CN115791402A - Multi-directional coupling visual pile anchor loading device and pile anchor loading method - Google Patents
Multi-directional coupling visual pile anchor loading device and pile anchor loading method Download PDFInfo
- Publication number
- CN115791402A CN115791402A CN202211575061.1A CN202211575061A CN115791402A CN 115791402 A CN115791402 A CN 115791402A CN 202211575061 A CN202211575061 A CN 202211575061A CN 115791402 A CN115791402 A CN 115791402A
- Authority
- CN
- China
- Prior art keywords
- loading
- panel
- test box
- semi
- reaction frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种桩锚加载装置,具体为一种多向耦合可视化的桩锚加载装置及桩锚加载方法,属于岩土工程实验装置技术领域。The invention relates to a pile-anchor loading device, in particular to a multi-directional coupling visualized pile-anchor loading device and a pile-anchor loading method, belonging to the technical field of geotechnical engineering experiment devices.
背景技术Background technique
随着城市发展的不断推进,锚杆(索)支护和桩支护技术在基坑工程和边坡支护工程中广泛应用。目前,对于锚杆及桩支护的研究有现场试验、室内模型试验、数值模拟等方法。相对于现场实验,室内模型试验具有易操作、低成本等优点,能准确地揭示结构与周围土体的相互作用机理,为实际的工程提供理论参考。With the continuous advancement of urban development, anchor (cable) support and pile support technologies are widely used in foundation pit engineering and slope support engineering. At present, there are methods such as field test, indoor model test, and numerical simulation for the research on anchor rod and pile support. Compared with field experiments, indoor model tests have the advantages of easy operation and low cost, and can accurately reveal the interaction mechanism between the structure and the surrounding soil, and provide theoretical reference for actual engineering.
为明晰锚杆(索)及桩的锚固效果、抗浮,抗拔能力,研究者们常对不同尺寸、类型的锚/桩结构在不同的土体类型、不同土体密实度、不同的埋入深度进行研究。但传统的试验箱存在着诸多的缺陷,不能呈现对构建加载过程中构件与周围土体颗粒的运动轨迹,无法进行可视化试验,亦无法直观地揭示拉拔构件与土体相互作用的机理;对构件施加力的方向单一,对构件施加外力往往只是竖直或者水平方向,无法有效结合实际工程在模型实验中对构件施加合适方向的力;无法开展在饱和土体在的拉拔试验,往往需要额外的装置对试验予以辅助;另外,传统的拉拔箱多是对单个构件进行试验,而实际工程中,尤其是锚杆、抗浮桩往往布置得较为密集,从而产生相互影响,因而在拉拔过程中,影响到构件极限承载力的发挥。In order to clarify the anchoring effect, anti-floating, and pull-out capabilities of anchor rods (cables) and piles, researchers often analyze the different sizes and types of anchor/pile structures in different soil types, different soil compactness, and different embedding conditions. research in depth. However, there are many defects in the traditional test box, which cannot show the movement trajectory of the component and the surrounding soil particles during the construction and loading process, cannot perform visual tests, and cannot intuitively reveal the mechanism of the interaction between the drawn component and the soil; The direction of the force applied to the component is single, and the external force applied to the component is often only in the vertical or horizontal direction, which cannot effectively combine the actual engineering to apply force in the appropriate direction to the component in the model experiment; it is impossible to carry out the pull-out test in saturated soil, often requiring Additional devices assist the test; in addition, the traditional drawing box is mostly used for testing a single component, but in actual engineering, especially anchor rods and anti-floating piles are often arranged densely, resulting in mutual influence. During the pullout process, the exertion of the ultimate bearing capacity of the component is affected.
发明内容Contents of the invention
本发明的目的就在于为了解决上述至少一个技术问题而提供一种多向耦合可视化的桩锚加载装置及桩锚加载方法,能够真实地实现锚结构、桩结构等与土体作用可视化、加载方向、方式多样化且适用于不同类型土体等研究问题,并且克服以往试验装置功能单一的缺点,具有多功能、操作方便等优点,可节约大量的人力物力和财力。The purpose of the present invention is to provide a multi-directional coupling visualized pile-anchor loading device and pile-anchor loading method in order to solve at least one of the above-mentioned technical problems, which can truly realize the visualization of the interaction between the anchor structure, the pile structure, etc., and the soil, and the loading direction. , The method is diversified and applicable to different types of soil and other research problems, and overcomes the shortcomings of the single function of the previous test device, has the advantages of multi-function, convenient operation, etc., and can save a lot of manpower, material resources and financial resources.
本发明通过以下技术方案来实现上述目的:一种多向耦合可视化的桩锚加载装置,包括模型箱体组件、侧向加压组件、多向耦合导轨组件和竖向加载组件。The present invention achieves the above object through the following technical solutions: a multi-directional coupling visualized pile-anchor loading device, including a model box assembly, a lateral pressurization assembly, a multi-directional coupling guide rail assembly and a vertical loading assembly.
其中,模型箱体组件位于所述桩锚加载装置的底端,且其包括由前、后、左、右、底五块面板拼接构成的方形状试验箱,所述试验箱的前面板开槽处安装有机玻璃板,并以四道防变形固定钢板予以加固;所述试验箱的右侧面板为可变形面板;所述试验箱的左侧面板由若干槽钢组成,槽钢通过若干紧固螺杆与箱体连接;所述试验箱的后面板装有U型水位指示计和卸砂门;所述卸砂门的上横边通过合页与试验箱后面板所开设通槽的上侧边转动连接,所述卸砂门的两侧竖边以及下横边均通过插板与试验箱后面板所开设通槽的侧边固定连接,所述试验箱的底板装有四个万向轮;Wherein, the model box assembly is located at the bottom of the pile-anchor loading device, and it includes a square-shaped test box formed by splicing front, rear, left, right, and bottom panels, and the front panel of the test box is slotted A plexiglass plate is installed at the place and reinforced with four anti-deformation fixed steel plates; the right side panel of the test box is a deformable panel; the left side panel of the test box is composed of several channel steels, and the channel steels are fastened through several The screw rod is connected with the box; the back panel of the test box is equipped with a U-shaped water level indicator and a sand discharge door; the upper horizontal side of the sand discharge door is connected with the upper side of the through groove opened on the back panel of the test box through the hinge. Rotational connection, the vertical sides and lower horizontal sides of the sand discharge door are fixedly connected with the sides of the through groove opened on the rear panel of the test box through the insert plate, and the bottom plate of the test box is equipped with four universal wheels;
侧向加压组件设置在所述试验箱的右侧面板外侧,用于对所述试验箱的右侧面板加压,且其包括与所述试验箱右侧面板平行状设置的承力面板、加载装置和加载面板,所述承力面板的底端通过支座进行支撑,所述加载装置的底端呈均匀排列状固定在承力面板的内侧面,且所述加载装置的伸缩杆前端均连接有加载面板抵在试验箱的右侧面板上;The lateral press assembly is arranged on the outside of the right side panel of the test box, and is used to pressurize the right side panel of the test box, and it includes a load-bearing panel arranged parallel to the right side panel of the test box, Loading device and loading panel, the bottom end of the load-bearing panel is supported by a support, the bottom end of the loading device is fixed on the inner surface of the load-bearing panel in a uniform arrangement, and the front ends of the telescopic rods of the loading device are all A loading panel is attached to the right panel of the test chamber;
多向耦合导轨组件,设置在所述试验箱的上方,且其包括端部固定的半环型反力架以及端部自由的半环型反力架,所述端部固定的半环型反力架与端部自由的半环型反力架呈交叉状设置,所述端部固定的半环型反力架的两端通过螺栓固定于试验箱前后面板的上部中间位置;所述端部自由的半环型反力架的两端通过轴承与试验箱左右面板的上部中间位置转动连接;The multi-directional coupling guide rail assembly is arranged above the test box, and it includes a half-ring reaction frame with fixed ends and a half-ring reaction frame with free ends, and the half-ring reaction frame with fixed ends The force frame and the semi-circular reaction frame with free ends are arranged in a cross shape, and the two ends of the semi-circular reaction frame with fixed ends are fixed to the upper middle position of the front and rear panels of the test box by bolts; The two ends of the free semi-ring-type reaction frame are rotationally connected with the upper middle position of the left and right panels of the test box through bearings;
竖向加载组件,用于提供竖向的加载力,并安装在多向耦合导轨组件上,且其包括用于连接构件的加载板、用于提供拉拔力的电机以及带动加载板位置调节的滑轨,所述滑轨咬合在端部自由的半环型反力架两侧所开设的凹槽内,所述滑轨的下方通过导管连接有夹板,所述夹板通过测力计与电机的尾端相连接,所述电机的前端连接在加载板的中心处,所述加载板上开设有若干插孔,所述滑轨上转动连接有卡放在凹槽内的轮轴。The vertical loading assembly is used to provide vertical loading force and is installed on the multi-directional coupling guide rail assembly, and it includes a loading plate for connecting components, a motor for providing pulling force, and a device for driving the position adjustment of the loading plate The slide rail is engaged in the grooves provided on both sides of the half-ring reaction frame with free ends. The bottom of the slide rail is connected with a splint through a conduit, and the splint passes through the dynamometer and the motor. The tail ends are connected, and the front end of the motor is connected to the center of the loading plate. The loading plate is provided with several jacks, and the slide rail is rotatably connected with a wheel shaft stuck in the groove.
作为本发明再进一步的方案:嵌入所述试验箱前面板的有机玻璃板与箱体连接处以及后面板的卸砂门与箱体的连接处均设置有密封带。As a further solution of the present invention: the connection between the plexiglass plate embedded in the front panel of the test box and the box body and the joint between the sand discharge door on the rear panel and the box body are all provided with sealing tapes.
作为本发明再进一步的方案:所述试验箱前面板位于有机玻璃板的四边外侧分别设置有一道防变形固定钢板,避免有机玻璃板在试验过程中破碎或者与试验箱脱离。As a further solution of the present invention: the front panel of the test box is respectively provided with an anti-deformation fixed steel plate on the four sides of the plexiglass plate, so as to prevent the plexiglass plate from being broken or separated from the test box during the test.
作为本发明再进一步的方案:试验过程中,所述卸砂门的插板均处于插入状态,防止在试验过程中试验箱土体的泄漏。As a further solution of the present invention: during the test process, the inserting plates of the sand discharge door are all in the inserted state, so as to prevent the soil leakage of the test box during the test process.
作为本发明再进一步的方案:所述试验箱的四个顶角处上方均设置有激光测距仪,所述试验箱的四个顶角处分别安装有磁吸底座,且所述激光测距仪通过可调节软管与磁吸底座连接。As a further solution of the present invention: a laser rangefinder is provided above the four corners of the test box, magnetic bases are respectively installed at the four corners of the test box, and the laser rangefinder The instrument is connected to the magnetic base through an adjustable hose.
作为本发明再进一步的方案:所述端部自由的半环型反力架中部开有与端部固定的半环型反力架截面尺寸相同的贯通面,使得端部自由的半环型反力架可通过轮轴沿着端部固定的半环型反力架作扫掠运动。As a further solution of the present invention: the middle part of the semi-annular reaction frame with free ends has a through surface with the same cross-sectional size as the semi-annular reaction frame with fixed ends, so that the semi-annular reaction frame with free ends The force frame can sweep along the half-ring reaction force frame fixed at the end through the axle.
作为本发明再进一步的方案:所述端部自由的半环型反力架所开设的凹槽内以及端部固定的半环型反力架上均开设有若干组用于穿过定位插销的定位孔。As a further solution of the present invention: in the groove provided by the half-ring type reaction frame with free ends and on the half-ring type reaction frame with fixed ends, there are several groups of holes for passing through the positioning bolts. positioning hole.
一种多向耦合可视化的桩锚加载装置,其桩锚加载的方法包括以下步骤:A multi-directional coupling and visualized pile-anchor loading device, the pile-anchor loading method thereof comprises the following steps:
步骤一、在试验箱内填入一定量的土壤,并加入适量的水使土壤形成模拟态的试验土体,并将待试验的锚杆或桩安插在加载板所开设的插孔;
步骤二、根据试验加载方向的需要,可调整端部自由的半环型反力架相对于端部固定的半环型反力架的位置,并通过定位插销将端部自由的半环型反力架与端部固定的半环型反力架进行连接固定,达到改变加载方向的目的;
步骤三、通过调节导管的长度改变夹板所处的位置,从而改变电机及加载板所处的位置;同时根据加载条件的需要,通过轮轴和滑轨可改变竖向加载组件在端部自由的半环型反力架的位置,并通过多向耦合导轨组件上的凹槽内部的定位孔,用定位插销予以固定,达到改变加载方向及加载位置的目的;
步骤四、试验过程中,通过加载装置同时运动或成组运动,进而带动加载面板对试验箱的右侧变形面板能被整体施压,当它们一排或者一列成组运动时,试验箱的右侧变形面板能被局部施压,对不同高度的土体施加不同的围压,并通过可调节激光测距仪观测试验全过程中土体表面的沉降变化。
本发明的有益效果是:可实现箱体移动,方便装置的挪位;通过试验箱后面板的卸砂门卸载填料,使得试验过程更为简便,可操作空间更大;通过变形面板以及侧向加压装置控制给模型内部土体进行不同梯度的应力加压并测出对应区域的侧向土压力大小,控制更为精准,模式更为灵活多样;通过调整两个半环型反力架及下部连接电机的导管,使得加载方向可以沿试验箱上半部球面的任意方向,并使电机位置可以在该半球空间内任意调整,从而可对构件实现不同位置、方向的拉拔试验;加载板设置有多个孔位,除了可进行传统的单个构件的拉拔试验,还可以对群锚,桩间在拉拔过程中的相互作用进行研究;安装有U型水位指示计,可观测试验箱内土体的饱和状态,可进行饱和土体的模型试验;通过可调节未知的激光测距仪观测试验全过程中土体表面的沉降变化;集多功能、位移可视化等多种优点于一身,且操作难度低、减少了资源的浪费,大大加快了试验的进程。The beneficial effects of the present invention are: the movement of the box can be realized, which facilitates the shifting of the device; the packing is unloaded through the sand unloading door on the rear panel of the test box, making the test process more convenient and the operable space larger; The pressurization device controls the stress pressurization of different gradients to the soil inside the model and measures the lateral earth pressure in the corresponding area, the control is more accurate, and the mode is more flexible and diverse; by adjusting the two half-ring reaction frames and The lower part is connected to the conduit of the motor, so that the loading direction can be along any direction of the spherical surface of the upper half of the test box, and the position of the motor can be adjusted arbitrarily in the hemispherical space, so that the pull-out test of different positions and directions can be realized for the components; the loading plate There are multiple hole positions, in addition to the traditional pull-out test of a single component, it is also possible to study the interaction between group anchors and piles during the pull-out process; a U-shaped water level indicator is installed, and the test box can be observed The saturated state of the inner soil can be used for model tests of saturated soil; the settlement change of the soil surface during the whole process of the test can be observed through an adjustable unknown laser rangefinder; it integrates multiple advantages such as multi-function and displacement visualization, Moreover, the operation difficulty is low, the waste of resources is reduced, and the process of the test is greatly accelerated.
附图说明图1为本发明三维正视结构示意图;BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a three-dimensional front view structure of the present invention;
图2为本发明三维侧视结构示意图;Fig. 2 is a schematic diagram of a three-dimensional side view structure of the present invention;
图3为本发明平面正视结构示意图;Fig. 3 is the schematic diagram of plane front view structure of the present invention;
图4为本发明平面侧视结构示意图;Fig. 4 is a schematic diagram of the plane side view structure of the present invention;
图5为本发明平面俯视结构示意图;FIG. 5 is a schematic plan view of the structure of the present invention;
图6为本发明多向耦合导轨组件结构示意图;Fig. 6 is a structural schematic diagram of the multi-directional coupling guide rail assembly of the present invention;
图7为本发明竖向加载组件结构示意图;Fig. 7 is a schematic structural diagram of the vertical loading assembly of the present invention;
图8为本发明侧向加载组件结构示意图;Fig. 8 is a schematic structural diagram of the lateral loading assembly of the present invention;
图9为本发明可调节的激光测距仪结构示意图。Fig. 9 is a schematic structural diagram of the adjustable laser range finder of the present invention.
图中:1、试验箱,2、有机玻璃板,3、支座,4、承力面板,5、加载装置,6、螺栓,7、端部固定的半环型反力架,8、磁吸底座,9、电机,10、可调节软管,11、凹槽,12、激光测距仪,13、端部自由的半环型反力架,14、槽钢,15、轴承,16、卸砂门,17、加载板,18、测力计,19、夹板,20、导管,21、定位插销,22、插板,23、U型水位指示计,24、合页,25、加载面板,26、万向轮,27、轮轴,28、滑轨。In the figure: 1. Test chamber, 2. Plexiglass plate, 3. Support, 4. Bearing panel, 5. Loading device, 6. Bolt, 7. Half-ring reaction force frame fixed at the end, 8. Magnetic Suction base, 9, motor, 10, adjustable hose, 11, groove, 12, laser range finder, 13, half-ring type reaction force frame with free end, 14, channel steel, 15, bearing, 16, Sand unloading door, 17, loading plate, 18, dynamometer, 19, splint, 20, conduit, 21, positioning pin, 22, inserting plate, 23, U-shaped water level indicator, 24, hinge, 25, loading panel , 26, universal wheel, 27, axle, 28, slide rail.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
实施例一Embodiment one
如图1至图9所示,一种多向耦合的位移可视化桩锚加载装置,包括As shown in Figures 1 to 9, a multi-directional coupling displacement visualization pile-anchor loading device includes
模型箱体组件,其位于所述位移可视化桩锚加载装置的底端,且其包括由前、后、左、右、底五块面板拼接构成的方形状试验箱1,所述试验箱1的前面板开槽处安装有机玻璃板2,并以四道防变形固定钢板予以加固;所述试验箱1的右侧面板为可变形面板;所述试验箱1的左侧面板由若干槽钢14组成,槽钢14通过若干紧固螺杆与箱体连接;所述试验箱1的后面板装有U型水位指示计23和卸砂门16;所述卸砂门16的上横边通过合页24与试验箱1后面板所开设通槽的上侧边转动连接,所述卸砂门16的两侧竖边以及下横边均通过插板22与试验箱1后面板所开设通槽的侧边固定连接,所述试验箱1的底板装有四个万向轮26;The model box assembly is located at the bottom of the displacement visualization pile-anchor loading device, and it includes a square-shaped
侧向加压组件,其设置在所述试验箱1的右侧面板外侧,用于对所述试验箱1的右侧面板加压,且其包括与所述试验箱1右侧面板平行状设置的承力面板4、加载装置5和加载面板25,所述承力面板4的底端通过支座3进行支撑,所述加载装置5的底端呈均匀排列状固定在承力面板4的内侧面,且所述加载装置5的伸缩杆前端均连接有加载面板25抵在试验箱1的右侧面板上;The lateral pressurization assembly is arranged outside the right side panel of the
多向耦合导轨组件,其设置在所述试验箱1的上方,且其包括端部固定的半环型反力架7以及端部自由的半环型反力架13,所述端部固定的半环型反力架7与端部自由的半环型反力架13呈交叉状设置,所述端部固定的半环型反力架7的两端通过螺栓6固定于试验箱1前后面板的上部中间位置;所述端部自由的半环型反力架13的两端通过轴承15与试验箱1左右面板的上部中间位置转动连接;The multi-directional coupling guide rail assembly is arranged above the
竖向加载组件,其用于提供竖向的加载力,并安装在多向耦合导轨组件上,且其包括用于连接构件的加载板17、用于提供拉拔力的电机9以及带动加载板17位置调节的滑轨28,所述滑轨28咬合在端部自由的半环型反力架13两侧所开设的凹槽11内,所述滑轨28的下方通过导管20连接有夹板19,所述夹板19通过测力计18与电机9的尾端相连接,所述电机9的前端连接在加载板17的中心处,所述加载板17上开设有若干插孔,所述滑轨28上转动连接有卡放在凹槽11内的轮轴27。Vertical loading assembly, which is used to provide vertical loading force, and is installed on the multi-directional coupling guide rail assembly, and it includes a
实施例二Embodiment two
如图1至图9所示,本实施例中除包括实施例一中的所有技术特征之外,还包括:As shown in Figures 1 to 9, in addition to all the technical features in
嵌入所述试验箱1前面板的有机玻璃板2与箱体连接处以及后面板的卸砂门16与箱体的连接处均设置有密封带,采用密封带进行防水处理,以确保在试验时所注入箱体内的水不会泄露。Embedding the
所述试验箱1前面板位于有机玻璃板2的四边外侧分别设置有一道防变形固定钢板,防止在试验过程中,由土体及荷载的影响对有机玻璃板2产生形变。The front panel of the
试验过程中,所述卸砂门16的插板22均处于插入状态,防止在试验过程中试验箱1土体的泄漏。During the test, the inserting
所述试验箱1的四个顶角处上方均设置有激光测距仪12,所述试验箱1的四个顶角处分别安装有磁吸底座8,且所述激光测距仪12通过可调节软管10与磁吸底座8连接,试验过程中可根据需观测土体位置用可调节软管10调整激光测距仪12的位置。A
所述端部自由的半环型反力架13中部开有与端部固定的半环型反力架7截面尺寸相同的贯通面,使得端部自由的半环型反力架13可通过轮轴27沿着端部固定的半环型反力架7作扫掠运动。The middle part of the
所述端部自由的半环型反力架13所开设的凹槽11内以及端部固定的半环型反力架7上均开设有若干组用于穿过定位插销8的定位孔。Several sets of positioning holes for passing through the positioning pins 8 are provided in the
实施例三Embodiment three
一种多向耦合的位移可视化桩锚加载装置,其桩锚加载方法包括以下步骤:A multi-directional coupling displacement visualization pile-anchor loading device, the pile-anchor loading method includes the following steps:
步骤一、首先在试验箱1内填入一定量的土体,并加入适量的水使试验箱1内土体形成模拟态的试验土体,并将待试验的锚杆或桩安插在加载板17所开设的插孔内;
步骤二、根据试验加载方向的需要,可调整端部自由的半环型反力架13相对于端部固定的半环型反力架7的位置,并通过定位插销21将端部自由的半环型反力架13与端部固定的半环型反力架7进行连接固定,达到改变加载方向的目的;
步骤三、通过调节导管20的长度改变夹板19所处的位置,从而改变电机9及加载板17所处的位置;同时根据加载条件的需要,通过轮轴27和滑轨28可改变竖向加载组件在端部自由的半环型反力架13的位置,并通过多向耦合导轨组件上的凹槽11内部的定位孔,用定位插销21予以固定,达到改变加载方向及加载位置的目的;Step 3: Change the position of the
步骤四、试验过程中,可通过加载装置5同时运动或成组运动,进而带动加载面板25对试验箱1的右侧变形面板能被整体施压,当它们一排或者一列成组运动时,试验箱1的右侧变形面板能被局部施压,对不同深度的土体施加梯度加压,并通过可调节激光测距仪12观测试验全过程中土体表面的沉降变化。
实施例一提供的一种多向耦合的位移可视化桩锚加载装置,当进行加载时可实现全过程位移可视化。以研究透明土(由矿物油和硅粉混合而成,工程性质类似天然黏土)中的锚杆为例,为实现位移可视化,将透明土分层铺设,并在土体层之间铺设标志性颗粒,在模型箱后面板放置白色聚乙烯薄板,便于观察土颗粒位移变化。通过传力杆可对锚杆进行拉拔试验,同时用单反相机进行间隔拍摄,获得在锚杆在拉拔全过程时间段的图像,并利用粒子图像测试技术(PIV)对图像进行处理,分析锚杆周围的土体剪应变场和位移场,揭示土-锚的相互作用机理,研究了密实度和转化埋深对桩锚结构的影响。
实施例四Embodiment four
一种多向耦合的位移可视化桩锚加载装置是在实施例一的基础上进行的优化方案。以锚板为例,当研究不同埋置深度的锚板的承载机理时,侧向加压装置可进行不同梯度下的应力加压,实现对锚板结构的不同受力环境的模拟,根据模型实验的相似比等效为不同埋置深度的应力状态,从而真实地反映出不同埋置深度下锚板的承载特性。A multi-directional coupled displacement visualization pile-anchor loading device is an optimization scheme based on the first embodiment. Taking the anchor plate as an example, when studying the bearing mechanism of the anchor plate with different embedding depths, the lateral pressure device can carry out stress compression under different gradients to realize the simulation of different stress environments for the anchor plate structure. According to the model The similarity ratio of the experiment is equivalent to the stress state at different embedding depths, thus truly reflecting the bearing characteristics of the anchor plates at different embedding depths.
实施例五Embodiment five
一种多向耦合的位移可视化桩锚加载装置,以基坑中采用锚杆支护的工程为例,当研究以一定倾斜角度埋置锚杆的抗拔机理时,通过多向耦合导轨装置以及加载装置上的导轨、凹槽、轮轴、螺栓及定位插销改变电机在模型箱上部圆球空间内的位置,从而真实地反映出不同拉拔方向下锚杆的抗拔特性。A multi-directional coupling displacement visualization pile-anchor loading device. Taking the project of bolt support in the foundation pit as an example, when studying the pull-out mechanism of the anchor rod embedded at a certain inclination angle, the multi-directional coupling guide rail device and The guide rails, grooves, axles, bolts and positioning pins on the loading device change the position of the motor in the upper spherical space of the model box, thus truly reflecting the pullout characteristics of the anchor rod in different pulling directions.
实施例六Embodiment six
一种多向耦合的位移可视化桩锚加载装置,以讨论群桩间相互作用机理为例,根据加载板上孔位的间距大小调整群桩间的桩位设置,基于群桩的拉拔试验得到上拔力-位移关系曲线,通过研究抗拔力变化,分析群桩之间的相互作用,进行群桩效应研究。A multi-directional coupling displacement visualization pile-anchor loading device. Taking the discussion of the interaction mechanism between pile groups as an example, the pile position setting between the pile groups is adjusted according to the hole spacing on the loading plate. Based on the pull-out test of the pile groups, the The uplift force-displacement relationship curve is used to study the effect of pile groups by studying the change of pullout force and analyzing the interaction between pile groups.
实施例七Embodiment seven
一种多向耦合的位移可视化桩锚加载装置,以讨论桩在拉拔实验中对桩周土体影响为例,根据模型箱四个顶角安装的激光测距仪可得到桩在拉拔试验全过程中,桩周土体的沉降量与桩体位移关系,进行桩土之间相互作用的研究。A multi-directional coupling displacement visualization pile-anchor loading device. Taking the discussion of the influence of piles on the soil around the piles in the pull-out test as an example, the piles in the pull-out test can be obtained according to the laser rangefinder installed at the four corners of the model box. During the whole process, the relationship between the settlement of the soil around the pile and the displacement of the pile is studied, and the interaction between the pile and the soil is studied.
实施例八Embodiment eight
一种多向耦合的位移可视化桩锚加载装置是在实施例一至实施例五,基础上进行的优化方案。实施例一至实施例五提供的一种多向耦合的位移可视化桩锚结构多功能模型试验箱还包括排水系统。模型箱体做防水处理。实施例一至实施例五所提供的一种位移可视化的桩锚结构多功能试验装置,可通过注水进行饱和土体及渗流条件下的结构加载试验。可通过U型水位指示计反映土体是否饱和。同时也可以研究不同水位下结构的性能,通过调节试验箱注水量,并观测U型水位指示计所示水位变化情况,真实地模拟了水位变化情况。A multi-directional coupled displacement visualization pile-anchor loading device is an optimization scheme based on
工作原理:能够真实地实现锚结构、桩等结构与土体作用可视化,加载方向及方式多样化且适用于不同类型土体等研究问题,并且克服以往试验装置功能单一的缺点。Working principle: It can truly realize the visualization of the interaction between anchor structures, piles and other structures and soil, the loading direction and method are diversified, and it is suitable for research problems such as different types of soil, and overcomes the shortcomings of the single function of the previous test device.
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the invention is not limited to the details of the above-described exemplary embodiments, but that the invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Accordingly, the embodiments should be regarded in all points of view as exemplary and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and it is therefore intended that the scope of the invention be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents of the elements are embraced in the present invention. Any reference sign in a claim should not be construed as limiting the claim concerned.
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described according to implementation modes, not each implementation mode only contains an independent technical solution, and this description in the specification is only for clarity, and those skilled in the art should take the specification as a whole , the technical solutions in the various embodiments can also be properly combined to form other implementations that can be understood by those skilled in the art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211575061.1A CN115791402B (en) | 2022-12-08 | 2022-12-08 | Multidirectional coupling visualized pile anchor loading device and pile anchor loading method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211575061.1A CN115791402B (en) | 2022-12-08 | 2022-12-08 | Multidirectional coupling visualized pile anchor loading device and pile anchor loading method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115791402A true CN115791402A (en) | 2023-03-14 |
CN115791402B CN115791402B (en) | 2024-02-09 |
Family
ID=85418087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211575061.1A Active CN115791402B (en) | 2022-12-08 | 2022-12-08 | Multidirectional coupling visualized pile anchor loading device and pile anchor loading method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115791402B (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003172670A (en) * | 2001-12-07 | 2003-06-20 | Hitachi Industries Co Ltd | Movable light irradiation device |
CN103234830A (en) * | 2013-05-23 | 2013-08-07 | 湖南科技大学 | Anchoring property experiment platform of anchor rod |
CN106018102A (en) * | 2016-07-29 | 2016-10-12 | 兰州大学 | Rammed earth historic site group anchorage pullout test system |
CN107167386A (en) * | 2017-07-21 | 2017-09-15 | 西安建筑科技大学 | A kind of structural elements vertical load loading device and loading method |
JP2017215238A (en) * | 2016-06-01 | 2017-12-07 | 東亜建設工業株式会社 | Method for estimating allowable pull-out strength of anchor member buried in short fiber-reinforced cement-based material |
CN108801807A (en) * | 2018-06-08 | 2018-11-13 | 中南大学 | A kind of pile-soil interface shearing dynamic characteristic test apparatus |
CN109283059A (en) * | 2018-12-07 | 2019-01-29 | 武汉理工大学 | A visual three-way loading pull-out test box |
CN211927256U (en) * | 2020-05-15 | 2020-11-13 | 浙江工业大学 | An expanded head anchor bolt group anchor test device |
CN213985052U (en) * | 2021-01-20 | 2021-08-17 | 山东平安工程质量检测有限公司 | Foundation settlement detection system |
CN215931532U (en) * | 2021-08-06 | 2022-03-01 | 鲁超 | Pile foundation analogue means for architecture |
CN216791863U (en) * | 2021-12-08 | 2022-06-21 | 中交一公局第四工程有限公司 | High performance concrete's intensity detection device |
CN114892733A (en) * | 2022-07-14 | 2022-08-12 | 浙大城市学院 | Uplift resistance measuring device and method based on anchor plate foundation of seabed slope field |
CN114965068A (en) * | 2022-01-21 | 2022-08-30 | 合肥明巢高速公路有限公司 | Simulation device and application method for model test of wrapped non-load-bearing reinforced soil bridge platform |
CN115369932A (en) * | 2022-08-31 | 2022-11-22 | 广州地铁设计研究院股份有限公司 | Bearing capacity test device and method for indoor engineering pile model |
-
2022
- 2022-12-08 CN CN202211575061.1A patent/CN115791402B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003172670A (en) * | 2001-12-07 | 2003-06-20 | Hitachi Industries Co Ltd | Movable light irradiation device |
CN103234830A (en) * | 2013-05-23 | 2013-08-07 | 湖南科技大学 | Anchoring property experiment platform of anchor rod |
JP2017215238A (en) * | 2016-06-01 | 2017-12-07 | 東亜建設工業株式会社 | Method for estimating allowable pull-out strength of anchor member buried in short fiber-reinforced cement-based material |
CN106018102A (en) * | 2016-07-29 | 2016-10-12 | 兰州大学 | Rammed earth historic site group anchorage pullout test system |
CN107167386A (en) * | 2017-07-21 | 2017-09-15 | 西安建筑科技大学 | A kind of structural elements vertical load loading device and loading method |
CN108801807A (en) * | 2018-06-08 | 2018-11-13 | 中南大学 | A kind of pile-soil interface shearing dynamic characteristic test apparatus |
CN109283059A (en) * | 2018-12-07 | 2019-01-29 | 武汉理工大学 | A visual three-way loading pull-out test box |
CN211927256U (en) * | 2020-05-15 | 2020-11-13 | 浙江工业大学 | An expanded head anchor bolt group anchor test device |
CN213985052U (en) * | 2021-01-20 | 2021-08-17 | 山东平安工程质量检测有限公司 | Foundation settlement detection system |
CN215931532U (en) * | 2021-08-06 | 2022-03-01 | 鲁超 | Pile foundation analogue means for architecture |
CN216791863U (en) * | 2021-12-08 | 2022-06-21 | 中交一公局第四工程有限公司 | High performance concrete's intensity detection device |
CN114965068A (en) * | 2022-01-21 | 2022-08-30 | 合肥明巢高速公路有限公司 | Simulation device and application method for model test of wrapped non-load-bearing reinforced soil bridge platform |
CN114892733A (en) * | 2022-07-14 | 2022-08-12 | 浙大城市学院 | Uplift resistance measuring device and method based on anchor plate foundation of seabed slope field |
CN115369932A (en) * | 2022-08-31 | 2022-11-22 | 广州地铁设计研究院股份有限公司 | Bearing capacity test device and method for indoor engineering pile model |
Non-Patent Citations (1)
Title |
---|
林志等: "砂土中平板圆锚倾斜拉拔承载特性模型试验研究", 《岩土力学》, vol. 42, no. 11, pages 3059 - 3068 * |
Also Published As
Publication number | Publication date |
---|---|
CN115791402B (en) | 2024-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107179396B (en) | Multifunctional assembled geotechnical engineering physical similarity test system | |
CN103674706B (en) | The dual-purpose test unit of tire earth structure pull-out model test and test measuring method | |
CN108593464B (en) | A test method for shear mechanical properties of pile-soil contact surface | |
CN102175517A (en) | Large-size freely combined model test device for high ground stress underground engineering | |
CN110629808A (en) | A test device and test method for the interface mechanical properties of piles and foundation soil | |
CN109060504B (en) | Soil and structure contact surface testing machine | |
CN205562300U (en) | Built -in soil pressure model test device of barricade | |
CN219240651U (en) | Pile driving confining pressure grading loading model test device | |
CN211080332U (en) | Foundation pile detects displacement measurement device for static test | |
CN104988956B (en) | A device for measuring force of pile group under asymmetrical side load | |
CN210742254U (en) | Grouting test device capable of independently controlling three-dimensional stress state | |
CN210917496U (en) | Testing device for interfacial mechanical property of pile and foundation soil | |
CN115791402A (en) | Multi-directional coupling visual pile anchor loading device and pile anchor loading method | |
CN110057691A (en) | A kind of novel visual simple shear device measuring soil-structure interfacial characteristics | |
CN107328710B (en) | A test device and test method for exploring soil arching effect under passive deformation mode | |
CN218067362U (en) | Large-scale drawing/direct shearing test device for geosynthetic material | |
CN104732867A (en) | Sheet pile harbor model experiment teaching system | |
CN112681403A (en) | Model test device and test method capable of changing angle of anchor rod | |
CN105926685B (en) | Built-in retaining wall type soil pressure displacement effect test method | |
CN215296993U (en) | Multi-connected rock-soil in-situ shear testing device for full-stress path tracking | |
CN116591231A (en) | Pneumatic horizontal and vertical combined load experimental device | |
CN114414391A (en) | Testing device for applying constant load on surface of soil layer by using liquid column pressure and working method | |
CN113567165A (en) | Excavator excavation resistance test device | |
CN210636477U (en) | Pressure type anchor rod bearing characteristic model test device under action of horizontal load | |
CN218121610U (en) | Pile anchor structure test device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |