CN112675811B - High-efficiency separation N2O/CO2Silver exchange molecular sieve adsorbent and preparation method thereof - Google Patents
High-efficiency separation N2O/CO2Silver exchange molecular sieve adsorbent and preparation method thereof Download PDFInfo
- Publication number
- CN112675811B CN112675811B CN202011509276.4A CN202011509276A CN112675811B CN 112675811 B CN112675811 B CN 112675811B CN 202011509276 A CN202011509276 A CN 202011509276A CN 112675811 B CN112675811 B CN 112675811B
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- silver
- exchange
- exchanged
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 126
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 124
- 239000003463 adsorbent Substances 0.000 title claims abstract description 43
- 238000000926 separation method Methods 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 238000001179 sorption measurement Methods 0.000 claims abstract description 36
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims abstract description 12
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 7
- 239000001361 adipic acid Substances 0.000 claims abstract description 6
- 235000011037 adipic acid Nutrition 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims description 25
- 239000004332 silver Substances 0.000 claims description 23
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 19
- 101710134784 Agnoprotein Proteins 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims description 2
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 2
- 230000002441 reversible effect Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 12
- 150000001768 cations Chemical class 0.000 abstract description 7
- 238000009776 industrial production Methods 0.000 abstract description 3
- 229910052783 alkali metal Inorganic materials 0.000 abstract description 2
- 150000001340 alkali metals Chemical class 0.000 abstract description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract description 2
- 150000001342 alkaline earth metals Chemical class 0.000 abstract description 2
- 238000011084 recovery Methods 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 22
- 239000007789 gas Substances 0.000 description 20
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 description 11
- 239000000843 powder Substances 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 235000013842 nitrous oxide Nutrition 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000012621 metal-organic framework Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical group [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明属于分离材料技术领域,公开了一种高效分离N2O/CO2的银交换分子筛吸附剂及其制备方法,以13X以及5A分子筛为基础骨架材料,通过调节平衡阳离子组成,制备出了一定Ag+交换度的AgX及AgA分子筛。本发明中,由于平衡阳离子由碱金属或者碱土金属改变为Ag+,表现出了优异的N2O优先吸附能力,对N2O/CO2具有较高的选择性和吸附量。本发明可以适用于硝酸和己二酸等工业生产过程中所产生的尾气中的N2O的分离和回收,具有很好的应用前景和很重要的实用价值。
The invention belongs to the technical field of separation materials, and discloses a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 and a preparation method thereof. Taking 13X and 5A molecular sieves as basic framework materials, and adjusting the composition of balanced cations, prepared AgX and AgA molecular sieves with a certain Ag + exchange degree. In the present invention, since the balance cation is changed from alkali metal or alkaline earth metal to Ag + , it exhibits excellent N 2 O preferential adsorption capacity, and has high selectivity and adsorption capacity for N 2 O/CO 2 . The invention can be applied to the separation and recovery of N 2 O in the tail gas produced in the industrial production processes such as nitric acid and adipic acid, and has good application prospect and very important practical value.
Description
技术领域technical field
本发明属于分离材料技术领域,涉及一种N2O和CO2分离材料的制备方法,特别是涉及一种高效分离N2O/CO2的银交换分子筛吸附剂及其制备方法。The invention belongs to the technical field of separation materials, and relates to a preparation method of N2O and CO2 separation materials, in particular to a silver-exchange molecular sieve adsorbent for efficiently separating N2O / CO2 and a preparation method thereof.
背景技术Background technique
氧化亚氮(N2O,笑气)是《京都议定书》限排的六种气体中继二氧化碳(CO2),甲烷(CH4)之后的第三大温室气体,其所造成的温室效应是二氧化碳的298倍以及其会对平流层的臭氧造成破坏。除此之外,N2O在医学,食品,航天领域有着重要的应用。因此,对N2O进行回收利用具有双重意义。N2O的排放中有40% 是由人类活动所造成的,主要为农业,交通运输业以及工业。工业上,己二酸和硝酸的生产过程中,N2O常作为副产物而排放出来。目前,工业上对N2O的处理主要有三种方法,其中一种是作为一种氧化剂同CH4气体燃烧,但会产生CO2气体造成二次污染;二是对于尾气中的低浓度的N2O,可以将N2O直接催化分解为对环境无污染的N2和O2,但是N2O的分解需要高温,能耗高且分解后N2O不能作为一个有价值的中间物而用来生产其他的精细化工产品;三是对于高浓度的N2O,可以将N2O作为氧化剂,在工业上,一步将苯氧化制取苯酚,但是通常尾气中N2O的浓度都达不到要求,需要进一步的富集。因此,寻找到一种经济有效的方法分离或者富集N2O使其用于其他工业生产,是十分必要的。己二酸和硝酸的生产尾气中,除了N2O外,还有与其性质极其相近的CO2。CO2与N2O虽然由不同的元素组成,但是他们有着相同的相对分子质量和动力学直径,相似的液化温度以及极化率等,因此,N2O/CO2的分离具有很大的挑战。变压吸附分离技术(PSA)由于具有能耗低,操作简单等优势近年来受到了越来越多的的关注。变压吸附分离中最重要的便是吸附剂的选择,而在吸附分离的工艺中常用的吸附剂有碳材料(活性炭和碳分子筛)、分子筛、硅溶胶、以及金属有机骨架(MOFs)等材料。对比这几类吸附剂发现:碳材料不具有均一的孔结构,MOFs材料稳定性差一些,相比而言分子筛具有均一的孔结构和孔径大小,热稳定好,以及可调变的比表面积和孔容积,因此对分子筛类的吸附剂研究和应用的较多。平衡阳离子的类型作为影响分子筛性质的一个重要因素,对于气体的吸附分离也有很大的影响。X和A型分子筛硅铝比较低(分别为1.15和1.00),孔道中具有较多的平衡阳离子,因此选择这两种分子筛进行银离子交换实现N2O/CO2的吸附分离。Nitrous oxide (N 2 O, laughing gas) is the third largest greenhouse gas after carbon dioxide (CO 2 ) and methane (CH 4 ) among the six gases restricted by the Kyoto Protocol. Its greenhouse effect is 298 times that of carbon dioxide and its damage to ozone in the stratosphere. In addition, N 2 O has important applications in the fields of medicine, food, and aerospace. Therefore, the recycling of N 2 O has a double meaning. 40% of N 2 O emissions are caused by human activities, mainly agriculture, transportation and industry. Industrially, N 2 O is often emitted as a by-product during the production of adipic acid and nitric acid. At present, there are three main methods for the treatment of N 2 O in industry, one of which is to combust with CH 4 gas as an oxidant, but it will produce CO 2 gas and cause secondary pollution; 2 O, N 2 O can be directly catalytically decomposed into N 2 and O 2 which are non-polluting to the environment, but the decomposition of N 2 O requires high temperature, high energy consumption and N 2 O cannot be used as a valuable intermediate after decomposition. It is used to produce other fine chemical products; thirdly, for high concentration of N 2 O, N 2 O can be used as an oxidant. In industry, benzene is oxidized to produce phenol in one step, but the concentration of N 2 O in the tail gas is usually as high as If not required, further enrichment is required. Therefore, it is very necessary to find a cost-effective method to separate or enrich N 2 O for other industrial production. In addition to N 2 O, there is also CO 2 with very similar properties in the production tail gas of adipic acid and nitric acid. Although CO 2 and N 2 O are composed of different elements, they have the same relative molecular mass and kinetic diameter, similar liquefaction temperature and polarizability, etc. Therefore, the separation of N 2 O/CO 2 has a great effect. challenge. Pressure swing adsorption (PSA) has received more and more attention in recent years due to its advantages of low energy consumption and simple operation. The most important thing in pressure swing adsorption separation is the choice of adsorbent, and the commonly used adsorbents in the adsorption separation process are carbon materials (activated carbon and carbon molecular sieve), molecular sieves, silica sol, and metal organic frameworks (MOFs) and other materials . Comparing these types of adsorbents, it is found that carbon materials do not have a uniform pore structure, and MOFs have poor stability. In contrast, molecular sieves have uniform pore structure and pore size, good thermal stability, and adjustable specific surface area and pore size. Therefore, there are more studies and applications of molecular sieve adsorbents. As an important factor affecting the properties of molecular sieves, the type of equilibrium cations also has a great influence on the adsorption and separation of gases. Type X and Type A molecular sieves have low silica-alumina ratios (1.15 and 1.00, respectively) and have more equilibrium cations in the pores. Therefore, these two molecular sieves are selected for silver ion exchange to achieve the adsorption and separation of N 2 O/CO 2 .
发明内容SUMMARY OF THE INVENTION
为了解决己二酸和硝酸生成的尾气中N2O和CO2分离困难的问题,本发明公开了一种高效分离N2O/CO2的银交换分子筛吸附剂及其制备方法,可以从N2O和CO2混合尾气中优先吸附N2O且具有较好的N2O/CO2分离效果。In order to solve the problem of difficult separation of N 2 O and CO 2 in the tail gas generated by adipic acid and nitric acid, the invention discloses a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 and a preparation method thereof. The mixed tail gas of 2 O and CO 2 preferentially adsorbs N 2 O and has a good N 2 O/CO 2 separation effect.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一方面,本发明公开了一种高效分离N2O/CO2的银交换分子筛吸附剂,将硅铝比不超过1.2的分子筛通过银交换而得到Ag+交换度≥66%的银交换分子筛。On the one hand, the present invention discloses a silver-exchanged molecular sieve adsorbent for efficiently separating N 2 O/CO 2 . The silver-exchanged molecular sieve with Ag + exchange degree ≥ 66% is obtained by exchanging molecular sieves with a silicon-aluminum ratio of not more than 1.2 through silver exchange.
进一步地,所述分子筛为13X分子筛或5A分子筛,所述13X分子筛的硅铝比为1.15,所述13X分子筛通过银交换得到Ag+交换度≥84%的银交换13X分子筛吸附剂;所述5A分子筛的硅铝比为1,所述5A分子筛分别通过银交换得到Ag+交换度≥66%的银交换5A分子筛吸附剂。Further, the molecular sieve is a 13X molecular sieve or a 5A molecular sieve, the silicon-to-aluminum ratio of the 13X molecular sieve is 1.15, and the 13X molecular sieve obtains a silver-exchanged 13X molecular sieve adsorbent with Ag + exchange degree ≥ 84% through silver exchange; the 5A The silicon-to-aluminum ratio of the molecular sieve is 1, and the 5A molecular sieve obtains a silver-exchanged 5A molecular sieve adsorbent with an Ag + exchange degree of ≥66% through silver exchange respectively.
另一方面,本发明还公开了一种高效分离N2O/CO2的银交换分子筛吸附剂的制备方法,是通过如下步骤实现的:On the other hand, the present invention also discloses a preparation method of a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 , which is achieved by the following steps:
(1)将硅铝比不超过1.2的分子筛加入到AgNO3水溶液中加热搅拌,进行至少一次银交换;(1) Add molecular sieve with a silicon-to-aluminum ratio of not more than 1.2 into the AgNO 3 aqueous solution, heat and stir, and perform at least one silver exchange;
(2)将步骤(1)银交换后的分子筛,经去离子水洗涤、过滤、干燥得到Ag+交换度≥66 %的银交换分子筛;(2) Washing, filtering and drying the silver-exchanged molecular sieve in step (1) with deionized water to obtain silver-exchanged molecular sieve with Ag + exchange degree ≥ 66%;
(3)将步骤(2)所得的银交换分子筛在150-200℃抽真空活化,得到对N2O/CO2有吸附有反转作用的银交换分子筛吸附剂;(3) activating the silver-exchanged molecular sieve obtained in step (2) by vacuuming at 150-200° C. to obtain a silver-exchanged molecular sieve adsorbent that has adsorption and reversal effects on N 2 O/CO 2 ;
其中,所述分子筛为13X分子筛或5A分子筛。Wherein, the molecular sieve is 13X molecular sieve or 5A molecular sieve.
作为一种优选实施方式,13X分子筛和AgNO3溶液的质量体积比为1g/(50~100)mL,5A分子筛和AgNO3溶液的质量体积比为1g/(50~100)mL,加热温度为60-80℃,搅拌时间为1-3h;进一步地,步骤(1)中,AgNO3水溶液的浓度为0.05~0.4 mol/L。As a preferred embodiment, the
作为一种优选实施方式,步骤(1)中,AgNO3水溶液的浓度为0.05~0.4 mol/L,加热搅拌的温度为60~80℃,时间为1~3h。As a preferred embodiment, in step (1), the concentration of the AgNO 3 aqueous solution is 0.05~0.4 mol/L, the temperature of heating and stirring is 60~80°C, and the time is 1~3h.
作为一种优选实施方式,步骤(2)中,干燥温度为80~120℃,时间为24 h。As a preferred embodiment, in step (2), the drying temperature is 80-120° C. and the drying time is 24 h.
作为一种优选实施方式,步骤(3)中,所述银交换13X和5A分子筛的抽真空活化时间为5~10 h;进一步地,13X分子筛银交换后得到Ag+交换度≥84%的13X分子筛吸附剂,5A分子筛银交换后得到Ag+交换度≥66%的5A分子筛吸附剂。As a preferred embodiment, in step (3), the vacuum activation time of the silver-exchanged 13X and 5A molecular sieves is 5-10 h; further, after the 13X molecular sieves are exchanged with silver, 13X with Ag + exchange degree ≥ 84% is obtained Molecular sieve adsorbent, 5A molecular sieve adsorbent with Ag + exchange degree ≥66% is obtained after 5A molecular sieve silver exchange.
此外,本发明所制备的高效分离N2O/CO2的银交换分子筛吸附剂在分离硝酸或己二酸尾气中CO2和N2O混合物的应用。In addition, the application of the silver-exchange molecular sieve adsorbent for high-efficiency separation of N 2 O/CO 2 prepared by the present invention is to separate the mixture of CO 2 and N 2 O in the tail gas of nitric acid or adipic acid.
本发明与现有技术相比,具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明通过银交换13X和5A分子筛,并且控制其交换度得到的AgA(交换度≥66%)和AgX(交换度≥84%)分子筛都实现了N2O/CO2的吸附反转;平衡Ag+离子的引入替换了原有的碱土金属(Ca2+)或碱金属(Na+)平衡阳离子,引入了对N2O具有更强的亲和力的Ag+,从而实现了N2O的优先吸附,进而实现N2O/CO2分离;(1) In the present invention, AgA (exchange degree ≥ 66%) and AgX (exchange degree ≥ 84%) molecular sieves obtained by exchanging silver for 13X and 5A molecular sieves and controlling their exchange degrees have realized the adsorption reaction of N 2 O/CO 2 . Turn; the introduction of the balance Ag + ions replaces the original alkaline earth metal (Ca 2+ ) or alkali metal (Na + ) balance cations, and introduces Ag + , which has a stronger affinity for N 2 O, thus realizing N 2 Preferential adsorption of O to achieve N 2 O/CO 2 separation;
(2)本发明通过银交换13X和5A分子筛制备AgA和AgX分子筛吸附剂的制备方法简单,易于批量生产,并且具有良好的稳定性,可重复使用,有着良好的应用前景,尤其适用于硝酸和己二酸等工业生产过程中所产生的尾气中N2O/CO2的分离,实现N2O的有效利用。(2) The present invention has a simple preparation method for preparing AgA and AgX molecular sieve adsorbents by exchanging 13X and 5A molecular sieves with silver, is easy to mass produce, has good stability, can be reused, and has good application prospects, especially for nitric acid and hexane. Separation of N 2 O/CO 2 in the tail gas produced in industrial production processes such as diacids, to achieve effective use of N 2 O.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that are used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1为本发明中银交换后13X和5A分子筛实现N2O和CO2的吸附反转的示意图。Fig. 1 is a schematic diagram of the adsorption reversal of N 2 O and CO 2 achieved by 13X and 5A molecular sieves after silver exchange in the present invention.
图2为实施例5和6 所得的A-4和X-4分子筛以及原始粉末13X和5A的PXRD衍射图,由图1可以看出13X和5A分子筛经过银交换后得到的A-4和X-4分子筛结构完整,未受到破坏。Figure 2 is the PXRD diffractograms of the A-4 and X-4 molecular sieves obtained in Examples 5 and 6 and the
图3为实施例5和6 所得的A-4和X-4以及原始粉末13X和5A的77 K下的N2吸脱附曲线图,表明通过将较大的Ag+置换原来的Na+或者Ca2+后,材料的比表面积有所降低。Figure 3 is the N adsorption and desorption curves at 77 K of A-4 and X-4 obtained in Examples 5 and 6 and
图4为实施例5所得的X-4和原始粉末13X的298 K下的CO2和N2O的吸附等温线。通过吸附等温线可以看出,原始13X粉末中CO2的吸附量大于N2O,表现为CO2选择性吸附材料,而将13X中的平衡阳离子替换为Ag+且达到一定的交换度(84%),表现为N2O的选择性吸附剂,且交换度为89%时,N2O的吸附量和CO2的相差最大。4 shows the adsorption isotherms of CO 2 and N 2 O at 298 K for X-4 obtained in Example 5 and the
图5为实施例6 所得的A-4和原始粉末5A的298 K下的CO2和N2O的吸附等温线。通过吸附等温线可以看出,原始5A粉末中CO2的吸附量大于N2O,表现为CO2选择性吸附材料,而将5A中的平衡阳离子替换为Ag+且达到一定的交换度时(66%),表现为N2O的选择性吸附剂,且交换度为79%时,N2O的吸附量和CO2的相差最大。5 shows the adsorption isotherms of CO 2 and N 2 O at 298 K for A-4 and
图6为实施例5和6 所得的A-4和X-4以及原始粉末13X和5A的理想溶液吸附理论(IAST)计算材料对二元N2O/CO2混合气体的吸附选择性,Langmuir-Freundlich 等温线模型对样品的CO2和N2O纯气体组分气体吸附等温线进行拟合。从IAST选择性进一步验证了Ag+交换后实现了N2O的选择性吸附。Figure 6 is the ideal solution adsorption theory (IAST) calculation of A-4 and X-4 obtained in Examples 5 and 6 and
图7为实施例5和6 中Ag交换后的A-4和X-4的CO2和N2O混合气(1:1 v/v)的穿透曲线图。通过穿透曲线可以看出,A-4和X-4上,CO2都较为优先穿出,进一步证明了经过Ag+交换后表现为N2O的选择性吸附材料,实现了N2O/CO2的吸附反转。7 is a graph of breakthrough curves of CO 2 and N 2 O mixtures (1:1 v/v) of A-4 and X-4 after Ag exchange in Examples 5 and 6. FIG. It can be seen from the breakthrough curves that on both A-4 and X-4, CO 2 is preferentially penetrated, which further proves that it is a selective adsorption material for N 2 O after Ag + exchange, and realizes N 2 O/ The adsorption of CO2 is reversed.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
一种高效分离N2O/CO2的银交换分子筛吸附剂的制备方法,是通过如下步骤实现的:A preparation method of a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 is realized by the following steps:
(1)将1g的13X分子筛加入到60mL 0.1mol/mL的AgNO3水溶液中,在80℃下加热搅拌1h,进行一次银交换,在加热过程中保持溶液的总量不变;(1) Add 1 g of 13X molecular sieve to 60 mL of 0.1 mol/mL AgNO 3 aqueous solution, heat and stir at 80 °C for 1 h to perform a silver exchange, and keep the total amount of the solution unchanged during the heating process;
(2)将步骤(1)银交换后的分子筛,经去离子水洗涤、过滤、120℃下干燥24 h得到银交换的13X分子筛;(2) Wash the silver-exchanged molecular sieve in step (1), wash with deionized water, filter, and dry at 120 °C for 24 h to obtain silver-exchanged 13X molecular sieve;
(3)将步骤(2)所得的银交换13X分子筛在200℃下抽真空活化5h,得到Ag+交换度为84%的X-2分子筛吸附剂;然后测试X-2分子筛的N2O/CO2的气体吸附分离性能。(3) The silver-exchanged 13X molecular sieve obtained in step (2) was vacuum-activated at 200 ° C for 5 h to obtain an X-2 molecular sieve adsorbent with an Ag + exchange degree of 84%; then the N 2 O/ Gas adsorption separation performance of CO2 .
实施例2Example 2
一种高效分离N2O/CO2的银交换分子筛吸附剂的制备方法,是通过如下步骤实现的:A preparation method of a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 is realized by the following steps:
(1)将1g的5A分子筛分别加入到60mL 0.1mol/mL的AgNO3水溶液中,在80℃下加热搅拌1h,进行一次银交换,在加热过程中保持溶液的总量不变;(1) Add 1 g of 5A molecular sieve to 60 mL of 0.1 mol/mL AgNO 3 aqueous solution, and heat and stir at 80 °C for 1 h to perform a silver exchange, and keep the total amount of the solution unchanged during the heating process;
(2)将步骤(1)银交换后的分子筛,经去离子水洗涤、过滤、120℃下干燥24 h得到银交换的5A分子筛;(2) washing the silver-exchanged molecular sieve in step (1), washing with deionized water, filtering, and drying at 120 °C for 24 h to obtain silver-exchanged 5A molecular sieve;
(3)将步骤(2)所得的5A分子筛在200℃下抽真空活化5h,得到Ag+交换度为73%的A-2分子筛吸附剂;然后测试A-2分子筛的N2O/CO2的气体吸附分离性能。(3) The 5A molecular sieve obtained in step (2) was vacuum activated at 200 ° C for 5 hours to obtain A-2 molecular sieve adsorbent with Ag + exchange degree of 73%; then the N 2 O/CO 2 of A-2 molecular sieve was tested gas adsorption separation performance.
实施例3Example 3
一种高效分离N2O/CO2的银交换分子筛吸附剂的制备方法,是通过如下步骤实现的:A preparation method of a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 is realized by the following steps:
(1)将1g的13X分子筛分别加入到70mL 0.3mol/mL的AgNO3溶液中,然后在60℃下加热搅拌2h,进行一次银交换,在加热过程中保持溶液的总量不变;(1) Add 1 g of 13X molecular sieve to 70 mL of 0.3 mol/mL AgNO 3 solution respectively, and then heat and stir at 60 °C for 2 h to perform a silver exchange, keeping the total amount of the solution unchanged during the heating process;
(2)将步骤(1)银交换后的分子筛,经去离子水洗涤、过滤、100℃下干燥24 h得到银交换13X分子筛;(2) The silver-exchanged molecular sieve in step (1) was washed with deionized water, filtered, and dried at 100 °C for 24 h to obtain silver-exchanged 13X molecular sieve;
(3)将步骤(2)所得的银交换13X分子筛在180℃下抽真空活化10h,得到Ag+交换度为88%的X-3分子筛吸附剂;然后测试X-3分子筛的N2O/CO2的气体吸附分离性能。(3) The silver-exchanged 13X molecular sieve obtained in step (2) was vacuum-activated at 180 ° C for 10 h to obtain an X-3 molecular sieve adsorbent with an Ag + exchange degree of 88%; then the N 2 O/ Gas adsorption separation performance of CO2 .
实施例4Example 4
一种高效分离N2O/CO2的银交换分子筛吸附剂的制备方法,是通过如下步骤实现的:A preparation method of a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 is realized by the following steps:
(1)将1g的5A分子筛分别加入到70mL 0.3mol/mL的AgNO3溶液中,然后在60℃下加热搅拌2h,进行一次银交换,在加热过程中保持溶液的总量不变;(1) Add 1 g of 5A molecular sieve to 70 mL of 0.3 mol/mL AgNO 3 solution respectively, then heat and stir at 60 °C for 2 h to perform a silver exchange, and keep the total amount of the solution unchanged during the heating process;
(2)将步骤(1)银交换后的分子筛,经去离子水洗涤、过滤、100℃下干燥24 h得到银交换5A分子筛;(2) The silver-exchanged molecular sieve in step (1) was washed with deionized water, filtered, and dried at 100 °C for 24 h to obtain silver-exchanged 5A molecular sieve;
(3)将步骤(2)所得的银交换5A分子筛在180℃下抽真空活化10h,得到Ag+交换度为78%的A-3分子筛;然后测试A-3分子筛的N2O/CO2的气体吸附分离性能。(3) The silver-exchanged 5A molecular sieve obtained in step (2) was vacuum-activated at 180 ° C for 10 h to obtain A-3 molecular sieve with Ag + exchange degree of 78%; then the N 2 O/CO 2 of the A-3 molecular sieve was tested gas adsorption separation performance.
实施例5Example 5
一种高效分离N2O/CO2的银交换分子筛吸附剂的制备方法,是通过如下步骤实现的:A preparation method of a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 is realized by the following steps:
(1)将1g的13X分子筛分别加入到50mL 0.4mol/mL的AgNO3溶液中,然后在80℃下加热搅拌1h,进行一次银交换,在加热过程中保持溶液的总量不变;(1) 1g of 13X molecular sieves were added to 50mL of 0.4mol/mL AgNO 3 solution respectively, and then heated and stirred at 80 °C for 1 h to perform a silver exchange, keeping the total amount of the solution unchanged during the heating process;
(2)将步骤(1)银交换后的13X分子筛,经去离子水洗涤、过滤、100℃下干燥24 h得到银交换13X分子筛;(2) The silver-exchanged 13X molecular sieve in step (1) was washed with deionized water, filtered, and dried at 100 °C for 24 h to obtain silver-exchanged 13X molecular sieve;
(3)将步骤(2)所得的银交换13X分子筛在200℃下抽真空活化10 h,得到Ag+交换度为89%的X-4分子筛吸附剂;然后测试X-4分子筛的N2O/CO2的气体吸附分离性能。(3) The silver-exchanged 13X molecular sieve obtained in step (2) was vacuum-activated at 200 °C for 10 h to obtain an X-4 molecular sieve adsorbent with an Ag + exchange degree of 89%; then the N 2 O of the X-4 molecular sieve was tested /CO 2 gas adsorption separation performance.
实施例6Example 6
一种高效分离N2O/CO2的银交换分子筛吸附剂的制备方法,是通过如下步骤实现的:A preparation method of a silver-exchange molecular sieve adsorbent for efficiently separating N 2 O/CO 2 is realized by the following steps:
(1)将1g的5A分子筛分别加入到50mL 0.4mol/mL的AgNO3溶液中,然后在80℃下加热搅拌1h,进行一次银交换,在加热过程中保持溶液的总量不变;(1) 1 g of 5A molecular sieve was added to 50 mL of 0.4 mol/mL AgNO 3 solution, and then heated and stirred at 80 °C for 1 h to perform a silver exchange, and the total amount of the solution was kept unchanged during the heating process;
(2)将步骤(1)银交换后的5A分子筛,经去离子水洗涤、过滤、100℃下干燥24 h得到银交换5A分子筛;(2) The silver-exchanged 5A molecular sieve in step (1) was washed with deionized water, filtered, and dried at 100 °C for 24 h to obtain silver-exchanged 5A molecular sieve;
(3)将步骤(2)所得的银交换5A分子筛在200℃下抽真空活化10 h,得到Ag+交换度为79%的A-4分子筛吸附剂;然后测试A-4分子筛的N2O/CO2的气体吸附分离性能。(3) The silver-exchanged 5A molecular sieve obtained in step (2) was vacuum-activated at 200 °C for 10 h to obtain an A-4 molecular sieve adsorbent with an Ag + exchange degree of 79%; then the N 2 O of the A-4 molecular sieve was tested /CO 2 gas adsorption separation performance.
(1)以从阿拉丁购买的13X及5A粉末为基本骨架材料。(1) The 13X and 5A powders purchased from Aladdin are used as the basic framework materials.
(2)将步骤(1)的1 g 13X和5A分子筛分别加入到0.4 M的AgNO3水溶液中,然后在80℃下加热搅拌1 h,并且在加热过程中保持溶液的总量不变。(2) 1 g of 13X and 5A molecular sieves from step (1) were added to 0.4 M AgNO 3 aqueous solution, respectively, and then heated and stirred at 80 °C for 1 h, and the total amount of the solution was kept unchanged during the heating process.
(3)将步骤(2)银交换后的分子筛,经去离子水洗涤过滤,将得到的样品在100℃下干燥24 h。(3) The molecular sieve after silver exchange in step (2) was washed and filtered with deionized water, and the obtained sample was dried at 100 °C for 24 h.
(4)将步骤(3)所得到的样品X-4和A-4在200℃下抽真空活化10 h,得到Ag+交换度分别为89%和79%的X-4以及A-4分子筛材料,然后测试其N2O/CO2的气体吸附分离性能。(4) The samples X-4 and A-4 obtained in step (3) were vacuum activated at 200 °C for 10 h to obtain X-4 and A-4 molecular sieves with Ag + exchange degrees of 89% and 79%, respectively material, and then tested its N 2 O/CO 2 gas adsorption separation performance.
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。The foregoing has shown and described the basic principles, main features and advantages of the present invention. It should be understood by those skilled in the art that the present invention is not limited by the above-mentioned embodiments. The above-mentioned embodiments and descriptions describe only the principles of the present invention. Without departing from the spirit and scope of the present invention, there will be various Variations and improvements are intended to fall within the scope of the claimed invention. The scope of protection claimed by the present invention is defined by the appended claims and their equivalents.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011509276.4A CN112675811B (en) | 2020-12-18 | 2020-12-18 | High-efficiency separation N2O/CO2Silver exchange molecular sieve adsorbent and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011509276.4A CN112675811B (en) | 2020-12-18 | 2020-12-18 | High-efficiency separation N2O/CO2Silver exchange molecular sieve adsorbent and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112675811A CN112675811A (en) | 2021-04-20 |
CN112675811B true CN112675811B (en) | 2022-06-21 |
Family
ID=75450080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011509276.4A Active CN112675811B (en) | 2020-12-18 | 2020-12-18 | High-efficiency separation N2O/CO2Silver exchange molecular sieve adsorbent and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112675811B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11207126A (en) * | 1998-01-20 | 1999-08-03 | Inst Of Research & Innovation | Method for separating and recovering CO2 and NOx from gas containing NOx and low concentration CO2 |
US6350298B1 (en) * | 1998-10-30 | 2002-02-26 | The Boc Group, Inc. | Adsorbents and adsorptive separation process |
EP1184067A2 (en) * | 2000-08-28 | 2002-03-06 | The Boc Group, Inc. | Process and apparatus for adsorptive purification of gases |
JP2004305841A (en) * | 2003-04-03 | 2004-11-04 | Honda Motor Co Ltd | NOx REMOVAL SYSTEM |
CN1668374A (en) * | 2002-03-25 | 2005-09-14 | 科学与工业研究会 | Process for preparing molecular sieve adsorbents for selective adsorption of nitrogen and argon |
CN1671461A (en) * | 2002-05-31 | 2005-09-21 | 普莱克斯技术有限公司 | Production of high purity and ultra-high purity gas |
CN102784617A (en) * | 2012-08-14 | 2012-11-21 | 洛阳市建龙化工有限公司 | Adsorbent containing silver molecular sieve as well as preparation method and application of adsorbent |
CN103203159A (en) * | 2013-04-08 | 2013-07-17 | 浙江师范大学 | Method for separating nitrous oxide and carbon dioxide by using zeolite-like molecular sieve skeleton material |
CN107500307A (en) * | 2017-10-11 | 2017-12-22 | 太原理工大学 | A kind of preparation method and applications of zeolite molecular sieve |
WO2019139712A1 (en) * | 2018-01-11 | 2019-07-18 | Praxair Technology, Inc. | Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature |
CN110538634A (en) * | 2019-08-16 | 2019-12-06 | 太原理工大学 | Preparation and application of an amino-modified metal-organic framework material with high CO2/N2O separation performance |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2784599B1 (en) * | 1998-10-20 | 2000-12-08 | Air Liquide | PROCESS FOR PURIFYING A GAS STREAM IN ITS N2O IMPURITIES |
TW592798B (en) * | 2000-09-18 | 2004-06-21 | Boc Group Inc | Improved monolith adsorbents for air separation processes |
CN101524638B (en) * | 2009-04-23 | 2010-12-08 | 中国海洋石油总公司 | Preparation method of submicron molecular sieve carbon dioxide absorbent |
US9533280B2 (en) * | 2012-06-22 | 2017-01-03 | Praxair Technology, Inc. | High rate compositions |
-
2020
- 2020-12-18 CN CN202011509276.4A patent/CN112675811B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11207126A (en) * | 1998-01-20 | 1999-08-03 | Inst Of Research & Innovation | Method for separating and recovering CO2 and NOx from gas containing NOx and low concentration CO2 |
US6350298B1 (en) * | 1998-10-30 | 2002-02-26 | The Boc Group, Inc. | Adsorbents and adsorptive separation process |
EP1184067A2 (en) * | 2000-08-28 | 2002-03-06 | The Boc Group, Inc. | Process and apparatus for adsorptive purification of gases |
CN1668374A (en) * | 2002-03-25 | 2005-09-14 | 科学与工业研究会 | Process for preparing molecular sieve adsorbents for selective adsorption of nitrogen and argon |
CN1671461A (en) * | 2002-05-31 | 2005-09-21 | 普莱克斯技术有限公司 | Production of high purity and ultra-high purity gas |
JP2004305841A (en) * | 2003-04-03 | 2004-11-04 | Honda Motor Co Ltd | NOx REMOVAL SYSTEM |
CN102784617A (en) * | 2012-08-14 | 2012-11-21 | 洛阳市建龙化工有限公司 | Adsorbent containing silver molecular sieve as well as preparation method and application of adsorbent |
CN103203159A (en) * | 2013-04-08 | 2013-07-17 | 浙江师范大学 | Method for separating nitrous oxide and carbon dioxide by using zeolite-like molecular sieve skeleton material |
CN107500307A (en) * | 2017-10-11 | 2017-12-22 | 太原理工大学 | A kind of preparation method and applications of zeolite molecular sieve |
WO2019139712A1 (en) * | 2018-01-11 | 2019-07-18 | Praxair Technology, Inc. | Adsorptive xenon recovery process from a gas or liquid stream at cryogenic temperature |
CN110538634A (en) * | 2019-08-16 | 2019-12-06 | 太原理工大学 | Preparation and application of an amino-modified metal-organic framework material with high CO2/N2O separation performance |
Non-Patent Citations (4)
Title |
---|
"Research on CO2-N2O separation using flexible metal organic frameworks";Li Wang et al.;《Separation and Purification Technology》;20200704;第251卷;第117311(1-6)页 * |
"改性5A分子筛吸附分离C02/N2的研究";艾莹莹 等;《低温与特气》;20100628;第28卷(第3期);第12-16页 * |
E. P. Hessou et al.."Adsorption of NO, NO2,CO,H2O and CO2 over isolated monovalent cations in faujasite zeolite: a periodic DFT investigation".《Theoretical Chemistry Accounts》.2018,第137卷第161(1-12)页. * |
载Ag改性13X分子筛的制备及其燃油吸附脱硫性能研究;范俊刚 等;《功能材料》;20130915;第44卷(第17期);第2486-2489页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112675811A (en) | 2021-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110496604B (en) | Cobalt-nickel bimetallic organic framework carbon dioxide adsorption material and preparation method and application thereof | |
CN105233802B (en) | One kind doping arginic copper base metal organic framework materials of L and preparation method thereof | |
CN107353412B (en) | A kind of preparation method and application of metal organic framework material | |
CN108751189A (en) | The preparation and application of the aluminium base MOF porous carbon materials of high-specific surface area | |
CN109293467A (en) | A kind of method for adsorption separation of propylene, propyne, propane and propadiene | |
CN107500307B (en) | A kind of preparation method and applications of zeolite molecular sieve | |
CN107552004B (en) | A kind of preparation method and application of metal organic framework material | |
CN104056599A (en) | Composite carbon dioxide adsorption material, preparation method and application thereof | |
CN113583244B (en) | Metal organic framework material and preparation method and application thereof | |
CN106076242A (en) | A kind of MOFs bimetallic adsorbing material (Fe, Co) BTC and preparation method thereof | |
CN114849653A (en) | Amine-modified porous molecular sieve for high-efficiency carbon dioxide capture and preparation method and application | |
CN109225138A (en) | The modified activated carbon and preparation method thereof of AOCs in a kind of efficient absorption PTA waste water | |
CN108273472A (en) | A kind of preparation method of efficient selective absorption selenite radical adsorbent | |
CN106925235A (en) | One kind can efficiently separate CO in moisture2Adsorbent and preparation method thereof | |
CN106512944A (en) | Production method of oxidized wood active carbon for effectively adsorbing carbon dioxide | |
CN103691398A (en) | Carbon dioxide adsorbent and preparation method thereof | |
CN114984913B (en) | Preparation method and application of novel carbon trapping material | |
CN110465272A (en) | A kind of two-dimensional metallic-organic framework material is in SF6/N2Application in separation | |
CN112675811B (en) | High-efficiency separation N2O/CO2Silver exchange molecular sieve adsorbent and preparation method thereof | |
CN110327905A (en) | A kind of nitrogenous porous carbon nano-composite material preparation method of polyaniline carbon nanotube base | |
CN115193408B (en) | Ag-SAPO-34@Cu-BTC composite material and preparation and application methods thereof | |
CN115608326B (en) | Adsorbent for NOx removal under high humidity conditions in flue gas and its preparation method and application | |
CN113786810A (en) | A kind of preparation method and application of amine modified hydrophobic activated carbon fiber adsorbent | |
CN110538634A (en) | Preparation and application of an amino-modified metal-organic framework material with high CO2/N2O separation performance | |
CN115888672B (en) | Cu(Ⅰ)@MIL-100(Fe)π complex adsorbent and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240827 Address after: South District, 22nd Floor, No. 126 Pingyang Road, High tech Zone, Taiyuan City, Shanxi Province 030000 Patentee after: Shanxi Lvyuan Carbon Suo Technology Co.,Ltd. Country or region after: China Address before: 030024 No. 79 West Main Street, Taiyuan, Shanxi, Yingze Patentee before: Taiyuan University of Technology Country or region before: China |
|
TR01 | Transfer of patent right |