with a push rod type TMA apparatus, and the temperature range for measurement was 30 to 250 ° C.
次に、表中に記載の封着材料を用いて、図1に示すような枠部を有するセラミック基体(縦30mm×横30mm×基部厚み0.8mm、熱膨張係数70×10-7/℃)の枠部の頂部上に第一封着材料層を形成した。なお、セラミック基体は表中に示す材料で構成されており、また枠部は、幅2mm、高さ1.0mmの額縁状である。併せて、表中に記載の封着材料を用いて、表中に記載のガラス蓋(縦30mm×横30mm)の外周端縁上に沿って第二封着材料層を形成した。なお、表中の「アルカリホウケイ酸ガラス」は日本電気硝子社製BDAであり、「無アルカリガラス」は日本電気硝子社製OA-10Gであり、「ソーダ石灰ガラス」は市販の窓ガラスである。「ガラスセラミック」は、ガラス粉末と耐火性フィラー粉末を含むグリーンシートの積層シートを焼結させたものである。
Next, using the sealing material described in the table, a ceramic substrate having a frame portion as shown in FIG. 1 (length 30 mm × width 30 mm × base thickness 0.8 mm, thermal expansion coefficient 70 × 10 −7 / ° C. The first sealing material layer was formed on the top of the frame part. The ceramic substrate is composed of the materials shown in the table, and the frame portion has a frame shape with a width of 2 mm and a height of 1.0 mm. In addition, a second sealing material layer was formed along the outer peripheral edge of the glass lid (length 30 mm × width 30 mm) described in the table using the sealing material described in the table. In the table, “alkali borosilicate glass” is BDA manufactured by Nippon Electric Glass, “non-alkali glass” is OA-10G manufactured by Nippon Electric Glass, and “soda lime glass” is a commercially available window glass. . “Glass ceramic” is obtained by sintering a laminated sheet of green sheets containing glass powder and refractory filler powder.
詳述すると、まず粘度が約120Pa・s(25℃、Shear rate:4)になるように、表中に記載の封着材料、ビークル及び溶剤を混練した後、更に三本ロールミルで粉末が均一に分散するまで混錬して、ペースト化し、封着材料ペーストを得た。次に、セラミック基体の枠部の頂部上に、スクリーン印刷機により上記の封着材料ペーストを額縁状に印刷した。同様に、ガラス蓋の外周端縁上に沿ってスクリーン印刷機により封着材料ペーストを額縁状に印刷した。更に、大気雰囲気下にて、120℃で10分間乾燥した後、大気雰囲気下にて、500℃で10分間焼成して、平均厚み6.0μm、平均幅500μmの第一の封着材料層及び第二の封着材料層を形成した。
In detail, first, after kneading the sealing material, vehicle, and solvent described in the table so that the viscosity is about 120 Pa · s (25 ° C., Shear rate: 4), the powder is further uniform in a three-roll mill. Kneaded until dispersed into a paste to obtain a sealing material paste. Next, the above-mentioned sealing material paste was printed in a frame shape on the top of the frame portion of the ceramic substrate by a screen printer. Similarly, the sealing material paste was printed in a frame shape by a screen printer along the outer peripheral edge of the glass lid. Furthermore, after drying at 120 ° C. for 10 minutes in an air atmosphere, firing at 500 ° C. for 10 minutes in an air atmosphere, a first sealing material layer having an average thickness of 6.0 μm and an average width of 500 μm, and A second sealing material layer was formed.
最後に、セラミック基体の枠部の頂部に形成した第一封着材料層とガラス蓋に形成した第二封着材料層が接触するように配置した後、ガラス蓋側から波長808nm、出力8~32Wの半導体レーザーを照射して、第一封着材料層及び第二封着材料層を軟化変形させることにより、セラミック基体とガラス蓋とを気密封着して、各気密パッケージを得た。
Finally, after placing the first sealing material layer formed on the top of the frame portion of the ceramic base and the second sealing material layer formed on the glass lid, the glass lid side has a wavelength of 808 nm and an output of 8 to 8 By irradiating a 32 W semiconductor laser to soften and deform the first sealing material layer and the second sealing material layer, the ceramic base and the glass lid were hermetically sealed to obtain each hermetic package.
得られた気密パッケージについて、レーザー封着後のクラックと気密信頼性を評価した。レーザー封着後のクラックは、光学顕微鏡で封着部分を観察した時に、クラックがない場合を「○」、クラックがある場合を「×」として評価したものである。
The obtained airtight package was evaluated for cracks and airtight reliability after laser sealing. The crack after laser sealing is evaluated by observing the sealed portion with an optical microscope as “◯” when there is no crack and “×” when there is a crack.
次に、得られた気密パッケージについて、温度サイクル試験による気密信頼性を評価した。詳述すると、得られた気密パッケージに対して、温度サイクル試験を行った後、封着材料層の近傍を観察したところ、変質、クラック、剥離等が全く認められなかったものを「○」、変質、クラック、剥離等が認められたものを「×」として気密信頼性を評価した。なお、温度サイクル試験の条件は、125℃⇔-55℃、1000サイクルである。
Next, the airtight reliability of the obtained airtight package was evaluated by a temperature cycle test. More specifically, after the temperature cycle test was performed on the obtained airtight package, the vicinity of the sealing material layer was observed, and no change, cracking, peeling, or the like was observed. Airtight reliability was evaluated as “x” when alteration, cracking, peeling, or the like was observed. The conditions of the temperature cycle test are 125 ° C. to 55 ° C. and 1000 cycles.
次に、得られた気密パッケージについて、高温高湿高圧試験:HAST(Highly Accelerated Temperature and Humidity Stress test)による気密信頼性を評価した。詳述すると、得られた気密パッケージに対して、HASTを行った後、封着材料層の近傍を観察したところ、変質、クラック、剥離等が全く認められなかったものを「○」、変質、クラック、剥離等が認められたものを「×」として気密信頼性を評価した。なお、HASTの試験条件は、121℃、湿度100%、2atm、24時間である。
Next, the airtight reliability of the obtained airtight package was evaluated by a high-temperature, high-humidity and high-pressure test: HAST (Highly Accelerated Temperature and Humidity Stress test). Specifically, after the HAST was performed on the obtained airtight package, the vicinity of the sealing material layer was observed, and “O”, alteration, Airtight reliability was evaluated as “x” when cracks, peeling, etc. were observed. The HAST test conditions are 121 ° C., humidity 100%, 2 atm, and 24 hours.
表1~3から明らかなように、試料No.1~4、8、9、12及び13は、レーザー封着後のクラックの評価と気密信頼性の評価が良好であった。一方、試料No.5~7、10、11、14及び15は、セラミック基体に第一の封着材料層が形成されていないため、レーザー出力を表中の値まで上昇させて、セラミック基体の表層と第二の封着材料層を反応させる必要があった。その結果、試料No.5~7、10、11、14及び15は、レーザー封着後にクラックが発生しており、気密パッケージの気密信頼性も低かった。なお、試料No.5~7、10、11、14及び15について、レーザー封着の際にレーザー出力を低下させると、レーザー封着強度が低下して、気密信頼性の評価が不良になる。
As is clear from Tables 1 to 3, sample No. For Nos. 1-4, 8, 9, 12, and 13, the evaluation of cracks after laser sealing and the evaluation of hermetic reliability were good. On the other hand, sample No. In Nos. 5 to 7, 10, 11, 14, and 15, since the first sealing material layer is not formed on the ceramic substrate, the laser output is increased to the value in the table, and the surface layer of the ceramic substrate and the second layer It was necessary to react the sealing material layer. As a result, sample no. In Nos. 5 to 7, 10, 11, 14, and 15, cracks occurred after laser sealing, and the hermetic reliability of the hermetic package was low. Sample No. As for 5 to 7, 10, 11, 14, and 15, when the laser output is lowered at the time of laser sealing, the laser sealing strength is lowered, and the evaluation of airtight reliability becomes poor.
本発明の気密パッケージは、センサーチップやLED等の内部素子が実装された気密パッケージに好適であるが、それ以外にも圧電振動素子や樹脂中に量子ドットを分散させた波長変換素子等を収容する気密パッケージ等にも好適に適用可能である。
The hermetic package of the present invention is suitable for an airtight package in which internal elements such as a sensor chip and an LED are mounted, but also accommodates a piezoelectric vibration element or a wavelength conversion element in which quantum dots are dispersed in a resin. It can be suitably applied to an airtight package or the like.
1 気密パッケージ
10 セラミック基体
11 ガラス蓋
12 基部
13 枠部
14 内部素子
15 枠部の頂部
16 第一の封着材料層
17 第二の封着材料層
18 レーザー照射装置
L レーザー光 DESCRIPTION OFSYMBOLS 1 Airtight package 10 Ceramic base | substrate 11 Glass cover 12 Base part 13 Frame part 14 Internal element 15 Top part 16 of a frame part 1st sealing material layer 17 2nd sealing material layer 18 Laser irradiation apparatus L Laser beam
10 セラミック基体
11 ガラス蓋
12 基部
13 枠部
14 内部素子
15 枠部の頂部
16 第一の封着材料層
17 第二の封着材料層
18 レーザー照射装置
L レーザー光 DESCRIPTION OF
Claims (14)
- セラミック基体を用意すると共に、セラミック基体上に第一の封着材料層を形成する工程と、
ガラス蓋を用意すると共に、ガラス蓋上に第二の封着材料層を形成する工程と、
第一の封着材料層と第二の封着材料層が接触するように、セラミック基体とガラス蓋を積層配置する工程と、
ガラス蓋側からレーザー光を照射し、第一の封着材料層と第二の封着材料層を軟化変形させることにより、第一の封着材料層と第二の封着材料層を気密封着して、気密パッケージを得る工程と、を備えることを特徴とする気密パッケージの製造方法。 Preparing a ceramic substrate and forming a first sealing material layer on the ceramic substrate;
Preparing a glass lid and forming a second sealing material layer on the glass lid;
Laminating and arranging the ceramic base and the glass lid so that the first sealing material layer and the second sealing material layer are in contact with each other;
The first sealing material layer and the second sealing material layer are hermetically sealed by irradiating laser light from the glass lid side and softening and deforming the first sealing material layer and the second sealing material layer. And a step for obtaining an airtight package. - 第一の封着材料層が、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラスの何れか一種以上を含有し、且つ第二の封着材料層が、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラスの何れか一種以上を含有することを特徴とする請求項1に記載の気密パッケージの製造方法。 The first sealing material layer contains at least one of bismuth glass, silver phosphate glass, and tellurium glass, and the second sealing material layer includes bismuth glass and silver phosphate glass. The method for producing an airtight package according to claim 1, comprising at least one of tellurium-based glass.
- 第一の封着材料層の平均厚みを8.0μm未満、第二の封着材料層の平均厚みを8.0μm未満、且つ第一の封着材料層の平均厚みと第二の封着材料層の平均厚みの合計を15.0μm未満に規制することを特徴とする請求項1又は2に記載の気密パッケージの製造方法。 The average thickness of the first sealing material layer is less than 8.0 μm, the average thickness of the second sealing material layer is less than 8.0 μm, and the average thickness of the first sealing material layer and the second sealing material The method for manufacturing an airtight package according to claim 1 or 2, wherein the total average thickness of the layers is restricted to less than 15.0 µm.
- 第一の封着材料層の平均幅を2000μm未満、且つ第二の封着材料層の平均幅を2000μm未満に規制することを特徴とする請求項1~3の何れかに記載の気密パッケージの製造方法。 The hermetic package according to any one of claims 1 to 3, wherein the average width of the first sealing material layer is regulated to less than 2000 µm, and the average width of the second sealing material layer is regulated to less than 2000 µm. Production method.
- 基部と基部上に設けられた枠部とを有するセラミック基体を用い、枠部の頂部に第一の封着材料層を形成することを特徴とする請求項1~4の何れかに記載の気密パッケージの製造方法。 The hermetic seal according to any one of claims 1 to 4, wherein a ceramic base having a base and a frame provided on the base is used, and a first sealing material layer is formed on the top of the frame. Package manufacturing method.
- 更に、第一の封着材料層の表面を研磨する工程を備えることを特徴とする請求項1~5の何れかに記載の気密パッケージの製造方法。 The method for producing an airtight package according to any one of claims 1 to 5, further comprising a step of polishing the surface of the first sealing material layer.
- セラミック基体が、ガラスセラミック、窒化アルミニウム、酸化アルミニウムの何れか、或いはこれらの複合材料であることを特徴とする請求項1~6の何れかに記載の気密パッケージの製造方法。 The method for producing an airtight package according to any one of claims 1 to 6, wherein the ceramic substrate is one of glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof.
- セラミック基体の枠部内に、センサー素子又はLED素子を収容することを特徴とする請求項1~7の何れかに記載の気密パッケージの製造方法。 The method for manufacturing an airtight package according to any one of claims 1 to 7, wherein the sensor element or the LED element is accommodated in a frame portion of the ceramic substrate.
- セラミック基体とガラス蓋とを有する気密パッケージにおいて、
セラミック基体が、基部と基部上に設けられた枠部とを有し、
セラミック基体の枠部の頂部上に、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラスの何れか一種以上を含有する第一の封着材料層が形成されており、
ガラス蓋上に、ビスマス系ガラス、銀リン酸系ガラス、テルル系ガラスの何れか一種以上を含有する第二の封着材料層が形成されており、
且つ第一の封着材料層と第二の封着材料層が接触配置された状態で気密一体化されていることを特徴とする気密パッケージ。 In an airtight package having a ceramic substrate and a glass lid,
The ceramic base has a base and a frame provided on the base,
A first sealing material layer containing one or more of bismuth-based glass, silver phosphate-based glass, and tellurium-based glass is formed on the top of the frame portion of the ceramic substrate,
On the glass lid, a second sealing material layer containing at least one of bismuth glass, silver phosphate glass, and tellurium glass is formed,
A hermetic package, wherein the first sealing material layer and the second sealing material layer are hermetically integrated in a state of being in contact with each other. - 第一の封着材料層が、ガラス組成中に遷移金属酸化物を含むビスマス系ガラスを含有し、且つ第二の封着材料層が、ガラス組成中に遷移金属酸化物を含むビスマス系ガラスを含有することを特徴とする請求項10に記載の気密パッケージ。 The first sealing material layer contains bismuth glass containing transition metal oxide in the glass composition, and the second sealing material layer contains bismuth glass containing transition metal oxide in the glass composition. The hermetic package according to claim 10, which is contained.
- 第一の封着材料層の平均厚みが8.0μm未満であり、第二の封着材料層の平均厚みが8.0μm未満であり、且つ第一の封着材料層の平均厚みと第二の封着材料層の平均厚みの合計が15.0μm未満であることを特徴とする請求項9又は10に記載の気密パッケージ。 The average thickness of the first sealing material layer is less than 8.0 μm, the average thickness of the second sealing material layer is less than 8.0 μm, and the average thickness of the first sealing material layer and the second 11. The airtight package according to claim 9, wherein the total thickness of the sealing material layers is less than 15.0 μm.
- 第一の封着材料層の平均幅が2000μm未満であり、且つ第二の封着材料層の平均幅が2000μm未満であることを特徴とする請求項9~11の何れかに記載の気密パッケージ。 12. The hermetic package according to claim 9, wherein the average width of the first sealing material layer is less than 2000 μm, and the average width of the second sealing material layer is less than 2000 μm. .
- セラミック基体が、ガラスセラミック、窒化アルミニウム、酸化アルミニウムの何れか、或いはこれらの複合材料であることを特徴とする請求項9~12の何れかに記載の気密パッケージ。 The hermetic package according to any one of claims 9 to 12, wherein the ceramic substrate is one of glass ceramic, aluminum nitride, aluminum oxide, or a composite material thereof.
- セラミック基体の枠部内に、センサー素子又はLED素子が収容されていることを特徴とする請求項9~13の何れかに記載の気密パッケージ。 14. The hermetic package according to claim 9, wherein a sensor element or an LED element is accommodated in the frame portion of the ceramic substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019519605A JPWO2018216587A1 (en) | 2017-05-23 | 2018-05-17 | Manufacturing method of airtight package and airtight package |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-101476 | 2017-05-23 | ||
JP2017101476 | 2017-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018216587A1 true WO2018216587A1 (en) | 2018-11-29 |
Family
ID=64395607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019032 WO2018216587A1 (en) | 2017-05-23 | 2018-05-17 | Method for producing hermetic package, and hermetic package |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2018216587A1 (en) |
TW (1) | TW201901866A (en) |
WO (1) | WO2018216587A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022190623A1 (en) * | 2021-03-09 | 2022-09-15 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor package and electronic device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI703679B (en) | 2019-03-26 | 2020-09-01 | 勝麗國際股份有限公司 | Image sensor package |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013239609A (en) * | 2012-05-16 | 2013-11-28 | Asahi Glass Co Ltd | Airtight member and manufacturing method thereof |
JP2015023263A (en) * | 2013-07-24 | 2015-02-02 | 日本電気硝子株式会社 | Method for manufacturing electric element package and electric element package |
JP2016027610A (en) * | 2014-06-27 | 2016-02-18 | 旭硝子株式会社 | Package substrate, package, and electronic device |
JP2016225383A (en) * | 2015-05-28 | 2016-12-28 | 日本電気硝子株式会社 | Method for manufacturing airtight package |
-
2018
- 2018-05-17 WO PCT/JP2018/019032 patent/WO2018216587A1/en active Application Filing
- 2018-05-17 TW TW107116718A patent/TW201901866A/en unknown
- 2018-05-17 JP JP2019519605A patent/JPWO2018216587A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013239609A (en) * | 2012-05-16 | 2013-11-28 | Asahi Glass Co Ltd | Airtight member and manufacturing method thereof |
JP2015023263A (en) * | 2013-07-24 | 2015-02-02 | 日本電気硝子株式会社 | Method for manufacturing electric element package and electric element package |
JP2016027610A (en) * | 2014-06-27 | 2016-02-18 | 旭硝子株式会社 | Package substrate, package, and electronic device |
JP2016225383A (en) * | 2015-05-28 | 2016-12-28 | 日本電気硝子株式会社 | Method for manufacturing airtight package |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022190623A1 (en) * | 2021-03-09 | 2022-09-15 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor package and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018216587A1 (en) | 2020-03-26 |
TW201901866A (en) | 2019-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109075128B (en) | Manufacturing method of hermetic package and hermetic package | |
CN108886026A (en) | Manufacturing method of hermetic package and hermetic package | |
WO2020071047A1 (en) | Airtight package | |
US11398585B2 (en) | Airtight package | |
KR102380455B1 (en) | confidential package | |
JP7222245B2 (en) | airtight package | |
JPWO2017170051A1 (en) | Glass powder and sealing material using the same | |
WO2018216587A1 (en) | Method for producing hermetic package, and hermetic package | |
TWI762584B (en) | Bismuth-based glass powder, sealing material, and hermetic package | |
KR102400344B1 (en) | Package airframe and airtight package using it | |
CN110402242B (en) | Cover glass and hermetic package | |
JP6944642B2 (en) | Manufacturing method of airtight package and airtight package | |
JP6922253B2 (en) | Glass lid | |
WO2018131471A1 (en) | Airtight package and glass lid | |
WO2020003989A1 (en) | Method for producing glass cover with sealing material layer and method for producing airtight package | |
JP2018064081A (en) | Airtight package and method for manufacturing the same | |
WO2018193767A1 (en) | Cover glass and airtight package using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18805053 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019519605 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18805053 Country of ref document: EP Kind code of ref document: A1 |