CN115656416A - Prediction Method of Soil Organic Matter Based on Spectral Shape Features - Google Patents
Prediction Method of Soil Organic Matter Based on Spectral Shape Features Download PDFInfo
- Publication number
- CN115656416A CN115656416A CN202211151372.5A CN202211151372A CN115656416A CN 115656416 A CN115656416 A CN 115656416A CN 202211151372 A CN202211151372 A CN 202211151372A CN 115656416 A CN115656416 A CN 115656416A
- Authority
- CN
- China
- Prior art keywords
- soil
- spectral
- prediction
- som
- organic matter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
基于光谱形状特征的土壤有机质预测方法。本发明属于土壤有机质光谱预测领域,具体涉及一种估算土壤有机质的方法。本方法如下:一、土壤样本采集与处理;二、土壤样本光谱测试;三、土壤光谱处理与光谱特征参数提取;四、SOM预测模型构建,估算SOM含量。本发明构建的模型具有较高的预测精度,基于形状特征的光谱特征参数在SOM预测中具有很大的潜力。
Soil organic matter prediction method based on spectral shape features. The invention belongs to the field of spectrum prediction of soil organic matter, and in particular relates to a method for estimating soil organic matter. The method is as follows: 1. Soil sample collection and processing; 2. Soil sample spectral testing; 3. Soil spectral processing and spectral characteristic parameter extraction; 4. SOM prediction model construction to estimate SOM content. The model constructed by the invention has high prediction accuracy, and the spectral characteristic parameters based on shape features have great potential in SOM prediction.
Description
技术领域technical field
本发明属于土壤有机质光谱预测领域,具体涉及一种估算土壤有机质的方法。The invention belongs to the field of spectrum prediction of soil organic matter, and in particular relates to a method for estimating soil organic matter.
背景技术Background technique
土壤有机质(SOM)是重要的理化参数,SOM是土壤安全和肥力评价的重要指标。在精准农业和土地可持续利用方面需要快速准确的SOM估算。人们使用光谱技术去了解不同地物的理化性质差异,具体的光谱差异主要体现在不同光谱波长的反射和吸收特征。研究表明,SOM在可见光近红外区域有强烈的吸收特征,可用于快速准确的估算SOM含量。随着SOM含量的增加,光谱反射率降低,因此,SOM与光谱反射率具有较好的负相关。为了提高SOM与光谱反射率的相关性,微分、对数、倒数等数学变换方法被应用于SOM预测。其中微分变换是最常用的光谱变换方法,不仅可以提高与SOM的相关性,还可以消除植被的影响。在当前的研究中,分数阶微分被应用于SOM预测,弥补了整数阶微分在SOM预测中光谱信息不能完全捕捉的情况。但对于土壤光谱SOM预测,一般使用很多波长的反射率或数学变换值作为预测变量,增加了运算强度。Soil organic matter (SOM) is an important physical and chemical parameter, and SOM is an important index for soil safety and fertility evaluation. Fast and accurate SOM estimation is required in precision agriculture and sustainable land use. People use spectral technology to understand the differences in physical and chemical properties of different ground objects. The specific spectral differences are mainly reflected in the reflection and absorption characteristics of different spectral wavelengths. Studies have shown that SOM has strong absorption characteristics in the visible and near-infrared region, which can be used to quickly and accurately estimate the SOM content. With the increase of SOM content, the spectral reflectance decreases, therefore, SOM has a good negative correlation with spectral reflectance. In order to improve the correlation between SOM and spectral reflectance, mathematical transformation methods such as differential, logarithm, and reciprocal are applied to SOM prediction. Among them, differential transformation is the most commonly used spectral transformation method, which can not only improve the correlation with SOM, but also eliminate the influence of vegetation. In the current study, the fractional order differential is applied to SOM prediction, which makes up for the fact that the spectral information cannot be fully captured by the integer order differential in SOM prediction. However, for soil spectral SOM prediction, the reflectance or mathematical transformation values of many wavelengths are generally used as predictor variables, which increases the computational intensity.
光谱特征参数可以表征光谱曲线的形状特征,一般基于光谱去包络线曲线提取光谱特征参数,主要包括吸收面积、吸收位置、吸收深度和对称度等。光谱特征参数多用于土壤光谱分类研究,不同土壤类型在可见光的光谱特征差异较大,因此,使用光谱特征参数进行土壤分类,可以得到高分类精度。光谱特征参数用于SOM预测的研究很少,但在可见光随着SOM含量增加,当反射率下降时,光谱曲线的形状也发生变化。为了研究光谱特征参数在SOM预测中的潜力,提出了一种基于光谱曲线形状特征的SOM预测方法。开发一种快速、准确且预测变量少的SOM预测方法是必要的,可以极大的提高预测效率。在使用光谱特征参数预测的同时,局部建模方法也被应用来提高模型的预测能力。The spectral characteristic parameters can characterize the shape characteristics of the spectral curve. Generally, the spectral characteristic parameters are extracted based on the spectral de-envelope curve, mainly including absorption area, absorption position, absorption depth, and symmetry. Spectral characteristic parameters are mostly used in the study of soil spectral classification. Different soil types have large differences in the spectral characteristics of visible light. Therefore, using spectral characteristic parameters for soil classification can obtain high classification accuracy. There are few studies on the use of spectral characteristic parameters for SOM prediction, but as the SOM content increases in visible light, when the reflectivity decreases, the shape of the spectral curve also changes. In order to study the potential of spectral characteristic parameters in SOM prediction, a SOM prediction method based on spectral curve shape characteristics is proposed. It is necessary to develop a fast, accurate and less predictive variable SOM prediction method, which can greatly improve the prediction efficiency. While using spectral feature parameter prediction, local modeling methods are also applied to improve the predictive ability of the model.
发明内容Contents of the invention
本发明的目的是为了解决当前SOM预测使用的预测变量过多导致运算复杂的技术问题,提供了一种基于光谱形状特征的土壤有机质预测方法。The purpose of the present invention is to solve the technical problem of complex computation due to too many predictor variables used in current SOM prediction, and to provide a soil organic matter prediction method based on spectral shape features.
基于光谱形状特征的土壤有机质预测方法如下:The prediction method of soil organic matter based on spectral shape features is as follows:
一、土壤样本采集与处理:1. Soil sample collection and processing:
在中国东北采集中国东北耕地表层土壤样本,对土壤样本进行风干、研磨和过筛处理,使用重铬酸钾加热法,通过1.724的转化系数得到SOM含量;Collect surface soil samples of cultivated land in Northeast China in Northeast China, air-dry, grind and sieve the soil samples, use potassium dichromate heating method, and obtain SOM content through the conversion coefficient of 1.724;
所述重铬酸钾加热法的操作步骤如下:The operating steps of the potassium dichromate heating method are as follows:
1.1、用减量法称取0.1000g-0.5000g风干土样,精确到0.0001g,通过0.149mm的筛孔将风干土样置于硬质试管中,加入0.1g硫酸银,加入5.00mL浓度为0.8000mol/L的重铬酸钾标准溶液,再用注射器注入5mL硫酸,旋转摇匀;1.1. Weigh 0.1000g-0.5000g air-dried soil sample with the subtraction method, accurate to 0.0001g, put the air-dried soil sample into a hard test tube through a 0.149mm sieve, add 0.1g silver sulfate, add 5.00mL concentration 0.8000mol/L potassium dichromate standard solution, then inject 5mL sulfuric acid with a syringe, rotate and shake well;
1.2、先将油浴锅加热至185℃-190℃,将盛有土样的硬质试管插入油浴锅内的铁丝笼架中加热,控制油浴锅内温度为170℃-180℃,并使溶液保持沸腾5min,然后取出铁丝笼架,待硬质试管稍冷后,用干净纸擦净试管外部的油液;1.2. First heat the oil bath to 185°C-190°C, insert the hard test tube containing the soil sample into the wire cage in the oil bath to heat, control the temperature in the oil bath to 170°C-180°C, and Keep the solution boiling for 5 minutes, then take out the wire cage, and after the hard test tube is slightly cooled, wipe off the oil on the outside of the test tube with clean paper;
1.3、如煮沸后的溶液呈绿色,表示重铬酸钾标准溶液用量不足,应再称土样重做;如煮沸后的溶液呈橙黄色或黄绿色,则冷却后将试管内的混合物吸入250mL锥形瓶中,瓶内体积控制在60mL-80mL,加入3滴-4滴邻菲啰啉指示剂,用0.2mol/L硫酸亚铁铵标准溶液滴定至溶液由橙黄色经蓝绿色到棕红色为终点;如用N-苯基邻氨基苯甲酸指示剂,则变色过程由棕红色经紫色到蓝绿色为终点;1.3. If the boiled solution turns green, it means that the amount of potassium dichromate standard solution is insufficient, and the soil sample should be weighed again; if the boiled solution turns orange-yellow or yellow-green, inhale 250mL of the mixture in the test tube after cooling In the Erlenmeyer flask, the inner volume of the bottle is controlled at 60mL-80mL, add 3-4 drops of o-phenanthroline indicator, and titrate with 0.2mol/L ferrous ammonium sulfate standard solution until the solution changes from orange-yellow to blue-green to brown-red as the end point; if N-phenylanthranilic acid indicator is used, the discoloration process is from brownish red to purple to blue green as the end point;
1.4、分析每批土样时,做2-3个空白试验,空白试验不加土样,但加入0.1g-0.5g石英砂,其他操作步骤与土样分析完全相同。1.4. When analyzing each batch of soil samples, do 2-3 blank tests. No soil samples are added to the blank tests, but 0.1g-0.5g of quartz sand is added. The other operating steps are exactly the same as the soil sample analysis.
二、土壤样本光谱测试:2. Spectral test of soil samples:
在暗室内使用ASD地物光谱仪进行光谱测试,光谱范围为350-2500nm,土壤样本放入器皿中将表面刮平,采用一个50W的卤素灯作为光源照射土壤样本表面,使用ASD地物光谱仪的探头对土壤光谱进行采集,每次采集10条光谱曲线,计算均值作为一个土壤样点的光谱反射率曲线;Use the ASD ground object spectrometer to carry out spectral testing in the dark room. The spectral range is 350-2500nm. Put the soil sample into the container to scrape the surface. Use a 50W halogen lamp as the light source to irradiate the surface of the soil sample. Use the probe of the ASD ground object spectrometer Collect the soil spectrum, collect 10 spectral curves each time, and calculate the average value as the spectral reflectance curve of a soil sample point;
三、土壤光谱处理:3. Soil spectral processing:
对光谱反射率曲线进行九点平滑、10nm重采样和包络线去除处理,通过去包络线曲线确定在可见光两个吸收谷的吸收位置,基于两个吸收位置,在光谱反射率曲线上提取光谱特征参数长度L和面积A;Nine-point smoothing, 10nm resampling, and envelope removal are performed on the spectral reflectance curve, and the absorption positions of the two absorption valleys in the visible light are determined through the envelope removal curve. Based on the two absorption positions, the spectral reflectance curve is extracted Spectral characteristic parameters length L and area A;
所述九点平滑的公式如下:The formula for the nine-point smoothing is as follows:
R′i=0.04Ri-4+0·08Ri-3+0.12Ri-2+0.16Ri-1+0.2Ri+0.16Ri+1+0.12Ri+2+0.08Ri+3+0.04Ri+4 R′ i =0.04R i-4 +0·08R i-3 +0.12R i- 2 +0.16R i-1 +0.2R i +0.16R i+1 +0.12R i+2 +0.08R i+3 +0.04R i+4
R′i表示平滑后某一波长的反射率,R表示实测反射率,i表示波长; R'i represents the reflectance of a certain wavelength after smoothing, R represents the measured reflectance, and i represents the wavelength;
所述特征参数长度L公式为:The formula of the characteristic parameter length L is:
n=180°-arctan(α)n=180°-arctan(α)
长度L公式中其中λ表示波长,λa表示波长是a,R表示反射率,β表示半径,π=3.14;In the length L formula, λ represents the wavelength, λ a represents the wavelength a, R represents the reflectivity, β represents the radius, and π=3.14;
所述特征参数面积A公式为:The characteristic parameter area A formula is:
Ac=Aabc-A▲abc A c =A abc -A ▲abc
A▲abc=[(P2-P1)×(Rc-Ra)]×0.5A ▲abc = [(P 2 -P 1 )×(R c -R a )]×0.5
其中λ表示波长,λa表示波长是a,d表示重采样间隔,R表示反射率,P表示吸收位置,n和α分别代表夹角(见说明书附图2),β表示半径,π=3.14;Among them, λ represents the wavelength, λ a represents the wavelength a, d represents the resampling interval, R represents the reflectivity, P represents the absorption position, n and α represent the included angle (see Figure 2 of the specification), β represents the radius, π=3.14 ;
四、土壤样本聚类:使用k-mean聚类分别对中国东北耕地表层土壤样本进行聚类,并确定最优聚类数;4. Clustering of soil samples: use k-mean clustering to cluster surface soil samples of cultivated land in Northeast China, and determine the optimal number of clusters;
五、SOM预测模型构建:5. Construction of SOM prediction model:
预测模型使用随机森林模型,将光谱特征参数长度L和面积A作为预测变量,在软件R中构建随机森林模型,估算SOM含量,即得预测的土壤有机质。The prediction model uses the random forest model, and the spectral characteristic parameter length L and area A are used as predictor variables. The random forest model is constructed in the software R, and the SOM content is estimated to obtain the predicted soil organic matter.
步骤一中采集耕地表层0.5-20cm的土壤样本。In
步骤二中使用ASD地物光谱仪进行光谱测试,光谱范围为350-2500nm。In the second step, the ASD surface object spectrometer is used for spectral testing, and the spectral range is 350-2500nm.
步骤五中构建随机森林模型使用RandomForest包,当树的数量设置为500,最优分裂节点设置为预测变量的三分之一时,模型的袋外误差是稳定的。In step five, the random forest model is constructed using the RandomForest package. When the number of trees is set to 500 and the optimal split node is set to one-third of the predictor variable, the out-of-bag error of the model is stable.
步骤五SOM预测模型构建后,SOM预测精度使用决定系数和均方根误差评估,RMSE计算公式如下:Step 5 After the SOM prediction model is constructed, the SOM prediction accuracy is evaluated using the coefficient of determination and the root mean square error. The RMSE calculation formula is as follows:
(此公式中的ypi和yoi是ypi和yoi) (yp i and yo i in this formula are y pi and y oi )
其中yp是SOC预测值,yo是SOC实测值,m是土壤样本数。where y p is the predicted value of SOC, y o is the measured value of SOC, and m is the number of soil samples.
本发明构建的模型具有较高的预测精度,基于形状特征的光谱特征参数在SOM预测中具有很大的潜力。The model constructed by the invention has high prediction accuracy, and the spectral characteristic parameters based on shape features have great potential in SOM prediction.
附图说明Description of drawings
图1是本发明实验一中土壤采样点分布图;Fig. 1 is a distribution diagram of soil sampling points in experiment one of the present invention;
图2是本发明实验一中光谱特征参数提取示意图,图中(a)是长度示意图,(b)是面积示意图;Fig. 2 is a schematic diagram of extracting spectral feature parameters in
图3是本发明实验一中农安县训练结果;Fig. 3 is the training result of Nong'an County in experiment one of the present invention;
图4是本发明实验一中农安县验证结果;Fig. 4 is the verification result of Nong'an County in experiment one of the present invention;
图5是本发明实验一中三江平原训练结果;Fig. 5 is the training result of the Sanjiang Plain in
图6是本发明实验一中三江平原验证结果。Fig. 6 is the verification result of the Sanjiang Plain in
具体实施方式Detailed ways
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。The technical solution of the present invention is not limited to the specific embodiments listed below, but also includes any combination of the specific embodiments.
具体实施方式一:本实施方式基于光谱形状特征的土壤有机质预测方法如下:Specific implementation mode one: the method for predicting soil organic matter based on spectral shape features in this implementation mode is as follows:
一、土壤样本采集与处理:1. Soil sample collection and processing:
在中国东北采集中国东北耕地表层土壤样本,对土壤样本进行风干、研磨和过筛处理,使用重铬酸钾加热法,通过1.724的转化系数得到SOM含量;Collect surface soil samples of cultivated land in Northeast China in Northeast China, air-dry, grind and sieve the soil samples, use potassium dichromate heating method, and obtain SOM content through the conversion coefficient of 1.724;
所述重铬酸钾加热法的操作步骤如下:The operating steps of the potassium dichromate heating method are as follows:
1.1、用减量法称取0.1000g-0.5000g风干土样,精确到0.0001g,通过0.149mm的筛孔将风干土样置于硬质试管中,加入0.1g硫酸银,加入5.00mL浓度为0.8000mol/L的重铬酸钾标准溶液,再用注射器注入5mL硫酸,旋转摇匀;1.1. Weigh 0.1000g-0.5000g air-dried soil sample with the subtraction method, accurate to 0.0001g, put the air-dried soil sample into a hard test tube through a 0.149mm sieve, add 0.1g silver sulfate, add 5.00mL concentration 0.8000mol/L potassium dichromate standard solution, then inject 5mL sulfuric acid with a syringe, rotate and shake well;
1.2、先将油浴锅加热至185℃-190℃,将盛有土样的硬质试管插入油浴锅内的铁丝笼架中加热,控制油浴锅内温度为170℃-180℃,并使溶液保持沸腾5min,然后取出铁丝笼架,待硬质试管稍冷后,用干净纸擦净试管外部的油液;1.2. First heat the oil bath to 185°C-190°C, insert the hard test tube containing the soil sample into the wire cage in the oil bath to heat, control the temperature in the oil bath to 170°C-180°C, and Keep the solution boiling for 5 minutes, then take out the wire cage, and after the hard test tube is slightly cooled, wipe off the oil on the outside of the test tube with clean paper;
1.3、如煮沸后的溶液呈绿色,表示重铬酸钾标准溶液用量不足,应再称土样重做;如煮沸后的溶液呈橙黄色或黄绿色,则冷却后将试管内的混合物吸入250mL锥形瓶中,瓶内体积控制在60mL-80mL,加入3滴-4滴邻菲啰啉指示剂,用0.2mol/L硫酸亚铁铵标准溶液滴定至溶液由橙黄色经蓝绿色到棕红色为终点;如用N-苯基邻氨基苯甲酸指示剂,则变色过程由棕红色经紫色到蓝绿色为终点;1.3. If the boiled solution turns green, it means that the amount of potassium dichromate standard solution is insufficient, and the soil sample should be weighed again; if the boiled solution turns orange-yellow or yellow-green, inhale 250mL of the mixture in the test tube after cooling In the Erlenmeyer flask, the inner volume of the bottle is controlled at 60mL-80mL, add 3-4 drops of o-phenanthroline indicator, and titrate with 0.2mol/L ferrous ammonium sulfate standard solution until the solution changes from orange-yellow to blue-green to brown-red as the end point; if N-phenylanthranilic acid indicator is used, the discoloration process is from brownish red to purple to blue green as the end point;
1.4、分析每批土样时,做2-3个空白试验,空白试验不加土样,但加入0.1g-0.5g石英砂,其他操作步骤与土样分析完全相同。1.4. When analyzing each batch of soil samples, do 2-3 blank tests. No soil samples are added to the blank tests, but 0.1g-0.5g of quartz sand is added. The other operating steps are exactly the same as the soil sample analysis.
二、土壤样本光谱测试:2. Spectral test of soil samples:
在暗室内使用ASD地物光谱仪进行光谱测试,光谱范围为350-2500nm,土壤样本放入器皿中将表面刮平,采用一个50W的卤素灯作为光源照射土壤样本表面,使用ASD地物光谱仪的探头对土壤光谱进行采集,每次采集10条光谱曲线,计算均值作为一个土壤样点的光谱反射率曲线;Use the ASD ground object spectrometer to carry out spectral testing in the dark room. The spectral range is 350-2500nm. Put the soil sample into the container to scrape the surface. Use a 50W halogen lamp as the light source to irradiate the surface of the soil sample. Use the probe of the ASD ground object spectrometer Collect the soil spectrum, collect 10 spectral curves each time, and calculate the average value as the spectral reflectance curve of a soil sample point;
三、土壤光谱处理:3. Soil spectral processing:
对光谱反射率曲线进行九点平滑、10nm重采样和包络线去除处理,通过去包络线曲线确定在可见光两个吸收谷的吸收位置,基于两个吸收位置,在光谱反射率曲线上提取光谱特征参数长度L和面积A;Nine-point smoothing, 10nm resampling, and envelope removal are performed on the spectral reflectance curve, and the absorption positions of the two absorption valleys in the visible light are determined through the envelope removal curve. Based on the two absorption positions, the spectral reflectance curve is extracted Spectral characteristic parameters length L and area A;
所述九点平滑的公式如下:The formula for the nine-point smoothing is as follows:
R′i=0.04Ri-4+0.08Ri-3+0.12Ri-2+0.16Ri-1+0.2Ri+0.16Ri+1+0.12Ri+2+0.08Ri+3+0.04Ri+4 R′ i =0.04R i-4 +0.08R i-3 +0.12R i-2 +0.16R i-1 + 0.2R i +0.16R i+1 +0.12R i+2 +0.08R i+3 + 0.04R i+4
R′i表示平滑后某一波长的反射率,R表示实测反射率,i表示波长; R'i represents the reflectance of a certain wavelength after smoothing, R represents the measured reflectance, and i represents the wavelength;
所述特征参数长度L公式为:The formula of the characteristic parameter length L is:
n=180°-arctan(θ)n=180°-arctan(θ)
长度L公式中其中λ表示波长,λa表示波长是a,R表示反射率,β表示半径,π=3.14;In the length L formula, λ represents the wavelength, λ a represents the wavelength a, R represents the reflectivity, β represents the radius, and π=3.14;
所述特征参数面积A公式为:The characteristic parameter area A formula is:
Ac=Aabc-A▲abc A c =A abc -A ▲abc
A▲abc=[(P2-P1)×(Rc-Ra)]×0.5A ▲abc = [(P 2 -P 1 )×(R c -R a )]×0.5
其中λ表示波长,λa表示波长是a,d表示重采样间隔,R表示反射率,P表示吸收位置,n和α分别代表夹角(见说明书附图2),β表示半径,π=3.14;Among them, λ represents the wavelength, λ a represents the wavelength a, d represents the resampling interval, R represents the reflectivity, P represents the absorption position, n and α represent the included angle (see Figure 2 of the specification), β represents the radius, π=3.14 ;
四、土壤样本聚类:使用k-mean聚类分别对中国东北耕地表层土壤样本进行聚类,并确定最优聚类数;4. Clustering of soil samples: use k-mean clustering to cluster surface soil samples of cultivated land in Northeast China, and determine the optimal number of clusters;
五、SOM预测模型构建:5. Construction of SOM prediction model:
预测模型使用随机森林模型,将光谱特征参数长度L和面积A作为预测变量,在软件R中构建随机森林模型,估算SOM含量,即得预测的土壤有机质。The prediction model uses the random forest model, and the spectral characteristic parameter length L and area A are used as predictor variables. The random forest model is constructed in the software R, and the SOM content is estimated to obtain the predicted soil organic matter.
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中采集耕地表层0.5-20cm的土壤样本。其他与具体实施方式一相同。Embodiment 2: This embodiment is different from
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤二中使用ASD地物光谱仪进行光谱测试,光谱范围为350-2500nm。其他与具体实施方式一或二相同。Embodiment 3: The difference between this embodiment and
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤五中构建随机森林模型使用RandomForest包,当树的数量设置为500,最优分裂节点设置为预测变量的三分之一时,模型的袋外误差是稳定的。其他与具体实施方式一至三之一相同。Embodiment 4: The difference between this embodiment and
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤五SOM预测模型构建后,SOM预测精度使用决定系数和均方根误差评估,RMSE计算公式如下:Specific embodiment five: the difference between this embodiment and one of the specific embodiments one to four is that after the step five SOM prediction model is constructed, the SOM prediction accuracy is evaluated using the coefficient of determination and the root mean square error, and the RMSE calculation formula is as follows:
其中yp是SOC预测值,yo是SOC实测值,i代表数量,m是土壤样本数。其他与具体实施方式一至四之一相同。where y p is the predicted value of SOC, y o is the measured value of SOC, i represents the number, and m is the number of soil samples. Others are the same as one of the
采用下述实验验证本发明效果:Adopt following experiment verification effect of the present invention:
实验一:experiment one:
基于光谱形状特征的土壤有机质预测方法,其特征在于所述基于光谱形状特征的土壤有机质预测方法如下:The soil organic matter prediction method based on the spectral shape feature is characterized in that the soil organic matter prediction method based on the spectral shape feature is as follows:
一、土壤样本采集与处理:1. Soil sample collection and processing:
在中国东北采集中国东北耕地表层土壤样本(黑龙江省三江平原和吉林省长春市农安县采集耕地表层土壤样本),对土壤样本进行风干、研磨和过筛处理,使用重铬酸钾加热法,通过1.724的转化系数得到SOM含量;Collect surface soil samples of cultivated land in Northeast China (Sanjiang Plain, Heilongjiang Province and Nong’an County, Changchun City, Jilin Province collect surface soil samples of cultivated land), air-dry, grind and sieve the soil samples, use potassium dichromate heating method, pass The conversion coefficient of 1.724 obtains SOM content;
二、土壤样本光谱测试:2. Spectral test of soil samples:
在暗室内使用ASD地物光谱仪进行光谱测试,光谱范围为350-2500nm,土壤样本放入器皿中将表面刮平,采用一个50W的卤素灯作为光源照射土壤样本表面,使用ASD地物光谱仪的探头对土壤光谱进行采集,每次采集10条光谱曲线,计算均值作为一个土壤样点的光谱反射率曲线;Use the ASD ground object spectrometer to carry out spectral testing in the dark room. The spectral range is 350-2500nm. Put the soil sample into the container to scrape the surface. Use a 50W halogen lamp as the light source to irradiate the surface of the soil sample. Use the probe of the ASD ground object spectrometer Collect the soil spectrum, collect 10 spectral curves each time, and calculate the average value as the spectral reflectance curve of a soil sample point;
三、土壤光谱处理:3. Soil spectral processing:
对光谱反射率曲线进行九点平滑、10nm重采样和包络线去除处理,通过去包络线曲线确定在可见光两个吸收谷的吸收位置,基于两个吸收位置,在光谱反射率曲线上提取光谱特征参数长度L和面积A;Nine-point smoothing, 10nm resampling, and envelope removal are performed on the spectral reflectance curve, and the absorption positions of the two absorption valleys in the visible light are determined through the envelope removal curve. Based on the two absorption positions, the spectral reflectance curve is extracted Spectral characteristic parameters length L and area A;
所述九点平滑的公式如下:The formula for the nine-point smoothing is as follows:
R′i=0.04Ri-4+0.08Ri-3+0.12Ri-2+0.16Ri-1+0.2Ri+0.16Ri+1+0.12Ri+2+0.08Ri+3+0.04Ri+4 R′ i =0.04R i-4 +0.08R i-3 +0.12R i-2 +0.16R i-1 + 0.2R i +0.16R i+1 +0.12R i+2 +0.08R i+3 + 0.04 R i +4
R′i表示平滑后某一波长的反射率,R表示实测反射率,i表示波长; R'i represents the reflectance of a certain wavelength after smoothing, R represents the measured reflectance, and i represents the wavelength;
所述特征参数长度L公式为:The formula of the characteristic parameter length L is:
n=180°-arctan(θ)n=180°-arctan(θ)
长度L公式中其中λ表示波长,λa表示波长是a,R表示反射率,β表示半径,π=3.14;In the length L formula, λ represents the wavelength, λ a represents the wavelength a, R represents the reflectivity, β represents the radius, and π=3.14;
所述特征参数面积A公式为:The characteristic parameter area A formula is:
Ac=Aabc-A▲abc A c =A abc -A ▲abc
A▲abc=[(P2-P1)×(Rc-Ra)]×0.5A ▲abc = [(P 2 -P 1 )×(R c -R a )]×0.5
其中λ表示波长,λa表示波长是a,d表示重采样间隔,R表示反射率,P表示吸收位置,n和α分别代表夹角(见说明书附图2),β表示半径,π=3.14;Among them, λ represents the wavelength, λ a represents the wavelength a, d represents the resampling interval, R represents the reflectivity, P represents the absorption position, n and α represent the included angle (see Figure 2 of the specification), β represents the radius, π=3.14 ;
四、土壤样本聚类:使用k-mean聚类分别对中国东北耕地表层土壤样本(三江平原和农安县的土壤样本)进行聚类,并确定最优聚类数;4. Clustering of soil samples: use k-mean clustering to cluster surface soil samples of cultivated land in Northeast China (soil samples from Sanjiang Plain and Nong’an County) respectively, and determine the optimal number of clusters;
五、SOM预测模型构建:5. Construction of SOM prediction model:
预测模型使用随机森林模型,将光谱特征参数长度L和面积A作为预测变量,在软件R中构建随机森林模型,估算SOM含量,即得预测的土壤有机质。The prediction model uses the random forest model, and the spectral characteristic parameter length L and area A are used as predictor variables. The random forest model is constructed in the software R, and the SOM content is estimated to obtain the predicted soil organic matter.
步骤一中采集耕地表层0.5-20cm的土壤样本。In
步骤二中使用ASD地物光谱仪进行光谱测试,光谱范围为350-2500nm。In the second step, the ASD surface object spectrometer is used for spectral testing, and the spectral range is 350-2500nm.
步骤五中构建随机森林模型使用RandomForest包,当树的数量设置为500,最优分裂节点设置为预测变量的三分之一时,模型的袋外误差是稳定的。In step five, the random forest model is constructed using the RandomForest package. When the number of trees is set to 500 and the optimal split node is set to one-third of the predictor variable, the out-of-bag error of the model is stable.
步骤五SOM预测模型构建后,SOM预测精度使用决定系数(R2)和均方根误差(RMSE)评估,RMSE计算公式如下:Step 5 After the SOM prediction model is constructed, the SOM prediction accuracy is evaluated using the coefficient of determination (R 2 ) and the root mean square error (RMSE). The RMSE calculation formula is as follows:
其中yp是SOC预测值,yo是SOC实测值,i代表数量,m是土壤样本数。where y p is the predicted value of SOC, y o is the measured value of SOC, i represents the number, and m is the number of soil samples.
通过图1-图6可知,对于黑龙江三江平原的土壤数据,模型的验证精度为R2=0.69;RMSE=3.76g kg-1;对于吉林省农安县,模型的验证精度为R2=0.76;RMSE=7.43gkg-1。模型具有较高的预测精度,基于形状特征的光谱特征参数在SOM预测中具有很大的潜力。From Figures 1 to 6, it can be seen that for the soil data of the Sanjiang Plain in Heilongjiang, the verification accuracy of the model is R 2 =0.69; RMSE=3.76g kg -1 ; for Nong'an County, Jilin Province, the verification accuracy of the model is R 2 =0.76; RMSE = 7.43 gkg -1 . The model has high prediction accuracy, and the spectral characteristic parameters based on shape features have great potential in SOM prediction.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211151372.5A CN115656416B (en) | 2022-09-21 | 2022-09-21 | Soil organic matter prediction method based on spectral shape characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211151372.5A CN115656416B (en) | 2022-09-21 | 2022-09-21 | Soil organic matter prediction method based on spectral shape characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115656416A true CN115656416A (en) | 2023-01-31 |
CN115656416B CN115656416B (en) | 2025-01-21 |
Family
ID=84984204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211151372.5A Active CN115656416B (en) | 2022-09-21 | 2022-09-21 | Soil organic matter prediction method based on spectral shape characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115656416B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107132190A (en) * | 2017-04-21 | 2017-09-05 | 武汉大学 | A kind of soil organism spectra inversion model calibration samples collection construction method |
CN108801934A (en) * | 2018-04-10 | 2018-11-13 | 安徽师范大学 | A kind of modeling method of soil organic carbon EO-1 hyperion prediction model |
-
2022
- 2022-09-21 CN CN202211151372.5A patent/CN115656416B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107132190A (en) * | 2017-04-21 | 2017-09-05 | 武汉大学 | A kind of soil organism spectra inversion model calibration samples collection construction method |
CN108801934A (en) * | 2018-04-10 | 2018-11-13 | 安徽师范大学 | A kind of modeling method of soil organic carbon EO-1 hyperion prediction model |
Non-Patent Citations (4)
Title |
---|
何挺 等,: "土壤氧化铁光谱特征研究", 《地理与地理信息科学》, vol. 22, no. 2, 31 March 2006 (2006-03-31), pages 30 - 34 * |
刘焕军等: "反射光谱特征的土壤分类模型", 《光谱学与光谱分析》, vol. 39, no. 8, 31 August 2019 (2019-08-31), pages 2481 - 2485 * |
李厚萱 等: "不同测试条件对土壤有机质光谱预测模型精度的影响", 《土壤通报》, vol. 51, no. 6, 31 December 2020 (2020-12-31), pages 1359 - 1365 * |
郑淼: "黑土区土壤有机质和全氮含量遥感反演研究", 《地理科学》, vol. 42, no. 8, 31 August 2022 (2022-08-31), pages 1336 - 1347 * |
Also Published As
Publication number | Publication date |
---|---|
CN115656416B (en) | 2025-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101825567A (en) | Screening method for near infrared spectrum wavelength and Raman spectrum wavelength | |
CN103234922A (en) | Rapid soil organic matter detection method based on large sample soil visible-near infrared spectrum classification | |
CN102798607A (en) | Method for estimating soil organic carbon content by using mid-infrared spectrum technology | |
CN103983584B (en) | The inversion method of a kind of inland case �� waters chlorophyll-a concentration and device | |
CN105486655B (en) | The soil organism rapid detection method of model is intelligently identified based on infrared spectroscopy | |
CN104914089B (en) | The method for carrying out semi-quantitative analysis to trace mixture with SERS | |
CN110084212B (en) | Spectral characteristic peak identification and positioning method based on improved sine and cosine algorithm | |
CN104730042A (en) | Method for improving free calibration analysis precision by combining genetic algorithm with laser induced breakdown spectroscopy | |
CN114002162B (en) | Soil organic carbon content estimation method, equipment, storage medium and program product | |
Wang et al. | Prediction of soil organic matter using VNIR spectral parameters extracted from shape characteristics | |
CN112782096A (en) | Soil organic carbon density estimation method based on reflection spectrum data | |
CN107132190A (en) | A kind of soil organism spectra inversion model calibration samples collection construction method | |
CN108982406A (en) | A kind of soil nitrogen near-infrared spectral characteristic band choosing method based on algorithm fusion | |
CN105548066A (en) | Method and system for distinguishing colloid types | |
CN104778349B (en) | One kind is used for rice table soil nitrogen application Classified Protection | |
CN108827909B (en) | A rapid soil classification method based on visible-near-infrared spectroscopy and multi-object fusion | |
CN117219182A (en) | Organic carbon component rapid prediction method based on in-situ spectrum and machine learning model | |
CN115468921A (en) | Soil classification method using combination of environmental factors and spectrum | |
CN115656416A (en) | Prediction Method of Soil Organic Matter Based on Spectral Shape Features | |
CN115184322A (en) | A kind of rice leaf moisture content monitoring method | |
CN111103259B (en) | Rapid detection method for frying oil quality based on spectrum technology | |
CN110987737B (en) | Aerosol particle spectrum and concentration measurement method based on light scattering response | |
CN105954226B (en) | Detection method of chlorophyll content insensitive to leaf surface structure | |
CN104020124A (en) | Spectral wavelength screening method based on preferential absorptivity | |
CN110567385A (en) | Construction thickness detection method of building reflective heat insulation coating based on hyperspectral technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |