CN115779854A - Adsorption separation application of Ca-CHA containing calcium molecular sieve - Google Patents
Adsorption separation application of Ca-CHA containing calcium molecular sieve Download PDFInfo
- Publication number
- CN115779854A CN115779854A CN202211601178.2A CN202211601178A CN115779854A CN 115779854 A CN115779854 A CN 115779854A CN 202211601178 A CN202211601178 A CN 202211601178A CN 115779854 A CN115779854 A CN 115779854A
- Authority
- CN
- China
- Prior art keywords
- xenon
- cha
- nitrogen
- oxygen
- chabazite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 61
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 58
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 57
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 239000011575 calcium Substances 0.000 title claims description 16
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 title claims description 10
- 229910052791 calcium Inorganic materials 0.000 title claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 70
- 229910052724 xenon Inorganic materials 0.000 claims abstract description 69
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims abstract description 69
- 229910052743 krypton Inorganic materials 0.000 claims abstract description 42
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000001301 oxygen Substances 0.000 claims abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 34
- 229910052676 chabazite Inorganic materials 0.000 claims abstract description 25
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000003463 adsorbent Substances 0.000 claims abstract description 12
- 238000005342 ion exchange Methods 0.000 claims abstract description 12
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 63
- 230000003068 static effect Effects 0.000 claims description 14
- 239000001307 helium Substances 0.000 claims description 12
- 229910052734 helium Inorganic materials 0.000 claims description 12
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 12
- 238000002474 experimental method Methods 0.000 claims description 10
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 8
- 229940110728 nitrogen / oxygen Drugs 0.000 claims description 8
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910001424 calcium ion Inorganic materials 0.000 claims description 4
- 230000008929 regeneration Effects 0.000 claims description 4
- 238000011069 regeneration method Methods 0.000 claims description 4
- 150000001768 cations Chemical class 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 229910021532 Calcite Inorganic materials 0.000 claims 1
- PDEXVOWZLSWEJB-UHFFFAOYSA-N krypton xenon Chemical compound [Kr].[Xe] PDEXVOWZLSWEJB-UHFFFAOYSA-N 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 3
- 230000005684 electric field Effects 0.000 abstract description 3
- 230000009466 transformation Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000000967 suction filtration Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种可高效分离氪氙混合物和氮氧混合物的含钙菱沸石分子筛吸附剂Ca‑CHA,以商业Na‑Y分子筛为原料,经过离子交换、转晶等步骤合成。所制备的Ca‑CHA分子筛具有较强的局域电场,对氙气和氮气的吸附作用极强。Ca‑CHA可从氪氙混合物中选择性吸附氙气从而实现氪氙分离;以及可从氮氧混合物中选择性吸附氮气,用作吸附制氧工艺中的氮气选择性吸附剂。本发明中利用含钙菱沸石Ca‑CHA分离氪氙混合物和氮氧混合物的方法简便,吸附剂成本低,具有较强的工业推广前景。
The invention discloses a calcium-chabazite-containing molecular sieve adsorbent Ca-CHA capable of efficiently separating krypton-xenon mixtures and nitrogen-oxygen mixtures. The commercial Na-Y molecular sieves are used as raw materials and synthesized through steps such as ion exchange and crystal transformation. The prepared Ca-CHA molecular sieve has a strong local electric field and has a strong adsorption effect on xenon and nitrogen. Ca-CHA can selectively adsorb xenon from krypton-xenon mixture to realize the separation of krypton and xenon; and can selectively adsorb nitrogen from nitrogen-oxygen mixture, which can be used as nitrogen selective adsorbent in adsorption oxygen production process. In the present invention, the method for separating the krypton-xenon mixture and the nitrogen-oxygen mixture by using the chabazite-containing Ca-CHA is simple and convenient, the cost of the adsorbent is low, and it has strong industrial promotion prospects.
Description
技术领域technical field
本发明属于沸石分子筛的吸附分离领域,主要涉及一种对氮气、氙气有较强吸附作用的含钙菱沸石分子筛的制备及其在氮氧分离制备纯氧和氪氙分离富集氙气中的应用。The invention belongs to the field of adsorption and separation of zeolite molecular sieves, and mainly relates to the preparation of a calchabazite molecular sieve which has a strong adsorption effect on nitrogen and xenon and its application in the preparation of pure oxygen by the separation of nitrogen and oxygen and the separation and enrichment of xenon by krypton and xenon .
背景技术Background technique
惰性气体,即氦气、氖气、氩气、氪气、氙气、通常是通过空气低温精馏过程获得,惰性气体的天然丰度按Ar>Ne>He>Kr>Xe>Rn的顺序递减,而市场价格随此顺序骤然升高。惰性气体中的氙气广泛应用于照明、医疗成像麻醉、激光等领域,因此高纯度氙气的市场需求不断增加。在空气分离的副产物中我们可以获取到氙气和氪气混合物(20/80,v/v),通过分离可获取高纯度的氙气,此外在核工业的废料中也含有部分氪气和氙气(氪气浓度40ppm左右,氙气浓度400ppm左右),从其中高效地捕获氙气有望降低氙气的价格,因此氙/氪分离以及氙气富集具有重要意义。与工业中常用的低温精馏的手段相比,吸附分离更具经济性和环保意义。目前分子筛的氙/氪吸附分离的研究还处于起步阶段,大多利用理论模拟的方法预测分子筛的分离性能,研究表明负载银等贵金属的分子筛可能有利于氙/氪的吸附分离。然而,银等贵金属的引入会造成吸附剂成本的大幅度上升。Inert gases, namely helium, neon, argon, krypton, and xenon, are usually obtained through the process of low-temperature rectification of air, and the natural abundance of inert gases decreases in the order of Ar>Ne>He>Kr>Xe>Rn, And the market price rises suddenly with this sequence. Xenon in the noble gas is widely used in lighting, medical imaging anesthesia, laser and other fields, so the market demand for high-purity xenon is increasing. In the by-products of air separation, we can obtain a mixture of xenon and krypton (20/80, v/v), and high-purity xenon can be obtained through separation. In addition, part of krypton and xenon are also contained in nuclear industry waste ( The concentration of krypton is about 40ppm, and the concentration of xenon is about 400ppm), from which efficient capture of xenon is expected to reduce the price of xenon, so the separation of xenon/krypton and the enrichment of xenon are of great significance. Compared with the low-temperature distillation method commonly used in industry, adsorption separation is more economical and environmentally friendly. At present, the research on xenon/krypton adsorption and separation of molecular sieves is still in its infancy. Most of them use theoretical simulation methods to predict the separation performance of molecular sieves. Studies have shown that molecular sieves loaded with silver and other precious metals may be beneficial to the adsorption and separation of xenon/krypton. However, the introduction of precious metals such as silver will cause a substantial increase in the cost of the adsorbent.
氧气不但是生命之源,高纯度的氧气在工业、医疗、军事、航空航天和科学研究等众多领域中也有非常重要的应用。此外,富氧燃烧被认为是提高能源利用效率的有效方法。基于高纯度氧气的广阔应用前景,高效地除去氧气中的氮气具有重要意义。目前常见的低温精馏法具有能耗高、设备复杂等缺点,常温下利用多孔材料的选择性吸附作用来实现分离是一种节能环保的技术。沸石分子筛具有一定的从氧气中选择性吸附氮气的能力,这是因为氮气分子含有孤对电子并且与氧气分子相比具有较大的四极矩,所以氮气分子与分子筛中阳离子电场的作用力比氧气更强,具有更高的吸附容量。发展具有更高氮/氧分离性能的分子筛材料具有重要意义。Oxygen is not only the source of life, high-purity oxygen also has very important applications in many fields such as industry, medical treatment, military affairs, aerospace and scientific research. In addition, oxyfuel combustion is considered to be an effective way to improve energy utilization efficiency. Based on the broad application prospects of high-purity oxygen, it is of great significance to efficiently remove nitrogen from oxygen. The current common low-temperature distillation method has the disadvantages of high energy consumption and complicated equipment. It is an energy-saving and environmentally-friendly technology to use the selective adsorption of porous materials to achieve separation at room temperature. Zeolite molecular sieves have a certain ability to selectively adsorb nitrogen from oxygen. This is because nitrogen molecules contain lone pairs of electrons and have a larger quadrupole moment than oxygen molecules, so the force ratio between nitrogen molecules and the cation electric field in molecular sieves Oxygen is stronger and has a higher adsorption capacity. It is of great significance to develop molecular sieve materials with higher nitrogen/oxygen separation performance.
菱沸石是一种天然沸石,可以商业分子筛Na-Y为原料,经过离子交换、转晶等方式进行合成,合成成本低廉。本发明的目的是利用含钙的菱沸石Ca-CHA实现高选择性氪氙混合物以及氮氧混合物的吸附分离。Chabazite is a natural zeolite, which can be synthesized by commercial molecular sieve Na-Y through ion exchange, crystal transformation and other methods, and the synthesis cost is low. The purpose of the invention is to utilize calcium-containing chabazite Ca-CHA to realize the adsorption separation of highly selective krypton-xenon mixture and nitrogen-oxygen mixture.
发明内容Contents of the invention
本发明以Na-Y分子筛为原料,经过离子交换、转晶等步骤制备了Ca-CHA分子筛,制备成本低容易工业化生产,因其内部局域电场较强所以具有较高的分离系数。The present invention uses Na-Y molecular sieves as raw materials, and prepares Ca-CHA molecular sieves through steps such as ion exchange and crystal transformation. The preparation cost is low and industrial production is easy, and the internal local electric field is strong, so it has a relatively high separation coefficient.
本发明的技术方案是提供了一种利用含钙菱沸石Ca-CHA选择性吸附氙气从而富集氙气的方法,该方法包括将氪气/氙气混合物通入装填Ca-CHA的分离柱中,吸附剂能够选择性吸附氙气,当分离柱达到吸附平衡后,用氦气吹扫分离柱,实现吸附剂的再生与富集的氙气的回收,其中,所述菱沸石为具有4-6的SiO2/Al2O3比的纯相菱沸石,拓扑结构为CHA结构;其中:The technical solution of the present invention is to provide a method for selectively adsorbing xenon by using calcium chabazite Ca-CHA to enrich xenon. The agent can selectively adsorb xenon, and when the separation column reaches the adsorption equilibrium, the separation column is purged with helium to realize the regeneration of the adsorbent and the recovery of the enriched xenon, wherein the chabazite is SiO 2 with 4-6 /Al 2 O 3 ratio of pure phase chabazite, the topological structure is CHA structure; where:
钙离子交换度90%以上的菱沸石分子筛,在常温条件下满足如下条件:The chabazite molecular sieve with a calcium ion exchange degree of more than 90% meets the following conditions at room temperature:
分子筛在气体对应分压下,对氙气/氪气混合物的静态分离因子K,动态分离因子S与氙气吸附热QXe和氪气吸附热QKr之间满足以下关系式:Under the corresponding partial pressure of the gas, the static separation factor K of the xenon/krypton mixture, the dynamic separation factor S and the xenon adsorption heat Q Xe and krypton adsorption heat Q Kr satisfy the following relationship:
S/K>QXe/QKr+1。S/K>Q Xe /Q Kr +1.
其中:K是对应气体分压下的两种气体静态吸附量比值;Among them: K is the ratio of the static adsorption capacity of the two gases under the corresponding gas partial pressure;
S是动态穿透实验中两种气体动态吸附量的比值。S is the ratio of the dynamic adsorption amounts of the two gases in the dynamic breakthrough experiment.
进一步地,氪氙混合物中氪气的含量为40ppm-80%,氙气的含量为40ppm-20%。Further, the content of krypton gas in the krypton-xenon mixture is 40ppm-80%, and the content of xenon gas is 40ppm-20%.
进一步地,分离过程的操作温度为0℃-30℃,压力为1bar。Further, the operating temperature of the separation process is 0°C-30°C, and the pressure is 1 bar.
进一步地,Ca-CHA分子筛,只含有一种阳离子类型,Ca2+的交换度为90%-100%。Further, the Ca-CHA molecular sieve contains only one type of cation, and the exchange degree of Ca 2+ is 90%-100%.
本发明还提供了一种利用含钙菱沸石Ca-CHA从氮氧混合物中选择性吸附氮气从而制取氧气的方法,将氮氧混合物通入含钙菱沸石Ca-CHA中,吸附剂选择性吸附氮气可在出口直接收集高纯氧气。其中所述菱沸石为具有4-6的SiO2/Al2O3比的纯相菱沸石,拓扑结构为CHA结构;其特征在于:The present invention also provides a method for producing oxygen by selectively adsorbing nitrogen from a nitrogen-oxygen mixture by using the calcium-containing chabazite Ca-CHA. The nitrogen-oxygen mixture is passed into the calcium-containing chabazite Ca-CHA, and the adsorbent selectivity Adsorbed nitrogen can collect high-purity oxygen directly at the outlet. Wherein the chabazite is a pure-phase chabazite with a ratio of SiO 2 /Al 2 O 3 of 4-6, and its topological structure is a CHA structure; it is characterized in that:
钙离子交换度90%以上的菱沸石分子筛,该分子筛在气体对应分压下,对氮气/氧气混合物的静态分离因子K,动态分离因子S,与氮气吸附热QN2和氧气吸附热QO2之间满足以下关系式:A chabazite molecular sieve with a calcium ion exchange degree of more than 90%. Under the corresponding partial pressure of the gas, the molecular sieve has a static separation factor K for a nitrogen/oxygen mixture, a dynamic separation factor S, and the difference between the nitrogen adsorption heat Q N2 and the oxygen adsorption heat Q O2 satisfy the following relationship:
S/K>QN2/QO2+1;S/K>Q N2 /Q O2 +1;
其中:K是对应气体分压下的两种气体静态吸附量比值;Among them: K is the ratio of the static adsorption capacity of the two gases under the corresponding gas partial pressure;
S是动态穿透实验中两种气体动态吸附量的比值。S is the ratio of the dynamic adsorption amounts of the two gases in the dynamic breakthrough experiment.
进一步地,所述的氮气和氧气混合气,其中氮气浓度为1%-80%,对应氧气浓度为99%-20%。Further, in the mixed gas of nitrogen and oxygen, wherein the nitrogen concentration is 1%-80%, the corresponding oxygen concentration is 99%-20%.
进一步地,分离过程的操作温度为0℃-30℃,压力为1bar。Further, the operating temperature of the separation process is 0°C-30°C, and the pressure is 1 bar.
与现有技术比较,本发明的具体优势和有益效果有:Compared with the prior art, the specific advantages and beneficial effects of the present invention are:
1、本发明实现了分子筛材料高效分离氪气和氙气混合物,且所利用的吸附剂Ca-CHA分子筛合成步骤简单,制备过程中无需使用任何贵金属以及过渡金属原料,成本低廉。1. The present invention realizes efficient separation of krypton and xenon mixtures by molecular sieve materials, and the used adsorbent Ca-CHA molecular sieve has simple synthesis steps, no precious metal and transition metal raw materials are used in the preparation process, and the cost is low.
2、本发明所制备的Ca-CHA分子筛的硅铝比高于变压吸附制氧中常用的低硅铝比的LSX分子筛,因此Ca-CHA稳定性更高。2. The silicon-aluminum ratio of the Ca-CHA molecular sieve prepared in the present invention is higher than that of the LSX molecular sieve with low silicon-aluminum ratio commonly used in PSA oxygen production, so Ca-CHA has higher stability.
3、本发明的Ca-CHA分子筛在氮/氧动态穿透实验中表现出较高的氮气吸附能力,纯氧产量得到了大幅提升。3. The Ca-CHA molecular sieve of the present invention shows a high nitrogen adsorption capacity in the nitrogen/oxygen dynamic breakthrough experiment, and the pure oxygen production has been greatly improved.
附图说明Description of drawings
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, together with the following specific embodiments, are used to explain the present invention, but do not constitute a limitation to the present invention. In the attached picture:
图1是Ca-CHA分子筛的XRD谱图。Fig. 1 is the XRD pattern of Ca-CHA molecular sieve.
图2是Ca-CHA分子筛的SEM照片。Fig. 2 is the SEM photo of Ca-CHA molecular sieve.
图3是Ca-CHA分子筛在25℃条件下的氙气、氪气吸附等温线。Fig. 3 is the adsorption isotherm of xenon gas and krypton gas of Ca-CHA molecular sieve at 25°C.
图4是Ca-CHA分子筛在25℃条件下的氮气、氧气吸附等温线。Figure 4 is the nitrogen and oxygen adsorption isotherms of Ca-CHA molecular sieve at 25°C.
图5是Ca-CHA在25℃,1bar条件下,分离氪气和氙气混合物(氪气80%,氙气20%)的动态穿透曲线。Fig. 5 is a dynamic breakthrough curve of Ca-CHA separating a mixture of krypton and xenon (80% krypton and 20% xenon) under the condition of 25°C and 1 bar.
图6是Ca-CHA在25℃,1bar条件下,分离氮气和氧气混合物(氮气为20%,氧气为80%)的动态穿透曲线。Fig. 6 is the dynamic breakthrough curve of Ca-CHA separating nitrogen and oxygen mixture (20% nitrogen and 80% oxygen) under the condition of 25°C and 1 bar.
图7是Ca-CHA在25℃,1bar条件下,分离氪气和氙气混合物(氪气40ppm,氙气400ppm,平衡气为氦气)的动态穿透曲线。Fig. 7 is the dynamic breakthrough curve of Ca-CHA separating krypton and xenon mixture (krypton 40ppm, xenon 400ppm, balance gas helium) under the condition of 25°C and 1bar.
具体实施方式Detailed ways
以下结合附图及实施例对本专利做进一步的解释说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Below in conjunction with accompanying drawing and embodiment this patent is done further explanation. It should be understood that the specific embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
本发明所述的Ca-CHA分子筛的合成方法,具体步骤为:The synthetic method of Ca-CHA molecular sieve of the present invention, concrete steps are:
步骤一:K-Y分子筛的制备Step 1: Preparation of K-Y molecular sieve
采用含有K+的溶液与Na-Y分子筛进行多次离子交换,将Na-Y分子筛中的Na+全部交换成K+,交换温度为80℃,抽滤洗涤后的分子筛经干燥、焙烧得到交换度大于95%的K-Y分子筛。A solution containing K + is used to perform multiple ion exchanges with Na-Y molecular sieves, and all Na + in Na-Y molecular sieves are exchanged for K + . The exchange temperature is 80 ° C. The molecular sieves after suction filtration and washing are dried and roasted to obtain the exchange. KY molecular sieve with a degree greater than 95%.
优选地,含有K+的溶液采用KNO3溶液,溶液浓度为0.5-1mol/L,交换次数为2次,每次交换时间为10小时。Preferably, the solution containing K + is KNO 3 solution, the concentration of the solution is 0.5-1mol/L, the number of exchanges is 2 times, and the time for each exchange is 10 hours.
步骤二:K-CHA分子筛的制备Step 2: Preparation of K-CHA molecular sieve
将氢氧化钾加入至去离子水中,溶解后加入K-Y样品,继续搅拌1小时后转移至水热合成釜中在高温烘箱中转晶,得到K-CHA样品。Add potassium hydroxide to deionized water, dissolve and add K-Y sample, continue stirring for 1 hour, then transfer to a hydrothermal synthesis kettle for crystallization in a high-temperature oven to obtain a K-CHA sample.
优选地,原料摩尔比为:1.0SiO2:(0.8-1)KOH:(120-130)H2O,转晶温度为100-200℃,时间为20-60小时,优选条件下转晶温度为120-160℃,时间为30-50小时。Preferably, the molar ratio of raw materials is: 1.0SiO 2 : (0.8-1) KOH: (120-130) H 2 O, the crystallization temperature is 100-200°C, and the time is 20-60 hours. Under the preferred conditions, the crystallization temperature It is 120-160 ℃, and the time is 30-50 hours.
步骤三:Ca-CHA的制备Step 3: Preparation of Ca-CHA
采用含有Ca2+的溶液与K-CHA分子筛进行多次离子交换,将K+全部交换成Ca2+,交换温度为80℃,抽滤洗涤后的分子筛经干燥、焙烧得到交换度大于95%的Ca-CHA分子筛。The solution containing Ca 2+ is used to carry out ion exchange with K-CHA molecular sieve for many times, all K + is exchanged into Ca 2+ , the exchange temperature is 80°C, and the molecular sieve after suction filtration and washing is dried and roasted to obtain an exchange degree greater than 95%. Ca-CHA molecular sieves.
优选地,含有Ca2+的溶液采用Ca(NO3)2溶液,溶液浓度为0.5-1mol/L,交换次数为3次,每次交换时间为10小时。Preferably, Ca(NO 3 ) 2 solution is used as the solution containing Ca 2+ , the concentration of the solution is 0.5-1 mol/L, the number of exchanges is 3 times, and the time for each exchange is 10 hours.
在另外一个实施例中,还提供Ca-CHA分离氪气和氙气并富集氙气的方法,具体包括以下步骤:In another embodiment, a method for separating krypton and xenon and enriching xenon by Ca-CHA is also provided, which specifically includes the following steps:
(1)称取一定量Ca-CHA分子筛加入至分离柱中,用氦气在100-400℃(优选250℃)的条件下预处理0.5-1小时。(1) Weigh a certain amount of Ca-CHA molecular sieve and add it to the separation column, and pretreat it with helium at 100-400° C. (preferably 250° C.) for 0.5-1 hour.
(2)待样品降至室温后,通入含氪气和氙气的混合气,气体总空速为100-5000/小时(优选300-1000/小时)。(2) After the sample is lowered to room temperature, a mixed gas containing krypton and xenon is introduced, and the total space velocity of the gas is 100-5000/hour (preferably 300-1000/hour).
(3)将分离柱温度维持在室温下,Ca-CHA可选择性吸附氙气。用直接相连的质谱在线检测分离柱出口气体成分变化,计算Ca-CHA对氪气和氙气的动态吸附量。当装填Ca-CHA分子筛的分离柱达到吸附平衡后,用氦气吹扫分离柱,实现吸附剂的再生与富集的氙气的回收。(3) Keep the temperature of the separation column at room temperature, and Ca-CHA can selectively adsorb xenon. The gas composition change at the outlet of the separation column was detected online by a directly connected mass spectrometer, and the dynamic adsorption of krypton and xenon by Ca-CHA was calculated. When the separation column filled with Ca-CHA molecular sieve reaches the adsorption equilibrium, the separation column is purged with helium to realize the regeneration of the adsorbent and the recovery of the enriched xenon gas.
Ca-CHA在气体的对应分压下,即与混合气中分压一致的情况下,对氙气/氪气混合物的静态分离因子K(两种气体静态吸附量比值),动态分离因子S(动态穿透实验中两种气体动态吸附量的比值),与氙气吸附热QXe和氪气吸附热QKr之间满足以下关系式:Ca-CHA is under the corresponding partial pressure of the gas, that is, when it is consistent with the partial pressure in the mixed gas, the static separation factor K (the ratio of the static adsorption capacity of the two gases) of the xenon/krypton mixture, and the dynamic separation factor S (dynamic The ratio of the dynamic adsorption capacity of the two gases in the breakthrough experiment), and the xenon gas adsorption heat Q Xe and the krypton gas adsorption heat Q Kr satisfy the following relationship:
S/K>QXe/QKr+1。S/K>Q Xe /Q Kr +1.
本发明提供的Ca-CHA吸附分离氮气和氧气的方法包括以下步骤:The method for Ca-CHA adsorption separation nitrogen and oxygen provided by the invention comprises the following steps:
(1)称取一定量Ca-CHA分子筛加入至柱分离装置中,用氦气在100-400℃(优选250℃)的条件下预处理0.5-1小时。(1) Weigh a certain amount of Ca-CHA molecular sieve and add it to a column separation device, and pretreat it with helium at 100-400° C. (preferably 250° C.) for 0.5-1 hour.
(2)待样品降至室温后,通入氮气和氧气的混合气,气体总空速为100-5000/小时(优选200-1500/小时)。(2) After the sample is cooled to room temperature, a mixed gas of nitrogen and oxygen is introduced, and the total space velocity of the gas is 100-5000/hour (preferably 200-1500/hour).
(3)将分离柱温度维持在室温下,在出口处直接收集纯的氧气流。用直接相连的质谱在线检测分离柱出口气体成分变化,计算Ca-CHA对氮气和氧气的动态吸附量,当氮气吸附达到平衡后用氦气吹扫吸附柱实现吸附剂再生。(3) The temperature of the separation column is maintained at room temperature, and the pure oxygen flow is directly collected at the outlet. The directly connected mass spectrometer was used to detect the change of the gas composition at the outlet of the separation column online, and the dynamic adsorption capacity of Ca-CHA for nitrogen and oxygen was calculated. When the nitrogen adsorption reached equilibrium, the adsorption column was purged with helium to realize the regeneration of the adsorbent.
Ca-CHA的特征在于,在气体的对应分压下(与混合气中分压一致)对氮气/氧气混合物的静态分离因子K(对应气体分压下的两种气体静态吸附量比值),动态分离因子S(动态穿透实验中两种气体动态吸附量的比值),与氮气吸附热QN2和氧气吸附热QO2之间满足以下关系式:Ca-CHA is characterized in that, under the corresponding partial pressure of the gas (consistent with the partial pressure in the mixed gas), the static separation factor K of the nitrogen/oxygen mixture (the ratio of the static adsorption capacity of the two gases under the corresponding gas partial pressure), the dynamic The separation factor S (the ratio of the dynamic adsorption capacity of the two gases in the dynamic breakthrough experiment), and the nitrogen adsorption heat Q N2 and oxygen adsorption heat Q O2 satisfy the following relationship:
S/K>QN2/QO2+1。S/K>Q N2 /Q O2 +1.
实施例1Example 1
1、将Na-Y分子筛交换成K-Y分子筛1. Exchange Na-Y molecular sieves for K-Y molecular sieves
采用三口烧瓶进行离子交换,交换时间为10小时,交换温度为80℃。具体操作为:将3g Na-Y原粉(Si/Al=2.6)加入至100mL浓度为1mmol/LKNO3溶液中,采用磁力搅拌器搅拌10小时后进行抽滤洗涤,滤饼在80℃的鼓风干燥箱内干燥,得到的固体继续进行离子交换,重复2次后得到K-Y分子筛。A three-necked flask was used for ion exchange, the exchange time was 10 hours, and the exchange temperature was 80°C. The specific operation is as follows: add 3g of Na-Y raw powder (Si/Al=2.6) to 100mL of 1mmol/ L KNO3 solution, stir with a magnetic stirrer for 10 hours, then carry out suction filtration and washing, and filter cake in a drum at 80°C Dry in an air drying oven, and the obtained solid continues to be ion-exchanged, and KY molecular sieves are obtained after repeating 2 times.
2、将K-Y分子筛转晶为K-CHA分子筛2. Convert K-Y molecular sieve to K-CHA molecular sieve
将2.5g氢氧化钾加入至150mL去离子水中,溶解后加入5g K-Y样品,继续搅拌1小时后转移至水热合成釜中在150℃的烘箱中转晶48小时,然后将所得固体经抽滤洗涤得到K-CHA样品。Add 2.5g of potassium hydroxide to 150mL of deionized water, dissolve and add 5g of K-Y sample, continue to stir for 1 hour, then transfer to a hydrothermal synthesis kettle for crystallization in an oven at 150°C for 48 hours, then filter and wash the obtained solid Get the K-CHA sample.
3、将K-CHA分子筛交换成Ca-CHA分子筛3. Exchange K-CHA molecular sieves for Ca-CHA molecular sieves
采用三口烧瓶进行离子交换,交换时间为10小时,交换温度为80℃。具体操作为:将3g K-CHA分子筛加入至100mL浓度为1mmol/LCa(NO3)2溶液中,采用磁力搅拌器搅拌10小时后进行抽滤洗涤,滤饼在80℃的鼓风干燥箱内干燥,得到的固体继续进行离子交换,重复三次后得到Ca-CHA分子筛。所得样品的XRD图如图1所示,扫描电镜图如图2所示。A three-necked flask was used for ion exchange, the exchange time was 10 hours, and the exchange temperature was 80°C. The specific operation is: add 3g K-CHA molecular sieve to 100mL solution with a concentration of 1mmol/LCa(NO 3 ) 2 , use a magnetic stirrer to stir for 10 hours, then carry out suction filtration and washing, and filter cake in a blast drying oven at 80°C After drying, the obtained solid was further subjected to ion exchange, and Ca-CHA molecular sieves were obtained after repeated three times. The XRD pattern of the obtained sample is shown in FIG. 1 , and the scanning electron microscope image is shown in FIG. 2 .
实施例2采用康塔Quantachrome iQ物理吸附仪测定样品对氙气、氪气、氮气、氧气的吸附等温线,结果如图3、图4所示。根据吸附等温线数据,利用范特霍夫方程计算Ca-CHA对氙气、氪气、氮气、氧气的吸附热,结果表1所示。Ca-CHA对氙气与氪气在对应分压下(0.2/0.8bar)的静态分离因子(K)为1.12,氮气与氧气在对应分压下(0.2/0.8bar)的静态分离因子(K)为2.78。Example 2 The adsorption isotherms of xenon, krypton, nitrogen and oxygen were measured by a Quantachrome iQ physical adsorption instrument, and the results are shown in Fig. 3 and Fig. 4 . According to the adsorption isotherm data, the adsorption heats of Ca-CHA on xenon, krypton, nitrogen and oxygen were calculated by Van't Hoff equation, and the results are shown in Table 1. The static separation factor (K) of Ca-CHA to xenon and krypton at the corresponding partial pressure (0.2/0.8bar) is 1.12, and the static separation factor (K) of nitrogen and oxygen at the corresponding partial pressure (0.2/0.8bar) is 2.78.
实施例3Example 3
采用自制的柱分离装置将上述步骤合成的Ca-CHA分子筛应用到氙/氪穿透实验中。具体的操作为:将一定量的Ca-CHA样品装入自制分离柱的样品池中,将样品在250℃的温度下用氦气吹扫预处理1小时,待预处理结束降至室温后,将含氪气和氙气平衡气(氪气含量为80%,氙气为20%)通入样品中,气体空速为300/小时,分离柱的气体出口处连接质谱,在线实时监测出口气体的组成成分,测试结果如图5所示。氪气的测出时间为1.6分钟,Ca-CHA对氪气的动态吸附量为0.32mmol/g,氙气的测出时间为25.2分钟,Ca-CHA对氙气的动态吸附量为1.31mmol/g,氙/氪动态分离因子S为4.09,满足S/K>QXe/QKr+1。The Ca-CHA molecular sieve synthesized by the above steps was applied to the xenon/krypton breakthrough experiment by using a self-made column separation device. The specific operation is: put a certain amount of Ca-CHA sample into the sample cell of the self-made separation column, pretreat the sample with helium gas purging at a temperature of 250 °C for 1 hour, and after the pretreatment is completed and cool down to room temperature, The balance gas containing krypton and xenon (80% krypton and 20% xenon) is passed into the sample, the gas space velocity is 300/hour, the gas outlet of the separation column is connected to a mass spectrometer, and the composition of the outlet gas is monitored in real time online Components, and the test results are shown in Figure 5. The detection time of krypton is 1.6 minutes, the dynamic adsorption capacity of Ca-CHA to krypton is 0.32mmol/g, the detection time of xenon is 25.2 minutes, the dynamic adsorption capacity of Ca-CHA to xenon is 1.31mmol/g, The dynamic separation factor S of xenon/krypton is 4.09, satisfying S/K>Q Xe /Q Kr +1.
实施例4Example 4
采用自制的柱分离装置将上述步骤合成的Ca-CHA分子筛应用到氮/氧穿透实验中。具体的操作为:将一定量的Ca-CHA样品装入自制分离柱的样品池中,将样品在250℃的温度下用氦气吹扫预处理1小时,待预处理结束降至室温后,将氮气/氧气混合气(气体浓度为:80%/20%)通入样品中,气体空速为600/小时,分离柱的气体出口处连接质谱,在线实时监测出口气体的组成成分,测试结果如图6所示。氧气的测出时间为0.2分钟,Ca-CHA对氧气的动态吸附量为0.09mmol/g,氮气的测出时间为7.3分钟,Ca-CHA对氮气的吸附量为0.67mmol/g,纯氧产量为2.32mmol/g,Ca-CHA氮/氧动态分离因子S为7.44。氮气与氧气动态吸附量比值(α)为7.44,满足S/K>QN2/QO2+1。The Ca-CHA molecular sieve synthesized by the above steps was applied to the nitrogen/oxygen breakthrough experiment using a self-made column separation device. The specific operation is: put a certain amount of Ca-CHA sample into the sample cell of the self-made separation column, pretreat the sample with helium gas purging at a temperature of 250°C for 1 hour, and after the pretreatment is completed and cool down to room temperature, Pass nitrogen/oxygen mixed gas (gas concentration: 80%/20%) into the sample, the gas space velocity is 600/hour, the gas outlet of the separation column is connected to a mass spectrometer, and the composition of the outlet gas is monitored in real time online, and the test results As shown in Figure 6. The detection time of oxygen is 0.2 minutes, the dynamic adsorption capacity of Ca-CHA to oxygen is 0.09mmol/g, the measurement time of nitrogen gas is 7.3 minutes, the adsorption capacity of Ca-CHA to nitrogen gas is 0.67mmol/g, and the pure oxygen output is 2.32mmol/g, Ca-CHA nitrogen/oxygen dynamic separation factor S is 7.44. The dynamic adsorption ratio (α) of nitrogen and oxygen is 7.44, satisfying S/K>Q N2 /Q O2 +1.
表1Ca-CHA的气体吸附量与吸附热Table 1 Gas adsorption capacity and heat of adsorption of Ca-CHA
实施例5Example 5
采用自制的柱分离装置将上述步骤合成的Ca-CHA分子筛应用到低浓度的氙/氪穿透实验中。具体的操作为:将一定量的Ca-CHA样品装入自制分离柱的样品池中,将样品在250℃的温度下用氦气吹扫预处理1小时,待预处理结束降至室温后,将含氪气和氙气平衡气(氪气浓度为40ppm,氙气浓度为400ppm,平衡气为氦气)通入样品中,气体空速为600/小时,分离柱的气体出口处连接质谱,在线实时监测出口气体的组成成分,测试结果如图7所示。氪气的测出时间为1.2分钟,氙气的测出时间为66.1分钟,氙/氪分离选择性为12.6。The Ca-CHA molecular sieve synthesized by the above steps was applied to the low-concentration xenon/krypton breakthrough experiment using a self-made column separation device. The specific operation is: put a certain amount of Ca-CHA sample into the sample cell of the self-made separation column, pretreat the sample with helium gas purging at a temperature of 250 °C for 1 hour, and after the pretreatment is completed and cool down to room temperature, The balance gas containing krypton and xenon (the concentration of krypton gas is 40ppm, the concentration of xenon gas is 400ppm, and the balance gas is helium) is passed into the sample, the gas space velocity is 600/hour, and the gas outlet of the separation column is connected to the mass spectrometer, and the online real-time The composition of the outlet gas was monitored, and the test results are shown in Figure 7. The detection time of krypton gas was 1.2 minutes, the detection time of xenon gas was 66.1 minutes, and the xenon/krypton separation selectivity was 12.6.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211601178.2A CN115779854B (en) | 2022-12-13 | 2022-12-13 | Adsorption separation application of Ca-CHA (calcium-containing molecular sieve) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211601178.2A CN115779854B (en) | 2022-12-13 | 2022-12-13 | Adsorption separation application of Ca-CHA (calcium-containing molecular sieve) |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115779854A true CN115779854A (en) | 2023-03-14 |
CN115779854B CN115779854B (en) | 2024-01-26 |
Family
ID=85419857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211601178.2A Active CN115779854B (en) | 2022-12-13 | 2022-12-13 | Adsorption separation application of Ca-CHA (calcium-containing molecular sieve) |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115779854B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4943304A (en) * | 1989-04-06 | 1990-07-24 | Air Products And Chemicals, Inc. | Process for the purification of bulk gases using chabazite adsorbents |
CN1044268A (en) * | 1989-01-19 | 1990-08-01 | 中国科学院大连化学物理研究所 | Trace krypton, removal of nitrogen oxide adsorbent of molecular sieve in the xenon |
US20170239640A1 (en) * | 2016-02-22 | 2017-08-24 | Air Products And Chemicals, Inc. | Modified Chabazite Adsorbent Compositions, Methods of Making and Using them |
CN111420631A (en) * | 2020-03-13 | 2020-07-17 | 南开大学 | Method for efficiently separating trace alkynes in olefin gas |
-
2022
- 2022-12-13 CN CN202211601178.2A patent/CN115779854B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1044268A (en) * | 1989-01-19 | 1990-08-01 | 中国科学院大连化学物理研究所 | Trace krypton, removal of nitrogen oxide adsorbent of molecular sieve in the xenon |
US4943304A (en) * | 1989-04-06 | 1990-07-24 | Air Products And Chemicals, Inc. | Process for the purification of bulk gases using chabazite adsorbents |
US20170239640A1 (en) * | 2016-02-22 | 2017-08-24 | Air Products And Chemicals, Inc. | Modified Chabazite Adsorbent Compositions, Methods of Making and Using them |
CN111420631A (en) * | 2020-03-13 | 2020-07-17 | 南开大学 | Method for efficiently separating trace alkynes in olefin gas |
Non-Patent Citations (5)
Title |
---|
DAI, WL等: "Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13", 《JOURNAL OF CATALYSIS》, pages 10 - 20 * |
SAXTON, CG等: "Xenon adsorption in synthetic chabazite zeolites", 《MICROPOROUS AND MESOPOROUS MATERIALS》, pages 68 - 73 * |
SINGH, RK、WEBLEY, P: "Adsorption of N2, O2, and Ar in potassium chabazite", 《ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY》, pages 173 - 177 * |
邓欣等: "Ni@CHA催化乙炔加氢谱学及动力学机理探究", 《中国化学会第十九届全国催化学术会议摘要集》, pages 284 * |
陈篤生等: "变压吸附工艺用于从空气中分离氧气和氮气", 《广东化工》, pages 20 - 23 * |
Also Published As
Publication number | Publication date |
---|---|
CN115779854B (en) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW555587B (en) | Process for the decarbonation of gas flows using zeolite adsorbents | |
Yang et al. | Sr-LSX zeolite for air separation | |
US6537348B1 (en) | Method of adsorptive separation of carbon dioxide | |
TWI666049B (en) | Processes using improved rho adsorbent compositions | |
TWI681931B (en) | Improved rho adsorbent compositions, methods of making and using them | |
Si et al. | Use of breakthrough experiment to evaluate the performance of hydrogen isotope separation for metal-organic frameworks M-MOF-74 (M= Co, Ni, Mg, Zn) | |
JPH04227814A (en) | Improved air separation pressure variable adsorption method | |
WO2010021127A1 (en) | Xenon adsorbent, xenon enrichment method, xenon enrichment device, and air liquefaction and separation device | |
TWI629099B (en) | Modified chabazite adsorbent compositions, methods of making and using them | |
CN108751189A (en) | The preparation and application of the aluminium base MOF porous carbon materials of high-specific surface area | |
CN108117090A (en) | A kind of modified low silicon-aluminum is than X-type molecular sieve and its preparation method and application | |
CN113351157A (en) | Modified lithium low-silicon zeolite molecular sieve and preparation method thereof | |
CN113583244A (en) | Metal organic framework material and preparation method and application thereof | |
JP2000061239A (en) | Psa process using faujasite zeolite containing metallic cation as adsorbent | |
CN115779854B (en) | Adsorption separation application of Ca-CHA (calcium-containing molecular sieve) | |
JP2011173059A (en) | Carbon dioxide adsorbent and carbon dioxide recovery apparatus using the same | |
Feng et al. | Rapid solar-driven atmospheric water-harvesting with MAF-4-derived nitrogen-doped nanoporous carbon | |
CN110040714A (en) | A kind of absorption carbon dioxide nitrogen phosphorus doping porous carbon materials and preparation method thereof | |
Kim et al. | Cu-and Li-ion-exchanged ZSM-5 for nitrogen adsorption: Reduced Li usage and water vapor adsorption | |
Singh et al. | Adsorption of N 2, O 2, and Ar in Potassium Chabazite | |
CN103933933A (en) | Ce-LiX high-performance oxygen adsorption material and preparation method thereof | |
JPH1095612A (en) | Silver-containing zeolite, separation of gas using the same and production of zeolite | |
CN107096495A (en) | Modified chabasie adsorbent composition, its method of manufacture and use thereof | |
CN112675811B (en) | High-efficiency separation N2O/CO2Silver exchange molecular sieve adsorbent and preparation method thereof | |
Panezai et al. | Effectiveness of Bi-metallic LSX zeolites in O2 purification: Examining the impact of extra-framework cations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |