CN115494545A - Seismic wave identification system and method - Google Patents
Seismic wave identification system and method Download PDFInfo
- Publication number
- CN115494545A CN115494545A CN202211055674.2A CN202211055674A CN115494545A CN 115494545 A CN115494545 A CN 115494545A CN 202211055674 A CN202211055674 A CN 202211055674A CN 115494545 A CN115494545 A CN 115494545A
- Authority
- CN
- China
- Prior art keywords
- signal
- voltage
- voltage signal
- current
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
- G01V1/181—Geophones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本公开涉及通信技术领域,尤其涉及一种地震波识别系统和方法。The present disclosure relates to the field of communication technologies, and in particular to a seismic wave identification system and method.
背景技术Background technique
煤岩体在动静载应力作用下产生应力集中进而发生破裂,煤岩体破裂后可能造成顶板垮落、矿井突水、煤与瓦斯突出、冲击地压等一系列重大灾害。因此,需要动态监测煤岩体破裂后产生的地震波,以根据地震波分析煤岩体的破裂位置及释放的能量,为可能出现的动力灾害进行分析与预警。Under the action of dynamic and static load stress, the coal rock mass produces stress concentration and then ruptures. After the coal rock mass ruptures, it may cause a series of major disasters such as roof collapse, mine water inrush, coal and gas outburst, and rock burst. Therefore, it is necessary to dynamically monitor the seismic waves generated after the coal-rock mass ruptures, so as to analyze the rupture position and the released energy of the coal-rock mass according to the seismic waves, and analyze and warn the possible dynamic disasters.
通常监测地震波的传感器被设置于煤矿井下,需要将传感器根据地震波产生的信号传输至地面对该地震波进行识别,以分析出煤岩体的破裂位置及释放的能量。但是信号的传输距离往往较远,并且在信号传输的过程中容易受到井下电磁及各种背景震动源的干扰。Usually, sensors for monitoring seismic waves are installed underground in coal mines, and the sensors need to be transmitted to the ground to identify the seismic waves based on the signals generated by the seismic waves, so as to analyze the rupture location of the coal rock mass and the energy released. However, the transmission distance of the signal is often long, and in the process of signal transmission, it is easily interfered by underground electromagnetic and various background vibration sources.
现有技术中,信号传输的抗干扰能力较弱,在信号远距离传输的情况下,难以保证信号的信噪比,从而难以保证后续对地震波识别的准确性,而在保证信号的信噪比的情况下,信号的传输距离较近,难以满足远距离信号传输的需求。In the prior art, the anti-interference ability of signal transmission is weak. In the case of long-distance signal transmission, it is difficult to ensure the signal-to-noise ratio of the signal, so it is difficult to ensure the accuracy of subsequent seismic wave recognition. In this case, the transmission distance of the signal is relatively short, and it is difficult to meet the needs of long-distance signal transmission.
发明内容Contents of the invention
本公开实施例提供一种地震波识别系统和方法,解决了现有技术中,信号传输的抗干扰能力较弱,在信号远距离传输的情况下,难以保证信号的信噪比,从而难以保证后续对地震波识别的准确性的问题,以及在保证信号的信噪比的情况下,信号的传输距离较近,难以满足远距离信号传输的需求的问题。Embodiments of the present disclosure provide a seismic wave identification system and method, which solves the problem that in the prior art, the anti-interference ability of signal transmission is weak, and in the case of long-distance signal transmission, it is difficult to ensure the signal-to-noise ratio of the signal, so that it is difficult to ensure the follow-up The problem of the accuracy of seismic wave identification, and the problem that the transmission distance of the signal is relatively short under the condition of ensuring the signal-to-noise ratio of the signal, which makes it difficult to meet the needs of long-distance signal transmission.
本公开第一方面实施例提出了一种地震波识别系统,包括震动传感设备、信号采样设备和上位机,所述信号采样设备分别与所述震动传感设备和所述上位机连接,其中,所述震动传感设备,用于检测地震波,并根据检测到的地震波产生第一电流信号,以及将所述第一电流信号发送给所述信号采样设备;所述信号采样设备,用于将所述第一电流信号转换成第一电压信号,并将所述第一电压信号发送给所述上位机,所述上位机用于根据所述第一电压信号识别所述地震波。The embodiment of the first aspect of the present disclosure proposes a seismic wave recognition system, including a vibration sensing device, a signal sampling device, and a host computer, and the signal sampling device is respectively connected to the vibration sensing device and the host computer, wherein, The vibration sensing device is used to detect seismic waves, and generate a first current signal according to the detected seismic waves, and send the first current signal to the signal sampling device; the signal sampling device is used to convert the The first current signal is converted into a first voltage signal, and the first voltage signal is sent to the host computer, and the host computer is used to identify the seismic wave according to the first voltage signal.
本公开实施例的地震波识别系统在信号传输的过程中,具有抗干扰能力强的特点,从而实现了远距离和高信噪比的信号传输,进而提高了地震波识别的准确性。The seismic wave identification system of the embodiment of the present disclosure has the characteristics of strong anti-interference ability during signal transmission, thereby realizing long-distance and high signal-to-noise ratio signal transmission, thereby improving the accuracy of seismic wave identification.
在本公开的一个实施例中,所述震动传感设备包括检波器和信号转换器,所述检波器与所述信号转换器连接,所述信号转换器还与所述信号采样设备连接,其中,所述检波器,用于检测地震波,并根据检测到的地震波产生第二电压信号,以及将所述第二电压信号发送给所述信号转换器;所述信号转换器,用于将所述第二电压信号转换成所述第一电流信号。In one embodiment of the present disclosure, the vibration sensing device includes a wave detector and a signal converter, the wave detector is connected to the signal converter, and the signal converter is also connected to the signal sampling device, wherein , the geophone is used to detect seismic waves, and generates a second voltage signal according to the detected seismic waves, and sends the second voltage signal to the signal converter; the signal converter is used to convert the The second voltage signal is converted into the first current signal.
在本公开的一个实施例中,所述信号转换器包括阻抗匹配单元、信号抬升单元和信号转换单元,所述信号抬升单元分别与所述阻抗匹配单元和所述信号转换单元连接,所述阻抗匹配单元还与所述检波器连接,其中,所述阻抗匹配单元,用于对所述第二电压信号进行低阻抗处理,得到第三电压信号;所述信号抬升单元,用于对所述第三电压信号进行电压抬升处理,得到第四电压信号;所述信号转换单元,用于将所述第四电压信号转换成所述第一电流信号。In one embodiment of the present disclosure, the signal converter includes an impedance matching unit, a signal raising unit and a signal converting unit, the signal raising unit is respectively connected to the impedance matching unit and the signal converting unit, and the impedance The matching unit is also connected to the detector, wherein the impedance matching unit is used to perform low impedance processing on the second voltage signal to obtain a third voltage signal; the signal raising unit is used to perform low impedance processing on the second voltage signal; The three voltage signals are subjected to voltage boost processing to obtain a fourth voltage signal; the signal conversion unit is configured to convert the fourth voltage signal into the first current signal.
在本公开的一个实施例中,所述信号采样设备包括信号调理器和信号采样器,所述信号调理器与所述信号采样器连接,所述信号调理器还与所述信号转换单元连接,所述信号采样器还于所述上位机连接,其中,所述信号调理器,用于将所述第一电流信号转换成第五电压信号,并发送给所述信号采样器;所述信号采样器,用于对所述第五电压信号进行采样处理,得到所述第一电压信号,并将所述第一电压信号发送给所述上位机。In an embodiment of the present disclosure, the signal sampling device includes a signal conditioner and a signal sampler, the signal conditioner is connected to the signal sampler, and the signal conditioner is also connected to the signal conversion unit, The signal sampler is also connected to the host computer, wherein the signal conditioner is used to convert the first current signal into a fifth voltage signal and send it to the signal sampler; the signal sampler The device is configured to perform sampling processing on the fifth voltage signal to obtain the first voltage signal, and send the first voltage signal to the upper computer.
在本公开的一个实施例中,所述信号调理器包括接口保护单元、电流检测单元、电源控制单元、电流电压转换单元、电压平移单元和信号放大单元,其中,所述接口保护单元、电流检测单元、电源控制单元、电流电压转换单元、电压平移单元和信号放大单元依次连接,所述接口保护单元还与所述信号转换单元连接,所述信号放大单元还与所述信号采样器连接;所述接口保护单元,用于对所述第一电流信号进行保护处理,得到第二电流信号;所述电流检测单元,用于检测所述第二电流信号是否出现异常;所述电源控制单元,用于在所述第二电流信号出现异常时,停止传输所述第二电流信号;所述电流电压转换单元,用于在所述第二电流信号未出现异常时,将所述第二电流信号转换成第六电压信号;所述电压平移单元,用于对所述第六电压信号进行电压平移处理,得到第七电压信号;所述信号放大单元,用于对所述第七电压信号进行信号放大处理,得到所述第五电压信号。In an embodiment of the present disclosure, the signal conditioner includes an interface protection unit, a current detection unit, a power control unit, a current-voltage conversion unit, a voltage translation unit, and a signal amplification unit, wherein the interface protection unit, the current detection unit Unit, power control unit, current-voltage conversion unit, voltage translation unit and signal amplification unit are connected sequentially, the interface protection unit is also connected to the signal conversion unit, and the signal amplification unit is also connected to the signal sampler; The interface protection unit is used to perform protection processing on the first current signal to obtain a second current signal; the current detection unit is used to detect whether the second current signal is abnormal; the power control unit uses When the second current signal is abnormal, stop transmitting the second current signal; the current-voltage conversion unit is configured to convert the second current signal when the second current signal is not abnormal into a sixth voltage signal; the voltage translation unit is configured to perform voltage translation processing on the sixth voltage signal to obtain a seventh voltage signal; the signal amplification unit is configured to amplify the seventh voltage signal processing to obtain the fifth voltage signal.
本公开第二方面实施例提出了一种地震波识别方法,由地震波识别系统执行,所述方法包括:检测地震波,并根据检测到的地震波产生第一电流信号;将所述第一电流信号转换成第一电压信号;根据所述第一电压信号识别所述地震波。The embodiment of the second aspect of the present disclosure proposes a seismic wave identification method, which is executed by a seismic wave identification system. The method includes: detecting seismic waves, and generating a first current signal according to the detected seismic waves; converting the first current signal into a first voltage signal; identifying the seismic wave based on the first voltage signal.
本公开实施例中,检测地震波,并根据检测到的地震波产生第一电流信号,将第一电流信号转换成第一电压信号,根据第一电压信号识别地震波。本公开实施例实现了抗干扰能力强、远距离、高信噪比的信号传输,提高了信号质量,从而提高了地震波识别的准确性。In the embodiment of the present disclosure, the seismic wave is detected, and a first current signal is generated according to the detected seismic wave, the first current signal is converted into a first voltage signal, and the seismic wave is identified according to the first voltage signal. The embodiment of the present disclosure realizes signal transmission with strong anti-interference ability, long distance and high signal-to-noise ratio, improves signal quality, and thus improves the accuracy of seismic wave identification.
在本公开的一个实施例中,所述根据检测到的地震波产生第一电流信号,包括:根据检测到的所述地震波产生第二电压信号;将所述第二电压信号转换成所述第一电流信号。In an embodiment of the present disclosure, the generating the first current signal according to the detected seismic wave includes: generating a second voltage signal according to the detected seismic wave; converting the second voltage signal into the first current signal.
在本公开的一个实施例中,所述将所述第二电压信号转换成所述第一电流信号,包括:对所述第二电压信号进行低阻抗处理,得到第三电压信号;对所述第三电压信号进行电压抬升处理,得到第四电压信号;将所述第四电压信号转换成所述第一电流信号。In an embodiment of the present disclosure, the converting the second voltage signal into the first current signal includes: performing low-impedance processing on the second voltage signal to obtain a third voltage signal; performing voltage boost processing on the third voltage signal to obtain a fourth voltage signal; converting the fourth voltage signal into the first current signal.
在本公开的一个实施例中,所述将所述第一电流信号转换成第一电压信号,包括:将所述第一电流信号转换成第五电压信号;对所述第五电压信号进行采样处理,得到所述第一电压信号。In an embodiment of the present disclosure, the converting the first current signal into a first voltage signal includes: converting the first current signal into a fifth voltage signal; sampling the fifth voltage signal processing to obtain the first voltage signal.
在本公开的一个实施例中,所述根据所述第一电压信号识别所述地震波,包括:对所述第一电压信号进行滤波处理,得到第一候选地震波;从所述第一候选地震波中选取设定时窗内的波形作为第二候选地震波;从所述第二候选地震波中选取地震纵波起跳前的波形作为所述地震波。In an embodiment of the present disclosure, the identifying the seismic wave according to the first voltage signal includes: filtering the first voltage signal to obtain a first candidate seismic wave; The waveform within the set time window is selected as the second candidate seismic wave; the waveform before the seismic longitudinal wave takes off is selected from the second candidate seismic wave as the seismic wave.
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。Additional aspects and advantages of the disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the disclosure.
附图说明Description of drawings
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present disclosure will become apparent and understandable from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1为本公开实施例所提供的一种地震波识别系统的结构示意图;FIG. 1 is a schematic structural diagram of a seismic wave identification system provided by an embodiment of the present disclosure;
图2为本公开实施例所提供的另一种地震波识别系统的结构示意图;FIG. 2 is a schematic structural diagram of another seismic wave identification system provided by an embodiment of the present disclosure;
图3为本公开实施例所提供的另一种地震波识别系统的结构示意图;FIG. 3 is a schematic structural diagram of another seismic wave identification system provided by an embodiment of the present disclosure;
图4为本公开实施例所提供的另一种地震波识别系统的结构示意图;FIG. 4 is a schematic structural diagram of another seismic wave identification system provided by an embodiment of the present disclosure;
图5为本公开实施例所提供的另一种地震波识别系统的结构示意图;FIG. 5 is a schematic structural diagram of another seismic wave identification system provided by an embodiment of the present disclosure;
图6为本公开实施例所提供的一种地震波识别方法的流程示意图;FIG. 6 is a schematic flow chart of a seismic wave identification method provided by an embodiment of the present disclosure;
图7为本公开实施例所提供的另一种地震波识别方法的流程示意图;FIG. 7 is a schematic flowchart of another seismic wave identification method provided by an embodiment of the present disclosure;
图8为本公开实施例所提供的另一种地震波识别方法的流程示意图;FIG. 8 is a schematic flowchart of another seismic wave identification method provided by an embodiment of the present disclosure;
图9为本公开实施例所提供的另一种地震波识别方法的流程示意图;FIG. 9 is a schematic flowchart of another seismic wave identification method provided by an embodiment of the present disclosure;
图10为本公开实施例所提供的另一种地震波识别方法的流程示意图;FIG. 10 is a schematic flowchart of another seismic wave identification method provided by an embodiment of the present disclosure;
图11为本公开实施例所提供的另一种地震波识别方法的流程示意图。Fig. 11 is a schematic flowchart of another seismic wave identification method provided by an embodiment of the present disclosure.
具体实施方式detailed description
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。Reference will now be made in detail to the exemplary embodiments, examples of which are illustrated in the accompanying drawings. When the following description refers to the accompanying drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with the embodiments of the present disclosure. Rather, they are merely examples of apparatuses and methods consistent with aspects of the disclosed embodiments as recited in the appended claims.
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。Terms used in the embodiments of the present disclosure are for the purpose of describing specific embodiments only, and are not intended to limit the embodiments of the present disclosure. As used in the examples of this disclosure and the appended claims, the singular forms "a" and "the" are also intended to include the plural unless the context clearly dictates otherwise. It should also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。It should be understood that although the embodiments of the present disclosure may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the words "if" and "if" as used herein may be interpreted as "at" or "when" or "in response to a determination."
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。Embodiments of the present disclosure are described in detail below, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals designate like or similar elements throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present disclosure and should not be construed as limiting the present disclosure.
下面参照附图描述本公开实施例的地震波识别系统和方法。The seismic wave recognition system and method according to the embodiments of the present disclosure will be described below with reference to the accompanying drawings.
图1为本公开实施例所提供的一种地震波识别系统的结构示意图。如图1所示,该地震波识别系统100包括震动传感设备110、信号采样设备120和上位机130,信号采样设备120分别与震动传感设备110和上位机130连接。Fig. 1 is a schematic structural diagram of a seismic wave identification system provided by an embodiment of the present disclosure. As shown in FIG. 1 , the seismic
可选地,震动传感设备110可以为微震传感器。Optionally, the
可选地,震动传感设备110与信号采样设备120之间可以通过两芯传输线缆连接。Optionally, the
可选地,信号采样设备120与上位机130之间通过井下环网连接。Optionally, the
本公开实施例中,震动传感设备110,用于检测地震波,并根据检测到的地震波产生第一电流信号,以及将第一电流信号发送给信号采样设备120。In the embodiment of the present disclosure, the
可选地,如图2所示,震动传感设备110包括检波器111和信号转换器112,检波器111与信号转换器112连接,信号转换器112还与信号采样设备120连接。Optionally, as shown in FIG. 2 , the
其中,检波器111,用于检测地震波,并根据检测到的地震波产生第二电压信号,以及将第二电压信号发送给信号转换器112。Wherein, the
可选地,检波器111可以为动圈式检波器。Optionally, the
信号转换器112,用于将第二电压信号转换成第一电流信号。The
一些实施例中,信号转换器112可以将检波器111输出的第二电压信号转换成4mA-20mA的第一电流信号。In some embodiments, the
可选地,如图3所示,信号转换器112包括阻抗匹配单元30、信号抬升单元31和信号转换单元32,信号抬升单元31分别与阻抗匹配单元30和信号转换单元32连接,阻抗匹配单元30还与检波器111连接。Optionally, as shown in FIG. 3 , the
其中,阻抗匹配单元30,用于对第二电压信号进行低阻抗处理,得到第三电压信号。Wherein, the
在检波器111检测到地震波时,检波器111根据检测到的地震波产生第二电压信号,并将该第二电压信号发送给信号转换器112的阻抗匹配单元30。When the
阻抗匹配单元30接收到信号转换器112发送的第二电压信号后,对该第二电压信号进行低阻抗处理,得到低阻抗的第三电压信号,并将该第三电压信号发送给信号抬升单元31。After receiving the second voltage signal sent by the
其中,信号抬升单元31,用于对第三电压信号进行电压抬升处理,得到第四电压信号。Wherein, the
信号抬升单元31接收到阻抗匹配单元30发送的第三电压信号后,对该第三电压信号进行电压抬升处理,得到第四电压信号,并将该第四电压信号发送给信号转换单元32。After receiving the third voltage signal sent by the
其中,信号转换单元32,用于将第四电压信号转换成第一电流信号。Wherein, the
一些实施例中,信号转换单元32接收到信号抬升单元31发送给的第四电压信号后,将该第四电压信号转换成4mA-20mA的第一电流信号,并将该第一电流信号发送给信号采样设备120。In some embodiments, after receiving the fourth voltage signal sent by the
本公开实施例中,信号采样设备120,用于将第一电流信号转换成第一电压信号,并将第一电压信号发送给上位机130,上位机130用于根据第一电压信号识别地震波。In the embodiment of the present disclosure, the
一些实施例中,信号采样设备120接收到震动传感设备110的信号转换器112的信号转换单元32发送的第一电流信号后,将该第一电流信号转换成第一电压信号,并通过井下环网将第一电压信号发送给上位机130。In some embodiments, after the
可选地,如图4所示,信号采样设备120包括信号调理器121和信号采样器122,信号调理器121与信号采样器122连接,信号调理器122还与信号转换单元32连接,信号采样器122还与上位机130连接。Optionally, as shown in FIG. 4, the
其中,信号调理器121,用于将第一电流信号转换成第五电压信号,并发送给信号采样器122。Wherein, the
一些实施例中,震动传感设备110中信号转换器112的信号转换单元32可以将4mA-20mA的第一电流信号发送给信号采样设备120的信号调理器121,信号调理器121接收到该第一电流信号后,可以将该第一电流信号转换成±5V的第五电压信号,并将该第五电压信号发送给信号采样器122。In some embodiments, the
可选地,如图5所示,信号调理器121包括接口保护单元50、电流检测单元51、电源控制单元52、电流电压转换单元53、电压平移单元54和信号放大单元55,其中,接口保护单元50、电流检测单元51、电源控制单元52、电流电压转换单元53、电压平移单元54和信号放大单元55依次连接,接口保护单元50还与信号转换单元32连接,信号放大单元55还与信号采样器122连接。Optionally, as shown in FIG. 5 , the
其中,接口保护单元50,用于对第一电流信号进行保护处理,得到第二电流信号。Wherein, the
一些实施例中,震动传感设备110中信号转换器112的信号转换单元32可以将4mA-20mA的第一电流信号,发送给信号采样设备120中信号调理器121的接口保护单元50。接口保护单元50接收到该第一电流信号后,可以吸收该第一电流信号引起的瞬态高压,得到第二电流信号,并将该第二电流信号发送给电流检测单元51。In some embodiments, the
其中,电流检测单元51,用于检测第二电流信号是否出现异常。Wherein, the
一些实施例中,电流检测单元51可以实时检测第二电流信号是否出现异常。In some embodiments, the
其中,电源控制单元52,用于在第二电流信号出现异常时,停止传输第二电流信号。Wherein, the
一些实施例中,在电流检测单元51检测到第二电流信号出现异常时,电源控制单元52可以进行关断处理,以停止第二电流信号的传输。In some embodiments, when the
其中,电流电压转换单元53,用于在第二电流信号未出现异常时,将第二电流信号转换成第六电压信号。Wherein, the current-
一些实施例中,在电流检测单元51未检测到第二电流出现异常时,电源控制单元52未进行关断处理,第二电流信号正常传输,此时,电流电压转换单元53,可以将第二电流信号转换成第六电压信号,并将该第六电压信号发送给电压平移单元54。In some embodiments, when the
其中,电压平移单元54,用于对第六电压信号进行电压平移处理,得到第七电压信号。Wherein, the
一些实施例中,电压平移单元54接收到电流电压转换单元53发送的第六电压信号后,可以对该第六电压信号进行电压平移处理,得到第七电压信号,并将该第七电压信号发送信号放大单元55。In some embodiments, after receiving the sixth voltage signal sent by the current-
其中,信号放大单元55,用于对第七电压信号进行信号放大处理,得到第五电压信号。Wherein, the
可选地,信号放大单元55可以为可编程增益放大器(Programmable GainAmplifier,PGA)。Optionally, the
一些实施例中,信号放大单元55接收到电压平移单元54发送的第七电压信号后,可以对该第七电压信号进行信号放大处理,得到±5V的第五电压信号,并将该第五电压信号发送给信号采样器122。In some embodiments, after receiving the seventh voltage signal sent by the
其中,信号采样器122,用于对第五电压信号进行采样处理,得到第一电压信号,并将该第一电压信号发送给上位机130。Wherein, the
可选地,信号采样器122可以以大于5kSPS的采样率对第五电压信号进行采样处理,得到第一电压信号,并通过井下环网将该第一电压信号发送给上位机130,由上位机130根据该第一电压信号识别地震波。Optionally, the
进一步地,信号采样设备120还用于为震动传感设备110提供电源。Further, the
信号采样设备120中的信号调理器121将震动传感设备110提供的第一电流信号转换成第一电压信号来进行信号的传输的同时,可以基于转换后的第一电压信号为震动传感设备110提供电源。The
一些实施例中,在信号采样设备120中信号调理器121的电流检测单元51检测到第二电流出现异常时,信号调理器121的电源控制单元52关断,使得信号调理器121停止为震动传感设备110提供电源。In some embodiments, when the
另一些实施例中,电流检测单元51还可以检测地震波识别系统是否短路,在检测到短路时,电源控制单元52关断,以关闭电源通道保护电路。In some other embodiments, the
本公开实施例的地震波识别系统在信号传输的过程中,具有抗干扰能力强的特点,从而实现了远距离和高信噪比的信号传输,进而提高了地震波识别的准确性。The seismic wave identification system of the embodiment of the present disclosure has the characteristics of strong anti-interference ability during signal transmission, thereby realizing long-distance and high signal-to-noise ratio signal transmission, thereby improving the accuracy of seismic wave identification.
图6为本公开实施例所提供的一种地震波识别方法的流程示意图。需要说明的是,本公开实施例的地震波识别方法由地震波识别系统执行。如图6所示,该方法包括以下步骤:Fig. 6 is a schematic flowchart of a seismic wave identification method provided by an embodiment of the present disclosure. It should be noted that the seismic wave identification method in the embodiment of the present disclosure is executed by a seismic wave identification system. As shown in Figure 6, the method includes the following steps:
S601,检测地震波,并根据检测到的地震波产生第一电流信号。S601. Detect seismic waves, and generate a first current signal according to the detected seismic waves.
震动传感设备可以实时检测地震波,并根据检测到的地震波产生第一电流信号,而后将该第一电流信号发送给信号采样设备。The vibration sensing device can detect seismic waves in real time, and generate a first current signal according to the detected seismic waves, and then send the first current signal to the signal sampling device.
可选地,震动传感设备根据检测到的地震波产生4mA-20mA的第一电流信号。Optionally, the vibration sensing device generates a first current signal of 4mA-20mA according to the detected seismic wave.
S602,将第一电流信号转换成第一电压信号。S602. Convert the first current signal into a first voltage signal.
信号采样设备接收震动传感器发送的第一电流信号后,可以将该第一电流信号转换成第一电压信号,并将该第一电压信号发送给上位机。After receiving the first current signal sent by the shock sensor, the signal sampling device can convert the first current signal into a first voltage signal, and send the first voltage signal to the host computer.
可选地,信号采样设备将4mA-20mA的第一电流信号转换成±5V的第一电压信号。Optionally, the signal sampling device converts the first current signal of 4mA-20mA into a first voltage signal of ±5V.
S603,根据第一电压信号识别地震波。S603. Identify seismic waves according to the first voltage signal.
上位机接收到信号采样设备发送的第一电压信号后,根据该第一电压信号识别该地震波。After receiving the first voltage signal sent by the signal sampling device, the upper computer identifies the seismic wave according to the first voltage signal.
本公开实施例中,检测地震波,并根据检测到的地震波产生第一电流信号,将第一电流信号转换成第一电压信号,根据第一电压信号识别地震波。本公开实施例实现了抗干扰能力强、远距离、高信噪比的信号传输,提高了信号质量,从而提高了地震波识别的准确性。In the embodiment of the present disclosure, the seismic wave is detected, and a first current signal is generated according to the detected seismic wave, the first current signal is converted into a first voltage signal, and the seismic wave is identified according to the first voltage signal. The embodiment of the present disclosure realizes signal transmission with strong anti-interference ability, long distance and high signal-to-noise ratio, improves signal quality, and thus improves the accuracy of seismic wave identification.
图7为本公开一实施例提供的地震波识别方法的流程示意图,在上述实施例的基础上,进一步结合图7,对根据检测到的地震波产生第一电流信号的过程进行解释说明,包括以下步骤:Fig. 7 is a schematic flowchart of a seismic wave identification method provided by an embodiment of the present disclosure. On the basis of the above embodiment, further combining with Fig. 7, the process of generating the first current signal according to the detected seismic wave is explained, including the following steps :
S701,根据检测到的地震波产生第二电压信号。S701. Generate a second voltage signal according to the detected seismic wave.
信号采样设备中的检波器可实时检测地震波,并根据检测到的地震波产生第二电压信号,而后将该第二电压信号发送给信号采样设备的信号转换器。The geophone in the signal sampling device can detect seismic waves in real time, and generate a second voltage signal according to the detected seismic waves, and then send the second voltage signal to the signal converter of the signal sampling device.
S702,将第二电压信号转换成第一电流信号。S702. Convert the second voltage signal into a first current signal.
信号转换器接收到检波器发送的第二电压信号后,将该第二电压信号转换成第一电流信号。After receiving the second voltage signal sent by the wave detector, the signal converter converts the second voltage signal into a first current signal.
可选地,信号转换器将第二电压信号转换成4mA-20mA的第一电流信号。Optionally, the signal converter converts the second voltage signal into a first current signal of 4mA-20mA.
本公开实施例中,根据检测到的地震波产生第二电压信号,将第二电压信号转换成第一电流信号。本公开实施例能够将震动传感设备中检波器根据地震波产生的电压信号转化成电流信号。In the embodiment of the present disclosure, the second voltage signal is generated according to the detected seismic wave, and the second voltage signal is converted into the first current signal. The embodiments of the present disclosure can convert the voltage signal generated by the geophone in the vibration sensing device according to the seismic wave into a current signal.
图8为本公开一实施例提供的地震波识别方法的流程示意图,在上述实施例的基础上,进一步结合图8,对将第二电压信号转换成第一电流信号的过程进行解释说明,包括以下步骤:Fig. 8 is a schematic flowchart of a seismic wave identification method provided by an embodiment of the present disclosure. On the basis of the above embodiment, further combining with Fig. 8, the process of converting the second voltage signal into the first current signal is explained, including the following step:
S801,对第二电压信号进行低阻抗处理,得到第三电压信号。S801. Perform low-impedance processing on the second voltage signal to obtain a third voltage signal.
信号转换器接收到检波器发送的第二电压信号后,信号转换器中的阻抗匹配单元对该第二电压信号进行低阻抗处理,得到第三电压信号,并将该第三电压信号发送给信号转换器的电压抬升单元。After the signal converter receives the second voltage signal sent by the detector, the impedance matching unit in the signal converter performs low-impedance processing on the second voltage signal to obtain a third voltage signal, and sends the third voltage signal to the signal The voltage step-up unit of the converter.
S802,对第三电压信号进行电压抬升处理,得到第四电压信号。S802. Perform voltage boost processing on the third voltage signal to obtain a fourth voltage signal.
电压抬升单元接收到阻抗匹配单元发送的第三电压信号后,对该第三电压信号进行电压抬升处理,得到第四电压信号,并将该第四电压信号发送给信号转换器的信号转换单元。After receiving the third voltage signal sent by the impedance matching unit, the voltage raising unit performs voltage raising processing on the third voltage signal to obtain a fourth voltage signal, and sends the fourth voltage signal to the signal converting unit of the signal converter.
S803,将第四电压信号转换成第一电流信号。S803. Convert the fourth voltage signal into a first current signal.
信号转换单元接收到电压抬升单元发送的第四电压信号后,将该第四电压信号转换成第一电流信号。After receiving the fourth voltage signal sent by the voltage raising unit, the signal conversion unit converts the fourth voltage signal into the first current signal.
可选地,信号转换单元将第四电压信号转换成4mA-20mA的第一电流信号。Optionally, the signal conversion unit converts the fourth voltage signal into the first current signal of 4mA-20mA.
本公开实施例中,对第二电压信号进行低阻抗处理,得到第三电压信号,对第三电压信号进行电压抬升处理,得到第四电压信号,将第四电压信号转换成第一电流信号。本实施例在将震动传感设备中检波器根据地震波产生的电压信号转化成电流信号的过程中,能够降低阻抗,抬升电压,保证了信号质量。In the embodiment of the present disclosure, low-impedance processing is performed on the second voltage signal to obtain a third voltage signal, voltage boost processing is performed on the third voltage signal to obtain a fourth voltage signal, and the fourth voltage signal is converted into the first current signal. In this embodiment, in the process of converting the voltage signal generated by the geophone in the vibration sensing device according to the seismic wave into a current signal, the impedance can be reduced, the voltage can be raised, and the signal quality can be guaranteed.
图9为本公开一实施例提供的地震波识别方法的流程示意图,在上述实施例的基础上,进一步结合图9,对将第一电流信号转换成第一电压信号的过程进行解释说明,包括以下步骤:Fig. 9 is a schematic flowchart of a seismic wave identification method provided by an embodiment of the present disclosure. On the basis of the above embodiment, further combining with Fig. 9, the process of converting the first current signal into the first voltage signal is explained, including the following step:
S901,将第一电流信号转换成第五电压信号。S901. Convert the first current signal into a fifth voltage signal.
信号转换器中信号转换单元可以第一电流信号发送给信号采样设备的信号调理器,信号调理器接收到该第一电流后将该第一电流转换成第五电压信号,并将该第五电压信号发送给信号采样设备的信号采样器。The signal conversion unit in the signal converter can send the first current signal to the signal conditioner of the signal sampling device, and the signal conditioner converts the first current into a fifth voltage signal after receiving the first current, and converts the fifth voltage The signal is sent to the signal sampler of the signal sampling device.
S902,对第五电压信号进行采样处理,得到第一电压信号。S902. Perform sampling processing on the fifth voltage signal to obtain a first voltage signal.
信号采样器接收到信号调理器发送的第五电压信号后,对第五电压信号进行采样处理,得到第一电压信号。After receiving the fifth voltage signal sent by the signal conditioner, the signal sampler performs sampling processing on the fifth voltage signal to obtain the first voltage signal.
可选地,信号采样器可以以大于5kSPS的采样率对第五电压信号进行采样处理,得到第一电压信号。Optionally, the signal sampler may sample the fifth voltage signal at a sampling rate greater than 5 kSPS to obtain the first voltage signal.
本公开实施例中,将第一电流信号转换成第五电压信号,对第五电压信号进行采样处理,得到第一电压信号。本公开实施例对信号进行采样处理,便于后续对信号的滤波处理,以便于得到高质量的地震波。In the embodiment of the present disclosure, the first current signal is converted into a fifth voltage signal, and the fifth voltage signal is sampled to obtain the first voltage signal. The embodiment of the present disclosure performs sampling processing on the signal to facilitate subsequent filtering processing on the signal so as to obtain high-quality seismic waves.
图10为本公开一实施例提供的地震波识别方法的流程示意图,在上述实施例的基础上,进一步结合图10,对将第一电流信号转换成第五电压信号的过程进行解释说明,包括以下步骤:Fig. 10 is a schematic flowchart of a seismic wave identification method provided by an embodiment of the present disclosure. On the basis of the above embodiment, further combining with Fig. 10, the process of converting the first current signal into a fifth voltage signal is explained, including the following step:
S1001,对第一电流信号进行保护处理,得到第二电流信号。S1001. Perform protection processing on the first current signal to obtain a second current signal.
信号采样设备的信号调理器接收到震动传感设备发送的第一电流信号后,信号采样设备中的接口保护单元可以吸收该第一电流信号引起的瞬态高压,从而对第一电流信号进行保护处理,得到第二电流信号,并将该第二电流信号发送给信号调理器的电流检测单元。After the signal conditioner of the signal sampling device receives the first current signal sent by the vibration sensing device, the interface protection unit in the signal sampling device can absorb the transient high voltage caused by the first current signal, thereby protecting the first current signal processing to obtain a second current signal, and send the second current signal to the current detection unit of the signal conditioner.
S1002,检测第二电流信号是否出现异常。S1002. Detect whether the second current signal is abnormal.
电流检测单元接收到接口保护单元发送的第二电流信号后,可实时检测该第二电流是否出现异常。After receiving the second current signal sent by the interface protection unit, the current detection unit can detect whether the second current is abnormal in real time.
S1003,在第二电流信号未出现异常时,将第二电流信号转换成第六电压信号。S1003. When the second current signal is not abnormal, convert the second current signal into a sixth voltage signal.
在电流检测单元检测第二电流信号未出现异常时,信号调理器的电流电压转换单元,可以将该第二电流信号转换成第六电压信号,并将该第六电压信号发送给信号调理器的电压平移单元。When the current detection unit detects that there is no abnormality in the second current signal, the current-voltage conversion unit of the signal conditioner can convert the second current signal into a sixth voltage signal, and send the sixth voltage signal to the signal conditioner Voltage translation unit.
作为一种可能的情况,在电流检测单元检测第二电流信号出现异常时,信号调理器的电源控制单元进行关断处理,停止第二电流信号的传输。As a possible situation, when the current detection unit detects that the second current signal is abnormal, the power control unit of the signal conditioner performs shutdown processing to stop the transmission of the second current signal.
S1004,对第六电压信号进行电压平移处理,得到第七电压信号。S1004. Perform voltage translation processing on the sixth voltage signal to obtain a seventh voltage signal.
电压平移单元接收到电流电压转换单元发送的第六电压信号后,对该第六电压信号进行电压平移处理,得到第七电压信号,并将该第七电压信号发送给信号调理器的信号放大单元。After the voltage translation unit receives the sixth voltage signal sent by the current-voltage conversion unit, it performs voltage translation processing on the sixth voltage signal to obtain a seventh voltage signal, and sends the seventh voltage signal to the signal amplifying unit of the signal conditioner .
S1005,对第七电压信号进行信号放大处理,得到第五电压信号。S1005. Perform signal amplification processing on the seventh voltage signal to obtain a fifth voltage signal.
信号放大单元接收到电压平移单元发送的第七电压信号后,对该第七电压信号进行信号放大处理,得到第五电压信号。After receiving the seventh voltage signal sent by the voltage translation unit, the signal amplifying unit performs signal amplification processing on the seventh voltage signal to obtain a fifth voltage signal.
可选地,信号放大单元将第七电压信号放大成±5V的第五电压信号。Optionally, the signal amplifying unit amplifies the seventh voltage signal into a fifth voltage signal of ±5V.
本公开实施例中,对第一电流信号进行保护处理,得到第二电流信号,检测第二电流信号是否出现异常,在第二电流信号未出现异常时,将第二电流信号转换成第六电压信号,对第七电压信号进行信号放大处理,得到第五电压信号。本公开实施例中,对信号进行保护处理,能够避免系统出现故障,对信号进行放大处理,能够提高信号质量。In the embodiment of the present disclosure, the protection processing is performed on the first current signal to obtain the second current signal, and it is detected whether the second current signal is abnormal, and when the second current signal is not abnormal, the second current signal is converted into a sixth voltage signal, performing signal amplification processing on the seventh voltage signal to obtain a fifth voltage signal. In the embodiment of the present disclosure, the protection processing is performed on the signal, which can prevent the system from malfunctioning, and the amplification processing is performed on the signal, which can improve the signal quality.
图11为本公开一实施例提供的地震波识别方法的流程示意图,在上述实施例的基础上,进一步结合图11,对根据第一电压信号识别地震波的过程进行解释说明,包括以下步骤:Fig. 11 is a schematic flowchart of a seismic wave identification method provided by an embodiment of the present disclosure. On the basis of the above embodiment, further combining with Fig. 11, the process of identifying seismic waves according to the first voltage signal is explained, including the following steps:
S1101,对第一电压信号进行滤波处理,得到第一候选地震波。S1101. Perform filtering processing on the first voltage signal to obtain a first candidate seismic wave.
上位机接收到信号采样设备发送的第一电压信号后,可以通过滤波算法对该第一电压信号进行滤波处理,以滤除第一电压信号中的工频干扰或背景噪声,得到第一候选地震波。After the host computer receives the first voltage signal sent by the signal sampling device, it can filter the first voltage signal through a filtering algorithm to filter out the power frequency interference or background noise in the first voltage signal, and obtain the first candidate seismic wave .
可选地,滤波算法包括低通滤波、高通滤波、工频滤波等。Optionally, the filtering algorithm includes low-pass filtering, high-pass filtering, power frequency filtering and the like.
S1102,从第一候选地震波中选取设定时窗内的波形作为第二候选地震波。S1102. Select the waveform within the set time window from the first candidate seismic wave as the second candidate seismic wave.
其中,设定时窗指设定的时间区间,设定时窗可以根据实际需求进行设定,此处不做任何限定,例如设定时窗可以为2秒。Wherein, the setting time window refers to a set time interval, and the setting time window can be set according to actual needs, without any limitation here, for example, the setting time window can be 2 seconds.
在对第一电压信号进行滤波处理得到第一候选地震波后,可以根据需求从第一候选地震波中选取设定时窗内的波形作为第二候选地震波。After filtering the first voltage signal to obtain the first candidate seismic wave, the waveform within the set time window can be selected from the first candidate seismic wave as the second candidate seismic wave according to requirements.
S1103,从第二候选地震波中选取地震纵波起跳前的波形作为地震波。S1103. Select the waveform before the take-off of the longitudinal seismic wave from the second candidate seismic wave as the seismic wave.
在从第一候选地震波中选取设定时窗内的波形作为第二候选地震波后,可以从第二候选地震波中选取地震纵波起跳前的波形作为地震波,该地震波可以用于分析煤岩体的破裂位置及释放的能量。After the waveform within the set time window is selected from the first candidate seismic wave as the second candidate seismic wave, the waveform before the seismic longitudinal wave take-off can be selected from the second candidate seismic wave as the seismic wave, which can be used to analyze the rupture of coal and rock mass location and energy released.
进一步地,在获取地震波之后,还可以对地震波进行频率分析,记录特征频率,并将该特征频率参与到对第一电压信号进行滤波处理中,以进一步提高滤波效果。Furthermore, after the seismic wave is acquired, frequency analysis can be performed on the seismic wave, the characteristic frequency can be recorded, and the characteristic frequency can be used to filter the first voltage signal, so as to further improve the filtering effect.
本公开实施例中,对第一电压信号进行滤波处理,得到第一候选地震波,从第一候选地震波中选取设定时窗内的波形作为第二候选地震波,从第二候选地震波中选取地震纵波起跳前的波形作为地震波。本公开实施例提高了地震波识别的准确性,从而能够根据地震波准确的分析煤岩体的破裂位置及释放的能量,进而为可能出现的动力灾害进行分析与预警。In the embodiment of the present disclosure, the first voltage signal is filtered to obtain the first candidate seismic wave, the waveform within the set time window is selected from the first candidate seismic wave as the second candidate seismic wave, and the seismic longitudinal wave is selected from the second candidate seismic wave The waveform before take-off serves as a seismic wave. The embodiments of the present disclosure improve the accuracy of seismic wave identification, so that the rupture position and released energy of coal and rock mass can be accurately analyzed according to the seismic wave, and then analysis and early warning for possible dynamic disasters can be performed.
在本说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In the description of this specification, the terms "first" and "second" are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present disclosure, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present disclosure. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present disclosure have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limitations on the present disclosure, and those skilled in the art can understand the above-mentioned embodiments within the scope of the present disclosure. The embodiments are subject to changes, modifications, substitutions and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211055674.2A CN115494545A (en) | 2022-08-31 | 2022-08-31 | Seismic wave identification system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211055674.2A CN115494545A (en) | 2022-08-31 | 2022-08-31 | Seismic wave identification system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115494545A true CN115494545A (en) | 2022-12-20 |
Family
ID=84467413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211055674.2A Pending CN115494545A (en) | 2022-08-31 | 2022-08-31 | Seismic wave identification system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115494545A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1550701A (en) * | 1975-05-12 | 1979-08-15 | Western Geophysical Co | Seismic data processing system and method |
CN108490483A (en) * | 2018-04-17 | 2018-09-04 | 山东省科学院激光研究所 | Signal transmitting apparatus and system |
CN114198147A (en) * | 2021-11-16 | 2022-03-18 | 中国矿业大学(北京) | Coal mine rock burst multi-parameter monitoring system |
-
2022
- 2022-08-31 CN CN202211055674.2A patent/CN115494545A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1550701A (en) * | 1975-05-12 | 1979-08-15 | Western Geophysical Co | Seismic data processing system and method |
CN108490483A (en) * | 2018-04-17 | 2018-09-04 | 山东省科学院激光研究所 | Signal transmitting apparatus and system |
CN114198147A (en) * | 2021-11-16 | 2022-03-18 | 中国矿业大学(北京) | Coal mine rock burst multi-parameter monitoring system |
Non-Patent Citations (1)
Title |
---|
曲宏伟: "微震监测系统在预测桃山煤矿冲击矿压中的应用", 《中国新技术新产品》, 31 December 2011 (2011-12-31), pages 34 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3608503B1 (en) | Well and overburden monitoring using distributed acoustic sensors | |
US6570500B1 (en) | Infra-sound surveillance system | |
JP2733839B2 (en) | A device that captures seismic data in a pit and transmits the data to a control system on the ground | |
US11650346B2 (en) | Downhole acoustic measurement | |
CN106405349A (en) | Method and system of intrusion ultra high frequency and ultrasonic detection of partial discharge in transformer oil | |
CN104863839A (en) | Method for detecting abnormal noise of high pressure oil pump of automobile engine | |
US20210123966A1 (en) | Partial discharge sensor | |
US9984543B2 (en) | Anomaly detection system and method | |
CN115494545A (en) | Seismic wave identification system and method | |
KR100826630B1 (en) | Electromagnetic and acoustic wave simultaneous measurement device using complex sensor and method | |
CN204330901U (en) | A kind of innovative noise sensor | |
WO2020018117A1 (en) | Ultrasonic echo locating in a wellbore using time gain compensation | |
KR102040492B1 (en) | Apparatus and Method for Defect Using Acoustic Emission Testing | |
KR101782475B1 (en) | Apparatus and method for noise detecting from partial discharge | |
CN208314124U (en) | Partial discharge detection device | |
CN110174599A (en) | A kind of GIS detection device and system | |
CN204267018U (en) | A kind of electromagnetic thickness measuring differential received probe | |
CN214067400U (en) | Centralized intelligent seismic exploration and collection system based on wireless transmission | |
CN110375939B (en) | An improved method for evaluating the health status of spacecraft structural vibration test | |
CN109723495A (en) | Mine monitoring device | |
CN203365392U (en) | Rotation type multi-channel ultrasonic transmitting and receiving device | |
CN203929971U (en) | Ultrasound wave Analysis of Partial Discharge instrument | |
CN112649838A (en) | Centralized intelligent seismic exploration and collection system and method based on wireless transmission | |
KR20170109770A (en) | Underwater vehicle health monitoring method and system using self noise and self-generated sonar signal | |
CN103399088A (en) | Rotary type multi-channel ultrasonic transmitting and receiving device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |