[go: up one dir, main page]

CN115572896A - 一种高韧性、高抗腐蚀管线钢及其生产方法 - Google Patents

一种高韧性、高抗腐蚀管线钢及其生产方法 Download PDF

Info

Publication number
CN115572896A
CN115572896A CN202211110087.9A CN202211110087A CN115572896A CN 115572896 A CN115572896 A CN 115572896A CN 202211110087 A CN202211110087 A CN 202211110087A CN 115572896 A CN115572896 A CN 115572896A
Authority
CN
China
Prior art keywords
toughness
pipeline steel
corrosion
equal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211110087.9A
Other languages
English (en)
Inventor
李洪波
赵亚飞
高振伟
孟凡超
王金星
孙晶磊
李君彦
曹卫强
李世伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuan Yuhua Iron And Steel Co ltd
Original Assignee
Wuan Yuhua Iron And Steel Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuan Yuhua Iron And Steel Co ltd filed Critical Wuan Yuhua Iron And Steel Co ltd
Priority to CN202211110087.9A priority Critical patent/CN115572896A/zh
Publication of CN115572896A publication Critical patent/CN115572896A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及管线钢及其生产技术领域,提出了一种高韧性、高抗腐蚀管线钢及其生产方法,所述一种高韧性、高抗腐蚀管线钢,包括以下重量百分比的成分:C:0.02~0.04%,Si:0.15~0.25%,Mn:1.45~1.55%,P:0.008%,S:0.002%,Nb:0.040~0.055%,Ti:0.012~0.020%,Ni:0.18~0.23%,Cr:0.20~0.30%,Cu:0.18~0.23%,Sb:0.008~0.012%,Ca:0.0015~0.0035%,Al:0.015~0.050%,余量为Fe和不可避免的杂质。通过上述技术方案,解决了现有技术中管线钢韧性低、强度低、抗腐蚀性能和焊接性能差的问题。

Description

一种高韧性、高抗腐蚀管线钢及其生产方法
技术领域
本发明涉及管线钢及其生产技术领域,具体的,涉及一种高韧性、高抗腐蚀管线钢及其生产方法。
背景技术
管线钢是指用于输送石油、天然气等的大口经焊接钢管用热轧卷板或宽厚板,管线钢在使用过程中,除要求具有较高的耐压强度外,还需具有良好的强韧性、抗疲劳性、低温韧性、焊接性能。酸性环境下使用的管线钢是管线钢系列中质量要求最为严格的品种,因其使用环境的特殊性,对钢的成分设计、冶炼技术、轧制工艺和冶金装备水平均提出十分严格的要求。
抗腐蚀管线钢板卷是生产用于输送介质中含有酸性气体、并长期在酸性环境下使用的钢管。因其使用环境的特殊性,对钢的成分设计、冶炼技术和轧制工艺及冶金装备水平均提出十分严格的要求,目前国内对于输送酸性气体的管线钢不论是板卷生产还是焊管制造均缺乏实际应用的经验。随着我国经济的高速发展对能源的需求量不断增加,含有酸性介质的石油和天然气被列入了开发日程,对酸性环境下使用的输气管线用钢在强度、韧性、焊接性能、抗腐蚀性能等方面也提出了高标准要求。
发明内容
本发明提出一种高韧性、高抗腐蚀管线钢及其生产方法,解决了相关技术中管线钢韧性低、强度低、抗腐蚀性能和焊接性能差的问题。
本发明的技术方案如下:
一种高韧性、高抗腐蚀管线钢,包括以下重量百分比的成分:C:0.02~0.04%,Si:0.15~0.25%,Mn:1.45~1.55%,P:0.008%,S:0.002%,Nb:0.040~0.055%,Ti:0.012~0.020%,Ni:0.18~0.23%,Cr:0.20~0.30%,Cu:0.18~0.23%,Sb:0.008~0.012%,Ca:0.0015~0.0035%,Al:0.015~0.050%,余量为Fe和不可避免的杂质。
作为进一步的技术方案,Al与Ca的比为12。
一种高韧性、高抗腐蚀管线钢的生产方法,包括以下工序:铁水预处理;转炉冶炼;LF精炼处理;RH真空精炼处理;连铸过程;热机械轧制;冷却;卷取。
作为进一步的技术方案,所述铁水预处理中:通过喷质量比为4:1的CaO、Mg复合粉剂,控制铁水中的硫含量≤20ppm。
控制铁水中的硫含量≤20ppm,为管线钢超低硫生产,而且为转炉少渣精炼、夹杂物控制等提供了很好的基础。
作为进一步的技术方案,所述转炉冶炼中:采用顶底复吹少渣冶炼,控制冶炼终点钢水的碳含量稳定在0.025~0.035%,磷含量≤0.01%,钢中氧≤12ppm,硫≤0.002%。
控制钢中氧≤12ppm,使钢水过氧化得到较好控制;设定碱度4.2满足脱磷效果;铜板镍板从废钢斗加入,降低了出钢温度,同时保证去磷效果和减少炉衬侵蚀;有轻微后吹,终渣全铁含量偏高,从钢包增碳来看,合金增碳少,出钢碳可稍微往上提高,保证去碳效果。
作为进一步的技术方案,所述LF精炼处理:精炼全程采用白渣操作,控制炉渣厚度150~200mm,精炼过程温度≥1600℃。
通过LF炉精炼,使钢水脱硫,同时控制钢水回磷,使钢中P、S的含量控制在既定目标,通过控制精炼过程温度≥1600℃,使管线钢中氮、氧、硫、磷、夹杂、合金成分都得到较好的控制;在LF精炼末期向钢中喂入硅钙线,对钢中残余夹杂物进行变性处理,提高管线钢的横向韧性和抗腐蚀性能。
采用微正压操作,炉内压力设定为0.5bar,有效防止了钢水吸气造成二次氧化和增氮。精炼全程采用白渣操作,控制合适的炉渣厚度(150~200mm)、粘度与碱度,保证了脱硫和夹杂物去除效果,精炼前期采用大流量搅拌,促进了快速脱硫,钢水钙处理后采用弱搅拌,以促进夹杂物上浮。
作为进一步的技术方案,所述RH真空精炼处理:真空度≤1.0mbar,真空循环时间≥20min,纯脱气时间≥12min。
通过严格控制RH真空精炼处理时的工艺条件,对钢液的强烈搅拌,促进了夹杂物的碰撞和聚合上浮去除,促使钢液得到充分净化,近而管线钢洁净度和成分控制得到良好的保证。
作为进一步的技术方案,所述连铸过程:采用全程保护浇注,过热度控制在10~20℃,采用双辊电磁搅拌技术,中包过热度控制15~20℃。
采用氩气保护,中间包净化技术,防止大颗粒夹杂物、成分偏析、表面和内部裂纹的出现,同时防止钢水从钢包到中间包以及中间包到结晶器的二次氧化。此外,连铸坯在1300℃以上时,应避免快速喷水冷却、造成表面裂纹。连铸过程中采用电磁制动、轻压下等技术以防止液相穴内富集溶质母液的流动,对降低合金元素偏析有很大作用。
作为进一步的技术方案,所述热机械轧制包括粗轧和精轧,所述精轧温度控制:出钢温度1100~1200℃,开轧温度1150~1200℃,精轧入口温度950~1000℃,精轧出口温度800~850℃。
控制轧制一般采用奥氏体再结晶区轧制和未再结晶区轧制。再结晶型控制轧制时,钢在变形的同时发生动态回复和不完全动态再结晶,在轧制后或两道次之间发生静态回复和静态再结晶,变形和静态回复交替进行。随着变形和再结晶的进行,钢的温度不断下降,奥氏体晶粒逐步细化,奥氏体晶界面积增大,为奥氏体向铁素体相变形核提供更多位置。相变后铁素体晶粒细化,铁素体晶粒度可达11~12级。在未再结晶型控制轧制的变形时,变形奥氏体不发生再结晶,奥氏体晶粒被压扁和拉长。变形量大时,晶粒内产生大量的滑移带和位错,增大了有效晶界面积,相变时铁素体在晶界上和变形带上形核。由于形核位置增多和分散,所以铁素体晶粒细小,铁素体晶粒度可达11~12级。但是如果在未再结晶区变形量不足,就会得到粗细不均的铁素体晶粒。对于“Cr+Nb”成分体系的抗腐蚀管线钢,在未结晶区总变形量应控制在70%左右。
作为进一步的技术方案,所述卷取温度为480℃。
利用板卷由于冷却速度过快造成板卷各处冷却的不均匀,导致板卷表面与心部温度差别较大,卷取后由于热扩散心部和表层会有一定的温度梯度而保持在一定的温度的自回火过程,经快冷提供的相变驱动力发生组织转变,加上Cr等微合金元素的作用,促使过冷奥氏体向铁素体转变。最终得到细小铁素体型微观组织的抗腐蚀管线钢板卷。对于抗腐蚀管线钢的生产,控制卷取温度480℃左右,有利于细化组织、减轻带状组织的形成。
本发明的工作原理及有益效果为:
1、本发明一方面通过高洁净钢、窄成分和电磁搅拌、轻压下等技术改善了夹杂物形态,减少偏析,提高了稳定性和抗腐蚀性能;另一方面通过低碳、低硫成分,同时采用TMCP控制冷却工艺,结合微合金化和中温组织转变细化等方法,获得以极细铁素体、马奥岛(M/A)为主体的管线钢复相组织,提高了强度和抗氢致裂纹性能。
2、本发明在采用低碳的同时,添加Cu、Ni、Cr以形成钝化膜,防止氢的进入,添加少量的Sb使钢表面形成了一层Sb2O5耐蚀性氧化膜,从而提高管线钢抗腐蚀性能。
3、本发明通过限定管线钢成分中的Al/Ca比和卷取温度,降低了铁素体的平均晶粒尺寸,使其晶粒较细化,从而增强了管线钢的屈服强度和抗拉强度,同时,限定管线钢成分中的Al/Ca比=12,提高了管线钢的探伤合格率。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都涉及本发明保护的范围。
本发明制备的管线钢中化学成分重量百分比为C:0.02~0.04%,Si:0.15~0.25%,Mn:1.45~1.55%,P:0.008%,S:0.002%,Nb:0.040~0.055%,Ti:0.012~0.020%,Ni:0.18~0.23%,Cr:0.20~0.30%,Cu:0.18~0.23%,Sb:0.008~0.012%,Ca:0.0015~0.0035%,Al:0.015~0.050%,余量为Fe和不可避免的杂质。
本发明的制造方法,其工艺路线为:铁水预处理→转炉冶炼→LF精炼处理→RH真空精炼处理→连铸过程→热机械轧制→冷却→卷取→钢卷检验包装→送钢管厂进行焊接制管。
S1、脱硫工序:通过喷质量比为4:1的CaO、Mg复合粉剂,脱硫后扒渣干净,保证转炉炉后硫在20ppm以下;
S2、转炉冶炼工序:要求顶底复吹少渣冶炼,脱碳升温,通过采用合理造渣工艺技术、温度控制技术、终点控制技术等,使转炉冶炼终点钢水的碳含量稳定在0.025~0.035%,磷含量≤0.010%,硫≤0.002%,钢中氧≤12ppm。设定碱度4.2,铜板镍板从废钢斗加入,出钢碳可稍微往上提高。
S3、LF炉工艺:采用微正压操作,炉内压力设定为0.5bar。精炼全程采用白渣操作,控制合适的炉渣厚度(150-200mm)、粘度与碱度,成品S≤0.002%。底吹氩气流量采用分阶段控制,精炼前期采用大流量搅拌;当钢水中硫降低到目标值以下采用中等强度搅拌;当钢水钙处理后采用弱搅拌。全程采用高过热度的温度控制方式。加入第一批渣料后立即送电升温,将温度升至1630℃左右后开始大气量搅拌;精炼过程温度≥1600℃。出站温度浇次第一炉按1630~1635℃控制,连浇按1605~1615℃控制。成分控制:进站加入渣料及铌铁,升温后大气量搅拌6min左右取进站样,根据进站样成分粗调合金将各成分调整到目标值下限,搅拌3min后再取样,依据该样结果将元素成分调至目标值(除Al外),出站前15min把Al控制到目标值,出站锰按内控中上限控制。钙处理喂入硅钙线280kg,钙处理完毕将底吹气量调整为净吹气量,净吹时间≥5min。
S4、RH工艺操作:精炼前对真空槽用普通钢水洗槽1~2次,要求真空度≤1.0mbar,洗槽时不得进行吹氧化学升温,洗槽时间≥10min。真空泵全泵投入,5min达到真空度要求,真空循环时间≥20min,纯脱气时间≥12min。温度控制:真空循环4min测温,依据此次测温结果判断是否加废钢降温。真空槽第一炉处理前10min温降值在1℃/min左右,此后温降值在0.5~0.7℃/min。出站温度:(1)RH双工位情况下:浇次第一炉1575~1578℃,连浇1563~1568℃;(2)RH单工位情况下:浇次第一炉1582~1585℃,连浇1570~1573℃。成分调整:真空处理3min加入钛铁160kg,循环3min后取样,根据试样分析结果将成分调整到目标值。钛铁收得率为85%左右,锰的挥发损失0.03~0.05%,Al损失3~4ppm/min。在真空度≤1.0mbar、循环时间>20min时均能满足钢种对氢的要求。钙处理:最后一个浇次恢复了RH钙处理工艺,喂入硅钙线600m/炉,钙处理时将底吹气量调整至渣面涌动,保净吹时间≥3min。
S5、连铸过程:采用全程保护浇注,过热度控制在10~20℃,采用双辊电磁搅拌技术,低倍评级在冶标C1.0级以内,中包过热度控制15~20℃。
S6、轧制过程:定宽压力机投用,粗轧预除鳞开启,除鳞总管压力200~220bar,采用3+5道次粗轧,第1、2、4、5、8机架除鳞开启,除鳞总管压力200~220bar,中间坯厚度冷值设定55mm,按照正常轧制速度进行轧制。
S7、精轧温度控制:出钢温度1100~1200℃,开轧温度1150~1200℃,精轧入口温度950~1000℃,精轧出口温度800~850℃。
S8、卷取温度:冷却模式:前段冷却,卷取温度480℃。
下面是本发明的4个实施例,表1是本发明的实施例的化学成分,表2是热轧工艺控制值。
表1产品化学成分(wt%)
C Si Mn P S Nb Ti Ni Cr Cu Sb Al Ca
实施例1 0.03 0.23 1.53 0.008 0.002 0.052 0.016 0.20 0.25 0.20 0.010 0.030 0.0025
实施例2 0.04 0.25 1.45 0.008 0.002 0.055 0.020 0.23 0.20 0.18 0.008 0.050 0.0015
实施例3 0.02 0.17 1.50 0.008 0.002 0.040 0.012 0.18 0.28 0.23 0.011 0.015 0.0035
实施例4 0.03 0.15 1.55 0.008 0.002 0.048 0.018 0.18 0.30 0.21 0.012 0.024 0.0020
表2热轧工艺控制值
出钢温度/℃ 开轧温度/℃ 精轧入口温度/℃ 终轧温度/℃ 冷却速度/℃S<sup>-1</sup> 卷取温度/℃
实施例1 1189 1166 962 820 34 480
实施例2 1107 1158 953 804 30 480
实施例3 1192 1150 989 842 32 480
实施例4 1155 1195 994 845 31 480
对比例1
按照实施例1的工艺和成分制备,不同之处在于卷取温度为520℃。
对比例2
按照实施例1的工艺和成分制备,不同之处在于卷取温度为450℃。
性能测试:依照GB/T 700-2006《碳素结构钢》的测试标准对实施例1~4及对比例1~2得到的管线钢进行力学强度的测试。测试结果记录在表3中:
表3力学性能参数
屈服强度/MPa 抗拉强度/MPa 屈强比/%
实施例1 579 745 77.7
实施例2 568 737 77.1
实施例3 562 729 77.1
实施例4 584 758 77.0
对比例1 551 684 80.6
对比例2 557 692 80.5
由表3可以看出,实施例1~4的管线钢的屈服强度、抗拉强度优于对比例得到的管线钢,主要是由于对比例1~2没有控制卷取温度为480℃,导致铁素体的平均晶粒尺寸偏大,从而降低了管线钢的强度。
对实施例1~4以及对比例1~2制备的管线钢取样检测力学性能,环焊后进行探伤检测,结果如表4所示。其中,探伤合格率是指采用超声波探伤仪对钢板沿长度方向实施全覆盖式扫描,探头最小分辨率为≥2mm,当波长≥5mm时,认为此块钢板不合格,用不合格的钢板数量除以总的检测数量,即为合格率。
表4管线钢的探伤合格率
环焊缝(热影响区)0℃冲击功/J 探伤合格率/%
实施例1 265 100
实施例2 101 98
实施例3 121 98
实施例4 275 100
对比例1 263 100
对比例2 267 100
由表4的数据可知,本发明实施例1、实施例4和对比例1~2提供的管线钢,其环焊缝0℃冲击功为263~275J,探伤合格率为100%。由于实施例2、实施例3管线钢中Al/Ca比≠12,导致探伤合格率仅为98%。
将实施例1~4制备的管线钢经帕博检测技术服务公司进行第三方抗酸检测,委托试样HIC试验报告。按标准NACE TM0284-2011(HIC)试验,经过96h的H2S饱和溶液浸泡试验后,所有试样表面均无出现氢鼓泡;所有试样的截面在100倍的显微镜下均没有裂纹,检测结果见表5:
表5HIC裂纹测试结果
裂纹长度率CLR/% 裂纹厚度率CTR/% 裂纹敏感率CSR/% 备注
实施例1 0 0 0 合格
实施例2 0 0 0 合格
实施例3 0 0 0 合格
实施例4 0 0 0 合格
由表5可以看出,本发明实施例1~4提供的管线钢具有优异的耐酸腐蚀性能。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高韧性、高抗腐蚀管线钢,其特征在于,包括以下重量百分比的成分:C:0.02~0.04%,Si:0.15~0.25%,Mn:1.45~1.55%,P:0.008%,S:0.002%,Nb:0.040~0.055%,Ti:0.012~0.020%,Ni:0.18~0.23%,Cr:0.20~0.30%,Cu:0.18~0.23%,Sb:0.008~0.012%,Ca:0.0015~0.0035%,Al:0.015~0.050%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种高韧性、高抗腐蚀管线钢,其特征在于,Al与Ca的比为12。
3.根据权利要求1所述的一种高韧性、高抗腐蚀管线钢的生产方法,其特征在于,包括以下工序:铁水预处理;转炉冶炼;LF精炼处理;RH真空精炼处理;连铸过程;热机械轧制;冷却;卷取。
4.根据权利要求3所述的一种高韧性、高抗腐蚀管线钢的生产方法,其特征在于,所述铁水预处理中:通过喷质量比为4:1的CaO、Mg复合粉剂,控制铁水中的硫含量≤20ppm。
5.根据权利要求3所述的一种高韧性、高抗腐蚀管线钢的生产方法,其特征在于,所述转炉冶炼中:采用顶底复吹少渣冶炼,控制冶炼终点钢水的碳含量稳定在0.025~0.035%,磷含量≤0.01%,钢中氧≤12ppm,硫≤0.002%。
6.根据权利要求3所述的一种高韧性、高抗腐蚀管线钢的生产方法,其特征在于,所述LF精炼处理:精炼全程采用白渣操作,控制炉渣厚度150~200mm,精炼过程温度≥1600℃。
7.根据权利要求3所述的一种高韧性、高抗腐蚀管线钢的生产方法,其特征在于,所述RH真空精炼处理:真空度≤1.0mbar,真空循环时间≥20min,纯脱气时间≥12min。
8.根据权利要求3所述的一种高韧性、高抗腐蚀管线钢的生产方法,其特征在于,所述连铸过程:采用全程保护浇注,过热度控制在10~20℃,采用双辊电磁搅拌技术,中包过热度控制15~20℃。
9.根据权利要求3所述的一种高韧性、高抗腐蚀管线钢的生产方法,其特征在于,所述热机械轧制包括粗轧和精轧,所述精轧温度控制:出钢温度1100~1200℃,开轧温度1150~1200℃,精轧入口温度950~1000℃,精轧出口温度800~850℃。
10.根据权利要求3所述的一种高韧性、高抗腐蚀管线钢的生产方法,其特征在于,所述卷取温度为480℃。
CN202211110087.9A 2022-09-13 2022-09-13 一种高韧性、高抗腐蚀管线钢及其生产方法 Pending CN115572896A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211110087.9A CN115572896A (zh) 2022-09-13 2022-09-13 一种高韧性、高抗腐蚀管线钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211110087.9A CN115572896A (zh) 2022-09-13 2022-09-13 一种高韧性、高抗腐蚀管线钢及其生产方法

Publications (1)

Publication Number Publication Date
CN115572896A true CN115572896A (zh) 2023-01-06

Family

ID=84581690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211110087.9A Pending CN115572896A (zh) 2022-09-13 2022-09-13 一种高韧性、高抗腐蚀管线钢及其生产方法

Country Status (1)

Country Link
CN (1) CN115572896A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248328A (ja) * 2007-03-30 2008-10-16 Jfe Steel Kk 低降伏比高強度高靱性鋼板及びその製造方法
CN101928885A (zh) * 2009-06-26 2010-12-29 上海梅山钢铁股份有限公司 抗硫化氢腐蚀管线用钢及其生产方法
CN103436787A (zh) * 2013-08-23 2013-12-11 内蒙古包钢钢联股份有限公司 低成本含稀土抗h2s腐蚀石油套管材料及其生产方法
CN104928602A (zh) * 2015-06-25 2015-09-23 江苏省沙钢钢铁研究院有限公司 一种耐h2s腐蚀的管线钢宽厚板及其生产方法
CN111235489A (zh) * 2020-02-17 2020-06-05 柳州钢铁股份有限公司 X65ms抗酸管线钢制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248328A (ja) * 2007-03-30 2008-10-16 Jfe Steel Kk 低降伏比高強度高靱性鋼板及びその製造方法
CN101928885A (zh) * 2009-06-26 2010-12-29 上海梅山钢铁股份有限公司 抗硫化氢腐蚀管线用钢及其生产方法
CN103436787A (zh) * 2013-08-23 2013-12-11 内蒙古包钢钢联股份有限公司 低成本含稀土抗h2s腐蚀石油套管材料及其生产方法
CN104928602A (zh) * 2015-06-25 2015-09-23 江苏省沙钢钢铁研究院有限公司 一种耐h2s腐蚀的管线钢宽厚板及其生产方法
CN111235489A (zh) * 2020-02-17 2020-06-05 柳州钢铁股份有限公司 X65ms抗酸管线钢制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李永全等: "薄板坯纵裂及其影响因素探讨", 《上海金属》, vol. 27, no. 5, pages 7 - 11 *
萧忠敏: "《武钢炼钢生产技术进步概况》", 冶金工业出版社, pages: 221 - 224 *

Similar Documents

Publication Publication Date Title
CN100587098C (zh) 一种微合金化油气输送无缝管线用钢及其制造方法
CN101418363B (zh) 一种低碳高韧性x60/x65管线钢的生产方法
CN108624811B (zh) 一种大厚壁抗酸耐蚀管线钢及其生产方法
CN106148846B (zh) 一种厚规格高韧性x80管件钢钢板及制造方法
CN116287621B (zh) 双抗管线钢板及其生产方法
CN109136755A (zh) 一种汽车用冷轧高强度钢及其生产方法
CN111575579A (zh) 一种q460gjez35建筑结构钢板及其生产方法
CN113151737B (zh) 一种抗氢致裂纹的08Ni3DR钢板及其制造方法
CN107937807A (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
CN115011878A (zh) 一种高耐硫酸露点腐蚀圆钢及其制备方法
CN115418551B (zh) 一种f690级别钢板配套焊丝钢盘条及其生产方法
CN115976397A (zh) 一种不锈钢的生产方法及高导热率耐蚀特种不锈钢
CN115747657A (zh) 一种高强度水电工程用hy950cf钢板及其生产方法
CN101818303A (zh) 一种高强度厚规格管桩用钢及其制造方法
CN117778864B (zh) 一种管线钢及其制备方法及应用
CN101967604B (zh) 一种可以采用高热输入焊接的硼氮复合微合金钢及制造方法
CN101487098B (zh) 一种n80钢管用管坯及其制造方法
CN103540839A (zh) 一种球罐用无Cr高强度调质钢板的生产方法
CN103540840A (zh) 一种球罐用无Cr高强度调质钢板的生产方法
CN115572896A (zh) 一种高韧性、高抗腐蚀管线钢及其生产方法
CN103540842A (zh) 一种球罐用无Cr高强度调质钢板的生产方法
CN112609035A (zh) 一种抗严寒的汽车结构管用钢的生产方法
CN111155035A (zh) 一种大角度晶界特厚规格x80管线钢及其制备方法
CN117701998B (zh) 500MPa级海洋工程用钢板及其制备方法
CN116516265B (zh) 一种高强度耐低温冲击合金棒材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20230106

RJ01 Rejection of invention patent application after publication