CN115692789B - Cold start control method for fuel cell stack - Google Patents
Cold start control method for fuel cell stack Download PDFInfo
- Publication number
- CN115692789B CN115692789B CN202211469496.8A CN202211469496A CN115692789B CN 115692789 B CN115692789 B CN 115692789B CN 202211469496 A CN202211469496 A CN 202211469496A CN 115692789 B CN115692789 B CN 115692789B
- Authority
- CN
- China
- Prior art keywords
- cold start
- start control
- control method
- metering ratio
- oxidant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 61
- 239000007800 oxidant agent Substances 0.000 claims abstract description 78
- 230000001590 oxidative effect Effects 0.000 claims abstract description 73
- 238000011068 loading method Methods 0.000 claims abstract description 27
- 230000006641 stabilisation Effects 0.000 claims description 8
- 238000011105 stabilization Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000012528 membrane Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04302—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本发明属于燃料电池技术领域,涉及一种燃料电池电堆的冷启动控制方法。The invention belongs to the technical field of fuel cells, and relates to a cold start control method of a fuel cell stack.
背景技术Background technique
燃料电池电堆冷启动控制是燃料电池控制策略中的重要环节,燃料电池电堆冷启动性能是燃料电池在低温环境适用性上的关键指标。目前质子交换膜燃料电池的启动问题尚未完全解决,尤其对于燃料电池电堆低温无辅助自启动的方法和控制策略无系统性的阐述。对于燃料电池电堆自启动的条件和控制策略无明确参数,其原因在于:一方面质子交换膜在低温情况下的水平衡控制较难,当膜内水过低时,传质的效率低,当水过多时,易结冰致使堵塞燃料反应的通道;另一方面,电堆在冷启动过程中,会出现局部欠气、堵水现象,电堆一致性能差,影响电堆的寿命和整体性能。The cold start control of the fuel cell stack is an important link in the fuel cell control strategy, and the cold start performance of the fuel cell stack is a key indicator of the applicability of the fuel cell in low temperature environments. At present, the start-up problem of proton exchange membrane fuel cells has not been completely solved, especially for the low-temperature unassisted self-starting method and control strategy of fuel cell stacks without systematic elaboration. There are no clear parameters for the self-starting conditions and control strategies of fuel cell stacks. The reasons are: on the one hand, it is difficult to control the water balance of proton exchange membranes at low temperatures. When the water in the membranes is too low, the efficiency of mass transfer is low. When there is too much water, it is easy to freeze and block the fuel reaction channel; on the other hand, during the cold start process of the stack, there will be local lack of air and water blockage, and the consistency of the stack is poor, which affects the life of the stack and the overall performance.
目前现有的冷启动方法多采用辅助加热的形式或采用控制外部回路的方式,CN103825037A公开了一种燃料电池冷启动快速加热系统,包括氢气输送管道和燃料电池电堆,氢气输送管道将氢气输送到燃料电池电堆阳极侧的流道内,还包括加热器、测温计和电池控制系统;所述加热器设置在氢气输送管道上,对氢气加热;所述测温计设置在燃料电池电堆内部,用来测量电堆温度;所述电池控制系统的数据采集端与测温计连接,输出端与加热器连接,根据测温计测得的电堆内部的温度控制所述加热器的开启与关闭。CN113707904A公开了一种自热式燃料电池汽车冷启动加热器和加热方法。该加热器包括自热剂罐体,自热剂罐体的内腔中填充有自热剂粉末,自热剂罐体开设有与空压机相连的空气进口,自热剂粉末与通过空气进口进入的空气发生氧化还原反应产生大量热量,从而实现冷启动过程中对需要加热的部件进行快速加热。上述专利采用辅助加热的方式实现冷启动,需要增添加热器等部件,增加了系统的复杂性和成本。At present, the existing cold start methods mostly adopt the form of auxiliary heating or the way of controlling the external circuit. CN103825037A discloses a fuel cell cold start rapid heating system, which includes a hydrogen delivery pipeline and a fuel cell stack, and the hydrogen delivery pipeline transports the hydrogen The flow channel to the anode side of the fuel cell stack also includes a heater, a thermometer and a battery control system; the heater is arranged on the hydrogen delivery pipeline to heat the hydrogen; the thermometer is arranged on the fuel cell stack Internally, it is used to measure the temperature of the electric stack; the data acquisition end of the battery control system is connected to the thermometer, and the output end is connected to the heater, and the opening of the heater is controlled according to the temperature inside the electric stack measured by the thermometer with off. CN113707904A discloses a self-heating fuel cell vehicle cold start heater and heating method. The heater includes a self-heating agent tank body, the inner cavity of the self-heating agent tank body is filled with self-heating agent powder, and the self-heating agent tank body is provided with an air inlet connected with an air compressor, and the self-heating agent powder is connected to the air inlet The redox reaction of the incoming air generates a large amount of heat, so that the parts that need to be heated can be heated rapidly during the cold start process. The above-mentioned patents use auxiliary heating to achieve cold start, and need to add heaters and other components, which increases the complexity and cost of the system.
而其他无外部辅助加热的方法包括:采用多电流密度梯度的加载形式或采用间断停止氧化剂的供给或氢氧同侧反应加热的方法。CN114188570A公开了一种燃料电池电堆的冷启动方法、装置及车辆,所述方法包括:在完成停机吹扫后,基于第一预设参数向电堆阳极入口通入氢气,以及向电堆阴极入口通入氧气。若检测到电堆内电池的最低电压与平均电压满足第一预设条件,则按预设电流密度梯度逐级向电堆加载第一电流。若检测到的最低电压与平均电压满足第二预设条件,则基于第二预设参数向电堆阳极入口通入氢气,以及向电堆阴极入口通入氧气,并向电堆加载目标电流密度值的第二电流。若检测到的最低电压与平均电压满足第三预设条件,且检测到的电堆冷却液出口的温度在预设温度范围内,则完成电堆的冷启动。但是上述多电流密度梯度加载的方法增加了控制策略的重复性,启机时间长。此外,氢氧同侧反应加热的方法还易造成燃料电池电堆的永久性损伤。同时上述冷启动方法不能根据实际冷启动的状态进行自适应调节燃料和氧化剂的计量比,造成燃料和氧化剂的浪费,进一步降低了燃料电池电堆系统的效率。Other methods without external auxiliary heating include: adopting the loading form of multiple current density gradients or adopting the method of intermittently stopping the supply of the oxidant or heating by the reaction of hydrogen and oxygen on the same side. CN114188570A discloses a cold start method, device and vehicle of a fuel cell stack. The method includes: after the shutdown and purging are completed, hydrogen gas is fed into the anode inlet of the stack based on a first preset parameter, and hydrogen is fed to the stack cathode. Oxygen is introduced into the inlet. If it is detected that the minimum voltage and the average voltage of the batteries in the stack meet the first preset condition, then the first current is applied to the stack step by step according to the preset current density gradient. If the detected minimum voltage and average voltage meet the second preset condition, hydrogen gas is fed to the anode inlet of the stack based on the second preset parameter, and oxygen is fed to the cathode inlet of the stack, and the target current density is loaded to the stack value of the second current. If the detected minimum voltage and the average voltage meet the third preset condition, and the detected temperature of the stack coolant outlet is within a preset temperature range, then the cold start of the stack is completed. However, the above-mentioned multi-current density gradient loading method increases the repeatability of the control strategy, and the start-up time is long. In addition, the method of heating with hydrogen and oxygen on the same side can easily cause permanent damage to the fuel cell stack. At the same time, the above cold start method cannot adaptively adjust the metering ratio of fuel and oxidant according to the actual cold start state, resulting in waste of fuel and oxidant, further reducing the efficiency of the fuel cell stack system.
此外,现有方法要求燃料电池电堆低温冷启动时堆内水含量范围小,不能满足实际燃料电池电堆停机冷启动的状态,易造成冷启动失败,缺乏对燃料电池电堆的保护。In addition, the existing method requires a small range of water content in the fuel cell stack during low-temperature cold start, which cannot meet the actual cold start state of the fuel cell stack, which is likely to cause cold start failure and lack of protection for the fuel cell stack.
因此,亟需一种简单且无需外部辅助加热的燃料电池电堆冷启动方法。Therefore, there is an urgent need for a simple fuel cell stack cold start method that does not require external auxiliary heating.
发明内容Contents of the invention
针对现有技术存在的不足,本发明的目的在于提供一种燃料电池电堆的冷启动控制方法,此方法减少了冗余的控制程序,易于实施,且无需外部辅助加热,从而能简化系统结构,降低系统成本。Aiming at the deficiencies in the prior art, the object of the present invention is to provide a cold start control method for fuel cell stacks, which reduces redundant control procedures, is easy to implement, and does not require external auxiliary heating, thereby simplifying the system structure , reduce system cost.
为达此目的,本发明采用以下技术方案:For reaching this purpose, the present invention adopts following technical scheme:
第一方面,本发明提供了一种燃料电池电堆的冷启动控制方法,所述的冷启动控制方法包括:In a first aspect, the present invention provides a cold start control method of a fuel cell stack, the cold start control method comprising:
(Ⅰ)获取电堆的初始温度和初始阻抗,根据所述初始温度和所述初始阻抗查询冷启动控制曲线图,得到燃料计量比和氧化剂计量比,基于所述燃料计量比和所述氧化剂计量比向所述电堆通入燃料和氧化剂;(1) Obtain the initial temperature and initial impedance of the stack, query the cold start control curve according to the initial temperature and the initial impedance, obtain the fuel metering ratio and the oxidant metering ratio, based on the fuel metering ratio and the oxidant metering Feed fuel and oxidant into the electric stack;
(Ⅱ)电堆加载电流,若电堆温度大于等于预设温度,则冷启动成功。(II) Load current to the stack. If the stack temperature is greater than or equal to the preset temperature, the cold start is successful.
本发明提供了一种燃料电池电堆的冷启动控制方法,所述冷启动控制方法减少了冗余的控制程序,缩短了电堆冷启动的加载时间,且该方法无需外部辅助加热,从而能简化系统的结构,降低系统的成本。此外,本发明根据冷启动控制曲线图确定最佳燃料计量比和最佳氧化剂计量比,能有效提升燃料与氧化剂的使用效率和冷启动成功率,拓宽电堆冷启动时的堆内水含量范围,从而提升燃料电池电堆在冬季及寒冷地区的适用性。The invention provides a cold start control method of a fuel cell stack, the cold start control method reduces redundant control programs, shortens the loading time of the cold start of the stack, and the method does not require external auxiliary heating, thereby enabling Simplify the structure of the system and reduce the cost of the system. In addition, the present invention determines the optimal fuel metering ratio and the optimal oxidant metering ratio according to the cold start control curve, which can effectively improve the fuel and oxidant use efficiency and cold start success rate, and widen the range of water content in the stack during cold start , thereby improving the applicability of the fuel cell stack in winter and cold regions.
需要说明的是,本发明的冷启动控制曲线图(MAP图)为燃料电池电堆的温度、高频阻抗和原料计量比之间的关系图,所述冷启动控制曲线图包括温度、高频阻抗与燃料计量比关系图,和温度、高频阻抗与氧化剂计量比关系图。It should be noted that the cold start control curve diagram (MAP diagram) of the present invention is a relationship diagram between the temperature of the fuel cell stack, the high frequency impedance and the raw material metering ratio, and the cold start control curve diagram includes temperature, high frequency Impedance versus fuel metering ratio graph, and temperature, high frequency impedance versus oxidant metering ratio graph.
根据冷启动控制曲线图确定的最佳燃料计量比和最佳氧化剂计量比,是电堆冷启动所需的最低燃料计量比和最低氧化剂计量比,在此基础上增加燃料和氧化剂的计量比,能提高冷启动成功率,但是考虑原料成本等因素,增加的计量比是有限的。The optimal fuel metering ratio and the best oxidizer metering ratio determined according to the cold start control curve diagram are the minimum fuel metering ratio and the minimum oxidizer metering ratio required for the cold start of the stack, and the fuel and oxidizer metering ratios are increased on this basis, It can improve the success rate of cold start, but considering factors such as raw material costs, the increased metering ratio is limited.
本发明中通过设计系列试验来获取冷启动控制曲线图,示例性地,关于燃料计量比的冷启动控制曲线图获取方法为:氧化剂计量比和冷启动温度保持不变,改变电堆的含水量以改变电堆的初始阻抗,再采集不同初始阻抗下电堆冷启动成功所需的最低燃料计量比,数据汇总后获得某一温度下的曲线,再改变冷启动温度进行多次测试,即可获得关于燃料计量比的冷启动控制曲线图。而关于氧化剂计量比的冷启动控制曲线图,同理即可获得。In the present invention, a series of tests are designed to obtain the cold start control curve. Exemplarily, the method for obtaining the cold start control curve of the fuel metering ratio is as follows: the oxidant metering ratio and the cold start temperature are kept constant, and the water content of the stack is changed. To change the initial impedance of the stack, and then collect the minimum fuel metering ratio required for the successful cold start of the stack under different initial impedances, obtain a curve at a certain temperature after the data is summarized, and then change the cold start temperature for multiple tests, then you can A cold start control graph is obtained with respect to fuel stoichiometry. The cold start control curve diagram about the stoichiometric ratio of the oxidant can be obtained in the same way.
作为本发明一种优选的技术方案,所述的冷启动控制方法具体包括如下步骤:As a preferred technical solution of the present invention, the cold start control method specifically includes the following steps:
步骤1:设定燃料电池电堆冷启动的平均单片电压保护值U0、最低单片电压保护值U1和第一电流密度C0,进入步骤2;Step 1: Set the average single-chip voltage protection value U 0 , the minimum single-chip voltage protection value U 1 and the first current density C 0 for the cold start of the fuel cell stack, and proceed to step 2;
步骤2:获取电堆的初始温度T0和初始阻抗H0,根据初始温度T0和初始阻抗H0查询冷启动控制曲线图,得到燃料计量比F0和氧化剂计量比O0,基于燃料计量比F0和氧化剂计量比O0向电堆通入燃料和氧化剂;Step 2: Obtain the initial temperature T 0 and initial impedance H 0 of the stack, query the cold start control curve according to the initial temperature T 0 and initial impedance H 0 , and obtain the fuel metering ratio F 0 and oxidant metering ratio O 0 , based on fuel metering Ratio F 0 and oxidant metering ratio O 0 feed fuel and oxidant to the stack;
步骤3:设定电堆加载电流的速率V0并加载电流,获取加载电流密度,进入步骤4进行逻辑判断;Step 3: Set the rate V 0 of the stack loading current and load the current, obtain the loading current density, and enter step 4 for logical judgment;
步骤4:判断获取的电流密度是否大于等于第一电流密度C0,如果判断结果为是,进入步骤9;Step 4: Judging whether the obtained current density is greater than or equal to the first current density C 0 , if the judgment result is yes, go to step 9;
步骤9:设定燃料计量比F1和氧化剂计量比O1,并基于燃料计量比F1和氧化剂计量比O1向电堆通入燃料和氧化剂,进入步骤10;Step 9: Set the fuel metering ratio F 1 and the oxidant metering ratio O 1 , and feed the fuel and the oxidant into the stack based on the fuel metering ratio F 1 and the oxidant metering ratio O 1 , and proceed to step 10;
步骤10:电堆加载电流,加载至第二电流密度C1,进入步骤11;Step 10: load current to the stack to the second current density C 1 , and proceed to step 11;
步骤11:获取电堆温度,进入步骤12进行逻辑判断;Step 11: Obtain the stack temperature, and proceed to step 12 for logical judgment;
步骤12:判断电堆温度是否大于等于预设温度,如果判断结果为是,则电堆冷启动成功。Step 12: Judging whether the stack temperature is greater than or equal to the preset temperature, if the judgment result is yes, the cold start of the stack is successful.
本发明中,初始阻抗H0为电堆的初始高频阻抗。In the present invention, the initial impedance H 0 is the initial high-frequency impedance of the stack.
作为本发明一种优选的技术方案,所述步骤4:如果判断结果为否,进入步骤5进行逻辑判断;As a preferred technical solution of the present invention, said step 4: if the judgment result is no, enter step 5 for logical judgment;
步骤5:判断加载过程中是否出现平均单片电压大于平均单片电压保护值U0,且最低单片电压大于最低单片电压保护值U1,如果判断结果为是,返回步骤3,如果判断结果为否,进入步骤6;Step 5: Judging whether the average single-chip voltage is greater than the average single-chip voltage protection value U 0 and the lowest single-chip voltage is greater than the lowest single-chip voltage protection value U 1 during the loading process. If the judgment result is yes, return to step 3. If it is judged If the result is no, go to step 6;
步骤6:以步骤3所述电流密度稳定运行,并记录稳定时间S1,进入步骤7进行逻辑判断;Step 6: Run stably at the current density described in step 3, and record the stabilization time S 1 , and proceed to step 7 for logical judgment;
步骤7:判断稳定时间S1是否小于保护时间S0,如果判断结果为是,进入步骤5进行逻辑判断,如果判断结果为否,进入步骤8;Step 7: Judging whether the stabilization time S 1 is less than the protection time S 0 , if the judgment result is yes, proceed to step 5 for logical judgment, if the judgment result is no, proceed to step 8;
步骤8:设定燃料计量比增量ΔF和氧化剂计量比增量ΔO,并基于增大后的燃料计量比和氧化剂计量比向电堆通入燃料和氧化剂,进入步骤5进行逻辑判断。Step 8: Set fuel metering ratio increment ΔF and oxidant metering ratio increment ΔO, and feed fuel and oxidant to the stack based on the increased fuel metering ratio and oxidant metering ratio, and proceed to step 5 for logical judgment.
本发明中,步骤5中还包括获取电堆平均单片电压和最低单片电压的步骤;获取之后,再进行逻辑判断。In the present invention, step 5 also includes the step of acquiring the average single-chip voltage and the lowest single-chip voltage of the stack; after the acquisition, logical judgment is performed.
本发明设定电压保护策略,通过步骤8中增加燃料/氧化剂计量比的形式,杜绝冷启动过程中因单片电压过低或整体平均电压偏低而造成冷启动失败的现象,提升电堆冷启动过程中电压一致性,保护燃料电池电堆的性能,提高使用寿命。The present invention sets the voltage protection strategy. By increasing the fuel/oxidant metering ratio in step 8, the phenomenon of cold start failure caused by too low single-chip voltage or low overall average voltage during the cold start process is eliminated, and the cold start of the stack is improved. The voltage consistency during start-up protects the performance of the fuel cell stack and improves the service life.
本发明中,可不断循环步骤3~8,直至加载到目标电流密度C0。In the present invention, steps 3-8 can be repeated continuously until the target current density C 0 is loaded.
作为本发明一种优选的技术方案,所述步骤12:如果判断结果为否,进入步骤13;As a preferred technical solution of the present invention, the step 12: if the judgment result is no, go to step 13;
步骤13:以第二电流密度C1稳定运行预设时间,进入步骤11。Step 13: Run stably at the second current density C1 for a preset time, and then go to Step 11.
作为本发明一种优选的技术方案,所述平均单片电压保护值U0为0.2~0.5V,例如可以是0.2V、0.25V、0.3V、0.35V、0.4V、0.45V或0.5V等。As a preferred technical solution of the present invention, the average single-chip voltage protection value U0 is 0.2-0.5V, for example, it can be 0.2V, 0.25V, 0.3V, 0.35V, 0.4V, 0.45V or 0.5V, etc. .
优选地,所述最低单片电压保护值U1为-0.2~0.1V,例如可以是-0.2V、-0.15V、-0.1V、-0.05V、0V、0.05V或0.1V等。Preferably, the minimum single-chip voltage protection value U 1 is -0.2˜0.1V, for example, it may be -0.2V, -0.15V, -0.1V, -0.05V, 0V, 0.05V or 0.1V.
优选地,所述第一电流密度C0为0.4~0.65A/cm2,例如可以是0.4A/cm2、0.42A/cm2、0.45A/cm2、0.47A/cm2、0.5A/cm2、0.52A/cm2、0.55A/cm2、0.57A/cm2、0.6A/cm2、0.62A/cm2或0.65A/cm2等。Preferably, the first current density C 0 is 0.4-0.65A/cm 2 , for example, 0.4A/cm 2 , 0.42A/cm 2 , 0.45A/cm 2 , 0.47A/cm 2 , 0.5A/cm 2 cm 2 , 0.52A/cm 2 , 0.55A/cm 2 , 0.57A/cm 2 , 0.6A/cm 2 , 0.62A/cm 2 or 0.65A/cm 2 etc.
优选地,所述初始温度T0为-30~-5℃,例如可以是-30℃、-25℃、-20℃、-15℃、-10℃或-5℃等。Preferably, the initial temperature T 0 is -30 to -5°C, for example, it may be -30°C, -25°C, -20°C, -15°C, -10°C or -5°C.
作为本发明一种优选的技术方案,基于所述燃料计量比F0,通入燃料的压力为70~100kPag,例如可以是70kPag、75kPag、80kPag、85kPag、90kPag、95kPag或100kPag等。As a preferred technical solution of the present invention, based on the fuel metering ratio F 0 , the pressure of the fuel fed is 70-100 kPag, such as 70 kPag, 75 kPag, 80 kPag, 85 kPag, 90 kPag, 95 kPag or 100 kPag.
优选地,基于所述氧化剂计量比O0,通入氧化剂的压力为60~90kPag,例如可以是60kPag、65kPag、70kPag、75kPag、80kPag、85kPag或90kPag等。Preferably, based on the oxidant stoichiometric ratio O 0 , the pressure of feeding the oxidant is 60-90 kPag, such as 60 kPag, 65 kPag, 70 kPag, 75 kPag, 80 kPag, 85 kPag or 90 kPag.
作为本发明一种优选的技术方案,所述步骤3中加载电流的速率V0为10~20A/s,例如可以是10A/s、11A/s、12A/s、13A/s、14A/s、15A/s、16A/s、17A/s、18A/s、19A/s或20A/s等。As a preferred technical solution of the present invention, the rate V0 of the loading current in the step 3 is 10-20A/s, for example, it can be 10A/s, 11A/s, 12A/s, 13A/s, 14A/s , 15A/s, 16A/s, 17A/s, 18A/s, 19A/s or 20A/s, etc.
优选地,所述保护时间S0为5~30s,例如可以是5s、7s、10s、12s、15s、17s、20s、22s、25s、27s或30s等。Preferably, the protection time S 0 is 5-30s, for example, it may be 5s, 7s, 10s, 12s, 15s, 17s, 20s, 22s, 25s, 27s or 30s.
本发明中,所述保护时间为最低单片保护时间。In the present invention, the protection time is the minimum single-chip protection time.
优选地,所述燃料计量比增量ΔF为0.1~0.3,例如可以是0.1、0.12、0.15、0.17、0.2、0.22、0.25、0.27或0.3等。Preferably, the fuel metering ratio increment ΔF is 0.1˜0.3, such as 0.1, 0.12, 0.15, 0.17, 0.2, 0.22, 0.25, 0.27 or 0.3.
优选地,所述氧化剂计量比增量ΔO为0.2~0.5,例如可以是0.2、0.22、0.25、0.27、0.3、0.32、0.35、0.37、0.4、0.42、0.45、0.47或0.5等。Preferably, the oxidant metering ratio increment ΔO is 0.2-0.5, such as 0.2, 0.22, 0.25, 0.27, 0.3, 0.32, 0.35, 0.37, 0.4, 0.42, 0.45, 0.47 or 0.5.
本发明中,相比于燃料计量比F0,燃料计量比F1的增量为0.1~0.3,以增加燃料的用量;相比于氧化剂计量比O0,氧化剂计量比O1的增量为0.2~0.5,以增加氧化剂的用量。In the present invention, compared to the fuel metering ratio F 0 , the increment of the fuel metering ratio F 1 is 0.1 to 0.3 to increase the consumption of fuel; compared to the oxidant metering ratio O 0 , the increment of the oxidant metering ratio O 1 is 0.2 to 0.5 to increase the amount of oxidant.
作为本发明一种优选的技术方案,所述燃料计量比F1为1.2~1.8,例如可以是1.2、1.25、1.3、1.35、1.4、1.45、1.5、1.55、1.6、1.65、1.7、1.或1.8等。As a preferred technical solution of the present invention, the fuel metering ratio F1 is 1.2 to 1.8, such as 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1. or 1.8 etc.
优选地,所述氧化剂计量比O1为2.0~2.5,例如可以是2.0、2.05、2.1、2.15、2.2、2.25、2.3、2.35、2.4、2.45或2.5等。Preferably, the oxidant stoichiometric ratio O 1 is 2.0˜2.5, for example, it may be 2.0, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45 or 2.5.
优选地,基于所述燃料计量比F1,通入燃料的压力为100~140kPag,例如可以是100kPag、105kPag、110kPag、115kPag、120kPag、125kPag、130kPag、135kPag或140kPag等。Preferably, based on the fuel metering ratio F 1 , the pressure of the injected fuel is 100-140 kPag, such as 100 kPag, 105 kPag, 110 kPag, 115 kPag, 120 kPag, 125 kPag, 130 kPag, 135 kPag or 140 kPag.
优选地,基于所述氧化剂计量比O1,通入氧化剂的压力为80~120kPag,例如可以是80kPag、85kPag、90kPag、95kPag、100kPag、105kPag、110kPag、115kPag或120kPag等。Preferably, based on the oxidant metering ratio O 1 , the pressure of feeding the oxidant is 80-120 kPag, such as 80 kPag, 85 kPag, 90 kPag, 95 kPag, 100 kPag, 105 kPag, 110 kPag, 115 kPag or 120 kPag.
作为本发明一种优选的技术方案,所述第二电流密度C1为0.6~0.8A/cm2,例如可以是0.6A/cm2、0.62A/cm2、0.65A/cm2、0.67A/cm2、0.7A/cm2、0.72A/cm2、0.75A/cm2、0.78A/cm2、0.8A/cm2等。As a preferred technical solution of the present invention, the second current density C 1 is 0.6-0.8A/cm 2 , such as 0.6A/cm 2 , 0.62A/cm 2 , 0.65A/cm 2 , 0.67A /cm 2 , 0.7A/cm 2 , 0.72A/cm 2 , 0.75A/cm 2 , 0.78A/cm 2 , 0.8A/cm 2 , etc.
优选地,所述步骤10中加载电流的速率为10~20A/s,可以是10A/s、11A/s、12A/s、13A/s、14A/s、15A/s、16A/s、17A/s、18A/s、19A/s或20A/s等。Preferably, the rate of loading current in step 10 is 10-20A/s, which can be 10A/s, 11A/s, 12A/s, 13A/s, 14A/s, 15A/s, 16A/s, 17A /s, 18A/s, 19A/s or 20A/s etc.
作为本发明一种优选的技术方案,所述预设温度为50~60℃,例如可以是50℃、51℃、52℃、53℃、54℃、55℃、56℃、57℃、58℃、59℃或60℃等。As a preferred technical solution of the present invention, the preset temperature is 50-60°C, such as 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C , 59°C or 60°C, etc.
但并不仅限于所列举的数值,数值范围内其他未列举的数值同样适用。But not limited to the listed values, other unlisted values within the range of values are also applicable.
本发明所述的数值范围不仅包括上述列举的点值,还包括没有列举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。The numerical ranges described in the present invention not only include the above-listed point values, but also include any point values between the above-mentioned numerical ranges that are not listed. Due to space limitations and for the sake of simplicity, the present invention will not exhaustively list the ranges. The specific pip value to include.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
本发明提供了一种燃料电池电堆的冷启动控制方法,所述冷启动控制方法减少了冗余的控制程序,缩短了电堆冷启动的加载时间,且该方法无需外部辅助加热,从而能简化系统的结构,降低系统的成本。此外,本发明根据冷启动控制曲线图确定最佳燃料计量比和最佳氧化剂计量比,能有效提升燃料与氧化剂的使用效率和冷启动成功率,拓宽电堆冷启动时的堆内水含量范围,从而提升燃料电池电堆在冬季及寒冷地区的适用性。The invention provides a cold start control method of a fuel cell stack, the cold start control method reduces redundant control programs, shortens the loading time of the cold start of the stack, and the method does not require external auxiliary heating, thereby enabling Simplify the structure of the system and reduce the cost of the system. In addition, the present invention determines the optimal fuel metering ratio and the optimal oxidant metering ratio according to the cold start control curve, which can effectively improve the fuel and oxidant use efficiency and cold start success rate, and widen the range of water content in the stack during cold start , thereby improving the applicability of the fuel cell stack in winter and cold regions.
附图说明Description of drawings
图1为本发明一个具体实施方式提供的燃料电池电堆冷启动的控制流程图。Fig. 1 is a control flow chart of a fuel cell stack cold start provided by a specific embodiment of the present invention.
图2为本发明实施例提供的关于燃料的冷启动控制曲线图。Fig. 2 is a cold start control curve diagram regarding fuel provided by an embodiment of the present invention.
图3为本发明实施例提供的关于氧化剂的冷启动控制曲线图。Fig. 3 is a graph of the cold start control curve of the oxidant provided by the embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and through specific implementation methods.
在一个具体实施方式中,本发明提供了一种燃料电池电堆的冷启动控制方法,所述的冷启动控制方法具体包括如下步骤(如图1所示):In a specific embodiment, the present invention provides a cold start control method of a fuel cell stack, and the cold start control method specifically includes the following steps (as shown in FIG. 1 ):
步骤1:设定燃料电池电堆冷启动的平均单片电压保护值U0(0.2~0.5V)、最低单片电压保护值U1(-0.2~0.1V)和第一电流密度C0(0.4~0.65A/cm2),进入步骤2;Step 1: Set the average single-chip voltage protection value U 0 (0.2-0.5V), the minimum single-chip voltage protection value U 1 (-0.2-0.1V) and the first current density C 0 ( 0.4~0.65A/cm 2 ), go to step 2;
步骤2:获取电堆的初始温度T0(-30~-5℃)和初始阻抗H0,根据初始温度T0和初始阻抗H0查询冷启动控制曲线图(MAP图),得到燃料计量比F0和氧化剂计量比O0,基于燃料计量比F0和氧化剂计量比O0向电堆通入燃料(压力为70~100kPag)和氧化剂(压力为60~90kPag);Step 2: Obtain the initial temperature T 0 (-30~-5°C) and initial impedance H 0 of the stack, query the cold start control curve (MAP graph) according to the initial temperature T 0 and initial impedance H 0 , and obtain the fuel metering ratio F 0 and oxidant metering ratio O 0 , based on fuel metering ratio F 0 and oxidant metering ratio O 0 , feed fuel (pressure 70-100kPag) and oxidant (pressure 60-90kPag) to the stack;
步骤3:设定电堆加载电流的速率V0(10~20A/s)并加载电流,获取加载电流密度,进入步骤4进行逻辑判断;Step 3: Set the stack loading current rate V 0 (10-20A/s) and load the current, obtain the loading current density, and proceed to step 4 for logical judgment;
步骤4:判断获取的电流密度是否大于等于第一电流密度C0,如果判断结果为是,进入步骤9;如果判断结果为否,进入步骤5进行逻辑判断;Step 4: Judging whether the obtained current density is greater than or equal to the first current density C 0 , if the judgment result is yes, proceed to step 9; if the judgment result is no, proceed to step 5 for logical judgment;
步骤5:获取电堆的平均单片电压和最低单片电压,判断加载过程中是否出现平均单片电压大于平均单片电压保护值U0,且最低单片电压大于最低单片电压保护值U1,如果判断结果为是,返回步骤3,如果判断结果为否,进入步骤6;Step 5: Obtain the average single-chip voltage and the lowest single-chip voltage of the stack, and determine whether the average single-chip voltage is greater than the average single-chip voltage protection value U 0 during the loading process, and the lowest single-chip voltage is greater than the lowest single-chip voltage protection value U 1. If the judgment result is yes, return to step 3; if the judgment result is no, go to step 6;
步骤6:以步骤3所述电流密度稳定运行,并记录稳定时间S1,进入步骤7进行逻辑判断;Step 6: Run stably at the current density described in step 3, and record the stabilization time S 1 , and proceed to step 7 for logical judgment;
步骤7:判断稳定时间S1是否小于保护时间S0(5~30s),如果判断结果为是,进入步骤5进行逻辑判断,如果判断结果为否,进入步骤8;Step 7: Judging whether the stabilization time S 1 is less than the protection time S 0 (5-30s), if the judgment result is yes, proceed to step 5 for logical judgment, if the judgment result is no, proceed to step 8;
步骤8:设定燃料计量比增量ΔF(0.1~0.3)和氧化剂计量比增量ΔO(0.2~0.5),并基于增大后的燃料计量比和氧化剂计量比向电堆通入燃料和氧化剂,进入步骤5进行逻辑判断;Step 8: Set fuel metering ratio increment ΔF (0.1-0.3) and oxidant metering ratio increment ΔO (0.2-0.5), and feed fuel and oxidant to the stack based on the increased fuel metering ratio and oxidant metering ratio , go to step 5 to make a logical judgment;
步骤9:设定燃料计量比F1(1.2~1.8)和氧化剂计量比O1(2.0~2.5),并基于燃料计量比F1和氧化剂计量比O1向电堆通入燃料和氧化剂,进入步骤10;Step 9: Set fuel metering ratio F 1 (1.2-1.8) and oxidant metering ratio O 1 (2.0-2.5), and feed fuel and oxidant into the stack based on fuel metering ratio F 1 and oxidant metering ratio O 1 , enter Step 10;
步骤10:电堆加载电流,加载至第二电流密度C1(0.6~0.8A/cm2),加载电流的速率为10~20A/s,进入步骤11;Step 10: load current to the stack to the second current density C 1 (0.6-0.8A/cm 2 ), the rate of current loading is 10-20A/s, go to step 11;
步骤11:获取电堆温度,进入步骤12进行逻辑判断;Step 11: Obtain the stack temperature, and proceed to step 12 for logical judgment;
步骤12:判断电堆温度是否大于等于预设温度(50~60℃),如果判断结果为是,则电堆冷启动成功;如果判断结果为否,进入步骤13;Step 12: Determine whether the stack temperature is greater than or equal to the preset temperature (50-60°C), if the judgment result is yes, then the cold start of the stack is successful; if the judgment result is no, go to step 13;
步骤13:以第二电流密度C1稳定运行预设时间,进入步骤11。Step 13: Run stably at the second current density C1 for a preset time, and then go to Step 11.
实施例1Example 1
本实施例提供了一种燃料电池电堆的冷启动控制方法,具体包括如下步骤:This embodiment provides a cold start control method for a fuel cell stack, which specifically includes the following steps:
步骤1:设定燃料电池电堆冷启动的平均单片电压保护值U0(0.4V)、最低单片电压保护值U1(0.2V)和第一电流密度C0(0.6A/cm2),进入步骤2;Step 1: Set the average single-chip voltage protection value U 0 (0.4V), the minimum single-chip voltage protection value U 1 (0.2V) and the first current density C 0 (0.6A/cm 2 ), go to step 2;
步骤2:获取电堆的初始温度T0(-20℃)和初始阻抗H0,根据初始温度T0和初始阻抗H0查询图2,得到燃料计量比F0,查询图3得到氧化剂计量比O0,基于燃料计量比F0和氧化剂计量比O0向电堆通入燃料(压力为90kPag)和氧化剂(压力为70kPag);Step 2: Obtain the initial temperature T 0 (-20°C) and initial impedance H 0 of the stack, and query Figure 2 according to the initial temperature T 0 and initial impedance H 0 to obtain the fuel metering ratio F 0 , and query Figure 3 to obtain the oxidant metering ratio O 0 , based on the fuel metering ratio F 0 and the oxidant metering ratio O 0 , the fuel (pressure is 90kPag) and oxidant (pressure is 70kPag) are passed into the stack;
步骤3:设定电堆加载电流的速率V0(20A/s)并加载电流,获取加载电流密度,进入步骤4进行逻辑判断;Step 3: Set the rate V 0 (20A/s) of the stack loading current and load the current, obtain the loading current density, and enter step 4 for logical judgment;
步骤4:判断获取的电流密度是否大于等于第一电流密度C0,判断结果为是,进入步骤9;Step 4: Judging whether the obtained current density is greater than or equal to the first current density C 0 , if the judgment result is yes, go to step 9;
步骤9:设定燃料计量比F1(1.5)和氧化剂计量比O1(2.1),并基于燃料计量比F1和氧化剂计量比O1向电堆通入燃料和氧化剂,进入步骤10;Step 9: Set the fuel metering ratio F 1 (1.5) and the oxidant metering ratio O 1 (2.1), and feed the fuel and the oxidant into the stack based on the fuel metering ratio F 1 and the oxidant metering ratio O 1 , and enter step 10;
步骤10:电堆加载电流,加载至第二电流密度C1(0.8A/cm2),加载电流的速率为20A/s,进入步骤11;Step 10: load current to the stack to the second current density C 1 (0.8A/cm 2 ), the rate of current loading is 20A/s, and go to step 11;
步骤11:获取电堆温度,进入步骤12进行逻辑判断;Step 11: Obtain the stack temperature, and proceed to step 12 for logical judgment;
步骤12:判断电堆温度是否大于等于预设温度(50℃),如果判断结果为是,则电堆冷启动成功;如果判断结果为否,进入步骤13;初次判断结果为否,进入步骤13;Step 12: Judging whether the stack temperature is greater than or equal to the preset temperature (50°C), if the judgment result is yes, the stack cold start is successful; if the judgment result is no, go to step 13; if the first judgment result is no, go to step 13 ;
步骤13:以第二电流密度C1稳定运行预设时间(60s),进入步骤11,获取温度后经步骤12判断,判断结果为是,电堆冷启动成功。Step 13: Run stably at the second current density C1 for a preset time (60s), enter step 11, obtain the temperature, and then judge in step 12. If the judgment result is yes, the stack cold start is successful.
实施例2Example 2
本实施例提供了一种燃料电池电堆的冷启动控制方法,具体包括如下步骤:This embodiment provides a cold start control method for a fuel cell stack, which specifically includes the following steps:
步骤1:设定燃料电池电堆冷启动的平均单片电压保护值U0(0.2V)、最低单片电压保护值U1(-0.1V)和第一电流密度C0(0.5A/cm2),进入步骤2;Step 1: Set the average single-chip voltage protection value U 0 (0.2V), the minimum single-chip voltage protection value U 1 (-0.1V) and the first current density C 0 (0.5A/cm 2 ), go to step 2;
步骤2:获取电堆的初始温度T0(-30℃)和初始阻抗H0,根据初始温度T0和初始阻抗H0查询图2,得到燃料计量比F0,查询图3得到氧化剂计量比O0,基于燃料计量比F0和氧化剂计量比O0向电堆通入燃料(压力为100kPag)和氧化剂(压力为80kPag);Step 2: Obtain the initial temperature T 0 (-30°C) and initial impedance H 0 of the stack, and query Figure 2 according to the initial temperature T 0 and initial impedance H 0 to obtain the fuel metering ratio F 0 , and query Figure 3 to obtain the oxidant metering ratio O 0 , feed fuel (pressure is 100kPag) and oxidant (pressure is 80kPag) to the stack based on fuel metering ratio F 0 and oxidant metering ratio O 0 ;
步骤3:设定电堆加载电流的速率V0(10A/s)并加载电流,获取加载电流密度,进入步骤4进行逻辑判断;Step 3: Set the stack loading current rate V 0 (10A/s) and load the current, obtain the loading current density, and proceed to step 4 for logical judgment;
步骤4:判断获取的电流密度是否大于等于第一电流密度C0,如果判断结果为是,进入步骤9;如果判断结果为否,进入步骤5进行逻辑判断;初次判断结果为否,进入步骤5;Step 4: Judging whether the obtained current density is greater than or equal to the first current density C 0 , if the judgment result is yes, go to step 9; if the judgment result is no, go to step 5 for logical judgment; if the first judgment result is no, go to step 5 ;
步骤5:获取电堆的平均单片电压和最低单片电压,判断加载过程中是否出现平均单片电压大于平均单片电压保护值U0,且最低单片电压大于最低单片电压保护值U1,如果判断结果为是,返回步骤3,如果判断结果为否,进入步骤6;Step 5: Obtain the average single-chip voltage and the lowest single-chip voltage of the stack, and determine whether the average single-chip voltage is greater than the average single-chip voltage protection value U 0 during the loading process, and the lowest single-chip voltage is greater than the lowest single-chip voltage protection value U 1. If the judgment result is yes, return to step 3; if the judgment result is no, go to step 6;
步骤6:以步骤3所述电流密度稳定运行,并记录稳定时间S1,进入步骤7进行逻辑判断;Step 6: Run stably at the current density described in step 3, and record the stabilization time S 1 , and proceed to step 7 for logical judgment;
步骤7:判断稳定时间S1是否小于保护时间S0(15s),如果判断结果为是,进入步骤5进行逻辑判断,如果判断结果为否,进入步骤8;Step 7: Judging whether the stabilization time S 1 is less than the protection time S 0 (15s), if the judgment result is yes, proceed to step 5 for logical judgment, if the judgment result is no, proceed to step 8;
步骤8:设定燃料计量比增量ΔF(0.2)和氧化剂计量比增量ΔO(0.3),并基于增大后的燃料计量比和氧化剂计量比向电堆通入燃料和氧化剂,进入步骤5进行逻辑判断;Step 8: Set fuel metering ratio increment ΔF(0.2) and oxidant metering ratio increment ΔO(0.3), and feed fuel and oxidant to the stack based on the increased fuel metering ratio and oxidant metering ratio, and enter step 5 make logical judgments;
步骤9:设定燃料计量比F1(1.6)和氧化剂计量比O1(2.2),并基于燃料计量比F1和氧化剂计量比O1向电堆通入燃料和氧化剂,进入步骤10;Step 9: Set the fuel metering ratio F 1 (1.6) and the oxidant metering ratio O 1 (2.2), and feed the fuel and the oxidant into the stack based on the fuel metering ratio F 1 and the oxidant metering ratio O 1 , and enter step 10;
步骤10:电堆加载电流,加载至第二电流密度C1(0.7A/cm2),加载电流的速率为10A/s,进入步骤11;Step 10: Loading current to the stack to the second current density C 1 (0.7A/cm 2 ), the rate of loading current is 10A/s, and proceeding to step 11;
步骤11:获取电堆温度,进入步骤12进行逻辑判断;Step 11: Obtain the stack temperature, and proceed to step 12 for logical judgment;
步骤12:判断电堆温度是否大于等于预设温度(50℃),如果判断结果为是,则电堆冷启动成功;如果判断结果为否,进入步骤13;初次判断结果为否,进入步骤13;Step 12: Judging whether the stack temperature is greater than or equal to the preset temperature (50°C), if the judgment result is yes, the stack cold start is successful; if the judgment result is no, go to step 13; if the first judgment result is no, go to step 13 ;
步骤13:以第二电流密度C1稳定运行预设时间(80s),进入步骤11,获取温度后经步骤12判断,判断结果为是,电堆冷启动成功。Step 13: Run stably for the preset time (80s) at the second current density C1 , enter step 11, obtain the temperature and judge in step 12, if the judgment result is yes, the stack cold start is successful.
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。The applicant declares that the above description is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, and those skilled in the art should understand that any person skilled in the art should be aware of any disclosure in the present invention Within the technical scope, easily conceivable changes or substitutions all fall within the scope of protection and disclosure of the present invention.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211469496.8A CN115692789B (en) | 2022-11-22 | 2022-11-22 | Cold start control method for fuel cell stack |
PCT/CN2023/111148 WO2024109162A1 (en) | 2022-11-22 | 2023-08-04 | Cold start-up control method for fuel cell stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211469496.8A CN115692789B (en) | 2022-11-22 | 2022-11-22 | Cold start control method for fuel cell stack |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115692789A CN115692789A (en) | 2023-02-03 |
CN115692789B true CN115692789B (en) | 2023-07-07 |
Family
ID=85055869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211469496.8A Active CN115692789B (en) | 2022-11-22 | 2022-11-22 | Cold start control method for fuel cell stack |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115692789B (en) |
WO (1) | WO2024109162A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115692789B (en) * | 2022-11-22 | 2023-07-07 | 上海氢晨新能源科技有限公司 | Cold start control method for fuel cell stack |
CN119009019A (en) * | 2024-08-13 | 2024-11-22 | 北京卡文新能源汽车有限公司 | Low-temperature starting method and device for vehicle, vehicle and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011249143A (en) * | 2010-05-26 | 2011-12-08 | Toyota Motor Corp | Fuel battery system and method of controlling fuel battery |
CN110571446A (en) * | 2019-09-02 | 2019-12-13 | 武汉中极氢能产业创新中心有限公司 | Method for activating fuel cell and preventing/improving dry film |
CN115000461A (en) * | 2022-06-10 | 2022-09-02 | 中国第一汽车股份有限公司 | Hydrogen fuel cell stack cold start system and low-temperature cold start control method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2379363A1 (en) * | 2001-03-28 | 2002-09-28 | Ballard Power Systems Inc. | Methods and apparatus for improving the cold starting capability of a fuel cell |
KR20100059098A (en) * | 2008-11-25 | 2010-06-04 | 현대자동차주식회사 | Cold start method of fuel cell system |
JP6144180B2 (en) * | 2012-12-07 | 2017-06-07 | 本田技研工業株式会社 | Fuel cell humidification control method |
CN111048806B (en) * | 2019-12-30 | 2022-06-21 | 上海神力科技有限公司 | Rapid low-temperature starting method of fuel cell system |
CN112397748B (en) * | 2020-11-13 | 2022-02-08 | 上海捷氢科技股份有限公司 | Fuel cell system starting control method and device |
CN112952157B (en) * | 2021-01-29 | 2022-09-20 | 上海神力科技有限公司 | Fuel cell stack starting method |
CN114188570B (en) * | 2021-10-26 | 2023-09-12 | 东风汽车集团股份有限公司 | Cold start method and device for fuel cell stack and vehicle |
CN114188571B (en) * | 2021-12-03 | 2023-08-08 | 北京亿华通科技股份有限公司 | Vehicle-mounted fuel cell system and starting operation control method thereof |
CN115692789B (en) * | 2022-11-22 | 2023-07-07 | 上海氢晨新能源科技有限公司 | Cold start control method for fuel cell stack |
-
2022
- 2022-11-22 CN CN202211469496.8A patent/CN115692789B/en active Active
-
2023
- 2023-08-04 WO PCT/CN2023/111148 patent/WO2024109162A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011249143A (en) * | 2010-05-26 | 2011-12-08 | Toyota Motor Corp | Fuel battery system and method of controlling fuel battery |
CN110571446A (en) * | 2019-09-02 | 2019-12-13 | 武汉中极氢能产业创新中心有限公司 | Method for activating fuel cell and preventing/improving dry film |
CN115000461A (en) * | 2022-06-10 | 2022-09-02 | 中国第一汽车股份有限公司 | Hydrogen fuel cell stack cold start system and low-temperature cold start control method |
Also Published As
Publication number | Publication date |
---|---|
CN115692789A (en) | 2023-02-03 |
WO2024109162A1 (en) | 2024-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115692789B (en) | Cold start control method for fuel cell stack | |
CN105702979B (en) | A kind of startup method of fuel cell pile in subzero temperature | |
CN105390715B (en) | A kind of low-temperature cool starting fuel cell system and utilize method | |
CN108011114A (en) | One kind utilizes alloy hydrogen storage material cold-starting fuel cell system for vehicles and method | |
CN102751521B (en) | Air recirculation heating system and method for starting fuel cell at low temperature | |
CN107171004B (en) | A kind of fuel cell cold-starting classification preheating control method | |
CN114614049B (en) | Quick cold start system and method for fuel cell | |
CN104716370B (en) | High temperature liquid fuel cell system | |
CN1328814C (en) | Fuel cell system | |
CN113764701A (en) | A low temperature cold start method for fuel cells | |
CN112186224A (en) | Fuel cell control system and control method for safe shutdown and rapid low-temperature start | |
CN113140749A (en) | Low-temperature quick start control method and system for fuel cell | |
KR20180048492A (en) | Operation control method of fuel cell and operation control apparatus of fuel cell | |
CN102769144A (en) | Air heating system and control method for fuel cell low temperature start | |
JP2003151597A (en) | Fuel cell system | |
CN108711630B (en) | A method for starting a proton exchange membrane fuel cell at low temperature | |
CN101997126B (en) | Fuel concentration control method for fuel battery system fed with liquid fuel | |
CN114171761B (en) | Quick low-temperature starting method for proton exchange membrane fuel cell | |
CN106887616A (en) | A kind of cold boot of fuel cell system and method based on liquid organic hydrogen storage | |
CN110911715A (en) | Cold start method for fuel cell stack | |
CN115224317B (en) | Management method for fuel cell system, and storage medium | |
CN115588758A (en) | Low-temperature quick starting method of non-auxiliary-heat fuel cell system | |
CN108832158B (en) | Device for starting proton exchange membrane fuel cell at low temperature | |
Li et al. | Research on Optimization and Control of Low-Temperature Cold Start Preheating of Proton Exchange Membrane Fuel Cell. | |
CN111740135A (en) | Start-stop method and device for water guide bipolar plate fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |