CN115461473A - 空间分辨单细胞rna测序方法 - Google Patents
空间分辨单细胞rna测序方法 Download PDFInfo
- Publication number
- CN115461473A CN115461473A CN202180030893.2A CN202180030893A CN115461473A CN 115461473 A CN115461473 A CN 115461473A CN 202180030893 A CN202180030893 A CN 202180030893A CN 115461473 A CN115461473 A CN 115461473A
- Authority
- CN
- China
- Prior art keywords
- array
- cells
- microwell
- spatial
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6841—In situ hybridisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1065—Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6853—Nucleic acid amplification reactions using modified primers or templates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2543/00—Reactions characterised by the reaction site, e.g. cell or chromosome
- C12Q2543/10—Reactions characterised by the reaction site, e.g. cell or chromosome the purpose being "in situ" analysis
- C12Q2543/101—Reactions characterised by the reaction site, e.g. cell or chromosome the purpose being "in situ" analysis in situ amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/179—Nucleic acid detection characterized by the use of physical, structural and functional properties the label being a nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2565/00—Nucleic acid analysis characterised by mode or means of detection
- C12Q2565/50—Detection characterised by immobilisation to a surface
- C12Q2565/514—Detection characterised by immobilisation to a surface characterised by the use of the arrayed oligonucleotides as identifier tags, e.g. universal addressable array, anti-tag or tag complement array
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本公开总体上涉及对组织样品中包含的细胞中的核酸,例如基因组DNA或RNA转录物的空间检测。本公开提供了用于检测和/或分析核酸,例如染色质或RNA转录物,从而获得有关组织样品中基因的定位、分布或表达的空间信息的方法。因此,本公开提供了一种用于进行“空间转录组学”或“空间基因组学”的方法,该方法使用户能够同时确定单细胞中表达的基因或存在的基因或基因组位点的表达模式或位置/分布模式,同时保留与细胞在组织结构内的空间位置有关的信息。
Description
相关申请的交叉引用
本申请要求2020年2月20日提交的美国临时申请No.62/979,235的优先权,所述美国临时申请通过引用整体并入本文。
发明领域
本公开总体上涉及对组织样品中包含的细胞中的核酸,例如基因组DNA或RNA转录物的空间检测。本公开提供了用于检测和/或分析核酸,例如染色质或RNA转录物,从而获得有关组织样品中基因的定位、分布或表达的空间信息的方法。因此,本公开提供了一种用于进行“空间转录组学”或“空间基因组学”的方法,该方法使用户能够同时确定单细胞中表达的基因或存在的基因或基因组位点的表达模式或位置/分布模式,同时保留与细胞在组织结构内的空间位置有关的信息。
背景技术
在过去的十年中,大规模平行单细胞RNA测序(scRNA-seq)已成为一种强大的方法,它可以对复杂组织中显著的细胞异质性进行分类(1,2)。虽然scRNA-seq可以在一次实验中剖析数千个细胞的转录组,但它需要在库制备和测序之前将组织解离成单细胞悬液,从而消除了任何空间信息(3-6)。已经出现了几种策略来同时从复杂组织中获取分子和空间信息。基于成像的策略将高分辨率显微镜与荧光原位杂交(FISH)相结合,以实现亚细胞分辨率并且可以剖析整个转录组(7-10),但这需要冗长的迭代显微镜工作流程和大型探针板。另一种方法是将组织切片中的RNA直接杂交到含有空间条形码化Oligo(dT)点或珠粒的微阵列上,以将位置信息编码到RNA测序库中。这些方法可以对整个转录组进行取样,无需迭代数轮杂交(11),最近使用DNA条形码化珠粒的改良(HDST和Slide-seqv1/v2)报告了等于或低于单细胞直径的空间分辨率(12-14)。然而,由于每个珠粒捕获的mRNA分子数量很少,所以这些空间转录组学方法通常会在下游分析之前聚集相邻的珠粒,从而导致多个细胞的有效分辨率和转录丰度的平均值降低。因此,每个分析空间单元中存在的特定细胞类型的注释是通过聚集从正交scRNA-seq数据集计算定义的基因集来完成的(15,16)。虽然整合方法已经证明了定位复杂组织的空间组织内的细胞类型的能力,但它们依赖于来自两个独立测定法的可用数据,并且推断空间背景如何影响单个细胞类型的细胞状态的能力有限。
发明内容
为了解决这些缺点,我们开发了XYZeq,这种方法扩展了最近用于单细胞测序的拆分池索引(17,18)方法,以能够同时记录空间信息。该方法的核心是一种整合拆分池索引和空间条形码化的策略,以能够对数万个单细胞进行剖析,例如转录组学剖析或染色质可及性剖析,以及将细胞拆分成数千个空间孔。例如,细胞转录物在含有微孔的阵列中使用条形码化寡核苷酸当场进行空间编码。将组织切片放在含有条形码化oligo d(T)引物的阵列上,该引物含有独特分子标识符和PCR柄。随后是逆转录、拆分池步骤以通过PCR引入第二轮条形码化,以及标签化以生成单细胞RNA测序库。类似的方法可用于对染色质可及性进行空间剖析。XYZeq在靶向全基因组染色质或整个转录组并同时估计单细胞基因转录或表达谱的能力方面优于基于图像和基于阵列或珠粒的方法,从而能够检测罕见和短暂的转录状态。
因此,在一个方面,本公开涉及一种用于对包含细胞的样品内的核酸进行空间检测的方法,所述方法包括确定所述样品的核酸中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。
在一些实施方案中,所述方法包括使包含多个微孔的阵列与包含细胞的样品接触,以使得样品在阵列上微孔的不同位置接触多个微孔,其中每个微孔占据阵列上的不同位置并且包含不同空间索引引物,所述空间索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第一测序引物识别的核苷酸序列;
b)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
c)捕获结构域,其包含聚胸苷序列。
在一些实施方案中,所述方法还包括允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许位于每个微孔中的一个或多个细胞中存在的一种或多种信使RNA(mRNA)与所述微孔独有的空间索引引物的捕获结构域杂交。在一些实施方案中,该步骤可包括进行逆转录反应以获得cDNA分子的第一链。
在一些实施方案中,所述方法还包括进行逆转录以产生与所述微孔中存在的一种或多种mRNA对应的一种或多种cDNA分子。在一些实施方案中,所述方法还包括将阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中。在一些实施方案中,所述方法还包括用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
b)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
在一些实施方案中,所述方法还包括使用第一测序引物和第二测序引物对上述步骤中获得的扩增反应产物进行测序。在一些实施方案中,所述方法还包括检测给定空间条形码结构域的核苷酸序列和给定细胞条形码结构域的核苷酸序列、或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在。在一些实施方案中,所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。在一些实施方案中,所述方法还包括在进行杂交之前对组织样品中包含的细胞进行透化。在一些实施方案中,所述方法还包括在阵列与样品接触之后对覆盖有样品的阵列进行成像。在一些实施方案中,所述方法还包括在将细胞分选到多孔板中之后溶解细胞。在一些实施方案中,所述方法还包括通过标签化从产生的cDNA分子生成测序库。在一些实施方案中,所述方法还包括在标签化后进行扩增反应。
在一些实施方案中,所述方法还包括通过如下方法确定哪些基因在细胞中在组织样品的特定不同位置处表达,所述方法包括确定包含空间条形码结构域的相同核苷酸序列或与其互补的序列与细胞条形码结构域的相同核苷酸序列或与其互补的序列的cDNA分子的序列。在一些实施方案中,所述方法还包括将cDNA分子中存在的阵列的给定特定微孔独有的空间条形码结构域的核苷酸序列或与其互补的序列与组织样品中的位置相关联。在一些实施方案中,所述方法还包括将cDNA分子中存在的阵列的给定特定微孔独有的空间条形码结构域的核苷酸序列或与其互补的序列与组织样品的图像相关联。
在任何上述方法中,阵列的给定特定微孔独有的空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明所述cDNA分子是从样品中包含的单个细胞中存在的mRNA在样品接触测定的所述特定微孔的不同位置处获得的。
在另一个方面,本公开涉及一种生成样品的单细胞转录组谱或RNA库的方法,所述方法包括确定样品的核酸中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。
在一些实施方案中,所述方法包括使包含多个微孔的阵列与包含细胞的样品接触,以使得样品在阵列上微孔的不同位置接触多个微孔,其中每个微孔占据阵列上的不同位置并且包含不同空间索引引物,所述空间索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第一测序引物识别的核苷酸序列;
b)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
c)捕获结构域,其包含聚胸苷序列。
在一些实施方案中,所述方法还包括允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许位于每个微孔中的一个或多个细胞中存在的一种或多种信使RNA(mRNA)与所述微孔独有的空间索引引物的捕获结构域杂交。在一些实施方案中,该步骤可包括进行逆转录反应以获得cDNA分子的第一链。
在一些实施方案中,所述方法还包括进行逆转录以产生与所述微孔中存在的一种或多种mRNA对应的一种或多种cDNA分子。在一些实施方案中,所述方法还包括将阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中。在一些实施方案中,所述方法还包括用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
b)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
在一些实施方案中,所述方法还包括使用第一测序引物和第二测序引物对上述步骤中获得的扩增反应产物进行测序。在一些实施方案中,所述方法还包括检测给定空间条形码结构域的核苷酸序列和给定细胞条形码结构域的核苷酸序列、或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在。在一些实施方案中,所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。在一些实施方案中,所述方法还包括在进行杂交之前对组织样品中包含的细胞进行透化。在一些实施方案中,所述方法还包括在阵列与样品接触之后对覆盖有样品的阵列进行成像。在一些实施方案中,所述方法还包括在将细胞分选到多孔板中之后溶解细胞。在一些实施方案中,所述方法还包括通过标签化从产生的cDNA分子生成测序库。在一些实施方案中,所述方法还包括在标签化后进行扩增反应。
在一些实施方案中,所述方法还包括通过如下方法确定哪些基因在细胞中在组织样品的特定不同位置处表达,所述方法包括确定包含空间条形码结构域的相同核苷酸序列或与其互补的序列与细胞条形码结构域的相同核苷酸序列或与其互补的序列的cDNA分子的序列。在一些实施方案中,所述方法还包括将cDNA分子中存在的阵列的给定特定微孔独有的空间条形码结构域的核苷酸序列或与其互补的序列与组织样品中的位置相关联。在一些实施方案中,所述方法还包括将cDNA分子中存在的阵列的给定特定微孔独有的空间条形码结构域的核苷酸序列或与其互补的序列与组织样品的图像相关联。
本公开涉及一种获得单细胞的转录组的方法,所述方法包括:
(i)使样品与阵列接触,所述阵列包含多个孔,所述孔包含
(ii)从每个孔中的样品中分离RNA;
(iii)通过用每个孔中的一种或多种引物对RNA进行扩增,对分离的RNA进行定量PCR;
(iv)将RNA的扩增产物与处于与样品内的位置对应的位置处的细胞相关联。
在一些实施方案中,细胞是间充质细胞、癌细胞、肝细胞或脾细胞。
在任何上述方法中,阵列的给定特定微孔独有的空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明cDNA分子是从子样品中包含的单个细胞中存在的mRNA在子样品在测定的所述特定微孔中所位于的不同位置处获得的。
在又一方面,本公开涉及一种产生样品内的细胞中的核酸表达的高分辨率空间定位的方法,所述方法包括确定样品的核酸中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。
在一些实施方案中,所述方法包括使包含多个微孔的阵列与包含细胞的样品接触,以使得样品在阵列上微孔的不同位置接触多个微孔,其中每个微孔占据阵列上的不同位置并且包含不同空间索引引物,所述空间索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第一测序引物识别的核苷酸序列;
b)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
c)捕获结构域,其包含聚胸苷序列。
在一些实施方案中,所述方法还包括允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许位于每个微孔中的一个或多个细胞中存在的一种或多种信使RNA(mRNA)与所述微孔独有的空间索引引物的捕获结构域杂交。在一些实施方案中,该步骤可包括进行逆转录反应以获得cDNA分子的第一链。
在一些实施方案中,所述方法还包括进行逆转录以产生与所述微孔中存在的一种或多种mRNA对应的一种或多种cDNA分子。在一些实施方案中,所述方法还包括将阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中。在一些实施方案中,所述方法还包括用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
b)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
在一些实施方案中,所述方法还包括使用第一测序引物和第二测序引物对上述步骤中获得的扩增反应产物进行测序。在一些实施方案中,所述方法还包括检测给定空间条形码结构域的核苷酸序列和给定细胞条形码结构域的核苷酸序列、或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在。在一些实施方案中,所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。在一些实施方案中,所述方法还包括在进行杂交之前对组织样品中包含的细胞进行透化。在一些实施方案中,所述方法还包括在阵列与样品接触之后对覆盖有样品的阵列进行成像。在一些实施方案中,所述方法还包括在将细胞分选到多孔板中之后溶解细胞。在一些实施方案中,所述方法还包括通过标签化从产生的cDNA分子生成测序库。在一些实施方案中,所述方法还包括在标签化后进行扩增反应。
在一些实施方案中,所述方法还包括通过如下方法确定哪些基因在细胞中在组织样品的特定不同位置处表达,所述方法包括确定包含空间条形码结构域的相同核苷酸序列或与其互补的序列与细胞条形码结构域的相同核苷酸序列或与其互补的序列的cDNA分子的序列。在一些实施方案中,所述方法还包括将cDNA分子中存在的阵列的给定特定微孔独有的空间条形码结构域的核苷酸序列或与其互补的序列与组织样品中的位置相关联。在一些实施方案中,所述方法还包括将cDNA分子中存在的阵列的给定特定微孔独有的空间条形码结构域的核苷酸序列或与其互补的序列与组织样品的图像相关联。
在任何上述方法中,阵列的给定特定微孔独有的空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明cDNA分子是从子样品中包含的单个细胞中表达的核酸在子样品在测定的所述特定微孔中所位于的不同位置处获得的。
在另一个方面,本公开涉及一种在单细胞水平上量化组织样品中的基因表达的方法,所述方法包括确定样品的核酸中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。
在一些实施方案中,所述方法包括使包含多个微孔的阵列与包含细胞的样品接触,以使得样品在阵列上微孔的不同位置接触多个微孔,其中每个微孔占据阵列上的不同位置并且包含不同空间索引引物,所述空间索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第一测序引物识别的核苷酸序列;
b)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
c)捕获结构域,其包含聚胸苷序列。
在一些实施方案中,所述方法还包括允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许位于每个微孔中的一个或多个细胞中存在的一种或多种信使RNA(mRNA)与所述微孔独有的空间索引引物的捕获结构域杂交。在一些实施方案中,该步骤可包括进行逆转录反应以获得cDNA分子的第一链。
在一些实施方案中,所述方法还包括进行逆转录以产生与所述微孔中存在的一种或多种mRNA对应的一种或多种cDNA分子。在一些实施方案中,所述方法还包括将阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中。在一些实施方案中,所述方法还包括用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
b)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
在一些实施方案中,所述方法还包括使用第一测序引物和第二测序引物对上述步骤中获得的扩增反应产物进行测序。在一些实施方案中,所述方法还包括检测给定空间条形码结构域的核苷酸序列和给定细胞条形码结构域的核苷酸序列、或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在。在一些实施方案中,所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。在一些实施方案中,所述方法还包括在进行杂交之前对组织样品中包含的细胞进行透化。在一些实施方案中,所述方法还包括在阵列与样品接触之后对覆盖有样品的阵列进行成像。在一些实施方案中,所述方法还包括在将细胞分选到多孔板中之后溶解细胞。在一些实施方案中,所述方法还包括通过标签化从产生的cDNA分子生成测序库。在一些实施方案中,所述方法还包括在标签化后进行扩增反应。
在一些实施方案中,所述方法还包括通过如下方法确定哪些基因在细胞中在组织样品的特定不同位置处表达,所述方法包括确定包含空间条形码结构域的相同核苷酸序列或与其互补的序列与细胞条形码结构域的相同核苷酸序列或与其互补的序列的cDNA分子的序列。在一些实施方案中,所述方法还包括将cDNA分子中存在的阵列的给定特定微孔独有的空间条形码结构域的核苷酸序列或与其互补的序列与组织样品中的位置相关联。在一些实施方案中,所述方法还包括将cDNA分子中存在的阵列的给定特定微孔独有的空间条形码结构域的核苷酸序列或与其互补的序列与组织样品的图像相关联。
在任何上述方法中,阵列的给定特定微孔独有的空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明所述cDNA分子是从子样品中包含的单个细胞中表达的基因在子样品在测定的所述特定微孔中所位于的不同位置处获得的。
在另一个方面,本公开涉及一种对包含细胞的样品内的核酸进行空间检测的方法,所述方法包括确定所述样品的核酸中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。
在一些实施方案中,所述方法还包括使包含多个微孔的阵列与包含细胞的样品接触,以使得样品在阵列上微孔的不同位置接触多个微孔,其中每个微孔占据所述阵列上的不同位置并且包含插入酶和不同空间索引接头,所述空间索引接头包含从5’至3’包含以下的核酸分子:
a)退火结构域,其包含被第一测序引物识别的核苷酸序列;以及
b)空间条形码结构域,其包含每个微孔独有的核苷酸序列。
在一些实施方案中,所述方法还包括允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许所述插入酶在位于每个微孔中的一个或多个细胞中产生基因组DNA片段并用所述微孔独有的空间索引接头标记基因组DNA片段。
在一些实施方案中,所述方法还包括将阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中。
在一些实施方案中,所述方法还包括用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’到3’包含以下的核酸分子:
a)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
b)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
在一些实施方案中,所述方法还包括使用第一测序引物和第二测序引物对步骤d)中获得的扩增反应产物进行测序。
在一些实施方案中,所述方法还包括检测给定空间条形码结构域的核苷酸序列和给定细胞条形码结构域的核苷酸序列、或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在。在一些实施方案中,所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。
在一些实施方案中,任何上述方法中使用的插入酶是转座酶。在一些实施方案中,转座酶是Tn5转座酶或MuA转座酶。
在任何上述方法中,阵列的给定特定微孔独有的空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明基因组DNA片段是从所述样品中包含的单个细胞在样品接触测定的所述特定微孔的不同位置处获得的。
在一些实施方案中,位于根据本公开的方法中使用的阵列的每个微孔中的一个或多个细胞用抗体标记。在一些实施方案中,根据本公开的方法还包括通过抗体分选一个或多个细胞。
在一些实施方案中,本公开的方法中使用的阵列包含至少约10个、50个、100个、200个、500个、1000个、2000个或4000个微孔。在一些实施方案中,阵列包含至少约768个微孔。在一些实施方案中,本公开的阵列中的每个微孔是三角形、正方形、五边形、六边形或圆形的。在一些实施方案中,阵列中的每个微孔是五边形的。
在一些实施方案中,本公开的方法中使用的阵列中的每个微孔的深度为约50至约500微米。在一些实施方案中,阵列中的每个微孔的深度为约400微米。
在一些实施方案中,本公开的方法中使用的阵列中的微孔的中心与中心间距为约50微米至约500微米。在一些实施方案中,阵列中的微孔的中心与中心间距为约200微米。在一些实施方案中,阵列中的微孔的中心与中心间距为约500微米。
在一些实施方案中,本公开的方法中使用的多孔板包含约24个、48个、96个、192个、384个或768个孔。在一些实施方案中,多孔板包含约96个孔。在一些实施方案中,多孔板包含约384个孔。在一些实施方案中
在一些实施方案中,约10至约100个细胞被分选到本公开的方法中使用的多孔板的每个孔中。在一些实施方案中,约20至约50个细胞被分选到多孔板的每个孔中。
在一些实施方案中,本公开的方法中使用的空间索引引物中包含的空间条形码结构域包含约10至约30个核苷酸。在一些实施方案中,本公开的方法中使用的空间索引引物中包含的聚胸苷序列包含约10至约30个脱氧胸苷残基。在一些实施方案中,本公开的方法中使用的细胞索引引物中包含的细胞条形码结构域包含约10至约30个核苷酸。
在一些实施方案中,本公开的方法中使用的样品是组织切片或细胞悬液。在一些实施方案中,样品是组织切片。在一些实施方案中,组织切片使用固定组织、福尔马林固定石蜡包埋(FFPE)组织或深度冷冻组织制备。在一些实施方案中,样品来自患有、被诊断为患有或怀疑患有肿瘤的受试者。
在另一个方面,本公开涉及一种系统,其包含一个或多个阵列,每个阵列包含一个或多个微孔,每个微孔占据阵列上的不同位置并且包含空间索引引物,所述空间索引引物包含在5’到3’方向上包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列。
在一些实施方案中,根据本公开的系统的每个阵列包含至少约10个、50个、100个、200个、500个、1000个、2000个或4000个微孔。在一些实施方案中,每个阵列包含至少约768个微孔。在一些实施方案中,阵列中的每个微孔是三角形、正方形、五边形、六边形或圆形的。在一些实施方案中,阵列中的每个微孔是五边形的。
在一些实施方案中,根据本公开的系统的阵列中的每个微孔的深度为约50至约500微米。在一些实施方案中,阵列中的每个微孔的深度为约400微米。在一些实施方案中,阵列中的微孔的中心与中心间距为约50微米至约500微米。在一些实施方案中,阵列中的微孔的中心与中心间距为约200微米。在一些实施方案中,其中阵列中的微孔的中心与中心间距为约500微米。
在一些实施方案中,根据本公开的系统还包含一个或多个多孔板,每个多孔板包含一个或多个孔,每个孔占据多孔板上的不同位置并且包含细胞索引引物,所述细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
在一些实施方案中,根据本公开的系统的多孔板包含约24个、48个、96个、192个、384个或768个孔。在一些实施方案中,多孔板包含约96个孔。在一些实施方案中,多孔板包含约384个孔。
在一些实施方案中,根据本公开的系统的阵列中使用的空间索引引物中包含的空间条形码结构域包含约10至约30个核苷酸。在一些实施方案中,空间索引引物中包含的聚胸苷序列包含约10至约30个脱氧胸苷残基。在一些实施方案中,细胞索引引物中包含的所述细胞条形码结构域包含约10至约30个核苷酸。
附图说明
本公开的特征将从本文提供的描述以及图式中理解,其中:
图1描绘了单细胞RNAseq的一般工作流程。该平台通常用于研究均质活检的组织转录组,这会导致平均转录组和空间信息的丢失。然而,基因表达的位置背景对于理解组织功能和病理变化至关重要。
图2描绘了XYZeq的组合索引示意图。空间信息RT-索引与拆分池PCR-索引的组合使得同时以单细胞分辨率获得转录组数据并将每个细胞分配到阵列中的特定孔成为可能。使用两轮组合条形码化,例如,第一轮使用768个位置RT-索引,第二轮使用384个PCR-索引,最多可以生成294,912个条形码组合。
图3描绘了制造XYZeq阵列的过程。
图4A-4C描绘了用于本公开的空间测序平台的具有六边形微孔的阵列。图4A:具有500微米微孔的阵列;图4B:具有200微米微孔的阵列;以及图4C:组织学载玻片上的阵列。
图5A-5E说明了XYZeq能够同时进行单细胞和空间转录组剖析。图5A:XYZeq工作流程示意图。图5B:XYZeq测序库结构示意图。P5和P7:Illumina接头。bp:碱基对。R1和R2:Illumina测序引物的退火位点。图5C:打印在芯片上的混合物种细胞梯度图案的示意图,具有11种独特细胞比例比(具体细胞比例比参见实施例8中的方法)。图5D:在计算去污后,从HEK293T和NIH3T3细胞的混合物中检测到的小鼠(x-轴)和人(y轴)UMI计数的散点图。深灰色是指人细胞(n=4,182),灰色是指小鼠细胞(n=2,220),浅灰色是指碰撞(n=45)。图5E:XYZeq针对微孔阵列的每一列检测到的HEK293T(蓝色)细胞、NIH/3T3(灰色)细胞或碰撞(浅灰色)的比例。
图6A-6C说明了使用XYZeq从组织中捕获高分辨率的空间分辨单细胞RNA。图6A:来自人(n=XX)和小鼠细胞(n=XX)的转录物的散点图;图6B:显示每个细胞检测到的UMI和基因数量的小提琴图;图6C:微阵列中人和小鼠细胞的细胞分布空间图。
图7A-7F显示组织中特定细胞类型和基因表达的量化。图7A:由鲁汶(Louvain)聚类发现的带注释的细胞身份簇,在UMAP表示中可视化;鉴定肝细胞(Apoa1)、肿瘤(Plec)、巨噬细胞(Cd74)、肝窦内皮细胞(Stab2)、淋巴细胞(Skap1)、枯否细胞(Kupffer cell)(Cd5l)的细胞表达,从低表达(较深灰色)到高表达(浅灰色)。标记基因也可以在其它细胞身份群中表达,如巨噬细胞和枯否细胞所示;图7B:将XYZeq与10X chromium进行比较的相关图;图7C:比较XYZeq和10X的每个细胞的UMI和基因计数的小提琴图;图7D:XYZeq与10x之间细胞群的热图表示;图7E:空间密度图,显示空间阵列中每个细胞簇的定位;图7F:空间饼图表示,显示占据每个孔的每种细胞类型的比率。
图8A-8B显示了在肝肿瘤模型中发现的不同细胞群的鉴定。图8A:由莱顿(Leiden)聚类发现的带注释的细胞身份簇,在UMAP表示中可视化;图8B:跨细胞群的基因表达重叠的可视化(每个基因的气泡大小与细胞类型的表达程度相关)。
图9显示了代表以至少1.5的对数倍数变化在细胞类型簇之间差异表达的基因的热图。Y轴上的彩色条对应于代表该细胞类型簇的基因的组。
图10A-10G显示了从空间单细胞数据中获得的基因信息。测试的基因是显示空间变化的淋巴细胞和巨噬细胞的几个顶级标记。图10C、图10D和图10G显示拟时轨迹图。每个点代表巨噬细胞。Y轴是基因的对数表达:在这种情况下为TGFbi(图10C)、CCR5(图10D)或Tox(图10G)。图10C、图10D和图10G底部的水平点表示不表达该基因的巨噬细胞(Tgfbi计数为0的巨噬细胞)。该线描述了跨距离变量的Tgfb表达趋势。因此,它在0距离处越高(肿瘤),则随着它移开越降低(肝脏)。图10A和图10E中的紫色和黄色条表示距离,其对应于图10B和图10F所示的空间图。黄色是肝脏,紫色和绿色是肿瘤区域。图10A和图10E中的紫色到黄色条是以上基因表达条的刻度/轴(蓝色到白色)。紫色到黄色是空间图的表示,深蓝色到白色是与空间相关的基因表达的表示(特别是肿瘤到肝脏)。
图11A-11D显示了从组织中捕获的空间分辨单细胞转录组。图11A:在去污处理后在500UMI截止值下从肝/肿瘤组织(n=4)检测到的小鼠(x-轴)和人(y轴)UMI计数的散点图。y轴上的深灰色是指人细胞(n=2,657),x轴上的深灰色是指小鼠细胞(n=5,707),浅灰色是指碰撞(n=382)。图11B:显示每个小鼠和人细胞检测到的UMI(左)和基因(右)的数量的小提琴图。人细胞的中值UMI计数:1,596;小鼠细胞的中值UMI计数:1,009。跨越所有肝/肿瘤切片,人细胞的中值基因计数:629;小鼠细胞的中值基因计数:456。图11C:肝/肿瘤组织切片的苏木精和伊红(H&E)染色图像。肿瘤区域(深灰色,具有浅灰色虚线轮廓);肝区域(浅灰色)。刻度显示2mm。图11D:覆盖在H&E染色切片上的XYZeq阵列上的人(灰色和深灰色)和小鼠(深灰色)细胞分布的可视化。
图12A-12F显示了来自组织的单细胞簇的频率和空间映射。图12A:从肝/肿瘤组织鉴定的细胞类型的t分布随机邻域嵌入(tSNE)可视化。共绘制了6,623个细胞。图12B:定义来自肝/肿瘤组织的每种细胞类型的基因的缩放标记基因表达和层次聚类的热图。参考图12A中的灰度条。图12C:XYZeq与10X Genomics Chromium之间匹配细胞类型的伪批量表达值的相关性。图12D:覆盖在组织的明场图像上的肝细胞、MC38和骨髓细胞的空间定位。浅灰色虚线轮廓表示肿瘤区域。图12E:来自代表性肝/肿瘤组织切片的每个XYZeq孔的细胞类型组成饼图(上图)和说明肝/肿瘤组织所有四个切片的组合细胞类型组成的条形图,其追踪与肿瘤的接近度(下图)(关于接近度分数,参见实施例8中的方法)。图12F:显示每个孔中肝细胞、MC38和骨髓细胞频率的配对图。散点图显示了每个孔中两种细胞类型的共定位。直方图显示了每种细胞类型的每孔(y轴)的细胞数量(x轴)的分布。注释皮尔逊相关性(Pearsoncorrelation)(r)和p值。
图13A-13F显示了空间中追踪细胞组成的基因模块的表达。图13A:tSNE空间中肝细胞富集模块(LM14)平均表达的投影。每个点是一个细胞,并由最高贡献模块基因的平均表达着色(参见实施例8中的方法)。图13B:肝细胞富集模块(LM14)的空间表达。每个空间孔由按每孔细胞数量加权的最高贡献模块基因的平均表达着色。孔被二值化为高(高于加权平均)与低(所有其它非零表达)。浅灰色虚线轮廓表示肿瘤区域。图13C:表示肝/肿瘤和脾/肿瘤中每对模块之间重叠基因数量的热图。每行是肝模块,每列是脾模块。图13D:由肝/肿瘤(左上)和脾/肿瘤(左下)中注释的细胞类型灰度化的XYZeq scRNA-seq数据的tSNE投影和肝/肿瘤(顶行)与脾/肿瘤(底行)之间顶部重叠模块的平均基因表达。肿瘤反应模块对应于LM5和SM12,免疫调节模块对应于LM19和SM7。在空间坐标中的投影为对应于LM5和SM12的肿瘤反应模块的平均表达(图13E);以及对应于LM19和SM7的免疫调节模块的平均表达(图13F)。(图13E、图13F)中的每个孔通过按每孔细胞数量加权的每个模块的平均基因表达(高对低)进行灰度化,并且浅灰色虚线轮廓表示肿瘤区域。孔被二值化为高(高于加权平均)与低(所有其它非零表达)。
图14A-14F显示了与在空间上与肿瘤的接近度相关的MSC内的差异基因表达。图14A:tSNE空间中细胞迁移模块(LM10和SM17)的平均表达。每个点是一个细胞,通过其在相应的肝和脾模块之间的顶部模块基因的平均表达进行灰度化。图14B:XYZeq阵列通过肿瘤接近度分数进行灰度化。接近1(深灰色)的值表示富含肿瘤的区域,接近0(黑色)的值表示富含非肿瘤细胞的区域,捕获两种组织类型之间边界的孔的值约为0.5(较深灰色)。图14C:通过tSNE空间中的细胞特异性接近度分数灰度化的MSC。图14D:行聚类的热图,显示了沿1维接近度分数,在三个空间区域(肿瘤内、边界、组织内)富集的基因在MSC中的缩放平均基因表达。对于脾/肿瘤,突出显示在肿瘤和非肿瘤区域中富集的具有统计学意义的基因。图14E:Csmd1(左)和Tshz2(右)沿接近度分数(x-轴)的对数表达(y轴)。每个点对应于一个MSC细胞,并且使用负二项分布拟合回归线(参见实施例8中的方法)。图14F:MSC中Csmd1(左)和Tshz2(右)的平均表达的空间投影。浅灰色虚线轮廓表示肿瘤区域。
图15A-15B显示单细胞混合物种实验揭露了与估计的细胞梯度比例的强相关性。图15A:从HEK293T和NIH3T3细胞的混合物中检测到的小鼠和人UMI计数的散点图。y轴上的较深灰色是指人细胞(n=4,389),x轴上的灰色是指小鼠细胞(n=1,728),浅灰色是指碰撞(n=330)。图15B:揭露XYZeq阵列每列中观察到的和预期的细胞类型比例之间的高度一致性(林氏一致性相关性(Lin’s Concordance Correlation)=0.91)的散点图。
图16A-16C显示了每孔从肝/肿瘤组织捕获的细胞的量化。图16A:带有点有试剂的孔(白色)的XYZeq冷冻微阵列顶部的肝/肿瘤组织切片的图像。图16B:来自人(y轴上较深灰色:n=2,667)、小鼠细胞(x轴上灰色:n=6,854)和碰撞(淡灰色:n=747)的转录物(n=4)的散点图。图16C:HEK293T人(顶部)和肝/肿瘤小鼠(底部)细胞在XYZeq阵列中的孔中的中值细胞数。
图17A-17F显示了从肝/肿瘤组织的XYZeq鉴定的不同细胞类型簇。图17A:莱顿簇的tSNE可视化与带注释的细胞类型。图17B:与来自Efremova等人的MC38细胞(25)、来自Tabula Muris的肝细胞(26)和从来自独立内部实验的肝/肿瘤富集的免疫细胞(3)相比,在XYZeq中观察到的MC38细胞平均染色体表达的相关性。x轴和y轴都表示给定染色体上所有基因的平均表达。图17C:表示来自肝/肿瘤XYZeq数据的每种细胞类型的估计污染分数的小提琴图(图17D、图17E)显示了每个细胞簇中检测到的UMI和基因的数量的小提琴图。每个细胞簇的中值UMI计数(log)和基因计数:肝细胞(3.04和552)、枯否细胞(2.92和420)、淋巴细胞(2.97和454)、MSC(3.08和594)、巨噬细胞(3.03和511)、MC38(3.22和851)和LSEC(2.94和431)。图17F:带注释的细胞身份簇;每一种标记基因阳性的细胞的特征图,用于鉴定从低表达(黑色)到高表达(浅灰色)的肝细胞(Cps1、Glul)、MC38(Plec)、巨噬细胞(Cd11b、Cd74)、肝窦内皮细胞(Stab2、Ptprb)、淋巴细胞(Cd8b、Il18r1)、枯否细胞(Cd5l、Timd4)、间充质干细胞(Rbms3、Tshz2)、中心周围肝细胞(Glul、Gluo、Oat)。
图18A-18B显示了XYZeq跨组织切片的再现性。肝/肿瘤组织的四个非连续的z层切片用XYZeq处理(加入HEK293T细胞作为对照)。图18A:显示肝/肿瘤不同切片之间共同基因表达的配对图。散点图显示共同表达的基因的UMI计数(UMI>0)。直方图显示每个切片的每个基因(y轴)的UMI数量(x轴)分布。图18B:跨越四个切片的莱顿簇的tSNE可视化。
图19A-19B显示发现从XYZeq捕获的细胞类型簇与10XGenomics平台相当。图19A:使用10X Chromium V3试剂盒生成的肝/肿瘤组织数据的tSNE表示。共绘制了2,703个细胞。图19B:比较在XYZeq和10X Chromium V3中发现的每种细胞类型的比例的散点图。林氏一致性系数为0.988。
图20A-20B显示了每个细胞类型簇跨组织的不同空间定位模式。图20A:显示淋巴细胞、MSC、枯否细胞和LSEC在空间阵列中的定位的空间密度图。浅灰色虚线轮廓表示肿瘤区域。图20B:显示在XYZeq阵列中的每个孔中发现的细胞类型的频率的配对图。散点图显示了每个孔中细胞类型的共定位。直方图显示了每种细胞类型的每孔(y轴)的细胞数量(x轴)的分布。注释r和p值。
图21A-21F显示脾/肿瘤组织的XYZeq揭露了与肝/肿瘤组织可比的数据质量。图21A:从脾/肿瘤组织(n=4)检测到的小鼠和人UMI计数的散点图。y轴上的深灰色是指人细胞(n=4,007),X轴上的灰色是指小鼠细胞(n=3,394),浅灰色是指碰撞(n=104)。图21B:显示每个细胞检测到的UMI和基因的数量的小提琴图。人细胞的中值UMI计数:1,312;小鼠细胞的中值UMI计数:1,169。人细胞的中值基因计数:661;小鼠细胞的中值基因计数:577。图21C:脾/肿瘤组织切片的H&E染色图像。肿瘤区域(具有浅灰色虚线轮廓的灰色区域);脾脏区域(具有深灰色特征的较深灰色)。刻度显示2mm。图21D:孔中具有试剂(白色)的冷冻XYZeq微阵列上的脾/肿瘤组织的图像。图21E:在500UMI截止值下覆盖在H&E染色组织切片图像上的XYZeq阵列上的人(灰色和深灰色)和小鼠(灰色和深灰色)细胞分布的可视化。图21F:HEK293T人(顶部)和脾/肿瘤小鼠(底部)细胞在XYZeq阵列中的孔中的中值细胞数。
图22A-22D显示了来自脾/肿瘤组织的细胞类型簇的鉴定和空间映射。图22A:脾/肿瘤XYZeq数据的tSNE投影。共绘制了3,394个细胞。图22B:莱顿簇的tSNE可视化与注释脾/肿瘤的细胞类型。图22C:定义来自XYZeq脾/肿瘤组织的每种细胞类型的标记基因缩放表达和层次聚类的热图。图22D在500UMI截止值下覆盖有XYZeq阵列的空间图的脾/肿瘤组织图像,显示来自(图22A)的细胞类型簇的定位。浅灰色虚线轮廓表示肿瘤区域。
图23A-23D显示了基因模块的细胞类型贡献和功能注释。图23A:显示与相应脾/肿瘤模块相比肝/肿瘤模块中重叠基因的分数百分比的条形图。虚线表示用于确定模块之间显著重叠的阈值。图23B:构成每个模块的细胞类型部分的饼图表示(参见实施例8中的方法)。LM表示肝/肿瘤模块(图23C、图23D)。肿瘤反应模块(图23C)和免疫调节模块(图23D)的GO注释。免疫反应模块的GO富集分析以LM19为代表。p值使用GOrilla(50)计算并通过本杰明-霍克伯格校正(Benjamini-Hochberg correction)进行调整。
图24A-24B显示了MSC中富集的细胞迁移基因模块的表达。图24A:跨越肝/肿瘤中的所有细胞类型,细胞迁移模块(LM10)中的顶部重叠基因的矩阵图。图24B:来自LM10和SM17的细胞迁移模块的GO注释。p值使用GOrilla(50)计算并通过本杰明-霍克伯格校正进行调整。
图25A-25E显示了针对肝和脾组织定义的肿瘤接近度分数。图25A:每个组织的接近度分数依赖于对相关孔的连续同心层邻孔的注释。图25B:将阵列中与每个孔相邻的一组孔制成表格,多达10层。图25C:代表性脾/肿瘤切片的含细胞孔,其中白色至较淡灰色表示肿瘤细胞比例较高,较深灰色表示非肿瘤细胞比例较高。被选择用于将接近度分数设置为1的孔以白色标出。图25D:代表性肝/肿瘤切片的含细胞孔。淡灰色表示肿瘤细胞比例较高,灰色至较深灰色表示肝细胞比例较高。图25E:每个孔上注释的接近度分数值(左),其中较淡灰色更接近最小值,较深灰色更接近最大值。针对l和d的不同值将分数可视化。选择l=10和d=1.05的值,因为它们使分数的分布(右)在所有孔中更加均匀。
具体实施方式
可以通过参考实施方案的以下详述、图式和其中包括的实施例更容易地理解本公开。
在公开和描述本发明的方法和组合物之前,应理解除其不限于特定的合成方法(除非另有说明)或特定的试剂(除非另有说明),因此这些当然可以变化。还应理解本文中使用的术语仅为了描述特定的方面,不意图限制。虽然类似于或等同于本文所述的那些的任何方法和材料都可用于实践或检验本发明,但现在描述示例方法和材料。
此外,应理解,除非另外明确说明,否则决非意图将本文所阐述的任何方法解释为要求以特定的顺序来进行其步骤。因此,当方法权利要求实际上并未陈述其步骤待遵循的顺序或在权利要求书或说明书中没有特别地说明步骤限于特定的顺序时,决非意图在任何方面推断顺序。这适用于任何可能的非表达解释基础,包括关于步骤排列或操作流程的逻辑事项、从语法组织或标点中得到的明显含义或者在说明书中所描述的方面的数字或类型。
本文所提到的所有公布都通过引用并入本文以公开和描述与公布所引用相关的方法和/或材料。提供本文讨论的公布仅仅是因为它们的公开内容在本申请的申请日之前。本文没有任何内容被解释为承认本发明没有资格先于在先发明的这种公布。此外,本文提供的公布日期可能与实际公布日期不同,这可能需要单独确认。
定义
除非另有定义,否则本文中使用的所有技术和科学术语都具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。
如在说明书和权利要求书中使用的术语“包含”可以包括“由……组成”和“基本上由……组成”的方面。包含还可以意指“包括但不限于”。
除非上下文另外明确规定,否则如本说明书和所附权利要求书中使用的单数形式“一(a/an)”和“所述(the)”可包括复数指示物。因此,例如,提及“一种化合物”包括化合物的混合物;提及“药物载体”包括两种或更多种这类载体的混合物等。
如本文所用的字词“或”意指特定清单的任何一个成员,并且还包括该清单的成员的任何组合。
本文使用的术语“约”意指在本领域的典型公差范围内。例如,“约”可以理解为与平均值相差约2个标准差。根据某些实施方案,当提及可测量的值,如量等时,“约”意在涵盖与指定值有±20%、±10%、±5%、±1%、±0.9%、±0.8%、±0.7%、±0.6%、±0.5%、±0.4%、±0.3%、±0.2%或±0.1%的变化,因为这类变化适合于执行所公开的方法。当“约”出现在一系列数字或范围之前时,应理解“约”可以修饰该系列或范围中的每个数字。
如本文所用,术语“活化的基底”是指一种材料,它上面的相互作用或反应性化学官能团通过暴露于本领域技术人员已知的试剂而被氧化或还原或以其它方式官能化,以使表面在该官能团处进行反应。例如,包含羧基的基底在使用前必须活化。此外,有一些可用的基底含有可以与核酸引物中已经存在的特定部分反应的官能团。
如本文所用,术语“多个(a plurality of)”或“多个(multiple)”是指两个或更多个,或至少两个,例如3个、5个、10个、15个、20个、30个、40个、50个、60个、70个、80个、90个、100个、150个、200个、400个、500个、1000个、2000个、5000个、10,000个或更多个。因此,例如,阵列上的微孔数量或多孔板上的孔数量可以是上述数字中的任何两者之间的任何范围内的任何整数。
如本文所用,“细胞索引引物”是指用于扩增从逆转录获得的cDNA分子并用多孔板的每个孔独有的第二索引条形码(本文定义为细胞条形码结构域)标记每个扩增的cDNA分子的引物或寡核苷酸。
如本文所用,“空间索引引物”是指用于从位于组织样品,例如薄组织样品切片或“切片”中不同位置处的所有单细胞捕获转录物并进行标记的引物或寡核苷酸。
“阵列”如该术语在本文中所用,通常是指实体在空间上相对于彼此离散的位置中的排列,并且通常采用允许排列的实体同时暴露于潜在的相互作用搭配物(例如,细胞)或其它试剂、基底等的格式。在一些实施方案中,阵列包含固体基底,例如塑料,其在固体载体上的空间离散位置中包含相邻排列的微孔。在一些实施方案中,阵列上的空间离散位置被称为“微孔”或“点”(无论它们的形状如何)。在一些实施方案中,阵列上的空间离散位置相对于彼此以规则的图案排列(例如,在网格中)。在一些实施方案中,阵列包含约90至约400个微孔,这些微孔沿着固体基底的平坦表面排列在相邻位置。在一些实施方案中,阵列是微阵列板。
如本文所用,术语“条形码”是指能够鉴定核酸片段的来源的任何独特的非天然存在的核酸序列。在一些实施方案中,条形码是与阵列上的至少一个空间位置相对应的独特的非天然存在的核酸序列,使得阵列上的条形码位置也与接触该位置的一个或多个细胞的位置相对应。
术语“结合”在整个本公开中广泛使用,是指以非共价或共价的方式将两个或更多个组分、实体或对象连接或偶联的任何形式。举例来说,两种或更多种组分可以通过化学键、共价键、离子键、氢键、静电力、沃森-克里克杂交(Watson-Crick hybridization)等相互结合。在互补核酸序列的情况下,两条互补链结合形成核酸的氢键结合双链体。
术语“多核苷酸”、“寡核苷酸(oligo)”、“寡核苷酸(oligonucleotide)”和“核酸”通篇可互换使用,包括DNA分子(例如,cDNA或基因组DNA)、RNA分子(例如,mRNA)、使用核苷酸类似物(例如肽核酸和非天然存在的核苷酸类似物)产生的DNA或RNA的类似物以及它们的杂合物。核酸分子可以是单链或双链的。在一些实施方案中,本公开的核酸分子包含编码抗体或其片段的连续开放阅读框,如本文所述。如本文所用的“核酸”或“寡核苷酸”或“多核苷酸”可意指共价连接在一起的至少两个核苷酸。单链的描绘也界定了互补链的序列。因此,核酸还涵盖所描绘的单链的互补链。核酸的许多变体可以用于达成与给定核酸相同的目的。因此,核酸还涵盖基本上相同的核酸和其互补序列。单链提供可以在严格杂交条件下与靶序列杂交的探针。因此,核酸还涵盖在严格杂交条件下杂交的探针。核酸可以是单链或双链的,或可以含有双链序列和单链序列的部分。核酸可以是DNA(基因组和cDNA)、RNA或杂交体,其中核酸可含有脱氧核糖核苷酸和核糖核苷酸的组合以及碱基的组合,所述碱基包括尿嘧啶、腺嘌呤、胸腺嘧啶、胞嘧啶、鸟嘌呤、肌苷、黄嘌呤、次黄嘌呤、异胞嘧啶和异鸟嘌呤。核酸可通过化学合成方法或通过重组方法获得。核酸一般含有磷酸二酯键,不过可包括核酸类似物,所述核酸类似物可具有至少一个不同的键联,例如,氨基磷酸酯、硫代磷酸酯、二硫代磷酸酯或o-甲基亚磷酰胺键联以及肽核酸主链和键联。其它类似核酸包括具有阳性主链、非离子主链和非核糖主链的那些核酸,包括通过引用整体并入的美国专利No.5,235,033和5,034,506中所述的那些核酸。含有一个或多个非天然存在的核苷酸或修饰核苷酸的核酸也包括在核酸的一个定义内。修饰核苷酸类似物可位于例如核酸分子的5′末端和/或3′末端。核苷酸类似物的代表性实例可选自糖修饰的核糖核苷酸或主链修饰的核糖核苷酸。然而,应当指出,核碱基修饰的核糖核苷酸也是合适的,即含有非天然存在的核碱基而不是天然存在的核碱基的核糖核苷酸,如在5-位上修饰的尿苷或胞苷,例如5-(2-氨基)丙基尿苷、5-溴尿苷;在8-位上修饰的腺苷和鸟苷,例如8-溴鸟苷;脱氮核苷酸,例如7-脱氮-腺苷;o-和N-烷基化核苷酸,例如N6-甲基腺苷。2’-OH-基团可以被选自H、OR、R、卤基、SH、SR、NH2、NHR、N2或CN的基团置换,其中R是C1-C6烷基、烯基或炔基,卤基是F、Cl、Br或I。修饰核苷酸还包括通过例如羟脯氨醇键联与胆固醇缀合的核苷酸,如Krutzfeldt等人,Nature(2005年10月30日)、Soutschek等人,Nature 432:173-178(2004)和美国专利公布No.20050107325中所描述的,所述文献和专利公布通过引用并入本文。修饰核苷酸和核酸还可包括锁核酸(LNA),如美国专利No.20020115080中所描述的,所述专利通过引用并入本文。其它修饰核苷酸和核酸在美国专利公布No.20050182005中有所描述,所述专利公布通过引用并入本文。磷酸核糖主链的修饰可出于各种原因来进行,例如为了增加这类分子在生理环境中的稳定性和半衰期、增强穿过细胞膜的扩散或作为生物芯片上的探针。可制备天然存在的核酸和类似物的混合物;或者,可制备不同核酸类似物的混合物,和天然存在的核酸和类似物的混合物。在一些实施方案中,可表达的核酸序列呈DNA形式。在一些实施方案中,可表达的核酸呈具有编码本文公开的多肽序列的序列的RNA形式,并且在一些实施方案中,可表达的核酸序列是编码本文公开的任何一种或多种多肽序列的RNA/DNA杂合分子。
两个多核苷酸或两个多肽序列的“同一性百分比”或“同源性百分比”是通过使用GAP计算机程序(GCG Wisconsin Package版本10.3(Accelrys,San Diego,Calif.)的一部分)使用它的默认参数比较序列来确定的。在两个或更多个核酸或氨基酸序列的背景中,如本文所用的"同一"或"同一性"可意指序列具有指定百分比的在指定区域上相同的残基。该百分比可通过如下方法进行计算:最佳地比对两个序列,在指定区域上比较该两个序列,确定这两个序列中出现相同残基的位置数以产生匹配位置数,将匹配位置数除以指定区域中位置的总数,以及将结果乘以100以得到序列同一性的百分比。在该两个序列具有不同长度或该比对产生一个或多个交错末端以及指定比较区域只包括单个序列的情况下,在计算式的分母而不是分子中包括单个序列的残基。当比较DNA和RNA时,可以认为胸腺嘧啶(T)和尿嘧啶(U)是等同的。可手动地或通过使用计算机序列算法例如BLAST或BLAST2.0来计算同一性。简单地说,代表基本局部比对搜索工具的BLAST算法适用于确定序列相似性。执行BLAST分析的软件可通过国家生物技术信息中心(National Center for BiotechnologyInformation)(ncbi.nlm.nih.gov)公开获得。该算法涉及首先通过鉴定查询序列中长度为W的短字来鉴定高评分序列对(HSP),该长度为W的短字当与数据库中相同长度的字比对时,匹配或满足某个正值阈值分数T。T被称为邻域字得分阈值(Altschul等人)。这些初始邻域字命中充当启动搜索以查找含其HSP的种子。字命中沿着每个序列在两个方向上扩展,只要可以增加累积比对分数。在以下情况下,每个方向上的字命中扩展将停止:1)累积比对分数从其最大实现值下降了数量X;2)由于一个或多个负评分残基比对的累积,累积分数变为零或更低;或3)到达任一序列的末端。Blast算法参数W、T和X确定比对的灵敏度和速度。Blast程序默认使用11的字长(W),即BLOSUM62评分矩阵(参见Henikoff等人,Proc.Natl.Acad.Sci.USA,1992,89,10915-10919,其通过引用整体并入本文),比对(B)为50,期望(E)为10,M=5,N=4,以及两条链的比较。BLAST算法(Karlin等人,Proc.Natl.Acad.Sci.USA,1993,90,5873-5787,其通过引用整体并入本文)和GappedBLAST对两个序列之间的相似性进行统计分析。BLAST算法提供的一种相似性度量是最小总概率(P(N)),它表明了两个核苷酸序列之间偶然发生匹配的概率。举例来说,如果测试核酸与另一核酸相比的最小总概率小于约1、小于约0.1、小于约0.01和小于约0.001,则认为核酸与另一核酸相似。在不引入间隙,并且没有任一序列的5’或3’末端的核苷酸未配对下,如果两个单链多核苷酸的序列可以以反平行方向比对,使得一种多核苷酸中的每个核苷酸与其在另一种多核苷酸中的互补核苷酸相反,则它们彼此是“互补”的。如果一种多核苷酸与另一多核苷酸可以在中等严格条件下相互杂交,则该两种多核苷酸“互补”。因此,一种多核苷酸可以与另一多核苷酸互补而不是它的补体。
“基本上相同”是指核酸分子(或多肽)表现出与参考氨基酸序列(例如,本文所述的任何一种氨基酸序列)或核酸序列(例如,本文所述的任何一种核酸序列)至少50%同一性。优选地,在氨基酸水平或核酸水平上,这样的序列与用于比较的序列至少60%、更优选80%或85%,并且更优选90%、95%或甚至99%同一。
如本文所用,术语“杂交(hybridization)”或“杂交(hybridizes)”是指在充分互补而能通过沃森-克里克碱基配对形成双链体的核苷酸序列之间形成双链体。当两个核苷酸序列共享碱基对组织同源性时,这些分子相互“互补”。“互补”核苷酸序列将在适当的杂交条件下特异性结合,形成稳定的双链体。举例来说,当第一个序列的一部分可以以反平行的方式结合第二个序列的一部分时,两个序列是互补的,其中每个序列的3’-末端与另一个序列的5’-末端结合,然后将一个序列的每个A、T(U)、G和C分别与另一个序列的T(U)、A、C和G对准。RNA序列还可以包括互补的G=U或者U=G碱基对。因此,两个序列不需要具有完美的同源性才能“互补”。通常两个序列在至少约90%(优选至少约95%)的核苷酸在分子的界定长度上共享碱基对组织是就充分互补。在本公开中,每个空间索引引物的捕获结构域包含与组织样品的核酸,例如RNA(优选mRNA)互补的区域。在一些实施方案中,包含在每个空间索引引物的捕获结构域中的这种互补性区域包含多聚胸苷序列以通过多聚-A尾捕获mRNA。
如本文所用,术语“样品”是指从感兴趣的来源获得或衍生的生物样品,如本文所述。在一些实施方案中,感兴趣的来源包含生物体,例如动物或人。在一些实施方案中,生物样品包含生物组织或体液。在一些实施方案中,生物样品可以是或包含骨髓;血液;血细胞;腹水;组织或细针活检样品;含有细胞的体液;自由漂浮的核酸;痰;唾液;尿;脑脊液、腹膜液;胸水;粪便;淋巴;妇科液体;皮肤拭子;阴道拭子;口腔拭子;鼻拭子;洗涤液或灌洗液,例如导管灌洗液或支气管肺泡灌洗液;吸出物;刮片;骨髓标本;组织活检标本;手术标本;其它体液、分泌物和/或排泄物;和/或来自这些中的细胞等。在一些实施方案中,生物样品是或包含从个体获得的细胞。在一些实施方案中,样品是通过任何适当方式直接从感兴趣的来源获得的“原始样品”。例如,在一些实施方案中,通过选自由以下组成的组的方法获得原始生物样品:活检(例如细针抽吸或组织活检)、手术、体液收集(例如血液、淋巴液、粪便等)。在一些实施方案中,如从上下文中将清楚的,术语“样品”是指通过处理(例如,通过去除一种或多种组分和/或通过将一种或多种剂添加到)原始样品获得的制剂。例如,使用半透膜过滤。这样的“处理过的样品”可包含例如从样品中提取的或通过对原始样品进行例如mRNA的扩增或逆转录、分离和/或纯化某些组分,例如细胞器、核酸或膜结合蛋白技术而获得的核酸或蛋白质。在一些实施方案中,样品是包含多种细胞类型的组织。在一些实施方案中,样品是结缔组织、肌肉组织、神经组织或上皮组织。
如本文所用,术语“扩增反应”是指增加核酸拷贝数的反应。这可以通过例如聚合酶链反应(PCR)(包括但不限于qPCR、RT-qPCR、RACE-PCR和RT-LAMP)、连接酶链反应(LCR)、转录介导的扩增和切口酶扩增反应(NEAR)等方法进行。用于扩增核酸的上述方法的任何变体也包括在该术语中。
如本文所用,术语“插入酶”是指能够将核酸序列插入多核苷酸中的酶。在一些情况下,插入酶可以以基本上不依赖于序列的方式将核酸序列插入多核苷酸中。插入酶可以是原核的或真核的。插入酶的实例包括但不限于转座酶、HERMES和HIV整合酶。转座酶可以是Tn转座酶(例如,Tn3、Tn5、Tn7、Tn10、Tn552、Tn903)、MuA转座酶、Vibhar转座酶(例如,来自Vibrio harveyi)、Ac-Ds、Ascot-1、Bs1、Cin4、Copia、En/Spm、F元件、hobo、Hsmar1、Hsmar2、IN(HIV)、IS1、IS2、IS3、IS4、IS5、IS6、IS10、IS21、IS30、IS50、IS51、IS150、IS256、IS407、IS427、IS630、IS903、IS911、IS982、IS1031、ISL2、L1、Mariner、P元件、Tam3、Tc1、Tc3、Te1、THE-1、Tn/O、TnA、Tn3、Tn5、Tn7、Tn10、Tn552、Tn903、Tol1、Tol2、Tn1O、Ty1、任何原核转座酶或与上面列出的那些转座酶相关和/或源自那些转座酶的任何转座酶。在某些情况下,与亲本转座酶相关和/或源自亲本转座酶的转座酶可包含与亲本转座酶的对应肽片段具有至少约50%、约55%、约60%、约65%、约70%、约75%、约80%、约85%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%或约99%氨基酸序列同源性的肽片段。肽片段长度可以为至少约10个、约15个、约20个、约25个、约30个、约35个、约40个、约45个、约50个、约60个、约70个、约80个、约90个、约100个、约150个、约200个、约250个、约300个、约400个或约500个氨基酸。举例来说,源自Tn5的转座酶可以包含长度为50个氨基酸并且与亲本Tn5转座酶中的相应片段具有约80%同源性的肽片段。在一些情况下,可以通过添加一种或多种阳离子促进和/或触发插入。阳离子可以是二价阳离子,例如Ca2+、Mg2+和Mn2+。
在一些实施方案中,转座酶是DDE基序转座酶,例如来自ISs、Tn3、Tn5、Tn7或Tn10的原核转座酶;来自噬菌体Mu的噬菌体转座酶;或真核“剪切和粘贴”转座酶。美国专利No.6,593,113;9,644,199;Yuan和Wessler(2011)Proc Natl Acad Sci USA 108(19):7884-7889。在一些实施方案中,转座酶包括逆转录病毒转座酶,例如HIV。Rice和Baker(2001)Nat Struct Biol.8:302-307。
在一些实施方案中,转座酶是转座酶IS50家族的成员,例如Tn5转座酶或Tn5转座酶的变体。Tn5转座酶源自Tn5转座子,一种可以编码抗生素抗性基因的细菌转座子。点突变E54K和/或L372P可增加Tn5转座酶的活性。在特定实施方案中,转座酶是Tn5转座酶的E54K/L372P突变体,具有增加的转座酶活性。示例性E54K/L372P Tn5转座酶包含以下序列:
MITSALHRAADWAKSVFSSAALGDPRRTARLVNVAAQLAKYSGKSITISSEGSKAMQEGAYRFIRNPNVSAEAIRKAGAMQTVKLAQEFPELLAIEDTTSLSYRHQVAEELGKLGSIQDKSRGWWVHSVLLLEATTFRTVGLLHQEWWMRPDDPADADEKESGKWLAAAATSRLRMGSMMSNVIAVCDREADIHAYLQDKLAHNERFVVRSKHPRKDVESGLYLYDHLKNQPELGGYQISIPQKGVVDKRGKRKNRPARKASLSLRSGRITLKQGNITLNAVLAEEINPPKGETPLKWLLLTSEPVESLAQALRVIDIYTHRWRIEEFHKAWKTGAGAERQRMEEPDNLERMVSILSFVAVRLLQLRESFTPPQALRAQGLLKEAEHVESQSAETVLTPDECQLLGYLDKGKRKRKEKAGSLQWAYMAIARLGGFMDSKRTGIASWGALW(SEQ ID NO:42)
其它增加Tn5转座酶活性的突变公开于以下中:美国专利No.5,965,443;6,406,896;7,608,434;以及Reznikoff(2003)Molecular Microbiology 47(5):1199-1206,所有这些都通过引用明确并入本文。在一些实施方案中,Tn5转座酶是具有降低的GC插入偏好的突变型转座酶(Tn5-059)。Kia等人(2017)BMC Biotechnology 17:6。
方法
如上所提到,本公开的方法涉及一种整合拆分池索引和空间条形码化的方法。因此,本公开使用一组条形码化的索引引物从组织样品中获得单细胞基因表达剖析或转录组,同时保留它们相应的空间信息。
因此,本公开涉及一种基因表达的空间识别方法,所述方法包括通过检测样品中一个或多个结构域鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中细胞的空间位置相关联。
本公开还涉及一种基于空间基因表达剖析鉴定样品中的细胞类型的方法,所述方法包括检测样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中细胞的空间位置相关联。在一些实施方案中,步骤样品中检测空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量包括将一个或多个互补核酸退火至细胞条形码结构域和/或空间条形码结构域并对序列进行聚合酶链反应以鉴定一个或多个结构域的存在或数量。
本公开还涉及一种鉴定样品细胞中的染色质可及性的方法,所述方法包括鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中细胞的空间位置相关联。
本公开另外涉及一种对组织中的单细胞进行空间条形码化的方法,所述方法包括鉴定或检测核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中细胞的空间位置相关联。在一些实施方案中,该检测步骤包括检测共价或非共价结合至一个或两个结构域的荧光信号或探针;或检测一个或多个拷贝
本公开还涉及一种空间鉴定组织内细胞群的方法,所述方法包括鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中细胞的空间位置相关联。
本公开还涉及一种检测组织中的单细胞中的基因表达的方法,所述方法包括鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中细胞的空间位置相关联。
本公开还涉及一种分离与组织内的空间位置对应的细胞的方法,所述方法包括鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织中细胞的空间位置相关联。
本公开另外涉及一种检测器官中的间充质干细胞的方法,所述方法包括鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上器官的组织样品中间充质干细胞的空间位置相关联。
本公开还涉及一种量化单细胞中的RNA表达的方法,所述方法包括鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中单细胞的空间位置相关联。
本公开还涉及一种量化与组织样品内的空间位置对应的RNA表达的方法,所述方法包括鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中RNA表达的空间位置相关联。
本公开还涉及一种制备组织样品内单细胞的核酸的方法,所述方法包括鉴定核酸样品中空间条形码结构域与细胞条形码结构域的组合的存在、不存在或数量。在一些实施方案中,所述方法还包括将空间条形码结构域和细胞条形码结构域的存在、不存在或数量与阵列上组织样品中核酸样品的空间位置相关联。
本公开涉及一种获得单细胞的转录组的方法,所述方法包括:
(a)使样品与阵列接触,所述阵列包含多个孔,所述孔包含一个或多个空间引物和/或条形码;
(b)从每个孔中的样品中分离RNA;
(c)通过将每个孔中的一种或多种引物与分离的RNA退火来扩增RNA,对分离的RNA进行定量PCR;
(d)将分离的RNA的扩增产物与处于与样品内的位置对应的位置处的细胞相关联。
在一些实施方案中,细胞是间充质细胞、癌细胞、肝细胞或脾细胞。在一些实施方案中,孔包含1个、2个、3个、4个、5个、6个、7个、8个、9个或10个细胞。在一些实施方案中,所述方法还包括在每个孔上重复这些步骤以创建表达谱;以及计算由每个孔中的细胞数量加权的每个孔的表达谱的平均表达平均值。
在一些实施方案中,所述方法还包括计算接近度分数的步骤。在一些实施方案中,计算接近度分数的步骤包括进行本说明书第88页上的分析。在一些实施方案中,所述方法还包括进行轨迹干涉分析。
本公开涉及一种获得单细胞的转录组的方法,所述方法包括:
(a)使样品与阵列接触,所述阵列包含多个孔,所述孔包含
(b)从每个孔中的样品中分离RNA;
(c)通过用每个孔中的一种或多种引物对RNA进行扩增,对分离的RNA进行定量PCR;
(d)将RNA的扩增产物与处于与样品内的位置对应的位置处的细胞相关联;
其中每个孔包含与阵列内条形码和引物的位置对应的条形码和引物。
如本文所用,术语“条形码”是指能够鉴定核酸片段的来源的任何独特的非天然存在的核酸序列。条形码序列提供与例如DNA、RNA、cDNA、细胞或细胞核相关的条形码的高质量单独读取,从而可以对多个物种一起测序。
条形码化可基于专利公布WO 2014/047561 A1中公开的任何组合物或方法进行,所述专利公布通过引用整体并入本文。不受理论束缚,来自单细胞或细胞核的扩增序列可以一起测序并基于与每个细胞或细胞核相关的条形码进行解析。还描述了其它条形码化设计和工具(参见例如Birrell等人,(2001)Proc.Natl.Acad.Sci.USA 98:12608-12613;Giaever等人,(2002)Nature 418:387-391;Winzeler等人,(1999)Science 285:901-906;以及Xu等人,(2009)Proc.Natl.Acad.Sci.USA.106:2289-2294)。
本公开的第一种条形码化的索引引物称为“空间索引引物”。如本文所用,“空间索引引物”是指用于从位于组织样品,例如薄组织样品切片或“切片”中不同位置处的所有单细胞捕获转录物并进行标记的引物或寡核苷酸。用于分析的组织样品或切片以高度并行化的方式产生,以便保留切片中的空间信息。对每个细胞捕获的RNA分子,优选mRNA,或“转录组”,随后被转录成cDNA分子,并且例如通过高通量测序分析所得的cDNA分子。通过经由空间索引引物掺入排列的核酸中的条形码序列(或ID标签,本文定义为空间条形码结构域),可以将所得数据与原始组织样品(例如切片)的图像相关联。
为了实现所有这些功能,根据本公开的每个“空间索引引物”包括至少两个结构域,捕获结构域和空间条形码结构域(或空间标签)。空间索引引物还可以包含如下进一步定义的通用结构域。
在一些实施方案中,捕获结构域位于空间索引引物的3’末端并且包含可以通过例如模板依赖性聚合延伸的游离3’末端。捕获结构域包含能够与接触阵列的组织样品的细胞中存在的核酸、例如RNA(优选mRNA)杂交的核苷酸序列。在优选转录剖析的一些实施方案中,捕获结构域可以包含聚胸苷序列,例如聚-T(或“聚-T样”)寡核苷酸,单独或与随机寡核苷酸序列结合。如果使用的话,随机寡核苷酸序列可以例如位于聚-T序列的5’或3’,例如空间索引引物的3’末端。
在一些实施方案中,空间索引引物的空间条形码结构域(或空间标签)包含阵列的每个微孔独有并且充当位置或空间标记(鉴定标签)的核苷酸序列。这样,组织样品的每个区域或结构域,例如组织中的每个细胞,都可以通过将来自某个细胞的核酸(例如RNA或转录物)与空间索引引物中的独特空间条形码结构域序列相联的阵列的空间分辨率来鉴定。借助空间条形码结构域,阵列中的空间索引引物可以与组织样品中的位置相关联,例如,它可以与组织样品中的细胞相关联。在一些实施方案中,特定位置处的空间分辨率为约0.1μm2至约1cm2。在一些实施方案中,特定位置处的空间分辨率为约0.1μm2。在一些实施方案中,特定位置处的空间分辨率为约0.2μm2。在一些实施方案中,特定位置处的空间分辨率为约0.5μm2。在一些实施方案中,特定位置处的空间分辨率为约0.75μm2。在一些实施方案中,特定位置处的空间分辨率为约1μm2。在一些实施方案中,特定位置处的空间分辨率为约2μm2。在一些实施方案中,特定位置处的空间分辨率为约5μm2。在一些实施方案中,特定位置处的空间分辨率为约10μm2。在一些实施方案中,特定位置处的空间分辨率为约20μm2。在一些实施方案中,特定位置处的空间分辨率为约30μm2。在一些实施方案中,特定位置处的空间分辨率为约50μm2。在一些实施方案中,特定位置处的空间分辨率为约80μm2。在一些实施方案中,特定位置处的空间分辨率为约100μm2。在一些实施方案中,特定位置处的空间分辨率为约150μm2。在一些实施方案中,特定位置处的空间分辨率为约200μm2。在一些实施方案中,特定位置处的空间分辨率为约500μm2。在一些实施方案中,特定位置处的空间分辨率为约750μm2。在一些实施方案中,特定位置处的空间分辨率为约1cm2。
任何合适的序列都可以用作根据本公开的空间索引引物中的空间条形码结构域。合适的序列意指空间条形码结构域不干扰(即抑制或扭曲)组织样品的RNA与空间索引引物的捕获结构域之间的相互作用。例如,空间条形码结构域的设计应使组织样品中的核酸分子不与空间条形码结构域或其互补部分特异性或基本上杂交。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的空间条形码结构域的核苷酸序列或其互补序列具有小于约80%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的空间条形码结构域的核苷酸序列或其互补序列具有小于约70%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的空间条形码结构域的核苷酸序列或其互补序列具有小于约60%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的空间条形码结构域的核苷酸序列或其互补序列具有小于约50%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的空间条形码结构域的核苷酸序列或其互补序列具有小于约40%序列同一性。序列同一性可以通过本领域已知的任何合适的方法,例如使用BLAST比对算法来确定。
可以使用随机序列生成来生成空间索引引物的空间条形码结构域的核苷酸序列。随机生成的序列之后可以通过映射到所有常见参考物种的基因组,并利用预设的Tm间隔、GC含量和与其它条形码序列的界定差异距离进行严格过滤,以确保条形码序列不会干扰从组织样品中捕获核酸,例如RNA,并且将毫无困难地相互区分。
如上所提到,在一些实施方案中,空间索引引物还包含通用结构域。在一些实施方案中,空间索引引物的通用结构域直接位于空间条形码结构域的上游或间接位于空间条形码结构域的上游,即更靠近空间索引引物的5’末端。在一些实施方案中,通用结构域与空间条形码结构域直接相邻,即在空间条形码结构域与通用结构域之间没有中间序列。在空间索引引物包含通用结构域的实施方案中,该结构域可以形成空间索引引物的5’末端,其可以直接或间接固定在阵列的基底上。
如本文别处所述,随后对从空间索引引物的捕获结构域捕获的RNA分子、优选mRNA获得的cDNA分子进行测序和分析。因此,在一些实施方案中,包含在空间索引引物中的通用结构域可以包含退火结构域,该退火结构域包含被第一测序引物识别的核苷酸。为了以高通量方式对cDNA分子进行测序和分析,在一些实施方案中,每个空间索引引物中的退火结构域优选包含相同的核苷酸序列。
任何合适的序列都可以用作本公开的空间索引引物中的退火结构域。合适的序列意指退火结构域不干扰(即抑制或扭曲)组织样品的核酸,例如RNA与空间索引引物的捕获结构域之间的相互作用。此外,退火结构域应包含与组织样品的核酸,例如RNA中的任何序列不相同或基本上不相同的核苷酸序列,以使得用于测序的引物可以在用于测序的条件下仅与退火结构域杂交。
例如,退火结构域的设计应使组织样品中的核酸分子不与退火结构域或其互补物特异性杂交。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的退火结构域的核苷酸序列或其互补序列具有小于约80%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的退火结构域的核苷酸序列或其互补序列具有小于约70%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的退火结构域的核苷酸序列或其互补序列具有小于约60%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的退火结构域的核苷酸序列或其互补序列具有小于约50%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,空间索引引物的退火结构域的核苷酸序列或其互补序列具有小于约40%序列同一性。序列同一性可以通过本领域已知的任何合适的方法,例如使用BLAST比对算法来确定。
本公开的第二条形码索引引物称为“细胞索引引物”。如本文所用,“细胞索引引物”是指用于扩增从逆转录获得的cDNA分子并用多孔板的每个孔独有的第二索引条形码(本文定义为细胞条形码结构域)标记每个扩增的cDNA分子的引物或寡核苷酸。如本文别处所述,扩增从逆转录获得的cDNA分子的这一PCR扩增步骤在多孔板上进行,而不是在阵列上进行,在该阵列上,本公开的第一条形码索引引物通过空间索引引物掺入排列的核酸中。
根据本公开,每个“细胞索引引物”包含至少一个称为“细胞条形码结构域”(或细胞标签)的结构域。细胞索引引物还可包含如下进一步定义的通用结构域。
细胞索引引物的细胞条形码结构域(或细胞标签)包含多孔板的每个孔特有的并且充当位于多孔板的任何给定孔中的细胞的鉴定标签的核苷酸序列。这样,每个孔中PCR扩增得到的所有PCR产物都标记有相同的细胞条形码结构域。因此,可以基于特定空间条形码结构域与特定细胞条形码结构域的组合来鉴定阵列上特定位置的单细胞的转录物。本公开涉及一种基因表达的空间识别方法,其包括鉴定空间条形码结构域和特定细胞条形码结构域。
任何合适的序列都可以用作根据本公开的细胞索引引物中的细胞条形码结构域。合适的序列是指例如细胞条形码结构域的设计应使从逆转录获得的cDNA分子不与细胞条形码结构域或其互补物特异性或基本上杂交。在一些实施方案中,在从逆转录获得的大部分cDNA分子中,细胞索引引物的细胞条形码结构域的核苷酸序列或其互补序列具有小于约80%序列同一性。在一些实施方案中,在从逆转录获得的大部分cDNA分子中,细胞索引引物的细胞条形码结构域的核苷酸序列或其互补序列具有小于约70%序列同一性。在一些实施方案中,在从逆转录获得的大部分cDNA分子中,细胞索引引物的细胞条形码结构域的核苷酸序列或其互补序列具有小于约60%序列同一性。在一些实施方案中,在从逆转录获得的大部分cDNA分子中,细胞索引引物的细胞条形码结构域的核苷酸序列或其互补序列具有小于约50%序列同一性。在一些实施方案中,在从逆转录获得的大部分cDNA分子中,细胞索引引物的细胞条形码结构域的核苷酸序列或其互补序列具有小于约40%序列同一性。序列同一性可以通过本领域已知的任何合适的方法,例如使用BLAST比对算法来确定。
可以使用随机序列生成来生成细胞索引引物的细胞条形码结构域的核苷酸序列。随机生成的序列之后可以通过映射到所有常见参考物种的基因组,并利用预设的Tm间隔、GC含量和与其它条形码序列的界定差异距离进行严格过滤,以确保条形码序列不会与从逆转录获得的cDNA分子杂交,并且将毫无困难地相互区分。
如上所提到,细胞索引引物还可包含通用结构域。细胞索引引物的通用结构域直接位于细胞条形码结构域的上游或间接位于细胞条形码结构域的上游,即更靠近细胞索引引物的5’末端。在一些实施方案中,通用结构域与细胞条形码结构域直接相邻,即在细胞条形码结构域与通用结构域之间没有中间序列。在细胞索引引物包含通用结构域的实施方案中,该结构域将形成细胞索引引物的5’末端,其可以直接或间接固定在多孔板的基底上。
如本文别处所述,随后对从逆转录、然后PCR扩增获得的cDNA分子进行测序和分析。因此,在一些实施方案中,包含在细胞索引引物中的通用结构域可以包含退火结构域,该退火结构域包含被第二测序引物识别的核苷酸序列。为了以高通量方式对cDNA分子进行测序和分析,在一些实施方案中,每个细胞索引引物中的退火结构域优选包含相同的核苷酸序序列。
任何合适的序列都可以用作本公开的细胞索引引物中的退火结构域。合适的序列意指例如任何给定细胞索引引物的退火结构域应包含与从逆转录获得的cDNA分子中的任何序列不相同或基本上不相同的核苷酸序列,以使得用于测序的引物可以在用于测序的条件下仅与退火结构域杂交。
例如,退火结构域的设计应使组织样品中的核酸分子不与退火结构域或其互补序列特异性杂交。在一些实施方案中,在组织样品中的大部分核酸分子中,细胞索引引物的退火结构域的核苷酸序列或其互补序列具有小于约90%、85%、80%、75%或70%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,细胞索引引物的退火结构域的核苷酸序列或其互补序列具有小于约70%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,细胞索引引物的退火结构域的核苷酸序列或其互补序列具有小于约60%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,细胞索引引物的退火结构域的核苷酸序列或其互补序列具有小于约50%序列同一性。在一些实施方案中,在组织样品中的大部分核酸分子中,细胞索引引物的退火结构域的核苷酸序列或其互补序列具有小于约40%序列同一性。序列同一性可以通过本领域已知的任何合适的方法,例如使用BLAST比对算法来确定。
根据本公开的阵列或微孔阵列可以含有多个或多个微孔。微孔可以由阵列上的体积、面积或不同位置来定义。在一些实施方案中,单一种类的空间索引引物被固定或在溶液中。在一些实施方案中,本公开涉及一种包含阵列的系统,其中该阵列包含6个、12个、24个、48个、96个、192个或更多个微孔。在一些实施方案中,每个微孔将包含多个相同种类的空间索引引物分子。在此上下文中将理解,虽然涵盖相同种类的每个空间索引引物可具有相同序列,但不一定是这种情况。在一些实施方案中,每个种类的空间索引引物将具有相同的空间条形码结构域(即一个种类的每个成员,因此微孔中的每个引物将被相同地被“标记”),但是微孔的每个成员(种类)的序列可能不同,因为捕获结构域的序列可能不同。如上所述,随机核酸序列可以包括在捕获结构域中。
在一些实施方案中,微孔内的空间索引引物可以包含不同的随机序列。阵列上微孔的数量和密度将决定阵列的分辨率,即可以分析组织样品转录组的细节程度。更高密度的微孔通常会增加阵列的分辨率。如上所提到,本公开的方法提供了基于空间条形码结构域与细胞条形码结构域的特定组合的基因表达的空间识别,本公开提供了单细胞水平的分辨率。然而,组织分辨率将取决于微孔的尺寸。因此,在一些实施方案中,阵列包含多个微孔,每个微孔彼此等距并且包含约100至400微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约100至400微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约10至400微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约20至约400微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约50至约400微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约75至约350微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约100至370微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约300至约375微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约340至约360微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含约5至约100微升的体积。在一些实施方案中,所述阵列包含多个微孔,每个微孔彼此等距(如通过每个孔的中心所测量)并且包含固定在阵列的每个微孔的底部上的条形码索引引物。
在一些实施方案中,所述方法能够以样品的约0.1μm2至约1cm2的样品特定位置处的空间分辨率检测表达谱。在一些实施方案中,样品特定位置处的空间分辨率为约0.1μm2。在一些实施方案中,样品特定位置处的空间分辨率为约0.2μm2。在一些实施方案中,样品特定位置处的空间分辨率为约0.5μm2。在一些实施方案中,样品特定位置处的空间分辨率为约0.75μm2。在一些实施方案中,样品特定位置处的空间分辨率为约1μm2。在一些实施方案中,样品特定位置处的空间分辨率为约2μm2。在一些实施方案中,样品特定位置处的空间分辨率为约5μm2。在一些实施方案中,样品特定位置处的空间分辨率为约10μm2。在一些实施方案中,样品特定位置处的空间分辨率为约20μm2。在一些实施方案中,样品特定位置处的空间分辨率为约30μm2。在一些实施方案中,样品特定位置处的空间分辨率为约50μm2。在一些实施方案中,样品特定位置处的空间分辨率为约80μm2。在一些实施方案中,样品特定位置处的空间分辨率为约100μm2。在一些实施方案中,样品特定位置处的空间分辨率为约150μm2。在一些实施方案中,样品特定位置处的空间分辨率为约200μm2。在一些实施方案中,样品特定位置处的空间分辨率为约500μm2。在一些实施方案中,样品特定位置处的空间分辨率为约750μm2。在一些实施方案中,样品特定位置处的空间分辨率为约1cm2。
如上所提到,本公开的阵列上的微孔的尺寸和数量将取决于样品的性质和所需的分辨率。例如,如果样品含有大的细胞,那么阵列上的微孔的数量和/或密度可能会降低(即低于可能的最大微孔数)和/或微孔的尺寸可以增加(即每个微孔的面积可以大于最小可能微孔),例如包含几个大微孔的阵列。或者,如果需要提高分辨率或组织样品含有小的细胞,则可能需要使用可能的最大微孔数,这将需要使用最小可能微孔尺寸,例如包含许多小微孔的阵列。
因此,在一些实施方案中,本公开的阵列可含有至少约2个、约5个、约10个、约50个、约100个、约500个、约750个、约1000个、约1500个、约2000个、约2500个、约3000个、约3500个、约4000个、约4500个或约5000个微孔。在其它实施方案中,可以制备具有超过约5000个微孔的阵列,并且设想这样的阵列并且在本公开的范围内。如上所述,可以减小微孔尺寸并且这可以允许在相同或相似区域内容纳更大数量的微孔。举例来说,这些微孔可以包含在小于约20cm2、约10cm2、约5cm2、约1cm2、约1mm2或约100μm2的区域中。
取决于微孔的尺寸和它们所在的区域,本公开的微孔的中心与中心间距可以为约50微米至约500微米。在一些实施方案中,微孔的中心与中心间距为约50微米。在一些实施方案中,微孔的中心与中心间距为约100微米。在一些实施方案中,微孔的中心与中心间距为约150微米。在一些实施方案中,微孔的中心与中心间距为约200微米。在一些实施方案中,微孔的中心与中心间距为约250微米。在一些实施方案中,微孔的中心与中心间距为约300微米。在一些实施方案中,微孔的中心与中心间距为约350微米。在一些实施方案中,微孔的中心与中心间距为约400微米。在一些实施方案中,微孔的中心与中心间距为约450微米。在一些实施方案中,微孔的中心与中心间距为约500微米。
本公开的微孔可以是任何期望的形状,包括但不限于堆叠的平面三角形、正方形、五边形、六边形或者是圆柱形的。在一些实施方案中,微孔是三角形的。在一些实施方案中,微孔是正方形的。在一些实施方案中,微孔的水平面是五边形的。在一些实施方案中,微孔是六边形的。在一些实施方案中,微孔是圆柱形的,底部是圆形底。
如附图所示,在一些实施方案中,根据本公开的微孔具有3维结构而不是2维平面。在一些实施方案中,本公开的微孔的深度为约5μm、约10μm、约50μm、约100μm、约150μm、约200μm、约250μm、约300μm、约350μm、约400μm、约450μm或约500μm。在其它实施例中,取决于应用和组织样品,可以制备具有深度大于约500μm的微孔的阵列,并且设想这种阵列并在本公开的范围内。在一些实施方案中,深度为约1μm至约1000μm。
根据本公开的阵列或微孔阵列可以使用本领域技术人员已知的任何合适的材料制造。通常,制造微孔阵列需要一个阳模和一个阴模。在一些实施方案中,可以使用例如具有微孔的硅片来制造作为微孔的反向模板的阴模。然后使用所得到的阴模在固体载体(例如玻璃、塑料或硅芯片或载玻片)上制造具有所需尺寸、形状和间距的微孔。微孔阵列制造的非限制性实例在以下实施例中提供并在图3中示出。
根据本公开的多孔板,根据定义,含有多个或多个孔。在一些实施方案中,本公开的多孔板含有约4个、约16个、约32个、约48个、约96个、约192个、约384个、约768个或约1536个孔。在其它实施方案中,可以使用具有超过约1536个孔的多孔板,并且设想这种多孔板并且在本公开的范围内。在一些实施方案中,本公开的多孔板是微板或微量滴定板。
与上述微孔类似,多孔板的每个孔可定义为微孔板上固定单一种类的细胞索引引物的区域或不同位置。因此,每个孔将包含相同种类的多个细胞索引引物分子。在此上下文中将理解,虽然涵盖相同种类的每个细胞索引引物可具有相同序列,但不一定是这种情况。每个种类的细胞索引引物将具有相同的细胞条形码结构域(即一个种类的每个成员,因此孔中的每个引物将被相同地被“标记”),但是孔的每个成员(种类)的序列可能不同。如上所述,细胞索引引物可以包含通用结构域,其可以直接或间接地与细胞条形码结构域相邻。因此,特定孔内的细胞索引引物可以包含在细胞条形码结构域与通用结构域之间的不同中间序列。
空间索引引物和细胞索引引物可以通过任何合适的方式分别连接至阵列的微孔或多孔板的孔。在一些实施方案中,空间索引引物和细胞索引引物通过化学固定而固定到微孔或孔。这可以是阵列或板的基底(支撑材料)与空间索引引物或细胞索引引物之间基于化学反应的相互作用。这样的化学反应通常不依赖于通过热或光输入能量,而是可以通过施加热(例如化学反应的某个最佳温度)或某些波长的光来增强。例如,可以在基底上的官能团与空间索引引物或细胞索引引物上的相应功能元件之间发生化学固定。空间索引引物或细胞索引引物中的这类相应功能元件可以是引物的固有化学基团,例如羟基,或者是另外引入的。这种官能团的一个实例是胺基。通常,待固定的空间索引引物或细胞索引引物包含官能胺基或被化学修饰以包含官能胺基。这种化学修饰的手段和方法是众所周知的。
可以使用待固定的空间索引引物或细胞索引引物内的这种官能团的定位来控制和塑造引物的结合行为和/或方向,例如官能团可以放置在空间索引引物或细胞索引引物的5’或3’末端或在引物的序列内。待固定的空间索引引物或细胞索引引物的典型基底包含能够与这类引物,例如与胺官能化核酸结合的部分。这种基底的实例是羧基、醛或环氧基底。这样的材料是本领域技术人员已知的。在通过引入胺基而具有化学反应性的引物与阵列基底之间赋予连接反应的官能团是本领域技术人员已知的。
可在上面固定空间索引引物或细胞索引引物的替代基底可能必须进行化学活化,例如通过活化阵列基底或板基底上可用的官能团。术语“活化的基底”是指其中相互作用或反应性化学官能团通过本领域技术人员已知的化学修饰程序建立或启用的材料。例如,包含羧基的基底必须在使用前活化。此外,有一些可用的基底含有可以与核酸引物中已经存在的特定部分反应的官能团。
通常,基底是固体载体,从而允许核酸引物在基底上的准确且可追踪的定位。基底的一个实例是包含官能化学基团,例如胺基或胺官能化基团的固体材料或基底。本发明设想的基底是无孔基底。优选的无孔基底是玻璃、硅、聚-L-赖氨酸涂层材料、硝化纤维素、聚苯乙烯、环烯烃共聚物(COC)、环烯烃聚合物(COP)、聚丙烯、聚乙烯和聚碳酸酯。
可以使用本领域技术人员已知的任何合适的材料。通常使用玻璃或聚苯乙烯。聚苯乙烯是一种适合结合带负电荷的大分子的疏水材料,因为它通常含有很少的亲水基团。对于固定在载玻片上的核酸,还已知通过增加玻璃表面的疏水性,可以增加核酸固定。这种增强可以允许相对更密集的包装形成。除了用聚-L-赖氨酸进行涂层或表面处理外,基底,特别是玻璃,可以通过硅烷化,例如用环氧-硅烷或氨基-硅烷,或通过甲硅烷基化或通过用聚丙烯酰胺处理进行处理。
显然,来自任何生物体的组织样品都可以用于本公开的方法中。本公开的阵列允许捕获样品细胞中存在并且能够转录和/或翻译的任何核酸,例如mRNA分子。本公开的阵列和方法特别适用于分离和分析样品中细胞的转录组,其中转录组的空间分辨率是理想的,例如在细胞相互连接或与多个细胞直接接触的情况下。然而,本领域技术人员将清楚本公开的方法也可用于分析样品内不同细胞或细胞类型的转录组,即使所述细胞不直接相互作用,例如血液样品。换句话说,细胞不需要存在于组织环境中并且可以作为单细胞(例如从非固定组织中分离的细胞)应用于阵列。这样的单细胞虽然不一定固定在组织中的某个位置,但仍应用于阵列上的某个位置并且可以单独鉴定。因此,在分析不直接相互作用或不存在于组织环境中的细胞的情况下,所述方法的空间特性可用于从单个细胞获得或检索独特或独立的空间转录组信息。本公开涉及一种鉴定样品中核酸或蛋白质的空间表达的方法,所述方法包括鉴定引物和/或样品中的内源性核酸之间的相互作用或结合事件。
样品可以是收获的或活检的组织样品,或者可能是培养的样品。代表性样品包括临床样品,例如全血或血液衍生产品、血细胞、组织、活组织检查或培养的组织或细胞,包括细胞悬液。人造组织可以例如由细胞悬液(包括例如血细胞)制备。细胞可以被捕获在基质(例如凝胶基质,如琼脂、琼脂糖等)中,然后可以以常规方式切片。这类程序在本领域中在免疫组织化学的背景下是已知的(参见例如Andersson等人2006,J.Histochem.Cytochem.54(12):1413-23.Epub 2006年9月6日)。
组织制备的模式以及如何处理所得样品可能会影响本公开方法的转录组学分析。此外,各种组织样品将具有不同的物理特性,并且本领域技术人员完全可以进行必要的操作来产生用于本公开的方法的组织样品。然而,从本文的公开内容显而易见的是,任何样品制备方法都可用于获得适用于本公开的方法的组织样品。例如,在本公开的方法中可以使用具有大约1个细胞或更小的厚度的任何细胞层。在一些实施方案中,组织样品的厚度可以小于细胞横截面的约0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2或0.1。然而,由于如上所述,本公开不限于单细胞分辨率,因此不要求组织样品具有一个细胞直径或更小的厚度;如果需要,可以使用更厚的组织样品。例如,可以使用冰冻切片,其可以为约10至约50μm厚。在一些实施方案中,样品为约5μm厚。在一些实施方案中,样品为约10μm厚。在一些实施方案中,样品为约20μm厚。在一些实施方案中,样品为约30μm厚。在一些实施方案中,样品为约40μm厚。在一些实施方案中,样品为约50μm厚。在一些实施方案中,样品为约60μm厚。在一些实施方案中,样品为约70μm厚。在一些实施方案中,样品为约80μm厚。在一些实施方案中,样品为约90μm厚。在一些实施方案中,样品为约100μm厚。
可以以任何方便或期望的方式制备组织样品,并且本公开不限于任何特定类型的组织制备。可以使用新鲜、冷冻、固定或未固定的组织。如本领域所述和已知的,可以使用任何所需的方便程序来固定或包埋组织样品。因此,可以使用任何已知的固定剂或包埋材料。
在用于本公开的组织样品的一个代表性实例中,可以通过在适合维持或保持组织结构的完整性(即物理特性)的温度(例如低于约-20℃、-25℃、-30℃、-40℃、-50℃、-60℃、-70℃或-80℃)下深度冷冻来制备组织。可以通过任何合适的方式将冷冻的组织样品切片,即切成薄片,放到阵列表面上。例如,组织样品可以使用冷冻切片机、低温恒温器来制备,其设定在适合维持组织样品的结构完整性和样品中核酸的化学性质的温度,例如低于约-15℃、-20℃或-25℃。因此,应对样品进行处理以最大程度减少组织中的核酸(例如mRNA)的退化或降解。这样的条件在本领域中是公认的,并且可以通过核酸提取,例如,在组织样品制备的各个阶段进行总RNA提取和随后的质量分析来监测任何降解的程度。
在另一个代表性实例中,可以使用本领域公认的标准福尔马林固定和石蜡包埋(FFPE)方法制备组织。组织样品固定并包埋在石蜡或树脂块中后,可将组织样品切片,即切成薄片,放到阵列上。如上所述,可以使用其它固定剂和/或嵌入材料。
显然,在执行本公开的方法之前,组织样品切片将需要进行处理以从样品中去除包埋材料,例如脱蜡以去除石蜡或树脂。这可以通过任何合适的方法来实现,并且从组织样品中去除石蜡或树脂或其它材料在本领域中是公认的,例如通过将样品(在阵列的表面上)在合适的溶剂(例如二甲苯)中孵育,然后进行乙醇冲洗,例如约99.5%乙醇约2分钟、约96%乙醇约2分钟和约70%乙醇约2分钟。
用于本公开的方法的组织样品切片的厚度可取决于用于制备样品的方法和组织的物理特性。因此,在本公开的方法中可以使用任何合适的切片厚度。在一些实施方案中,组织样品切片的厚度可为至少约0.1μm、0.2μm、0.3μm、0.4μm、0.5μm、0.7μm、1.0μm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。在其它实施方案中,组织样品切片的厚度为至少约10μm、11μm、12μm、13μm、14μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm或50μm。然而,这些只是代表值。如果需要或方便,可以使用更厚的样品,例如约70μm或100μm或更厚。通常,组织样品切片的厚度为约1至约100μm、约1至约50μm、约1至约30μm、约1至约25μm、约1至约20μm,约1至约15μm、约1至约10μm、约2至约8μm、约3至约7μm或约4至约6μm,但如上所提到,可以使用更厚的样品。
为了将从阵列的每个微孔获得的序列分析或转录组信息与组织样品的区域(即区域或细胞)相关联,组织样品相对于阵列上的微孔定向。换句话说,组织样品被放置在阵列上,使得阵列上的空间索引引物的位置可以与组织样品中的位置相关联。因此,可以鉴定组织样品中每个种类的空间索引引物(或阵列的每个微孔)的位置所对应的位置。换句话说,可以鉴定每个种类的空间索引引物的位置对应于组织样品中的哪个位置。这可以通过阵列上存在的位置标记来完成,如下所述。方便地但不是必须地,组织样品可以在其与阵列接触之后进行成像。这可以在处理组织样品的核酸之前或之后进行,例如在该方法的cDNA产生步骤之前或之后,特别是在通过逆转录产生第一链cDNA的步骤之前或之后。在一些实施方案中,组织样品在逆转录步骤之前进行成像。在其它实施方案中,组织样品在组织样品的核酸已经被处理之后,例如在逆转录步骤之后进行成像。一般而言,成像可以在组织样品与阵列接触之后,但在任何降解或去除组织样品的步骤之前的任何时间进行。如上所述,这可能取决于组织样品。
有利地,阵列可以包含标记以促进组织样品或其图像相对于阵列微孔的定向。可以使用任何适用于标记阵列的方式,以使得在组织样品成像时可检测到它们。例如,产生信号,优选可见信号的分子,例如荧光分子,可以直接或间接地固定在阵列的表面上。因此,在一些实施方案中,阵列可以在阵列表面上的不同位置包含至少两个标记。在其它实施方案中,也可以使用超过两个标记,例如至少约3个、4个、5个、6个、7个、8个、9个、10个、12个、15个、20个、30个、40个、50个、60个、70个、80个、90个或100个标记。可以方便地使用数百甚至数千个标记。标记可以呈图案提供,例如构成阵列的外边缘,例如阵列的微孔的整个外排。可以使用其它信息图案,例如分割阵列的线。这可以有助于将组织样品的图像与阵列比对,或者实际上通常有助于将阵列的微孔与组织样品相关联。因此,标记可以是固定的分子,信号给予分子可以与之相互作用以产生信号。在一些实施方案中,可以使用用于使组织样品可视化的相同成像条件来检测标记。
可以使用本领域已知的任何方便的组织学方式对组织样品进行成像,例如光、明场、暗场、相衬、荧光、反射、干涉、共焦显微术或它们的组合。通常,组织样品在可视化之前被染色以提供组织样品的不同区域(例如细胞)之间的对比。使用的染料类型取决于组织的类型和待染色的细胞区域。这种染色方案是本领域已知的。在一些实施方案中,可以使用不止一种染料将组织样品的不同方面,例如组织样品的不同区域、特定细胞结构(例如细胞器)或不同细胞类型可视化(成像)。在其它实施方案中,组织样品可以在样品不染色的情况下被可视化或成像,例如如果组织样品已经含有提供足够对比度的色素或者如果使用特定形式的显微镜。在一些实施方案中,使用荧光显微镜对组织样品进行可视化或成像。
在一些实施方案中,在使阵列与组织样品接触的步骤之后,使用垫片将组织样品密封到阵列上。垫片的使用进一步提供了足以使组织样品中的细胞落入阵列微孔中的力。根据阵列中微孔的尺寸,不同量的细胞将被迫进入每个单独的微孔。在一些实施方案中,阵列的每个单独的微孔包含约1至约100个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约90个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约80个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约70个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约60个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约50个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约40个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约30个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约20个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约10个细胞。在一些实施方案中,阵列的每个单独的微孔包含约1至约5个细胞。在一些实施方案中,阵列的每个单独的微孔包含约5至约10个细胞。
在一些实施方案中,阵列的每个单独的微孔包含平均约50个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约40个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约30个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约20个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约15个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约10个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约9个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约8个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约7个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约6个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均约5个细胞。在一些实施方案中,阵列的每个单独的微孔包含平均少于约5个细胞。
在使阵列与组织样品接触并允许细胞落入微孔中的步骤之后,在足以允许组织样品的核酸(例如mRNA)与空间索引引物之间发生杂交的条件下,进行固定(获取)杂交核酸的步骤。固定或获取捕获的核酸涉及杂交核酸的互补链与空间索引引物的共价连接(即通过核苷酸键、两个紧邻的核苷酸的并列的3’-羟基与5’-磷酸端之间的磷酸二酯键),从而用上面捕获核酸的微孔所特有的空间条形码结构域标上或标记捕获的核酸。
在一些实施方案中,固定杂交核酸、例如单链核酸可以涉及延伸空间索引引物以产生捕获的核酸的拷贝,例如从捕获的(杂交的)RNA产生cDNA。应当理解,这是指杂交核酸的互补链的合成,例如基于捕获的RNA模板(与空间索引引物的捕获结构域杂交的RNA)产生cDNA。因此,在延伸空间索引引物的初始步骤,即cDNA产生中,捕获的(杂交的)核酸,例如RNA,在逆转录步骤中充当延伸的模板。
逆转录涉及通过逆转录酶从RNA,优选mRNA(信使RNA)合成cDNA的步骤。因此,可以认为cDNA是在采集组织样品时存在于细胞中的RNA的拷贝,即它代表了在分离时在该细胞中表达的全部或一些基因。
空间索引引物,特别是空间索引引物的捕获结构域,充当用于产生与空间索引引物杂交的核酸的互补链的引物,例如,用于逆转录的引物。因此,延伸反应(逆转录反应)产生的核酸(例如cDNA)分子中包含空间索引引物的序列,即延伸反应(逆转录反应)可以看作是一种间接标记与阵列的每个微孔接触的组织样品的核酸、例如转录物的方式。如上所提到,每个种类的空间索引引物都包含一个空间条形码结构域(微孔鉴定标签),它代表阵列中每个微孔的独特序列。因此,在特定微孔中合成的所有核酸(例如cDNA)分子将包含相同的核酸“标签”。
在阵列的每个微孔处合成的cDNA分子可代表从与该微孔接触的组织样品的区或区域,例如组织或细胞类型或其组或亚组表达的基因,并且可进一步代表在特定条件下,例如在特定时间、特定环境、发育阶段或响应刺激等表达的基因。因此,任何单个微孔中的cDNA可代表单细胞中表达的基因,或者如果微孔在细胞连接处与样品接触,则cDNA可代表在超过一个细胞中表达的基因。类似地,如果单细胞与多个微孔接触,则每个微孔可代表该细胞中表达的基因的一部分。
延伸空间索引引物,即逆转录的步骤,可以使用本领域中存在的许多合适的酶和方案来进行,如下文详细描述。然而,很明显没有必要为第一条cDNA链的合成提供引物,因为空间索引引物的捕获结构域充当逆转录的引物。
在合成第一条cDNA链后,使用本领域已知的任何方法,例如离心,将阵列中的细胞汇集。然而,离心力或用于收集细胞的任何其它方法应确保每个细胞的完整性。然后将如此收集的细胞分选到如本文别处所述的一个或多个多孔板中用于二次标记。通常,将超过一个细胞分选到多孔板的单个孔中。在一些实施方案中,至少约两个细胞被分选到同一个孔中。在其它实施方案中,超过两个细胞,例如至少约3个、4个、5个、6个、7个、8个、9个、10个、12个、15个、20个、30个、40个、50个、60个、70个、80个、90个或100个细胞被分选到同一个孔中。在一些实施方案中,多孔板的每个孔含有约2至约100个、约5至约80个、约10至约60个或约25至约50个细胞。在一些实施方案中,多孔板的每个孔单独含有约5个细胞。在一些实施方案中,多孔板的每个孔单独含有约10个细胞。在一些实施方案中,多孔板的每个孔单独含有约15个细胞。在一些实施方案中,多孔板的每个孔单独含有约20个细胞。在一些实施方案中,多孔板的每个孔单独含有约25个细胞。在一些实施方案中,多孔板的每个孔单独含有约30个细胞。在一些实施方案中,多孔板的每个孔单独含有约35个细胞。在一些实施方案中,多孔板的每个孔单独含有约40个细胞。在一些实施方案中,多孔板的每个孔单独含有约45个细胞。在一些实施方案中,多孔板的每个孔单独含有约50个细胞。然而,多孔板的每个孔中所含的细胞数量不必相同。如上所述,多孔板的每个孔都包含具有细胞条形码结构域的特定细胞索引引物,其用该孔独有的序列标记位于同一孔中的细胞。
可以通过本领域已知的任何方法,例如FACS(荧光激活细胞分选)和MACS(磁激活细胞分选)将细胞分选到一个或多个多孔板中。也可以使用FACS和MACS以外的方法。在一些实施方案中,细胞使用FACS分选。在其它实施方案中,细胞使用MACS分选。
一旦细胞被分选到多孔板中,本公开的方法包括第二链cDNA合成的步骤。在一些实施方案中,cDNA合成在板上原位进行。在一些实施方案中,第二链cDNA合成可以使用模板转换的方法,例如使用来自的SMARTTM技术。SMART(RNA模板5’末端的转换机制)技术在本领域中是公认的,并且基于这样的发现,即如II(Invitrogen)等逆转录酶能够在延伸的cDNA分子的3’端添加一个、两个、三个或更多个核苷酸,即产生在3’末端具有单链DNA突出物的DNA/RNA杂交体。在一些实施方案中,突出物的长度为1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个或更多个核苷酸。DNA突出物可提供靶序列,寡核苷酸探针可与该靶序列杂交以提供用于cDNA分子的进一步延伸和/或扩增的额外模板。有利地,与cDNA突出物杂交的寡核苷酸探针含有扩增结构域序列,其互补序列可以在细胞索引引物中找到。这样,可以使用细胞索引引物进一步扩增和富集所得的cDNA分子,同时用第二个独特的孔特异性条形码(即细胞条形码)标记。这种方法避免了将接头连接到cDNA第一链的3’末端的需要。虽然模板转换最初是为具有5’帽结构的全长mRNA开发的,但后来证明它同样适用于没有帽结构的截短mRNA。因此,可以在本公开的方法中使用模板切换来产生全长和/或部分或截短的cDNA分子。因此,在一些实施方案中,第二链合成可利用模板转换或通过模板转换实现。
逆转录后,使用细胞索引引物增强、富集和/或扩增cDNA分子。如上所论述,每个细胞索引引物都包含细胞条形码结构域,该结构域包含多孔板的每个孔独有的核苷酸序列。因此,位于板的一个特定孔中的所有cDNA都用与独特细胞条形码结构域对应的相同核苷酸序列进行标记。进行这种PCR扩增的条件是本领域众所周知的。
从以上描述中将显而易见的是,已经通过本公开的方法合成的来自单个阵列的cDNA分子可包含被第一测序引物识别的相同退火结构域和被第二测序引物识别的相同退火结构域。因此,可以使用本领域已知的任何测序平台,例如任何下一代测序技术,对cDNA分子进行大规模量化和分析。因此,在一些实施方案中,使用Illumina测序对cDNA分子进行量化和分析,首先通过标签化生成Illumina测序兼容库,然后进行PCR扩增。可扩增片段将优选含有在cDNA制备期间添加的条形码结构域(即空间条形码结构域和细胞条形码结构域)。
序列分析步骤将鉴定或揭露捕获的RNA序列的一部分以及两个条形码结构域(即空间条形码结构域和细胞条形码结构域)的序列。空间条形码结构域的序列将鉴定捕获mRNA分子的微孔。可以将捕获的RNA分子的序列与样品源自的生物体的序列数据库进行比较,以确定它对应的基因。通过确定组织样品的哪个区域与微孔接触,可确定组织样品的哪个区域正在表达所述基因。由于与给定微孔接触的组织样品的给定区域可能含有超过一个细胞,因此细胞条形码结构域的序列将允许在细胞水平上区分捕获的具有相同空间条形码结构域的RNA分子。该分析可以针对由本公开的方法产生的所有cDNA分子实现,从而以单细胞方式产生组织样品的空间转录组。
作为一个代表性的实例,可以分析测序数据以将序列分类为特定种类的空间索引引物,即根据空间条形码结构域的序列。这可以通过使用例如FastX工具包FASTQ条形码拆分器工具将序列分类到相应的空间索引引物的空间条形码结构域的各个文件中来实现。可以分析每个种类的序列,即来自每个微孔的序列,以确定转录物的身份。例如,可以使用Blastn软件鉴定序列,以将序列与一个或多个基因组数据库,例如获得组织样品的生物体的数据库进行比较。与通过本公开的方法产生的序列具有最大相似性的数据库序列的身份将被分配给该序列。通常,只有确定性至少为约1e-6、约1e-7、约1e-8或约1e-9的命中才会被认为已成功鉴定。
显然,任何核酸测序方法都可以用于本公开的方法中。然而,所谓的“下一代测序”技术将尤其适用于本公开中。高通量测序在本公开的方法中特别有用,因为它能够在非常短的时间内对大量核酸进行部分测序。鉴于近来完全或部分测序的基因组数量激增,要确定每个分子对应的基因,不必对产生的cDNA分子的全长进行测序。举例来说,来自cDNA分子每一末端的前约100个核苷酸应该足以鉴定出在细胞水平上捕获mRNA的微孔(即其在阵列上的位置)和表达的基因。
作为一个代表性的实例,测序反应可以基于可逆染料终止剂,例如在IlluminaTM技术中使用的。举例来说,首先将DNA分子连接到例如玻璃或硅载玻片上的引物上并扩增,从而形成局部克隆集落(桥式扩增)。添加了四种类型的ddNTP,未掺入的核苷酸被洗掉。与焦磷酸测序不同,DNA一次只能延伸一个核苷酸。照相机拍摄荧光标记的核苷酸的图像,然后通过化学方式将染料与末端3’阻断剂一起从DNA中去除,从而进行下一个循环。这可以重复,直到获得所需的序列数据。使用这项技术,可以在单张载玻片上同时对数千个核酸进行测序。
其它高通量测序技术同样适用于本公开的方法,例如焦磷酸测序。在这种方法中,DNA在油溶液中的水滴内进行扩增(乳液PCR),每个液滴都含有单个DNA模板,该模板附着在单个涂有引物的珠粒上,然后形成一个克隆集落。测序仪含有许多皮升体积的孔,每个孔都含有单个珠粒和测序酶。焦磷酸测序使用荧光素酶产生光以检测添加到新生DNA中的单个核苷酸,并且组合数据用于产生序列读数。
显然,未来的测序格式正在慢慢地可用,并且更短的运行时间是那些平台的主要特征之一,很明显,其它测序技术可用于本公开的方法中。
如上所述,本公开的基本特征是本文公开的任何方法,其包括通过例如逆转录捕获的RNA分子将捕获的RNA分子的互补链固定到空间索引引物的步骤。逆转录反应是本领域众所周知的,并且在代表性逆转录反应中,反应混合物包括逆转录酶、dNTP和合适的缓冲液。反应混合物可以包含其它组分,例如RNase抑制剂。引物和模板是空间索引引物的捕获结构域,捕获的RNA分子如上所述。在主题方法中,每种dNTP通常以约10至约5000μM,通常约20至约1000μM范围内的量存在。
所需的逆转录酶活性可以由一种或多种不同的酶提供,其中合适的实例为M-MLV、MuLV、AMV、HIV、ArrayScriptTM、MultiScribeTM、ThermoScriptTM和I、II和III酶。
逆转录酶反应可以在任何合适的温度下进行,这取决于酶的性质。通常,逆转录酶反应在约37至约55℃之间进行,尽管超出此范围的温度也可能是合适的。反应时间可以短至约1分钟、2分钟、3分钟、4分钟或5分钟或长达约48小时。通常,根据选择,反应将进行约5至约120分钟,例如约5至约60分钟、约5至约45分钟、约5至约30分钟、约1至约10分钟或约1至约5分钟。反应时间不是关键的,可以使用任何所需的反应时间。
如上所指示,所述方法的某些实施方案包括扩增步骤,其中增加产生的cDNA分子的拷贝数,例如以富集样品,从而获得从组织样品中捕获的转录物的更好表示。根据需要,扩增可以是线性的或指数的,其中代表性的感兴趣的扩增方案包括但不限于聚合酶链反应(PCR)和等温扩增等。
在制备主题方法的步骤的逆转录酶、DNA延伸或扩增反应混合物中,各种组成成分可以以任何方便的顺序组合。举例来说,在扩增反应中,可以将缓冲液与引物、聚合酶、然后模板DNA组合,或者可以将各种组成成分全部同时组合而产生反应混合物。
举一代表性实例,本公开的任何方法可以包括以下步骤:
(a)使阵列与组织样品接触,其中所述阵列包含基底,多个种类的空间索引引物直接在所述基底上,使得每个种类占据阵列上的不同位置并且定向为具有游离的3’末端,其中所述空间索引引物的每个种类包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列;
使得组织样品的一个或多个核酸序列与所述空间索引引物杂交;
(b)对阵列上的组织样品进行成像;
(c)逆转录捕获的mRNA分子以产生cDNA分子;
(d)将细胞从阵列中汇集并分选到一个或多个96孔板中;
(e)使细胞溶解并进行第二链cDNA合成以通过模板转换掺入5-PCR柄;
(f)扩增cDNA分子以将细胞索引引物掺入每个cDNA分子中,每个细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含96孔板的每个孔独有的核苷酸序列;
以及
(g)分析cDNA分子的序列和/或位置(例如,测序)。
本公开包括上述方法中的步骤的任何合适的组合。应当理解,本公开还包括这些方法的变体,例如,在板上原位进行扩增的情况。还涵盖省略成像步骤的方法。
本公开还涉及一种从与所述阵列接触的组织样品中捕获mRNA的方法;或一种确定和/或分析组织样品的(例如,部分或全部)转录组的方法,所述方法包括将多个种类的空间索引引物固定到阵列基底上,其中所述空间索引引物的每个种类包含从5’到3’如下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列。
在一些实施方案中,本公开涉及一种产生本公开的阵列的方法,使得每个种类的空间索引引物作为微孔固定在阵列上。在一些实施方案中,本公开涉及一种产生阵列的方法,所述方法包括:将多个种类的空间索引引物固定到阵列基底上,其中所述空间索引引物的每个种类包含从5’到3’如下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列。
本公开还可涉及用于制造或产生用于测定和/或分析分析组织样品的(例如,部分或全部)转录组的多孔板的方法,所述方法包括将多个种类的细胞索引引物直接或间接固定到多孔板基底,其中所述细胞索引引物的每个种类包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
可以进一步定义产生本公开的多孔板的方法,使得每个种类的细胞索引引物作为孔固定在板上。
将空间索引引物固定在阵列上或将细胞索引引物固定在板上的方法可以使用本文所述的任何合适的方式来实现。在空间索引引物或细胞索引引物分别间接固定在阵列或板上的情况下,它们可以在阵列或板上合成。举例来说,空间索引引物或细胞索引引物可以分别使用自动分配系统(例如Scienion sciFLEXARRAYER S3打印机)直接在阵列或板上合成。
在步骤(g)中获得的序列分析(例如,测序)信息可用于在细胞水平获得关于样品中核酸的空间信息。换句话说,序列分析信息可以以单细胞方式提供关于核酸在组织样品中的位置的信息。该空间信息可以源自所获得的序列分析信息的性质,例如源自确定或鉴定的序列,例如它可以揭露特定核酸分子的存在,该特定核酸分子本身在使用的组织样品环境中可提供空间信息,和/或空间信息(例如空间定位)可以源自阵列上的组织样品的位置,以及序列分析信息。然而,如上所述,可以通过将序列分析数据与组织样品的图像相关联来方便地获得空间信息。
因此,在一些实施方案中,本公开的方法包括以下步骤:
(h)将所述序列分析信息与所述组织样品的图像相关联,其中组织样品在步骤(b)之前或之后成像。
在一些实施方案中,本公开的方法可用于以单细胞分辨率进行染色质测序,即ATAC-seq(转座酶可接近的染色质序列测定)。为此,使用相同的微孔阵列,但不是在微孔中打印oligo-dT,而是使用条形码化的转座酶(TN5),它将标记开放的染色质并允许生成ATAC-seq库。
在一些实施方案中,本公开的方法可用于进行TCR-seq。因为本公开的方法中提供的库是通过模板转换生成的,所以产生全长cDNA,这使得空间单细胞TCR seq成为可能。为此,需要对单细胞cDNA进行空间条形码化。然后使用与TCRα和β链可变区结合的引物进行TCR富集PCR。引物有一个Nextera R2柄,允许进行嵌套PCR以使用Illumina p5引物完成seq库。
在一些实施方案中,本公开的方法可用于进行细胞特异性空间转录组学剖析。这之所以成为可能,是因为本公开的方法在第一条形码化与第二条形码化步骤之间包括细胞分选步骤。在第一条形码化步骤期间,可以用细胞特异性抗体标记细胞,然后仅对感兴趣的细胞进行分选以进行第二条形码化步骤。
系统
本公开还涉及一种系统,其包含一个或多个本文公开的阵列。在一些实施方案中,这类阵列中的每一个包含一个或多个微孔,每个微孔占据阵列上的不同位置并且包含本文别处公开的任何空间索引引物。在一些实施方案中,这类空间索引引物中的每一个包含在5’到3’方向上包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列。
在一些实施方案中,所公开的系统的每个阵列单独包含至少约10个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约50个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约100个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约200个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约500个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约1000个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约2000个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约4000个微孔。
在一些实施方案中,所公开的系统的每个阵列单独包含至少约16个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约32个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约64个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约128个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约256个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约512个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约768个微孔。在一些实施方案中,所公开的系统的每个阵列单独包含至少约1024个微孔。
在一些实施方案中,所公开的系统的阵列中的每个微孔是三角形的。在一些实施方案中,所公开的系统的阵列中的每个微孔是正方形的。在一些实施方案中,所公开的系统的阵列中的每个微孔是五边形的。在一些实施方案中,所公开的系统的阵列中的每个微孔是六边形的。在一些实施方案中,所公开的系统的阵列中的每个微孔是圆形的。
在一些实施方案中,所公开的系统的阵列中的每个微孔的深度为约25μm至约800μm。在一些实施方案中,所公开的系统的阵列中的每个微孔的深度为约1μm至约1000μm。在一些实施方案中,所公开的系统的阵列中的每个微孔的深度为约50至约500微米。在一些实施方案中,所公开的系统的阵列中的每个微孔的深度为约75μm至约250μm。在一些实施方案中,所公开的系统的阵列中的每个微孔的深度为约5μm、约10μm、约50μm、约100μm、约150μm、约200μm、约250μm、约300μm、约350μm、约400μm、约450μm、约500μm或约1000μm。在一些实施方案中,所公开的系统的阵列中的每个微孔的深度为约400微米。
在一些实施方案中,所公开的系统的阵列中的微孔的中心与中心间距为约50微米至约500微米。在一些实施方案中,微孔的中心与中心间距为约50微米。在一些实施方案中,微孔的中心与中心间距为约100微米。在一些实施方案中,微孔的中心与中心间距为约150微米。在一些实施方案中,微孔的中心与中心间距为约200微米。在一些实施方案中,微孔的中心与中心间距为约250微米。在一些实施方案中,微孔的中心与中心间距为约300微米。在一些实施方案中,微孔的中心与中心间距为约350微米。在一些实施方案中,微孔的中心与中心间距为约400微米。在一些实施方案中,微孔的中心与中心间距为约450微米。在一些实施方案中,微孔的中心与中心间距为约500微米。
在一些实施方案中,所公开的系统还包含一个或多个本文公开的多孔板。在一些实施方案中,每个多孔板包含一个或多个孔,每个孔占据多孔板上的不同位置并且包含本文公开的任何一个或多个细胞索引引物。在一些实施方案中,每个这类细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
在一些实施方案中,所公开的系统的每个多孔板单独包含约24个孔。在一些实施方案中,所公开的系统的每个多孔板单独包含约48个孔。在一些实施方案中,所公开的系统的每个多孔板单独包含约96个孔。在一些实施方案中,所公开的系统的每个多孔板单独包含约192个孔。在一些实施方案中,所公开的系统的每个多孔板单独包含约384个孔。在一些实施方案中,所公开的系统的每个多孔板单独包含约768个孔。
在一些实施方案中,所公开的系统的空间条形码结构域单独包含约8至约50个核苷酸。在一些实施方案中,所公开的系统的空间条形码结构域单独包含约9至约40个核苷酸。在一些实施方案中,所公开的系统的空间条形码结构域单独包含约10至约30个核苷酸。在一些实施方案中,所公开的系统的空间条形码结构域单独包含约12至约25个核苷酸。在一些实施方案中,所公开的系统的空间条形码结构域单独包含约8个、约9个、约10个、约11个、约12个、约13个、约14个、约15个、约16个、约17个、约18个、约19个、约20个、约21个、约22个、约23个、约24个、约25个、约26个、约27个、约28个、约29个、约30个、约35个、约40个、约45个或约50个核苷酸。在一些实施方案中,所公开的系统的空间条形码结构域单独包含约16个核苷酸。
在一些实施方案中,所公开的系统的捕获结构域中的聚胸苷序列单独包含约8至约50个脱氧胸苷残基。在一些实施方案中,所公开的系统的捕获结构域中的聚胸苷序列单独包含约9至约40个脱氧胸苷残基。在一些实施方案中,所公开的系统的捕获结构域中的聚胸苷序列单独包含约10至约30个脱氧胸苷残基。在一些实施方案中,所公开的系统的捕获结构域中的聚胸苷序列单独包含约12至约25个脱氧胸苷残基。在一些实施方案中,所公开的系统的捕获结构域中的聚胸苷序列单独包含约8个、约9个、约10个、约11个、约12个、约13个、约14个、约15个、约16个、约17个、约18个、约19个、约20个、约21个、约22个、约23个、约24个、约25个、约26个、约27个、约28个、约29个、约30个、约35个、约40个、约45个或约50个脱氧胸苷残基。在一些实施方案中,所公开的系统的捕获结构域中的聚胸苷序列单独包含约18个脱氧胸苷残基。
在一些实施方案中,所公开的系统的细胞条形码结构域单独包含约8至约50个核苷酸。在一些实施方案中,所公开的系统的细胞条形码结构域单独包含约9至约40个核苷酸。在一些实施方案中,所公开的系统的细胞条形码结构域单独包含约10至约30个核苷酸。在一些实施方案中,所公开的系统的细胞条形码结构域单独包含约12至约25个核苷酸。在一些实施方案中,所公开的系统的细胞条形码结构域单独包含约8个、约9个、约10个、约11个、约12个、约13个、约14个、约15个、约16个、约17个、约18个、约19个、约20个、约21个、约22个、约23个、约24个、约25个、约26个、约27个、约28个、约29个、约30个、约35个、约40个、约45个或约50个核苷酸。在一些实施方案中,所公开的系统的细胞条形码结构域单独包含约16个核苷酸。
在一些实施方案中,所公开的系统还包含一个或多个垫片。通过将垫片放置在切片组织的顶部,此类垫片可用于迫使切片组织中的细胞落入所公开的阵列的微孔中。垫片可由任何已知的材料制成。在一些实施方案中,所公开的系统的垫片由硅树脂制成。在一些实施方案中,所公开的系统还包含适用于组织消化的材料和试剂。在一些实施方案中,所公开的系统还包含适用于透化的材料和试剂。在一些实施方案中,所公开的系统还包含适用于逆转录(RT)的材料和试剂。在一些实施方案中,所公开的系统呈试剂盒的形式,该试剂盒具有呈标签或产品插页形式的合适操作参数的说明。
现在将参考所附表格和图式以示例的方式说明本公开的方面和实施方案。另外的方面和实施方案对于本领域技术人员将是显而易见的。本文中提及的所有文件均通过引用整体并入本文。
实施例
实施例1:方法概述
XYZeq使用一种改进的组合索引方法,类似于2017年发布为sci-RNA-seq(用于单细胞组合索引RNA测序分析;23)和SPLiT-seq(基于拆分池连接的转录组测序;24)的方法。简单地说,使用聚二甲基硅氧烷(PDMS)模具作为模板,在通用组织学载玻片上由NorlandOptical Adhesive 81(NOA81)制造500微米六边形孔阵列。然后用空间界定的条形码化的oligo(dT)18引物对每个孔进行点样并干燥。
在实验当天,用组织消化、透化和逆转录(RT)试剂的混合物对孔阵列载玻片进行点样,在其上覆盖固定的冷冻组织切片。阵列用硅垫片夹住并放置在载玻片微阵列杂交室(Agilent G2534A)中,以确保在短的原位RT反应期间微孔密封。反应后,取出阵列载玻片并放入装有1X SSC缓冲液和10% FCS的50ml锥形管中。将具有载玻片的管涡旋15秒以将细胞从孔中移出,然后以700rcf离心10分钟以使细胞形成球粒。从50ml锥形管中去除差不多1-2ml后,通过70微米细胞过滤器过滤细胞,用抗体染色,并将25-50个细胞分选到具有5μl第二RT混合物的96孔板中的孔中。此时,加入第二RT混合物中包括的DTT使细胞溶解,并在42℃下进行标准的1.5小时逆转录和模板转换反应,然后进行PCR,其中使用条形码化的Illumina P5引物用于二次索引。将所有孔中的条形码化的cDNA汇集到一个2ml管中,并使用固相可逆固定(SPRI)珠粒进行清洁和浓缩。将cDNA洗脱到15μl,进行量化并检查大小分布是否合适。然后通过标签化、接着PCR从cDNA生成Illumina兼容测序库,这样两个组合条形码都保留在测序片段上。
实施例2:用于XYZeq的微孔阵列芯片的制造
XYZeq的阵列制造涉及阳模设计和制造以及PDMS阴模的产生。对于阳模,微孔阵列设计为500μm孔的六边形包(测量的中心到中心),间隔10μm。阵列设计包括角基准标记,用于精确比对和通过Scienion sciFLEXARRAYER S3进行试剂分配。微孔设计的UV掩模是从CAD/Art Services(Bandon,Oregon)获得的。将100mm硅片用SU-8 2150光刻胶以2000rpm旋涂30秒,在95℃下软烘烤2小时,用掩模进行UV曝光30分钟,在95℃下后烘烤20分钟,然后显影1小时。
如下产生PDMS阴模。PDMS(Sylgard 184)有两种液体组分:组分A是基料,组分B是固化剂。使用称重秤,添加30克A组分,然后添加与组分A1:10的B组分到100mm皮氏培养皿(petri dish)中。用塑料棉签混合这两种组分。将硅片阵列阳模放入培养皿中,然后在真空干燥器中脱气30分钟至1小时,直至没有气泡残留。将装有硅片的培养皿以1000rcf离心10分钟,使晶片下降到底部并去除任何剩余的气泡。将PDMS在70℃烘箱中固化过夜。从晶片上剥下PDMS,然后使用剃须刀片切出模具。
如下制造微孔阵列芯片。将热板加热至100℃。向PDMS模具中添加150μl NOA81,并将其铺展以覆盖整个阵列。将组织学载玻片放在PDMS模具顶部,并在载玻片顶部放置透明的20g重物。在一侧UV使NOA81固化2分钟,然后在没有重物的情况下在背面固化1分钟。短暂冷却,然后将PDMS模具从NOA81阵列上剥离,完成制造过程。
使用Scienion sciFLEXARRAYER S3打印机用空间条形码化的oligo(dT)18引物打印微孔阵列芯片。在所进行的特定实验中,用768个独特条形码化的oligo(dT)18引物打印阵列。S3打印机被安置在一个冷冻的和湿度控制的室内,因此在打印过程中,源板不会蒸发。寡核苷酸在芯片中干燥并存储至实验当天。
实施例3:使用细胞系验证XYZeq平台
XYZeq平台的可行性已使用来自两种不同物种的细胞系进行了验证,这些细胞系的浓度由每个孔的相对空间位置确定。还使用鼠异位肝肿瘤模型验证了XYZeq平台鉴定完整组织内具有不同空间组织的独特细胞群的能力。
XYZeq扩展了最近用于单细胞测序的拆分池索引(17,18)方法,使得能够同时记录空间信息。细胞转录物由离六边形微孔阵列中心250μm的条形码化寡核苷酸进行空间编码。细胞被点样到孔中,透化,并用含有独特分子标识符和PCR柄的孔特异性条形码化oligo d(T)引物(RT-索引)进行索引。随后是逆转录、通过PCR进行第二轮条形码化,以及标签化以生成单细胞RNA测序(图5A)。空间信息RT-索引与拆分池PCR-索引的组合允许获得单细胞转录组数据,同时将每个细胞分配到阵列中的特定孔。使用两轮组合条形码化,第一轮使用768个位置RT-索引,第二轮使用384个PCR-索引,最多可以生成294,912个条形码组合。
为了验证XYZeq生成可解释的单细胞转录组,我们进行了混合物种实验,其中80个人(HEK293T)和小鼠(NIH/3T3)细胞以各种不同的比例存放在768个条形码化的微孔中。已使用来自两种不同物种的细胞系证明了XYZeq的可行性,这些细胞系以由每个孔的相对空间位置确定的浓度混合。微孔阵列中的每一列具有以梯度混合在一起的下降或上升浓度的人或小鼠细胞(图5B)。汇集来自微孔芯片的细胞,经过FACS分选到四个96孔板的每个孔中,浓度为25个细胞/孔。总共获得了4,871个独特条形码化的细胞,随后将读数与小鼠或人基因组进行比对。我们的数据揭露了物种之间读数的明显分离,其中每个细胞被明确分配给单个物种(>90%读数与单个基因组比对),只有8.4%的碰撞率,其中细胞映射到人和小鼠,这与使用这些参数的预期条形码碰撞率一致(图5C)。每个人细胞获得了939个UMI和439个基因的中值,每个小鼠细胞获得了816个UMI和336个基因的中值(图5D)。此外,每列中人与小鼠细胞的比率与打印在梯度图案上的预期细胞比率一致(图5E)。这些结果表明,当细胞在逆转录前汇集时,孔之间的条形码转移非常少,并且XYZeq生成高质量的scRNA-seq库。
实施例4:使用固定组织切片验证XYZeq平台
接下来确定XYZeq是否可以从固定组织切片生成单细胞RNA-seq库。这需要在微孔中进行组织消化、细胞透化和空间索引。为了测试这一点,我们使用了一种异位鼠肿瘤模型,该模型是通过将同基因结肠腺癌细胞系MC38经肝内注射到免疫活性小鼠中而建立的。MC38用荧光素酶(MC38-Luc)标记,以允许观察肝脏中的肿瘤生长,从而确定从动物切除的正确时间范围。当通过生物发光成像,肿瘤生长到直径约5mm(注射后第10-12天)时,处死小鼠,并收获负载有肿瘤结节的肝脏,固定并冷冻在包埋基质盒中。之所以选择该肝肿瘤模型,是因为清晰的边缘界定了肿瘤/肝边界并且MC38肿瘤是免疫原性的(30)。MC38肿瘤还具有免疫调节特性,免疫细胞积聚在肿瘤/组织界面。之前的数据已经显示在肿瘤接种后约12天,肿瘤中的所有细胞的约15-20%是浸润免疫细胞(23,24)。因此,预测XYZeq数据可能会在疾病进展过程中捕获具有不同空间组织的组织驻留细胞群和浸润细胞群。
我们修改了XYZeq平台来研究完整组织切片。为了再次确保转录组可以分配给离散的单细胞,将固定的人HEK293T细胞以平均每孔58个细胞点样到条形码化的微孔阵列中,然后在-80℃下冷冻以提供用于检测空间内混合的对照或PCR孔。接下来,将来自C57BL/6小鼠的25μm固定冷冻肝/肿瘤组织切片放于预冷冻的-80℃微孔阵列顶部,同时取连续的10μm切片并固定用于免疫组织化学染色。捕获阵列上组织的图像以确定阵列上组织的总体方向。成像后,用硅胶垫圈密封阵列,然后将其夹在Agilent微阵列杂交载玻片室中。微阵列杂交室有两个用途:1)机械压力迫使组织进入孔,和2)在42℃孵育期间,当进行组织消化、细胞透化、原位oligo(dT)退火和逆转录(RT)时防止蒸发(图5A)。
基于组织的方案生成的数据具有高单细胞完整性,56%的细胞映射到小鼠,34%的细胞映射到人,碰撞率9.6%(图6A)。在46%的测序饱和度下,检测到每个HEK293T细胞中1596个转录物UMI和629个独特基因的中值,来自异位鼠肿瘤模型的每个细胞1009个UMI转录物和456个独特基因的中值(图6B)。从阵列拍摄的组织图像以及组织的苏木精和伊红(H&E)免疫组织化学染色揭露了肿瘤和肝组织的不同边界(图6C)。从单细胞数据重建细胞的空间排列揭露了散布在整个阵列中的人细胞和被隔离在组织覆盖的孔中的小鼠细胞(图6D)。重要的是,这些结果表明XYZeq可以从冷冻组织中生成空间分辨单细胞RNA-seq数据。
需要注意的是,为了从固定冷冻组织中获得高质量的RNA,容纳载玻片的微阵列杂交室必须经历从-80℃、-20℃、4℃、25℃至42℃缓缓逐步温度上升。在没有这种逐步温度变化的情况下,从阵列中提取的RNA严重降解(数据未显示)。
实施例3:肝肿瘤模型中发现的不同细胞群的鉴定
在使用XYZeq处理的组织切片中,总共产生了26,436个独特条形码组合,对于表达至少500个UMI的4,788个条形码平均检测到456个独特基因,我们将其过滤为包含细胞的隔室。无人监督的莱顿聚类在我们的scRNAseq数据集中揭露了七种不同的细胞群:包括HEK293T、MC38肿瘤、巨噬细胞、枯否细胞、肝窦内皮细胞(LSEC)、淋巴细胞和肝细胞(图7A)。每个簇可由不同的基因表达谱定义,包括Mc38肿瘤的Plec、LSEC的Stab2、肝细胞的Dpyd、枯否细胞的Cd5l、巨噬细胞的Cd74和淋巴细胞的Skap1(图7B)。使用Harmony(一种可以将数据集归一化以整合来自具有不同实验和生物因素的多个实验的细胞的数据的算法),我们能够将XYZeq数据集与10X Chromium(v3)合并,以确定量度的比较方式。10X Chromium的细胞是从先前固定、冷冻和切片的异位肝肿瘤处理的,其一起汇集成单细胞悬浮液,并在使用10X Chromium制造商的方案生成库之前进行分选。为了合并数据集,XYZeq和10X的原始计数矩阵仅针对最终的一组细胞条形码进行过滤,同时保留所有可能的小鼠基因,并组合成一组5453个细胞,跨越22374个基因。将数据归一化为每个细胞100万个计数,记录,然后缩放到每个基因的平均值为零和方差为1。使用PC对数据进行预处理,然后使用Harmony。使用UMAP进行可视化,使用莱顿进行聚类,分辨率为0.2(图8A)。
为了确定这两个平台的相关性如何,我们过滤了2500个表达UMI最多的细胞条形码。使用来自合并数据集的注释,计算来自每种方法和属于每种细胞类型的细胞比例。绘制每种细胞类型的比例,并通过拟合假设两种方法之间的比例相等的模型来计算决定系数。使用该量度,从10X数据到XYZeq的簇之间的相关性在两个不同的单细胞平台之间的r^2值为0.961时为高的,两个平台之间的簇组成相似。(图7B)。从10X Chromium(v3)中检测到的UMI的中值为每个细胞1805个和857个基因。相反,使用固定冷冻组织切片的XYZeq平台处理从6个组织切片的聚合数据中恢复的单细胞量度,每个细胞检测到1124个UMI和468个基因(图7C)。比较分析允许我们揭露每个群体中在基因表达谱、功能和组织方面不同的异质性。基于7种细胞类型的已知代表性标记基因平铺不同的表达谱,我们能够将跨细胞群的基因表达重叠可视化(图8B)。每个基因的气泡大小与细胞类型的表达程度相关。
为了确定XYZeq与10X genomics平台之间的一致程度,尝试通过热图进行可视化,其中将测定生成的簇与10x genomics平台生成的簇之间的缩放基因表达相关联(图7D)。在测定中发现的所有簇都与使用10X平台发现的除了一个以外的相应细胞类型相关,唯一的例外是一小群B细胞。这些细胞没有单独在XYZeq数据中聚类,而是可能至少部分被淋巴细胞群捕获。在免疫细胞类型之间观察到其它相关性,特别是在两个巨噬细胞簇之间,以Cd74和Tgfbr1为标记的巨噬细胞表明来自外周的浸润,而其它以Clec4f和Timd4为标记的巨噬细胞表明它们是非造血来源的组织驻留枯否细胞。这些数据显示了XYZeq方法与10Xgenomics平台之间的高度一致性。
实施例4:淋巴细胞基因表达谱揭露组织特异性适应
10X Chromium可以生成基因表达谱和细胞类型的综合数据集,它不能在组织环境中对细胞进行空间定位。为了确定XYZeq的单细胞数据是否可以如实地重建肝肿瘤组织的空间组织学特征,我们探索了单细胞数据簇在空间阵列中的定位。大体上,跨空间孔的肝细胞和肿瘤细胞的密度热图与连续切片的苏木精和伊红(H&E)免疫组织化学染色(用灰色虚线勾勒)重叠(图7D和图7E)。其它细胞类型的投影揭露了淋巴细胞、巨噬细胞、枯否细胞、肝细胞、MC38和LSEC的不同空间组织模式,具有分散在整个阵列中的不同密度模式(图7E)。特别是,淋巴细胞分布与肝细胞和肿瘤重叠,而巨噬细胞似乎被隔离在肿瘤区域。LSEC孔也与肿瘤和肝细胞区域重叠,而枯否细胞预计仅与肝细胞界定的孔重叠。与UMAP投影中细胞类型特异性标记的富集一致,Plec的表达与肿瘤细胞空间共定位,Stab2的表达与淋巴细胞空间共定位,Dpyd的表达与肝细胞空间共定位,Cd5l的表达与枯否细胞空间共定位,Cd74的表达与巨噬细胞空间共定位,以及Sk ap1的表达与LSEC空间共定位(图8)。然而,密度空间图揭露了多种不同细胞类型的空间重叠,表明细胞相互作用的潜在热点。为了量化占据每个空间孔的细胞组成,利用单细胞数据生成了一个孔特异性饼图,该饼图描绘了每个孔中存在的细胞亚群的比率(图7F)。基于饼图的分析揭露了肝/肿瘤界面富含的免疫细胞的共定位——在组织解离的scRNA-seq平台中未获得的信息。空间阵列上一列的量化表示为条形图。与对空间密度图的视觉分析类似,巨噬细胞被隔离在肿瘤区域,而淋巴细胞则在肝细胞和肿瘤区域中共同检测到,表明在完整组织内发生了不同的空间组织。这些实验表明,XYZeq可以剖析组织中的单细胞转录组,并且可以产生与其它基于原位的高通量scRNAseq平台相当的量度,同时将细胞类型映射到组织微环境中的特定区域。
空间分辨测序允许在组织结构背景下进行表达分析,这是当前单细胞测序方法无法实现的。这些方法缺乏空间信息,阻止对细胞状态的变化如何影响组织微环境中的相邻细胞进行分析。XYZeq首先是一种新的scRNA-seq工作流程,它保留了空间信息,从而使我们能够概括组织切片的总体组织布局以了解细胞比例和异质性,同时也使我们能够辨别驻留于组织微环境中的每个单细胞的位置和基因表达。借助XYZeq,我们能够开始破译作为正常和异常组织功能基础的细胞间动力学。虽然基于FISH成像的方法也提供真正的单细胞空间分辨率,但它们在通量和定制探针的创建方面受到限制。作为一种基于测序的方法,XYZeq利用NGS领域的巨大技术发展,受益于通量的增加和每个数据点的成本的降低。虽然现在预测空间分辨转录组学是否会整合到常规临床病理学中还为时过早,但它至少可以开始在组织和生物体的背景下绘制大规模的转录组学数据。
实施例5:使用XYZeq进行细胞特异性空间转录组学剖析
XYZeq可用于研究细胞特异性空间转录组学剖析。为此,在将RT缓冲液点样到微孔阵列的步骤中,可以将感兴趣的抗体添加到第一个RT混合物中。这将允许对感兴趣的细胞的抗体标记进行分类。表1中提供了可以使用的抗体的非限制性实例。
表1.用于使用XYZeq进行细胞特异性空间转录组学剖析的抗体实例。
实施例6:使用XYZeq进行空间TCR-seq
库制备的第一部分与上述相同,直到产生cDNA。然后通过与V区段末端结合的TCRα和TCRβ可变区引物的混合物对TCRα和TCRβ基因进行PCR扩增,以进行半嵌套PCR。表2中提供了使用XYZeq的空间TCR-seq的非限制性示例性多个引物序列列表。
表2.使用XYZeq的空间TCR-seq的多个引物序列实例。
第一次PCR在具有Hotstart PCR混合物的管中进行50个循环以富集TCR。然后使用Illumina P5引物进行第二次PCR,并使用P7引物添加库索引。简单地说,将1ng cDNA与Qigen 1×HotStar Taq缓冲液、10nM混合的TCRα和TCRβV区段引物、1μl每种dNTP和1μlHotStar Taq和H2O一起添加,使最终体积为100μl。PCR循环如下:94℃10分钟,然后50个循环的94℃40秒、62℃45秒,30个循环的94℃40秒、62℃45秒、72℃1分钟,以及最后在72℃下孵育1分钟。PCR产物用Ampure珠粒净化并洗脱至25μl。第二PCR使用5x Kapa Mg2+缓冲液、1μl DNTP、1μl KAPA HIFI酶、0.2μl IFC-F引物、0.2μl N7XX引物、H2O进行,使最终体积为50μl,循环如下:
Kapa AMP | ||
步骤1 | 72℃ | 3分钟 |
步骤2 | 95℃ | 10秒 |
步骤3 | 95℃ | 30秒 |
步骤4 | 66℃ | 30秒 |
步骤5 | 72℃ | 1分钟 |
步骤6 | 转到步骤3 | 14次 |
步骤7 | 72℃ | 5分钟 |
步骤8 | 4℃ | 永远 |
PCR产物再次使用Ampure珠粒净化并洗脱至15μl,用于Qubit量化和生化分析仪的尺寸分析,然后在Illumina Miseq上测序(2×300bp读数)。最终结果是空间单细胞TCR-seq库,它可以(理论上)将TCR克隆映射回组织中的区域。
实施例7:使用XYZeq进行空间ATAC-seq
基本方案与XYZeq RNAseq方案相同,反应混合物在孔中进行空间条形码化,然后将整个芯片冷冻至-80℃,以便将组织放在顶部,孵育反应后,取出细胞然后通过PCR分选到96孔板中进行第二次条形码化。库进行索引和测序。示例性程序如下:
1.反应混合物由5x DMF-TAPS缓冲液、30个定制且独特索引的单面Tn5转座体(10个与条形码化的P5接头连接,20个与条形码化的P7接头连接)、洋地黄皂苷(组织消化试剂)和H20组成。通过TN5-P5沿行点样并且Tn5-P7沿列点样,可以获得200个具有独特条形码化Tn5组合的孔。
2.将微孔阵列密封并在55℃下孵育30分钟,然后在37℃下孵育15分钟。
3.标签化后,将微孔阵列放于50ml锥形管中,添加40mM EDTA(补充有1mM亚精胺、20% FCS和PBS)以停止反应并涡旋。将锥形管中的细胞离心,重悬于1ml中,过滤,并用DAPI染色。将25个DAPI+细胞分选到含有12.5μl溶解缓冲液(11μl EB缓冲液、0.5μl 100X BSA和1μl DTT)的96孔板的每个孔中。
4.分选后,将PCR引物索引到每个孔(0.5μM最终浓度),将聚合酶预混液添加到每个孔中。然后对标签化的DNA进行PCR扩增。
5.PCR扩增后,使用1X Ampure珠粒(Agencourt)净化DNA,并在15μl EB缓冲液中洗脱,然后进行量化。
6.使用生物分析仪确定库的浓度和质量。
实施例8:XYZeq揭露肿瘤微环境中的表达异质性
组织的单细胞RNA测序(scRNA-seq)揭露了细胞类型和状态的显著异质性,但没有直接提供有关复杂组织结构中细胞的空间组织的信息。为了更好地了解单个细胞在解剖空间中的功能,我们开发了XYZeq,这是一种将空间元数据编码到scRNA-seq库中的新颖工作流程。我们使用XYZeq剖析异位小鼠肝和脾肿瘤模型,以从八个组织切片的数万个细胞捕获转录组。对这些数据的分析揭露了不同细胞类型的空间分布和肿瘤相关间充质干细胞(MSC)中与细胞迁移相关的转录组学程序。此外,鉴定了MSC对肿瘤抑制基因的局部表达,这些基因在与肿瘤核心的接近度方面有所不同。证明XYZeq可用于同时当场绘制单个细胞的转录组和空间定位,以揭露复杂病理组织中的位置如何影响细胞组成和细胞状态。
1.材料和方法
i.小鼠、肿瘤细胞系和肿瘤接种
6-12周龄C57BL/6雌性小鼠购自Jackson Laboratories,饲养在无特定病原体的条件下。将MC38结肠腺癌细胞系在完全细胞培养基(RPMI 1640,具有GlutaMAX、青霉素(penicillin)、链霉素(streptomy cin)、丙酮酸钠、HEPES、NEAA和10%胎牛血清(FBS))中培养。常规测试细胞系的支原体污染。对于实验,在手术前30分钟给予小鼠丁丙诺啡(Buprenorphine)(300ul)与美洛昔康(Meloxiacam)(300ul)的麻醉混合物。在手术时,施用1滴布比卡因(Bupivacaine)并用异氟醚麻醉小鼠,然后使用301/2号针肝内(或脾内)注射MC38结肠腺癌细胞(50μl,10×106个细胞/毫升)。将切口缝合闭合并对小鼠进行术后护理。所有实验均按照加州大学旧金山分校IACUC委员会(Univer sity of California,SanFrancisco IACUC committee)批准的动物方案进行。
ii.癌症模型系统
最近发表的报告Lee等人2020(21)中详细描述了我们用于本文的肝内和脾内癌症模型。简单地说,肝内和脾内肿瘤是通过被膜下将肿瘤细胞直接注射到器官中而产生的。为了确定处死小鼠的理想时间点,对接种了肿瘤的小鼠进行了体内成像。器官内注射的MC38细胞被修饰成表达萤火虫荧光素酶。小鼠经腹膜内感染D-荧光素(150mg/kg;GoldBiotechnology)7分钟,然后使用Xenogen IVIS成像系统成像。处死具有至少5mm荧光的可检测肿瘤结节的小鼠用于收获组织。将用于XYZeq的器官用二硫代双(琥珀酰亚胺基丙酸酯)(DSP)(Thermo Scientific)固定并冷冻保存,而用于10X Genomics Chromium单细胞测序的器官在补充有胶原酶D(125U/ml;Roche)和脱氧核糖核酸酶I(20mg/ml;Roche)的RPMI完全培养基中消化,然后根据制造商的方案(Miltenyi)使用gentleMACS组织解离器处理,用于形成单细胞悬浮液。
iii.10X Genomic Chromium平台
将从组织中分离的细胞洗涤并以1000个细胞/微升重悬于具有0.04% BSA的PBS中,并根据制造商的说明加载到10X Genomics Chromium平台上,并在NovaSeq或HiSeq4000(Illumina)上进行测序。
iv.组织收获和冷冻保存
在肿瘤接种后第10天,处死小鼠并收获注射肿瘤的肝(或脾脏),并在冰冷的无DMSO冷冻培养基(Bulldog Bio)中孵育30分钟。随后在补充有10% FCS的冰冷DSP(ThermoScientific)中孵育30分钟,然后在冰冷的20mM Tris-HCl pH 7.5中进行中和。将器官放于冷冻模具中,密封,并在-80℃中缓慢冷冻过夜。
v.细胞和试剂分配到阵列中
sciFLEXARRAYER S3(Scienion AG)用于将细胞和试剂分配到微孔阵列中。对每个实验的液滴稳定性和阵列质量进行评估。在分配到微孔阵列载玻片之前,使用Autodrop检测来评估液滴稳定性并量化每种试剂的速度、偏差和液滴体积。体积输入用于确定达到指定的总孔体积所需的滴数。每孔oligo(dT)引物5’CTACACGACGCTCTTCCGATCTNNNNNNNNNN[16bp独特空间条形码]TTTTTTTTTTTTTTTTTT-3’,其中“N”是任何碱基;SEQ ID NO:43;IDT)进行点样。在条形码化期间,露点控制软件监测环境温度和湿度,允许动态控制源板的温度,以在整个运行期间保持标称寡核苷酸浓度。条形码化的载玻片在存储前在孔中干燥。将反应混合物(Thermo Fisher Scientific)添加到孔中,并自动在每个探针之间使用10%的漂白剂清洗以消除残留污染。在实验当天将解离/透化缓冲液打印到每个孔中,并将组织切片加载到微孔阵列载玻片上。对于所有组织实验,将DSP固定的HEK293T细胞以5μl添加(10×106个细胞/毫升)到RT消化混合物中,然后分配到微阵列中的所有孔中。HEK293T细胞的平均数量为58个细胞/孔,然而,由于细胞悬浮在分配喷嘴内,所以每个孔的绝对细胞数量可能在整个阵列中有所不同。在ARIA(BD biosciences)上分析孵育后从阵列收获的细胞,并使用FlowJo软件(Tree Star Inc.)分析数据集。
vi.阵列制造
光刻胶母板是通过将一层光刻胶SU-8 2150(Fisher Scientific)以1500rpm旋涂到3英寸硅片(University Wafer)上,然后在95℃下软烘烤2小时来创建的。然后,具有光刻胶层的硅片在以12,000DPI打印的光刻掩模(CAD/Art Sciences,USA)上暴露于紫外光(UV)30分钟。紫外线照射后,将晶片在95℃下硬烘烤20分钟,然后在新鲜的丙二醇单甲醚乙酸酯溶液(Sigma Aldrich)中显影2小时以显影,然后用新鲜的丙二醇单甲醚乙酸酯手动冲洗,然后在95℃下烘烤2分钟以去除残留溶剂。将10:1预聚物:固化剂的比率的聚甲基硅氧烷(PDMS)混合物(Sylgard 184,Dow Corning Midland)倒在SU-8硅片母板上。将其放入100mm皮氏培养皿中,并在70℃烤箱中固化过夜。第二天,从SU-8硅母板上剥离该PDMS阴模。将PDMS块放置在平面上,并将Norland光学粘合剂81(NOA81)(Thorlabs)倒入模具中以覆盖整个表面。将载玻片放在NOA倾倒的PDMS模具顶部,并在顶部放置透明重物。使NOA在紫外光下固化2分钟,在紫外光固化时间中途翻转一次。最后,将PDMS模具从固化的NOA微孔阵列载玻片(称为微孔阵列芯片)上分离。每个六边形孔的尺寸约为400μm高和500μm直径,体积为0.04mm3,可容纳40nl液体。
vii.XYZeq方法
将肝/肿瘤器官安装在Cyrostat(Leica)上并以25μm切片,用作XYZeq实验样品,或安装组织学载玻片上,以10μm切片,用于免疫组织化学染色。在实验当天,用外加了固定的HEK293T细胞的逆转录混合物对XYZeq微孔阵列芯片点样。将微孔阵列芯片降至-80℃,并将组织切片放于阵列顶部。拍摄一张数字图像以记录组织的方向,然后将硅胶垫片夹在XYZeq微孔阵列芯片与空白组织学载玻片之间。将芯片放于微阵列杂交室(Agilent)中,以确保在进行组织消化和逆转录的同时气密密封。为了从固定的冷冻组织中回收高质量的RNA,容纳芯片的微阵列杂交室必须逐步升温至42℃,然后再孵育20分钟以进行逆转录。将芯片从腔室中取出并放入具有50ml 1x SSC缓冲液和25% FCS的50ml锥形管中。将管涡旋并以1000rcf离心10分钟。去除多余的体积,过滤细胞并进行DAPI(Life Technologies)染色,然后分选(BD Aria)到预加载有5μl第二RT混合物的96孔板中。将板在42℃下逆转录1.5小时,然后使用2x Kapa Hotstart Readymix(Kapa Biosystems)进行PCR。使用索引引物进行PCR扩增(5’-AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’;SEQ ID NO:44;IDT)。将PCR板的内容物汇集到2ml Eppendorf管中,并用AMpure XPSPRI珠粒(Beckman)纯化cDNA。使用Illumina Nextera库p7索引将cDNA标签化和扩增。最终库由生物分析仪(Agilent)分析并由Qubit(Invitrogen)量化并在NovaSeq或HiSeq 4000(Illumina)上测序(读取1:26个循环,读取2:98个循环,索引1:8个周期,索引2:8个周期)。
viii.XYZeq去污分析
在我们的分析中,我们认识到一些与小鼠基因比对的读数存在于与人基因组高度比对的细胞中。怀疑这些读数是环境RNA污染,并试图去除它们。首先去除了在人细胞群中具有极高表达的小鼠比对转录物(n=59,log(计数+1)>6)。人细胞群被视为污染检测的对照,因为来自溶解细胞的任何环境RNA预计都会污染小鼠和人细胞。然后进行DecontX(2)以使用人鼠混合数据集估计不同细胞群的污染率,从而从原始数据中推导出去污染计数矩阵。简单地说,该算法应用变分推断将每个细胞的观察计数建模为其相应细胞群的真实基因表达与污染特征(来自其它细胞群)的混合物,然后减去污染特征(图17C)。通过考虑人-小鼠混合物种实验,可以去除那些可能导致碰撞的计数,并有效地解释溶解细胞中所有可能导致环境RNA的转录物。在图17C中,绘制了每种小鼠细胞类型的初始估计污染率,中值估计值范围为0.06%-0.31%,在具有2.18%初始污染分数的肝细胞细胞簇中观察到最高值。所有下游分析均根据污染去除后的去污数据进行。
ix.如何区分碰撞率和污染率
碰撞率是基于小鼠比对与人比对的转录物之间的比率,直接从人-小鼠混合数据集的基因表达中计算出来,而每个细胞的碰撞率被估计为通过DecontX的变分推理,在贝叶斯分层模型(Bayesian hierarchical model)中估计为细胞特异性参数。为了说明污染率,每个细胞都有β分布参数来模拟其转录计数的比例,这些转录计数来自其天然表达分布。每个细胞的估计污染率是来自贝叶斯模型中污染的转录计数的比例。假定伯努利隐藏状态(Bernoulli hidden state),细胞中的每个转录物都遵循由其细胞群的天然表达分布或所有其它细胞群的污染参数化的多项分布,这表明了转录物来自其天然表达分布还是来自污染分布。
x.细胞种类混合实验
HEK293T和NIH/3T3细胞跨越阵列的列以梯度模式沉积到孔中,总共有11个不同的细胞比例比。明确地说,阵列上的列用以下来点样:100/0、90/10、80/20、70/30、60/40、50/50、40/60、30/70、20/80、10/90、0/100、10/90、20/80、30/70、40/60、50/50、60/40、70/30、80/20、90/10、100/0的人细胞与小鼠细胞的比率;只有位于末端列的两侧的人细胞;以及只有位于中心列的小鼠细胞。计算每个细胞的与人或小鼠参考基因组比对的消除UMI重复的读数的比率,与单个物种比对小于66%的那些被视为条形码碰撞细胞。
xi.XYZeq单细胞分析
进行单细胞RNA序列数据处理,其中测序读数如前所述(17)进行处理。简单地说,原始碱基调用被转换为FASTQ文件,并使用bcl2fastq v2.20在第二个组合索引上进行多路分解。使用trim galorev0.6.5修剪读数,与混合人(GRCh38)小鼠(mm10)参考基因组比对,并消除UMI重复数据。然后通过对第一个组合索引进行多路分解,将读数分配给单细胞,接着通过细胞计数矩阵构建基因。使用Scanpy工具包处理计数矩阵。丢弃少于500个UMI和大于10000个UMI的细胞,以及表达少于100个独特基因或多于15000个独特基因的细胞。线粒体读数百分比超过1%的细胞也被丢弃。基因计数被归一化为10,000个/细胞,进行对数转换,并使用过滤基因分散函数进一步过滤高平均表达和高分散,最小平均值为0.35,最大平均值为7,最小分散为1。然后使用回归函数校正基因计数,其中每个细胞的总计数和每个细胞的线粒体UMI百分比作为协变量。随后的降维是通过将基因计数缩放到0的平均值和单位方差来进行的,然后进行主成分分析、邻域图的计算和t分布的随机邻域嵌入(tSNE)。莱顿聚类以0.8的分辨率进行,细胞被分组以揭露不同的鼠细胞类型和人HEK293T细胞。
xii.10X数据处理
计数矩阵是使用Cellranger 3.1.0版中的“计数”工具生成的,使用组合的人与小鼠参考数据集(3.1.0版)并将“化学”标志设置为“fiveprime”。使用Scanpy工具包处理计数矩阵。丢弃少于500个UMI和大于75,000个UMI的细胞,以及表达少于100个独特基因或多于10,000个独特基因的细胞。线粒体读数百分比超过7.5%的细胞也被丢弃。基因计数被归一化为10,000个/细胞,进行对数转换,并使用过滤基因分散函数进一步过滤高平均表达和高分散,最小平均值为0.2,最大平均值为7,最小分散为1。然后使用回归函数校正基因计数,其中每个细胞的总计数和每个细胞的线粒体UMI百分比作为协变量。随后的降维是通过将基因计数缩放到0的平均值和单位方差来进行的,然后进行主成分分析、邻域图的计算和tSNE。莱顿聚类以1的分辨率进行,细胞被分组以揭露主要鼠细胞类型和人HEK293T细胞。
xiii.XYZeq的热图
从XYZeq处理的数据矩阵中对小鼠细胞进行子集化。将处理后的基因表达值绘制在最小变化倍数为1.5的热图中,并使用Scanpy的热图函数进行层次聚类,默认设置为皮尔逊相关方法和完全连锁。
xiv.XYZeq基因配对图
四个肝/肿瘤组织切片使用XYZeq测定法(加入HEK293T细胞)进行处理,并与人和小鼠联合参考进行比对。保留每个切片中至少有一个计数的所有基因,并且成对切片之间的共同基因集合的计数以下三角形绘制,数据的斯皮尔曼相关性(Spearman correlation)以上三角形显示。沿对角线绘制直方图,显示每个切片的所有非零基因的每个基因的计数分布。
xv.XYZeq细胞/孔配对图
显示含有细胞类型成对组合的微孔数量的配对图。对于散点图,图中的每个点代表一个孔,其坐标位置表示该孔中存在的每种细胞类型的细胞数量。散点图上的每个圆点是一个基因,代表切片中所有细胞中共同基因的每个基因的平均值。沿着图的对角线是直方图,显示给定细胞类型的每孔细胞数的单变量分布。
xvi.比较10X与XYZeq的热图
从每个处理的数据矩阵中对小鼠细胞进行子集化。对于在XYZeq与10X之间发现的成对小鼠莱顿簇,绘制共同基因的缩放和对数转换的基因表达值。对于每次比较,计算皮尔逊相关性并将其绘制在热图中。行/列标记是根据其相应的细胞类型排序的。
xvii.相关性图
从每个处理的数据矩阵中对小鼠细胞进行子集化。绘制每种细胞类型的比例(由莱顿聚类确定并使用tSNE可视化),并通过拟合假设两种测定法之间的比例相等的模型来计算决定系数。
xviii.最高贡献基因的基因模块分析
为了使用非负矩阵分解鉴定基因模块,过滤掉在少于5个细胞中表达的基因和表达少于100个基因的细胞。对计数数据进行方差稳定化变换,并使用Seurat R包中的SCTransform(48)函数通过正则化负二项式回归模型回归掉混杂协变量,包括每个细胞的计数数目、批次和线粒体读取百分比。将回归模型的皮尔逊残差值居中,所有负值都转换为零。使用NMF R包中的nmf(49)函数对等级值为20的所得到的表达数据进行非平滑非负矩阵分解(nsNMF)。在每个模块中,基因按它们在相应系数矩阵中的量值以降序排列。使用GOrilla(50)对每个模块中分选的基因进行基因本体富集分析。对于每个模块,与所有其它模块相比,该模块中具有较高系数的顶部连续基因被进一步选择为组织特异性分析中对模块贡献最大的基因(51)。通过首先基于对数归一化的基因表达数据计算每个批次中每个孔的所有细胞的中值表达来生成二元空间图。然后,提取了每个孔的一个模块内所有基因的平均表达,并计算了每个孔的选定模块基因的平均表达平均值,由每个孔中的细胞数量加权。具有高于加权平均值的基因平均表达的孔被标记为该基因模块高表达,并且具有那些选定模块基因的非零表达的所有其它孔被标记为该基因模块低表达。代表基因模块的tSNE图通过注释模块内基因的平均表达来着色。
xix.肝/肿瘤和脾/肿瘤中鉴定的基因模块之间的重叠分析
首先使用nsNMF,利用两种组织肝/肿瘤和脾/肿瘤分别为20的等级值鉴定基因模块。一个模块的每个分选基因列表中的前200个基因被选为与该模块具有高度关联性。对于肝/肿瘤组织中的每个模块,具有最大基因重叠的脾/肿瘤模块最初被匹配为功能相似。然后,从肝/肿瘤模块的前200个基因中去除了那些重叠基因少于25%的匹配对。为了计算构成每个模块的细胞类型分数,计算所有细胞中每个基因的平均基因表达。进一步计算每种细胞类型的所有重叠基因的中值表达,然后通过除以所有细胞类型的中值表达之和而转化为分数。
xx.通过孔定义接近度分数
我们试图为六边形孔阵列的每个孔定义一个分数,该分数将捕获一个孔在肿瘤或非肿瘤组织结构域内的中心位置。该方法的核心是确定与所讨论的孔相邻的连续同心“层”孔:与其直接邻域对应的孔(第1层)、正好相距2孔的孔(第2层),等等,共n层。在脾/肿瘤中,在肿瘤区域的远端选择几个孔,并将这些孔的分数设置为1。然后连续取10层孔,并随着每一层线性降低分数,其中设置第10层及以上的孔为0。在肝中,在不同的位置发现MC38细胞,因此,与脾不同,没有单一的单向空间维度可以将所有MC38细胞放置在一端,将所有非肿瘤组织细胞放置在另一端。因此,使用了另一种方法来计算肝/肿瘤组织中的这些分数。对于每个孔wx,y,由它们在六边形孔阵列上的x,y位置进行注释,计算出肝细胞的比例px,y,因为肝细胞是非肿瘤肝组织中最丰富的实质细胞,并与非肿瘤肝组织密切相关:
tx,y=wx,y中总肝细胞和MC38细胞数量
hx,y=wx,y中肝细胞数量
然后,对于所讨论的每个孔wx,y,将连续同心10层中的每一层中的周围孔制成表格。表示这些孔wx′y′以区别于所讨论的孔。对于那些层中的每一层l,取其组成孔的px′,y′并计算细胞数量加权平均值px,y,l:
wx,y,l={wx′y′∈wx,y的层}
tx,y,l=wx,y,l中总肝细胞和MC38细胞数量
然后,对于所讨论的孔wx,y,计算所有px,y,l的距离加权平均值,这成为了所讨论的孔的接近度分数sx,y。每层的距离权重ul基于指数衰减,终止为10项,然后通过除以所有权重的总和us归一化为1。给予px,y和第1层邻域的值px,y,1相等的权重。根据经验选择1.05的衰减因子d,因为它似乎在所有孔中创建了最近似均匀的分数分布。
对含有至少1个鼠细胞的所有孔重复这些计算。
xxi.轨迹推断分析
排除在少于5个细胞中表达的基因以及表达少于100个基因的细胞。使用R Seurat包中的SCTransform(48)函数进行方差稳定化变换。使用R中的tradeSeq(41)包,将一个组织中MSC中得到的校正计数数据用作轨迹推断分析中的计数矩阵输入。表达与接近度分数相关的基因由tradeSeq中的associationTest函数,基于负二项式广义加法模型下的沃尔德检验(Wald test)鉴定。使用本杰明-霍克伯格多重检验程序校正p值,校正的p值小于0.05的基因被认为与接近度分数显著相关。
2.结果
我们开发了XYZeq,这是一种使用两轮拆分池索引将组织样品中每个细胞的空间位置编码到组合索引的scRNA-seq库中的方法(17,18)。对于XYZeq的性能至关重要的是,我们用二硫代双(琥珀酰亚胺基丙酸酯)(DSP)固定组织切片,DSP是一种可逆的交联固定剂,已显示可以保存组织学组织形态,同时保持RNA完整性以用于单细胞转录组学的(19)。在第一轮索引中,将固定并冷冻保存的组织切片放置在中心至中心间距为500μm的微孔阵列上并密封在其中。微孔含有不同条形码化的逆转录(RT)引物(空间条形码)。这一步骤将完整的细胞从组织中物理分割成不同的原位条形码反应。逆转录后,从阵列中取出完整细胞,汇集并分配到孔中以进行第二轮PCR索引,赋予每个单细胞一个组合条形码(图5A和图5B)。在测序和多路分解之后,空间条形码将每个细胞映射回其在阵列中的物理位置(图5B)。这种组合条形码策略理论上能够对大型单细胞集合进行空间转录组学分析——通过两轮拆分池索引、768个空间RT条形码和384个PCR条形码,可以生成多达294,912个独特单细胞条形码。
为了确定XYZeq是否可以将转录组分配给单细胞,我们进行了混合物种实验,其中将总共11个不同比率的DSP固定的人(HEK293T)与小鼠(NIH/3T3)细胞混合物沉积到768个条形码化的微孔中的每一个中,沿阵列的列产生细胞比例梯度(图5C和方法)。使用XYZeq生成6,447个细胞的scRNA-seq数据。基于读数映射到人和小鼠转录组的细胞条形码的百分比,94.8%的细胞条形码被分配给单个物种,估计条形码碰撞率为5.1%(图15A)。假设部分碰撞是由于受损细胞释放的环境RNA引起的污染造成的。使用DeconX(20)(一种分层贝叶斯方法,它假设观察到的细胞转录物计数是来自两个二项式分布的计数的混合),我们去除了污染转录物,将碰撞率降低到0.7%(图5D和方法)。在计算去污和消除碰撞事件后,获得了每个人细胞939个UMI和439个基因的中值,以及每个小鼠细胞816个UMI和336个基因的中值。将每个单细胞映射到其原始微孔,我们观察到沿孔的各列观察到的和预期的细胞类型比例之间高度一致(林氏一致性相关系数=0.91;图5E和图15B)。总之,这些结果表明,在汇集后,每个孔中的单细胞以及阵列上的相邻孔之间的条形码污染最少,这表明了XYZeq工作流程成功地产生了空间分辨scRNA-seq库。
接下来将XYZeq应用于异位鼠肿瘤模型,该模型是通过将同基因结肠腺癌细胞系MC38经肝内注射到免疫活性小鼠中而建立的。这一模型模拟转移性癌症的组织浸润特征,更重要的是,它与相对明确的肿瘤边界相关(21,22)。MC38肿瘤细胞也具有免疫调节特性,先前的数据显示在肿瘤接种后约10天免疫细胞浸润肿瘤/组织界面(23,24)。因此,预测XYZeq可以同时捕获实质肝细胞、癌细胞和肿瘤相关免疫细胞群的基因表达状态和空间组织。将来自C57BL/6小鼠的25μm固定冷冻肝/肿瘤组织切片放于预冷冻的微孔阵列顶部,同时将连续的10μm切片固定用于免疫组织化学染色(图16A和方法)。我们还将固定的人HEK293T细胞以每孔平均58个细胞沉积到同一阵列中,用作混合物种内部对照,以实验量化碰撞率。进行XYZeq并基于比较人与小鼠转录物的比率观察到7.3%的初始碰撞率(图16B)。在计算去污和进一步质量控制(包括根据细胞计数和线粒体表达过滤细胞)后,碰撞率降低到4.4%(图11A和方法)。去除碰撞后,总共获得8,746个细胞,并在46%测序饱和度下检测到每个HEK293T细胞1,596个UMI和629个独特基因的中值,以及来自异位鼠肿瘤模型的每个细胞1,009个UMI和456个独特基因的中值(图11B)。苏木精和伊红(H&E)染色的连续组织切片显示肿瘤与相邻肝/肿瘤组织之间的组织学边界(图11C)。正如预期的那样,观察到HEK293T人细胞分布在整个阵列中,而小鼠细胞被隔离在鼠组织的边界内(图11D)。请注意,检测到没有细胞的空的空间孔可能是由于测序靶向的细胞数量有限(约10,000个)。获得了3个人细胞/孔和9个小鼠细胞/孔的中值,预计总共13个细胞/孔(图16C)。
XYZeq揭露了鼠肝和肿瘤内不同的细胞类型。半监督莱顿聚类揭露了鼠肿瘤模型中的13个细胞群(图17A),其中基于定义每个群体的标记注释七种细胞类型:肝细胞、癌细胞(MC38)、枯否细胞、肝窦内皮细胞(LSEC)、间充质干细胞(MSC)、淋巴细胞和骨髓细胞(图12A)。从XYZeq scRNA-seq数据和公开可用的MC38细胞遗传学数据估计的染色体拷贝数的高度相关性支持MC38肿瘤细胞的注释(皮尔逊r=0.78)(25)。值得注意的是,在XYZeq数据中观察到的第15号染色体的部分扩增和第14号染色体的部分缺失与在MC38细胞中看到的常见染色体异常一致(图17B)。作为阴性对照,在比较MC38细胞与肝细胞(26)和免疫细胞(21)时,发现染色体拷贝数相关性较低(分别皮尔逊r=0.05和r=0.17)(图17B)。显示跨七种细胞类型差异表达的基因的热图揭露了由每种细胞类型相对专有的典型基因的表达定义的不同细胞簇(图12B)。注意,我们估计每个细胞簇的污染率均较低(中值低于1%),肝细胞除外,其具有略高污染率,为2.2%(图17C和方法)。发现在所有细胞簇中检测到的中值UMI和基因可比较,包括使用其它组合索引方法难以剖析的免疫细胞群(27)(图17D和图17E)。使用先前描述的标记鉴定非荷瘤肝中预期的细胞类型,包括肝细胞、枯否细胞和LSEC(26)。与已知的肝细胞异质性一致,鉴定出由中心周围标记(Glul、Oat和Gulo)的表达注释的肝细胞子集(26)(图17F)。MC38腺癌细胞构成一个大的均匀簇,并通过已知标记Plec的表达来区分(22)。骨髓细胞由经典标记Cd11b和Cd74(28)定义,但也观察到其它非经典标记,包括Myo1f(29)和Tgfb(30)。淋巴细胞显示出类似的细胞类型标记广泛和特异性表达模式的混合,其中泛淋巴细胞标记Il18r1、T淋巴细胞标记Prkcq和细胞毒性T细胞标记Cd8b(31-33)表达。最后,检测到一簇间充质干/基质细胞,其表达广泛的间充质细胞标记Rbms3和Tshz2和干/基质细胞标记Prkg1和Gpc6(34-38)(图17F)。
接下来,评估XYZeq的可重复性,同时比较器官z层转录图谱的变化。对来自同一冷冻肝/肿瘤样品块的四个非连续25μm组织切片进行处理和分析。在所有切片中检测到的基因在所有细胞中的平均表达在每对切片之间高度相关(平均成对斯皮尔曼r=0.93)(图18A)。注意到,在四个组织切片中,切片1和切片2是其z坐标中最近的两个切片(相隔80μm),具有最高的表达相关性(斯皮尔曼r=0.96)。相比之下,在z坐标中最远端的切片1和切片4(相隔830μm)具有最低的相关性(斯皮尔曼r=0.91)。此外,在所有四个切片上联合注释的簇由来自每个切片的细胞组成,表明观察到的异质性不是由批次效应造成的(图18B)。
进一步将XYZeq生成的scRNA-seq数据的质量与另一种市售的单细胞技术进行比较。为了做到这一点,我们将XYZeq鉴定的细胞类型簇与使用10X Genomics基于液滴的Chromium系统生成的相同肝/肿瘤的独立scRNA-seq数据集鉴定的细胞类型簇进行比较。XYZeq也观察到10X检测到的大多数细胞群,除了中性粒细胞、红系祖细胞和浆细胞(图12C和图19A),已知对XYZeq所需的冷冻保存敏感的免疫细胞群(39)。有趣的是,即使细胞是从新鲜的肝/肿瘤样品中分离出来的,10X也不能捕获MSC。此外,使用10X平台鉴定的B细胞与XYZeq检测到的骨髓群体相关,这可能是由于Ly86、Cd74和几个II类组织相容性抗原基因(例如H2ab1或H2dmb1)的转录物捕获。对于10X和XYZeq数据中鉴定的六种细胞类型,观察到两种细胞类型比例的高度相关性(林氏CCC=0.99;图19B)和每种细胞类型的伪批量表达谱(皮尔逊r=0.64-0.86,p<0.01,图12C)。
接下来,转向XYZeq是否可以确定每个细胞的空间位置的关键问题。为此,将每个细胞簇的空间定位与H&E染色的连续切片的图像进行比较。首先为了确定可以从肿瘤组织中准确地定义肝,确认空间孔中的肝细胞和癌细胞的密度与相邻切片的组织学注释重叠(图12D)。其它细胞类型的投影揭露了骨髓细胞、淋巴细胞、枯否细胞、MSC和LSEC的不同空间组织模式(图12D和图20A)。对占据每个空间孔的细胞组成的量化揭露,MSC、淋巴细胞和骨髓细胞与癌细胞共定位,而枯否细胞和LSEC与肝细胞共定位,这表明了肿瘤浸润组织中存在细胞相互作用的潜在区域(图12E和方法)。通过所有孔中细胞类型比例的成对相关性分析证实了这些定性观察(0.37≤皮尔逊r≤0.77,p<0.05;图12F和图20B)。
为了评估XYZeq对其它组织的普遍适用性,我们处理了来自脾中相同异位鼠肿瘤模型的样品。以每个HEK293T细胞1,312个UMI和661个独特基因的中值和每个小鼠细胞1,169个UMI和577个独特基因的中值回收了总共7,505个细胞,估计碰撞率为1.36%(图21A和图21B)。类似于肝/肿瘤模型,XYZeq能够重建脾小鼠组织的边界,其中MC38肿瘤区域在连续H&E染色切片上注释(图21C至图21E)。检测到4个人细胞/孔和7个小鼠细胞/孔的中值(图21F)。半监督莱顿聚类揭露了脾/肿瘤模型的六个不同的细胞群,包括:B细胞、T细胞、骨髓细胞、MSC、内皮细胞和MC38肿瘤细胞(图22A)。观察到所有四个脾/肿瘤切片对每个细胞类型簇有贡献,这表明注释的簇不是由批次效应造成的(图22B)。显示跨六种细胞类型差异表达的基因的热图揭露了表达每种类型相对专有的典型基因的不同细胞簇(图22C)。来自每种类型的细胞可以在整个组织中进行空间映射(图22D)。总的来说,这些结果表明XYZeq可以从不同的固定冷冻组织中生成空间分辨单细胞RNA-seq数据。
同时获得空间和单细胞转录组数据的能力允许我们评估细胞组成对跨空间基因表达模式的影响。我们将非负矩阵分解(NMF)应用于肝/肿瘤和脾/肿瘤scRNA-seq数据来定义共表达基因的模块,并将每种细胞类型中每个模块的表达与其在空间孔中的表达相关联。使用我们的方法,我们鉴定了每个组织中共表达基因的20个模块(方法)。作为该方法原理的证明,首先从肝/肿瘤数据鉴定肝模块(LM)14,其主要由tSNE空间中的肝细胞簇表达(图13A)。正如所料,最高LM14表达孔富含肝细胞,这表明该模块的空间变化性主要由肝细胞的频率驱动(图13B)。
接下来,推断由于肝和脾都注射了相同的肿瘤细胞系,因此入侵的肿瘤可能会诱导共享的基因表达谱,该基因表达谱在空间上有所不同,部分是由肿瘤微环境的细胞组成驱动的。为了检验这一假设,首先通过NMF分析(方法)鉴定出两个组织之间的匹配基因模块对。发现四个不同的肝模块(LM),它们至少有25%的基因与脾/肿瘤模块(SM)重叠(图13C和图23A)。模块的基因本体论(GO)分析揭露了与肿瘤反应、免疫调节和细胞迁移有关的基因的富集(图23B和图23C;以及图24B)。与富集分析一致,这些模块中的许多基因与肿瘤发生有关(表3中的完整基因列表)。与LM14不同,对这些匹配模块的进一步分析揭露了细胞群的异质组成,这有助于特定模块基因的表达(图23D和方法)。例如,肿瘤反应模块LM5和其匹配模块SM2和SM12(图13C和图23A)由主要在MC38肿瘤细胞中表达的基因组成,在骨髓细胞和淋巴细胞中也有一些表达(图13D;图23D;和方法)。免疫调节模块LM13和LM19(与SM7和SM20匹配)由主要在常规(例如骨髓和淋巴细胞)和非常规(例如来自肝样品的枯否细胞)免疫细胞中表达的基因组成(图13C和图13D;以及图23D)。这些重叠模块的表达在癌细胞密集浸润的区域中最高(图13E和图13F)。总的来说,这些结果表明,来自XYZeq的scRNA-seq和空间元数据的联合分析可以鉴定出由于组织样品中细胞组成的差异而导致的空间可变基因模块。
表3.肝与脾之间前200个贡献基因的重叠基因列表。
接下来,将分析重点放在匹配模块LM10和SM15/SM17,这些模块主要由MSC表达并富含参与细胞迁移的基因(图13C;图14A;图23D;图24A;以及图24B)。因为已知MSC具有针对受伤或发炎部位的归巢能力(40),所以假设LM10可能基于它们与肿瘤的接近度而在MSC中差异表达。为了检验这一假设,首先根据附近孔的组成和与附近孔的距离计算每个孔的肿瘤接近度分数(图14B;分数定义参见方法和图25)。将接近度分数投影到tSNE空间中的MSC上揭露了群体的转录异质性与对肿瘤的空间接近度相关(图14C)。然后,使用tradeSeq(41)分析了MSC表达谱,以鉴定用接近度分数跟踪的差异表达基因。鉴定并聚类了来自肝/肿瘤组织的177个基因(p<0.05)和来自脾/肿瘤组织的66个基因(p<0.05)与连续的一维接近度分数相关联(图14D)。根据细胞与肿瘤的接近度,基因大致分为三组:肿瘤内、肿瘤-组织边界和组织内,其中突出显示脾/肿瘤组织的具有统计学意义的基因(本杰明-霍克伯格FDR<0.05)(图14D)。有趣的是,对于在脾/肿瘤的肿瘤内区域发现的MSC,据报道,许多差异表达的基因可调节细胞外基质(ECM)(图14D,右图)(42-45),这表明MC38细胞可能在邻近的MSC中诱导局部基因表达程序,这可能有助于ECM的恶性重塑。
最后,利用来自XYZeq的scRNA-seq数据将单个MSC如何表达Tshz2和Csmd1可视化,这两个具有不同功能的基因在空间上相对于脾中的肿瘤是可变的。这两种基因都被表征为肿瘤抑制基因,并且经常在癌细胞中沉默以促进恶性生长和转移(36,46,47)。然而,发现脾/肿瘤MSC在更接近肿瘤时表达较低水平的Csmd1但Tshz2的水平较高(图14E)。重要的是,这些基因的平均差异表达是脾脏MSC特有的,MC38肿瘤细胞不表达。这些基因中的每一个在空间中的表达模式揭露了与上述空间轨迹分析一致的模式,表明它们在MSC中的异质表达可能由细胞相对于肿瘤的位置决定(图14F)。总之,这些结果表明,对来自XYZeq的空间和单细胞转录组学数据的联合分析可以检测特定细胞类型(例如MSC)内的转录可变基因,这些基因由它们在复杂组织结构中的位置驱动。
3.讨论
我们介绍了XYZeq,这是一种新的单细胞RNA测序工作流程,它以500μm的分辨率对空间元信息进行编码。XYZeq支持无偏见的单细胞转录组学分析,以捕获所有细胞类型和状态,同时将每个细胞放于复杂组织的空间环境中。在鼠肿瘤模型中,证明了XYZeq可以鉴定由细胞组成决定的基因表达的空间可变模式以及由空间接近度决定的细胞类型内的异质性。展望未来,XYZeq提供了一个可扩展的工作流程,它可以适应多个组织z层,并有可能促进整个器官的分析。对映射到其组织结构特征的单细胞的多种模式进行大规模综合剖析,将有助于更好地了解组织微环境如何影响细胞浸润以及在健康和疾病中的相互作用。
参考文献:
1.A.P.Patel et al.,Single-cell RNA-seq highlights intratumoralheterogeneity in primary glioblastoma.Science 344,1396-1401(2014).
2.S.V.Puram et al.,Single-Cell Transcriptomic Analysis of Primary andMetastatic Tumor Ecosystems in Head and Neck Cancer.Cell 171,1611-1624e1624(2017).
3.C.Ziegenhain et al.,Comparative Analysis of Single-Cell RNASequencing Methods.Mol Cell 65,631-643e634(2017).
4.I.C.Macaulay,C.P.Ponting,T.Voet,Single-Cell Multiomics:MultipleMeasurements from Single Cells.Trends Genet 33,155-168(2017).
5.M.L.Suva,I.Tirosh,Single-Cell RNA Sequencing in Cancer:LessonsLeamed and Emerging Challenges.Mol Cell 75,7-12(2019).
6.V.Svensson,R.Vento-Tormo,S.A.Teichmann,Exponential scaling ofsingle-cell RNA-seq in the past decade.Nat Protoc 13,599-604(2018).
7.K.H.Chen,A.N.Boettiger,J.R.Moffitt,S.Wang,X.Zhuang,RNAimaging.Spatially resolved,highly multiplexed RNA profiling in singlecells.Science 348,aaa6090(2015).
8.A Raj,P.van den Bogaard,S.A.Rifkin,A.van Oudenaarden,S.Tyagi,Imaging individual mRNA molecules using multiple singly labeled probes.NatMethods 5,877-879(2008).
9.C.L.Eng et al.,Transcriptome-scale super-resolved imaging intissues by RNA seqFISH.Nature 568,235-239(2019).
10.S.Shah,E.Lubeck,W.Zhou,L.Cai,seqFISH Accurately DetectsTranscripts in Single Cells and Reveals Robust Spatial Organization in theHippocampus.Neuron 94,752-758 e751(2017).
11.P.L.Stahl et al.,Visualization and analysis of gene expression intissue sections by spatial transcriptomics.Science 353,78-82(2016).
12.S.G.Rodriques et al.,Slide-seq:A scalable technology for measuringgenome-wide expression at high spatial resolution.Science 363,1463-1467(2019).
13.S.Vickovic et al.,High-definition spatial transcriptomics for insitu tissue profiling.Nat Methods 16,987-990(2019).
14.R.R.Stickels etal.,Highly sensitive spatial transcriptomics atnear-cellular resolution with Slide-seqV2.Nat Biotechnol,(2020).
15.K.Achim et al.,High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin.Nat Biotechnol 33,503-509(2015).
16.R.Satija,J.A.Farrell,D.Gennert,A.F.Schier,A.Regev,Spatialreconstruction of single-cell gene expression data.Nat Biotechnol33,495-502(2015).
17.J.Cao et al.,Comprehensive single-cell transcriptional profilingofa multicellular organism.Science 357,661-667(2017).
18.A.B.Rosenberg et al.,Single-cell profiling of the developing mousebrain and spinal cord with split-pool barcoding.Science 360,176-182(2018).
19.M.Attar et al.,A practical solution for preserving single cellsfor RNA sequencing.Sci Rep8,2151(2018).
20.S.Yang et al.,Decontamination of ambient RNA in single-cell RNA-seq with DecontX.Genome Biol21,57(2020).
21.J.C.Lee et al.,RegulatoryT cell control of systemic immunity andimmunotherapy response in liver metastasis.Sci Immunol 5,(2020).
22.M.Yadav et al.,Predicting immunogenic tumour mutations bycombining mass spectrometry and exome sequencing.Nature 515,572-576(2014).
23.K.N.Kodumudi et al.,Immune Checkpoint Blockade to Improve TumorInfiltrating Lymphocytes for Adoptive Cell Therapy.PLoS One 11,e0153053(2016).
24.H.Tang et al.,PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression.J Clin Invest 128,580-588(2018).
25.M.Efremova et al.,Targeting immune checkpoints potentiatesimmunoediting and changes the dynamics of tumor evolution.Nat Commun 9,32(2018).
26.C.Tabula Muris et al.,Single-cell transcriptomics of 20 mouseorgans creates a Tabula Muris.Nature 562,367-372(2018).
27.J.Ding et al.,Systematic comparative analysis of single cell RNA-sequencing methods.bioRxiv,632216(2019).
28.M.J.C.Jordao et al.,Single-cell profiling identifies myeloid cellsubsets with distinct fates during neuroinflammation.Science 363,(2019).
29.S.V.Kim et al.,Modulation of cell adhesion and motility in theimmune system by Myolf.Science 314,136-139(2006).
30.X Yu et al.,The Cytokine TGF-beta Promotes the Development andHomeostasis of Alveolar Macrophages.Immunity 47,903-912 e904(2017).
31.H.Helgeland et al.,Transcriptome profiling of human thymic CD4+andCD8+T cells compared to primary peripheral Tcells.BMC Genomics 21,350(2020).
32.O.J.Harrison et al.,Epithelial-derived IL-18 regulates Th17 celldifferentiation and Foxp3(+)Treg cell function in the intestine.MucosalImmunol 8,1226-1236(2015).
33.N.Isakov,A.Altman,PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors.Front Immunol 3,273(2012).
34.L.E.Oikari et al.,Cell surface heparan sulfate proteoglycans asnovel markers of human neural stem cell fate determination.Stem CellRes 16,92-104(2016).
35.D.Fritz,B.Stefanovic,RNA-binding protein RBMS3 is expressed inactivated hepatic stellate cells and liver fibrosis and increases expressionof transcription factor Prxl.J Mol Biol 371,585-595(2007).
36.M.Riku et al.,Down-regulation of the zinc-finger homeobox proteinTSHZ2 releases GLI1 from the nuclear repressor complex to restore itstranscriptional activity during mammary tumorigenesis.Oncotanget 7,5690-5701(2016).
37.H.Kalyanaraman,N.Schall,R.B.Pilz,Nitric oxide and cyclic GMPfunctions in bone.Nitric Oxide 76,62-70(2018).
38.N.Schali et al.,Protein kinase G1 regulates bone regeneration andrescues diabetic fracture healing.,JCI Insight 5,(2020).
39.J.Baboo et al.,The Impact of varying Cooling and Thawing Rates onthe Quality of Cryopreserved Human Peripheral Blood T Cells.Sci Rep 9,3417(2019).
40.Q.Wang,T.Li,W.Wu,G.Ding,Interplay between mesenchymal stem celland tumor and potential application.Hum Cell 33,444-458(2020).
41.K.Van den Berge et al.,Trajectory-based differential expressionanalysis for single-cell sequencing data.Nat Commun 11,1201(2020).
42.J.Soikkeli et al.,Metastatic outgrowth encompasses COL-I,FN1,andPOSTN up-regulation and assembly to fibrillar networks regulating celladhesion,migration,and growth.Am J Pathol 177,387-403(2010).
43.Y.Wang,H.Xu,B.Zhu,Z.Qiu,Z.Lin,Systematic identification of the keycandidate genes in breast cancer stroma.Cell Mol Biol Lett23,44(2018).
44.J.Li et al.,Stromal microenvironment promoted infiltration inesophageal adenocarcinoma and squamous cell carcinoma:a multi-cohort gene-based analysis.Sci Rep 10,18589(2020).
45.Y.Gao,S.P.Yin,X.S.Xie,D.D.Xu,W.D.Du,The relationship betweenstromal cell derived SPARC in human gastric cancer tissue and itsclinicopathologic sinificance.Oncotarget 8,86240-86252(2017).
46.A.Escudero-Esparza et al.,Complement inhibitor CSMD1 acts as tumorsuppressor in human breast cancer.Owotarget7,76920-76933(2016).
47.S.Ropero et al.,Epigenetic loss of the familial tumor-suppressorgene exostosin-1(EXT1)disrupts heparan sulfate synthesis in cancer cells.HumMol Genet 13,2753-2765(2004).
48.C.Hafemeister,R.Satija,Normalization and variance stabilizationofsingle-cell RNA-seq data using regularized negative binomialregression.Genome Biol20,296(2019).
49.R.Gaujoux,C.Seoighe,A flexible R package for nonnegative matrixfactorization.BMC Bioinfiormatics 11,367(2010).
50.E.Eden,R.Navon,I.Steinfeld,D.Lipson,Z.Yakhini,GOrilla:a tool fordiscovery and visualization of enriched GO terms in ranked gene lists.BMCBioinformatics 10,48(2009).
51.P.Carmona-Saez,R.D.Pascual-Marqui,F.Tirado,J.M.Carazo,A.Pascual-Montano,Biclustering of gene expression data by Non-smooth Non-negativeMatrix Factorization.BMC Bioinformatics 7,78(2006).
52.C.Giesen et al.,Highly multiplexed imaging of tumor tissues withsubcellular resolution by mass cytometry.Nat Methods 11,417-422(2014).
53.Y.Goltsev et al.,Deep Profiling of Mouse Splenic Architecture withCODEX Multiplexed Imaging.Cell174,968-981 e915(2018).
序列表
<110> 加利福尼亚大学董事会
<120> 空间分辨单细胞RNA测序方法
<130> 37944.0015P1
<150> US 62/979,235
<151> 2020-02-20
<160> 44
<170> PatentIn version 3.5
<210> 1
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 1
gtctcgtggg ctcggagatg tgtataagag acagcagggt gtggagcagc ctgccaa 57
<210> 2
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 2
gtctcgtggg ctcggagatg tgtataagag acagatctat tggtaccgac aggttcc 57
<210> 3
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 3
gtctcgtggg ctcggagatg tgtataagag acagggcgag caggtggagc agcgc 55
<210> 4
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 4
gtctcgtggg ctcggagatg tgtataagag acagtctgct ctgagatgca atttt 55
<210> 5
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 5
gtctcgtggg ctcggagatg tgtataagag acagctactt cccttggtat aagcaaga 58
<210> 6
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 6
gtctcgtggg ctcggagatg tgtataagag acagacccaa ctctkttctg gtatgt 56
<210> 7
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 7
gtctcgtggg ctcggagatg tgtataagag acagaaggta cagcagagcc cagaatc 57
<210> 8
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 8
gtctcgtggg ctcggagatg tgtataagag acagcctgag catccacgag ggtgaa 56
<210> 9
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 9
gtctcgtggg ctcggagatg tgtataagag acagagctga gatgcaasta ttcct 55
<210> 10
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 10
gtctcgtggg ctcggagatg tgtataagag acagcatgga gagaaggtcg agcaaca 57
<210> 11
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 11
gtctcgtggg ctcggagatg tgtataagag acagaagacc caagtggagc agagtc 56
<210> 12
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 12
gtctcgtggg ctcggagatg tgtataagag acaggtgacc cagacagaag gcctgg 56
<210> 13
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 13
gtctcgtggg ctcggagatg tgtataagag acaggtcctt ggttctgcag gagg 54
<210> 14
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 14
gtctcgtggg ctcggagatg tgtataagag acagcagcag caggtgagac aaag 54
<210> 15
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 15
gtctcgtggg ctcggagatg tgtataagag acagctggac tgttcatatg agacaagt 58
<210> 16
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 16
gtctcgtggg ctcggagatg tgtataagag acagagaagg taacacagac tcagac 56
<210> 17
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 17
gtctcgtggg ctcggagatg tgtataagag acagcagtcc gtggaccagc ctgatgc 57
<210> 18
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 18
gtctcgtggg ctcggagatg tgtataagag acaggagcag agtcctcggt ttctgag 57
<210> 19
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 19
gtctcgtggg ctcggagatg tgtataagag acagccagca agttaaacaa agctctcc 58
<210> 20
<211> 55
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 20
gtctcgtggg ctcggagatg tgtataagag acagcctccg tttctcggct cctgg 55
<210> 21
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 21
gtctcgtggg ctcggagatg tgtataagag acaggtgact ttgctggagc aaaaccc 57
<210> 22
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 22
gtctcgtggg ctcggagatg tgtataagag acaggacccg aaaattatcc agaaacc 57
<210> 23
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 23
gtctcgtggg ctcggagatg tgtataagag acagggaccc aaagtcttac agatccc 57
<210> 24
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 24
gtctcgtggg ctcggagatg tgtataagag acaggagacg gctgttttcc agactcc 57
<210> 25
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 25
gtctcgtggg ctcggagatg tgtataagag acagaacact aaaattactc agtcacc 57
<210> 26
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 26
gtctcgtggg ctcggagatg tgtataagag acag 34
<210> 27
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 27
gtctcgtggg ctcggagatg tgtataagag acaggaggct gcagtcaccc aaagccc 57
<210> 28
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 28
gtctcgtggg ctcggagatg tgtataagag acaggaggct gcagtcaccc aaagtcc 57
<210> 29
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 29
gtctcgtggg ctcggagatg tgtataagag acaggaagct ggagtcaccc agtctcc 57
<210> 30
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 30
gtctcgtggg ctcggagatg tgtataagag acaggatgct ggagttaccc agacacc 57
<210> 31
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 31
gtctcgtggg ctcggagatg tgtataagag acagaatgct ggtgtcatcc aaacacc 57
<210> 32
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 32
gtctcgtggg ctcggagatg tgtataagag acaggatact acggttaagc agaaccc 57
<210> 33
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 33
gtctcgtggg ctcggagatg tgtataagag acagggtggc atcattactc agacacc 57
<210> 34
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 34
gtctcgtggg ctcggagatg tgtataagag acagggagca ctcgtctatc aatatcc 57
<210> 35
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 35
gtctcgtggg ctcggagatg tgtataagag acaggactct ggggttgtcc agaatcc 57
<210> 36
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 36
gtctcgtggg ctcggagatg tgtataagag acaggatgct gcagttacac agaagcc 57
<210> 37
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 37
gtctcgtggg ctcggagatg tgtataagag acaggttgct ggagtaaccc agactcc 57
<210> 38
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 38
gtctcgtggg ctcggagatg tgtataagag acagaattca aaagtcattc agactcc 57
<210> 39
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 39
gtctcgtggg ctcggagatg tgtataagag acaggacatg aaagtaaccc agatgcc 57
<210> 40
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 40
gtctcgtggg ctcggagatg tgtataagag acagagtgtc ctcctctacc aaaagcc 57
<210> 41
<211> 57
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 引物
<400> 41
gtctcgtggg ctcggagatg tgtataagag acaggctcag actatccatc aatggcc 57
<210> 42
<211> 450
<212> PRT
<213> 未知物(Unknown)
<220>
<223> E54K/L372P Tn5转座酶
<400> 42
Met Ile Thr Ser Ala Leu His Arg Ala Ala Asp Trp Ala Lys Ser Val
1 5 10 15
Phe Ser Ser Ala Ala Leu Gly Asp Pro Arg Arg Thr Ala Arg Leu Val
20 25 30
Asn Val Ala Ala Gln Leu Ala Lys Tyr Ser Gly Lys Ser Ile Thr Ile
35 40 45
Ser Ser Glu Gly Ser Lys Ala Met Gln Glu Gly Ala Tyr Arg Phe Ile
50 55 60
Arg Asn Pro Asn Val Ser Ala Glu Ala Ile Arg Lys Ala Gly Ala Met
65 70 75 80
Gln Thr Val Lys Leu Ala Gln Glu Phe Pro Glu Leu Leu Ala Ile Glu
85 90 95
Asp Thr Thr Ser Leu Ser Tyr Arg His Gln Val Ala Glu Glu Leu Gly
100 105 110
Lys Leu Gly Ser Ile Gln Asp Lys Ser Arg Gly Trp Trp Val His Ser
115 120 125
Val Leu Leu Leu Glu Ala Thr Thr Phe Arg Thr Val Gly Leu Leu His
130 135 140
Gln Glu Trp Trp Met Arg Pro Asp Asp Pro Ala Asp Ala Asp Glu Lys
145 150 155 160
Glu Ser Gly Lys Trp Leu Ala Ala Ala Ala Thr Ser Arg Leu Arg Met
165 170 175
Gly Ser Met Met Ser Asn Val Ile Ala Val Cys Asp Arg Glu Ala Asp
180 185 190
Ile His Ala Tyr Leu Gln Asp Lys Leu Ala His Asn Glu Arg Phe Val
195 200 205
Val Arg Ser Lys His Pro Arg Lys Asp Val Glu Ser Gly Leu Tyr Leu
210 215 220
Tyr Asp His Leu Lys Asn Gln Pro Glu Leu Gly Gly Tyr Gln Ile Ser
225 230 235 240
Ile Pro Gln Lys Gly Val Val Asp Lys Arg Gly Lys Arg Lys Asn Arg
245 250 255
Pro Ala Arg Lys Ala Ser Leu Ser Leu Arg Ser Gly Arg Ile Thr Leu
260 265 270
Lys Gln Gly Asn Ile Thr Leu Asn Ala Val Leu Ala Glu Glu Ile Asn
275 280 285
Pro Pro Lys Gly Glu Thr Pro Leu Lys Trp Leu Leu Leu Thr Ser Glu
290 295 300
Pro Val Glu Ser Leu Ala Gln Ala Leu Arg Val Ile Asp Ile Tyr Thr
305 310 315 320
His Arg Trp Arg Ile Glu Glu Phe His Lys Ala Trp Lys Thr Gly Ala
325 330 335
Gly Ala Glu Arg Gln Arg Met Glu Glu Pro Asp Asn Leu Glu Arg Met
340 345 350
Val Ser Ile Leu Ser Phe Val Ala Val Arg Leu Leu Gln Leu Arg Glu
355 360 365
Ser Phe Thr Pro Pro Gln Ala Leu Arg Ala Gln Gly Leu Leu Lys Glu
370 375 380
Ala Glu His Val Glu Ser Gln Ser Ala Glu Thr Val Leu Thr Pro Asp
385 390 395 400
Glu Cys Gln Leu Leu Gly Tyr Leu Asp Lys Gly Lys Arg Lys Arg Lys
405 410 415
Glu Lys Ala Gly Ser Leu Gln Trp Ala Tyr Met Ala Ile Ala Arg Leu
420 425 430
Gly Gly Phe Met Asp Ser Lys Arg Thr Gly Ile Ala Ser Trp Gly Ala
435 440 445
Leu Trp
450
<210> 43
<211> 66
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> Oligo(dT)引物
<220>
<221> misc_feature
<222> (23)..(48)
<223> n是a、c、g或t
<220>
<221> misc_feature
<222> (33)..(48)
<223> 独特空间二维码
<400> 43
ctacacgacg ctcttccgat ctnnnnnnnn nnnnnnnnnn nnnnnnnntt tttttttttt 60
tttttt 66
<210> 44
<211> 70
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<223> 索引i5引物
<220>
<221> misc_feature
<222> (30)..(37)
<223> n是a、c、g或t
<400> 44
aatgatacgg cgaccaccga gatctacacn nnnnnnnaca ctctttccct acacgacgct 60
cttccgatct 70
Claims (168)
1.一种对包含细胞的样品内的核酸进行空间检测的方法,所述方法包括:
a)使包含多个微孔的阵列与所述包含细胞的样品接触,以使得所述样品在所述阵列上微孔的不同位置接触多个微孔,其中每个微孔占据所述阵列上的不同位置并且包含不同空间索引引物,所述空间索引引物包含从5’到3’包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列;
b)允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许位于每个微孔中的一个或多个细胞中存在的一种或多种信使RNA(mRNA)与所述微孔独有的所述空间索引引物的所述捕获结构域杂交;
c)进行逆转录以产生与所述微孔中存在的所述一种或多种mRNA对应的一种或多种cDNA分子;
d)将所述阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中;
e)用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列;
f)使用所述第一测序引物和所述第二测序引物对步骤e)中获得的扩增反应产物进行测序;以及
g)检测给定空间条形码结构域的核苷酸序列和给定细胞条形码结构域的核苷酸序列、或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在,其中所述阵列的给定特定微孔独有的所述空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和所述细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明所述cDNA分子是从所述样品中包含的单个细胞中存在的mRNA在所述样品接触所述测定的所述特定微孔的所述不同位置处获得的。
2.如权利要求1所述的方法,其中所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。
3.如权利要求1或2所述的方法,其中步骤b)还包括进行逆转录反应以获得所述cDNA分子的第一链。
4.如权利要求1至3中任一项所述的方法,所述方法还包括在进行所述杂交之前对所述组织样品中包含的细胞进行透化。
5.如权利要求1至4中任一项所述的方法,所述方法还包括在所述阵列与所述样品接触之后对覆盖有所述样品的所述阵列进行成像。
6.如权利要求1至5中任一项所述的方法,所述方法还包括在将所述细胞分选到所述多孔板中之后溶解所述细胞。
7.如权利要求1至6中任一项所述的方法,所述方法还包括通过标签化从步骤f)中产生的所述cDNA分子生成测序库。
8.如权利要求7所述的方法,所述方法还包括在标签化后进行扩增反应。
9.如权利要求1至8中任一项所述的方法,所述方法还包括通过如下方法确定哪些基因在所述细胞中在所述组织样品的特定不同位置处表达,所述方法包括确定包含空间条形码结构域的相同核苷酸序列或与其互补的序列与细胞条形码结构域的相同核苷酸序列或与其互补的序列的所述cDNA分子的序列。
10.如权利要求1至9中任一项所述的方法,所述方法还包括将所述cDNA分子中存在的所述阵列的给定特定微孔独有的空间条形码结构域的所述核苷酸序列或所述与其互补的序列与所述组织样品中的位置相关联。
11.如权利要求10所述的方法,所述方法包括将所述cDNA分子中存在的所述阵列的给定特定微孔独有的空间条形码结构域的所述核苷酸序列或所述与其互补的序列与所述组织样品的图像相关联。
12.如权利要求1至11中任一项所述的方法,其中所述阵列包含至少约10个、50个、100个、200个、500个、1000个、2000个或4000个微孔。
13.如权利要求1至12中任一项所述的方法,其中所述阵列包含至少约768个微孔。
14.如权利要求1至13中任一项所述的方法,其中所述阵列中的每个微孔是三角形、正方形、五边形、六边形或圆形的。
15.如权利要求1至14中任一项所述的方法,其中所述阵列中的每个微孔是五边形的。
16.如权利要求1至15中任一项所述的方法,其中所述阵列中的每个微孔的深度为约50至约500微米。
17.如权利要求1至16中任一项所述的方法,其中所述阵列中的每个微孔的深度为约400微米。
18.如权利要求1至17中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约50微米至约500微米。
19.如权利要求1至18中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约200微米。
20.如权利要求1至19中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约500微米。
21.如权利要求1至20中任一项所述的方法,其中所述多孔板包含约24个、48个、96个、192个、384个或768个孔。
22.如权利要求1至21中任一项所述的方法,其中所述多孔板包含约96个孔。
23.如权利要求1至22中任一项所述的方法,其中所述多孔板包含约384个孔。
24.如权利要求1至23中任一项所述的方法,其中约10至约100个细胞被分选到所述多孔板的每个孔中。
25.如权利要求1至24中任一项所述的方法,其中约20至约50个细胞被分选到所述多孔板的每个孔中。
26.如权利要求1至25中任一项所述的方法,其中所述空间条形码结构域包含约10至约30个核苷酸。
27.如权利要求1至26中任一项所述的方法,其中所述聚胸苷序列包含约10至约30个脱氧胸苷残基。
28.如权利要求1至27中任一项所述的方法,其中所述细胞条形码结构域包含约10至约30个核苷酸。
29.如权利要求1至28中任一项所述的方法,其中所述样品是组织切片或细胞悬液。
30.如权利要求1至29中任一项所述的方法,其中所述样品是组织切片。
31.如权利要求30所述的方法,其中所述组织切片使用固定组织、福尔马林固定石蜡包埋(FFPE)组织或深度冷冻组织制备。
32.如权利要求1至31中任一项所述的方法,其中所述样品来自患有、被诊断为患有或怀疑患有肿瘤的受试者。
33.一种系统,所述系统包含一个或多个阵列,每个阵列包含一个或多个微孔,每个微孔占据所述阵列上的不同位置并且包含空间索引引物,所述空间索引引物包含在5’到3’方向上包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列。
34.如权利要求33所述的系统,其中每个阵列包含至少约10个、50个、100个、200个、500个、1000个、2000个或4000个微孔。
35.如权利要求33或34所述的系统,其中每个阵列包含至少约768个微孔。
36.如权利要求33至35中任一项所述的系统,其中所述阵列中的每个微孔是三角形、正方形、五边形、六边形或圆形的。
37.如权利要求33至36中任一项所述的系统,其中所述阵列中的每个微孔是五边形的。
38.如权利要求33至37中任一项所述的系统,其中所述阵列中的每个微孔的深度为约50至约500微米。
39.如权利要求33至38中任一项所述的系统,其中所述阵列中的每个微孔的深度为约400微米。
40.如权利要求33至39中任一项所述的系统,其中所述阵列中的所述微孔的中心与中心间距为约50微米至约500微米。
41.如权利要求33至40中任一项所述的系统,其中所述阵列中的所述微孔的中心与中心间距为约200微米。
42.如权利要求33至41中任一项所述的系统,其中所述阵列中的所述微孔的中心与中心间距为约500微米。
43.如权利要求33至42中任一项所述的系统,所述系统还包含一个或多个多孔板,每个多孔板包含一个或多个孔,每个孔占据所述多孔板上的不同位置并且包含细胞索引引物,所述细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列。
44.如权利要求33至43中任一项所述的系统,其中所述多孔板包含约24个、48个、96个、192个、384个或768个孔。
45.如权利要求33至44中任一项所述的系统,其中所述多孔板包含约96个孔。
46.如权利要求33至45中任一项所述的系统,其中所述多孔板包含约384个孔。
47.如权利要求33至46中任一项所述的系统,其中所述空间条形码结构域包含约10至约30个核苷酸。
48.如权利要求33至47中任一项所述的系统,其中所述聚胸苷序列包含约10至约30个脱氧胸苷残基。
49.如权利要求33至48中任一项所述的系统,其中所述细胞条形码结构域包含约10至约30个核苷酸。
50.一种生成样品的单细胞转录组谱或RNA库的方法,所述方法包括:
a)将样品分成至少第一和第二子样品,每个子样品包含来自所述子样品中存在的细胞的至少一种信使RNA(mRNA)并且每个子样品与所述样品中所述细胞相对于其它细胞的至少一个空间位置对应;
b)将每个子样品定位到占据阵列上不同位置的微孔中,每个微孔包含空间索引引物,所述空间索引引物包含在5’到3’方向上包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列;
b)允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许每个子样品中存在的所述至少一种信使RNA(mRNA)与所述每个空间索引引物的所述捕获结构域杂交;
c)进行逆转录以产生与对应每个微孔的所述至少一种mRNA对应的cDNA分子;
d)将所述阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中;
e)用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列;
f)使用所述第一测序引物和所述第二测序引物对步骤e)中获得的扩增反应产物进行测序;以及
g)检测给定空间条形码结构域和给定细胞条形码结构域的核苷酸序列或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在,
其中所述阵列的给定特定微孔独有的所述空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和所述细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明所述cDNA分子是从所述子样品中包含的单个细胞中存在的mRNA在所述子样品在所述测定的所述特定微孔中所位于的所述不同位置处获得的。
51.如权利要求50所述的方法,其中所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。
52.如权利要求50或51所述的方法,其中步骤b)还包括进行逆转录反应以获得所述cDNA分子的第一链。
53.如权利要求50至52中任一项所述的方法,所述方法还包括在进行所述杂交之前对所述组织样品中包含的细胞进行透化。
54.如权利要求50至53中任一项所述的方法,所述方法还包括在所述阵列与所述组织样品接触之后对覆盖有所述组织样品的所述阵列进行成像。
55.如权利要求50至54中任一项所述的方法,所述方法还包括在将所述细胞分选到所述多孔板中之后溶解所述细胞。
56.如权利要求50至55中任一项所述的方法,所述方法还包括通过标签化从步骤f)中产生的所述cDNA分子生成测序库。
57.如权利要求56所述的方法,所述方法还包括在标签化后进行扩增反应。
58.如权利要求50至57中任一项所述的方法,所述方法还包括通过如下方法确定哪些基因在所述细胞中在所述组织样品的特定不同位置处表达,所述方法包括确定包含空间条形码结构域的相同核苷酸序列或与其互补的序列与细胞条形码结构域的相同核苷酸序列或与其互补的序列的所述cDNA分子的序列。
59.如权利要求50至58中任一项所述的方法,所述方法还包括将所述cDNA分子中存在的所述阵列的给定特定微孔独有的空间条形码结构域的所述核苷酸序列或所述与其互补的序列与所述组织样品中的位置相关联。
60.如权利要求59所述的方法,所述方法包括将所述cDNA分子中存在的所述阵列的给定特定微孔独有的空间条形码结构域的所述核苷酸序列或所述与其互补的序列与所述组织样品的图像相关联。
61.如权利要求50至60中任一项所述的方法,其中所述阵列包含至少约10个、50个、100个、200个、500个、1000个、2000个或4000个微孔。
62.如权利要求50至61中任一项所述的方法,其中所述阵列包含至少约768个微孔。
63.如权利要求50至62中任一项所述的方法,其中所述阵列中的每个微孔是三角形、正方形、五边形、六边形或圆形的。
64.如权利要求50至63中任一项所述的方法,其中所述阵列中的每个微孔是五边形的。
65.如权利要求50至64中任一项所述的方法,其中所述阵列中的每个微孔的深度为约50至约500微米。
66.如权利要求50至65中任一项所述的方法,其中所述阵列中的每个微孔的深度为约400微米。
67.如权利要求50至66中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约50微米至约500微米。
68.如权利要求50至67中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约200微米。
69.如权利要求50至68中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约500微米。
70.如权利要求50至69中任一项所述的方法,其中所述多孔板包含约24个、48个、96个、192个、384个或768个孔。
71.如权利要求50至70中任一项所述的方法,其中所述多孔板包含约96个孔。
72.如权利要求50至71中任一项所述的方法,其中所述多孔板包含约384个孔。
73.如权利要求50至72中任一项所述的方法,其中约10至约100个细胞被分选到所述多孔板的每个孔中。
74.如权利要求50至73中任一项所述的方法,其中约20至约50个细胞被分选到所述多孔板的每个孔中。
75.如权利要求50至75中任一项所述的方法,其中所述空间条形码结构域包含约10至约30个核苷酸。
76.如权利要求50至75中任一项所述的方法,其中所述聚胸苷序列包含约10至约30个脱氧胸苷残基。
77.如权利要求50至76中任一项所述的方法,其中所述细胞条形码结构域包含约10至约30个核苷酸。
78.如权利要求50至77中任一项所述的方法,其中所述样品是组织切片或细胞悬液。
79.如权利要求50至78中任一项所述的方法,其中所述样品是组织切片。
80.如权利要求79所述的方法,其中所述组织切片使用固定组织、福尔马林固定石蜡包埋(FFPE)组织或深度冷冻组织制备。
81.如权利要求50至80中任一项所述的方法,其中所述样品来自患有、被诊断为患有或怀疑患有肿瘤的受试者。
82.一种产生样品内的细胞中的核酸表达的高分辨率空间定位的方法,所述方法包括:
a)将样品分成至少第一和第二子样品,每个子样品包含来自所述子样品中存在的细胞的至少一种信使RNA(mRNA)并且每个子样品与所述样品中所述细胞相对于其它细胞的至少一个空间位置对应;
b)将每个子样品定位到占据阵列上不同位置的微孔中,每个微孔包含空间索引引物,所述空间索引引物包含在5’到3’方向上包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列;
b)允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许每个子样品中存在的所述至少一种信使RNA(mRNA)与所述每个空间索引引物的所述捕获结构域杂交;
c)进行逆转录以产生与对应每个微孔的所述至少一种mRNA对应的cDNA分子;
d)将所述阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中;
e)用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列;
f)使用所述第一测序引物和所述第二测序引物对步骤e)中获得的扩增反应产物进行测序;以及
g)检测给定空间条形码结构域和给定细胞条形码结构域的核苷酸序列或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在,
其中所述阵列的给定特定微孔独有的所述空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和所述细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明所述cDNA分子是从所述子样品中包含的单个细胞中表达的所述核酸在所述子样品在所述测定的所述特定微孔中所位于的所述不同位置处获得的。
83.如权利要求82所述的方法,其中所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。
84.如权利要求82或83所述的方法,其中步骤b)还包括进行逆转录反应以获得所述cDNA分子的第一链。
85.如权利要求82至84中任一项所述的方法,所述方法还包括在进行所述杂交之前对所述组织样品中包含的细胞进行透化。
86.如权利要求82至85中任一项所述的方法,所述方法还包括在所述阵列与所述样品接触之后对覆盖有所述样品的所述阵列进行成像。
87.如权利要求82至86中任一项所述的方法,所述方法还包括在将所述细胞分选到所述多孔板中之后溶解所述细胞。
88.如权利要求82至87中任一项所述的方法,所述方法还包括通过标签化从步骤f)中产生的所述cDNA分子生成测序库。
89.如权利要求88所述的方法,所述方法还包括在标签化后进行扩增反应。
90.如权利要求82至89中任一项所述的方法,所述方法还包括通过如下方法确定哪些基因在所述细胞中在所述组织样品的特定不同位置处表达,所述方法包括确定包含空间条形码结构域的相同核苷酸序列或与其互补的序列与细胞条形码结构域的相同核苷酸序列或与其互补的序列的所述cDNA分子的序列。
91.如权利要求82至90中任一项所述的方法,所述方法还包括将所述cDNA分子中存在的所述阵列的给定特定微孔独有的空间条形码结构域的所述核苷酸序列或所述与其互补的序列与所述组织样品中的位置相关联。
92.如权利要求91所述的方法,所述方法包括将所述cDNA分子中存在的所述阵列的给定特定微孔独有的空间条形码结构域的所述核苷酸序列或所述与其互补的序列与所述组织样品的图像相关联。
93.如权利要求82至92中任一项所述的方法,其中所述阵列包含至少约10个、50个、100个、200个、500个、1000个、2000个或4000个微孔。
94.如权利要求82至93中任一项所述的方法,其中所述阵列包含至少约768个微孔。
95.如权利要求82至95中任一项所述的方法,其中所述阵列中的每个微孔是三角形、正方形、五边形、六边形或圆形的。
96.如权利要求82至95中任一项所述的方法,其中所述阵列中的每个微孔是五边形的。
97.如权利要求82至96中任一项所述的方法,其中所述阵列中的每个微孔的深度为约50至约500微米。
98.如权利要求82至97中任一项所述的方法,其中所述阵列中的每个微孔的深度为约400微米。
99.如权利要求82至98中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约50微米至约500微米。
100.如权利要求82至99中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约200微米。
101.如权利要求82至100中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约500微米。
102.如权利要求82至101中任一项所述的方法,其中所述多孔板包含约24个、48个、96个、192个、384个或768个孔。
103.如权利要求82至102中任一项所述的方法,其中所述多孔板包含约96个孔。
104.如权利要求82至103中任一项所述的方法,其中所述多孔板包含约384个孔。
105.如权利要求82至104中任一项所述的方法,其中约10至约100个细胞被分选到所述多孔板的每个孔中。
106.如权利要求82至105中任一项所述的方法,其中约20至约50个细胞被分选到所述多孔板的每个孔中。
107.如权利要求82至106中任一项所述的方法,其中所述空间条形码结构域包含约10至约30个核苷酸。
108.如权利要求82至107中任一项所述的方法,其中所述聚胸苷序列包含约10至约30个脱氧胸苷残基。
109.如权利要求82至108中任一项所述的方法,其中所述细胞条形码结构域包含约10至约30个核苷酸。
110.如权利要求82至109中任一项所述的方法,其中所述样品是组织切片或细胞悬液。
111.如权利要求82至110中任一项所述的方法,其中所述样品是组织切片。
112.如权利要求111所述的方法,其中所述组织切片使用固定组织、福尔马林固定石蜡包埋(FFPE)组织或深度冷冻组织制备。
113.如权利要求82至112中任一项所述的方法,其中所述样品来自患有、被诊断为患有或怀疑患有肿瘤的受试者。
114.一种在单细胞水平上量化组织样品中的基因表达的方法,所述方法包括:
a)将样品分成至少第一和第二子样品,每个子样品包含来自所述子样品中存在的细胞的至少一种信使RNA(mRNA)并且每个子样品与所述样品中所述细胞相对于其它细胞的至少一个空间位置对应;
b)将每个子样品定位到占据阵列上不同位置的微孔中,每个微孔包含空间索引引物,所述空间索引引物包含在5’到3’方向上包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;以及
iii)捕获结构域,其包含聚胸苷序列;
b)允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许每个子样品中存在的所述至少一种信使RNA(mRNA)与所述每个空间索引引物的所述捕获结构域杂交;
c)进行逆转录以产生与对应每个微孔的所述至少一种mRNA对应的cDNA分子;
d)将所述阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中;
e)用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列;
f)使用所述第一测序引物和所述第二测序引物对步骤e)中获得的扩增反应产物进行测序;以及
g)检测给定空间条形码结构域和给定细胞条形码结构域的核苷酸序列或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在,
其中所述阵列的给定特定微孔独有的所述空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和所述细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明所述cDNA分子是从所述子样品中包含的单个细胞中表达的所述基因在所述子样品在所述测定的所述特定微孔中所位于的所述不同位置处获得的。
115.如权利要求114所述的方法,其中所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。
116.如权利要求114或115所述的方法,其中步骤b)还包括进行逆转录反应以获得所述cDNA分子的第一链。
117.如权利要求114至116中任一项所述的方法,所述方法还包括在进行所述杂交之前对所述组织样品中包含的细胞进行透化。
118.如权利要求114至117中任一项所述的方法,所述方法还包括在所述阵列与所述样品接触之后对覆盖有所述样品的所述阵列进行成像。
119.如权利要求114至118中任一项所述的方法,所述方法还包括在将所述细胞分选到所述多孔板中之后溶解所述细胞。
120.如权利要求114至119中任一项所述的方法,所述方法还包括通过标签化从步骤f)中产生的所述cDNA分子生成测序库。
121.如权利要求120所述的方法,所述方法还包括在标签化后进行扩增反应。
122.如权利要求114至121中任一项所述的方法,所述方法还包括通过如下方法确定哪些基因在所述细胞中在所述组织样品的特定不同位置处表达,所述方法包括确定包含空间条形码结构域的相同核苷酸序列或与其互补的序列与细胞条形码结构域的相同核苷酸序列或与其互补的序列的所述cDNA分子的序列。
123.如权利要求114至122中任一项所述的方法,所述方法还包括将所述cDNA分子中存在的所述阵列的给定特定微孔独有的空间条形码结构域的所述核苷酸序列或所述与其互补的序列与所述组织样品中的位置相关联。
124.如权利要求123所述的方法,所述方法包括将所述cDNA分子中存在的所述阵列的给定特定微孔独有的空间条形码结构域的所述核苷酸序列或所述与其互补的序列与所述组织样品的图像相关联。
125.如权利要求114至124中任一项所述的方法,其中所述阵列包含至少约10个、50个、100个、200个、500个、1000个、2000个或4000个微孔。
126.如权利要求114至125中任一项所述的方法,其中所述阵列包含至少约768个微孔。
127.如权利要求114至126中任一项所述的方法,其中所述阵列中的每个微孔是三角形、正方形、五边形、六边形或圆形的。
128.如权利要求114至127中任一项所述的方法,其中所述阵列中的每个微孔是五边形的。
129.如权利要求114至128中任一项所述的方法,其中所述阵列中的每个微孔的深度为约50至约500微米。
130.如权利要求114至129中任一项所述的方法,其中所述阵列中的每个微孔的深度为约400微米。
131.如权利要求114至130中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约50微米至约500微米。
132.如权利要求114至131中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约200微米。
133.如权利要求114至132中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约500微米。
134.如权利要求114至133中任一项所述的方法,其中所述多孔板包含约24个、48个、96个、192个、384个或768个孔。
135.如权利要求114至134中任一项所述的方法,其中所述多孔板包含约96个孔。
136.如权利要求114至135中任一项所述的方法,其中所述多孔板包含约384个孔。
137.如权利要求114至136中任一项所述的方法,其中约10至约100个细胞被分选到所述多孔板的每个孔中。
138.如权利要求114至137中任一项所述的方法,其中约20至约50个细胞被分选到所述多孔板的每个孔中。
139.如权利要求114至138中任一项所述的方法,其中所述空间条形码结构域包含约10至约30个核苷酸。
140.如权利要求114至139中任一项所述的方法,其中所述聚胸苷序列包含约10至约30个脱氧胸苷残基。
141.如权利要求114至140中任一项所述的方法,其中所述细胞条形码结构域包含约10至约30个核苷酸。
142.如权利要求114至141中任一项所述的方法,其中所述样品是组织切片或细胞悬液。
143.如权利要求114至142中任一项所述的方法,其中所述样品是组织切片。
144.如权利要求143所述的方法,其中所述组织切片使用固定组织、福尔马林固定石蜡包埋(FFPE)组织或深度冷冻组织制备。
145.如权利要求114至144中任一项所述的方法,其中所述样品来自患有、被诊断为患有或怀疑患有肿瘤的受试者。
146.一种对包含细胞的样品内的核酸进行空间检测的方法,所述方法包括:
a)使包含多个微孔的阵列与所述包含细胞的样品接触,以使得所述样品在所述阵列上微孔的不同位置接触多个微孔,其中每个微孔占据所述阵列上的不同位置并且包含插入酶和不同空间索引接头,所述空间索引接头包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第一测序引物识别的核苷酸序列;以及
ii)空间条形码结构域,其包含每个微孔独有的核苷酸序列;
b)允许在生理学上可接受的条件下经过一定时间段,所述时间段足以允许所述插入酶在位于每个微孔中的一个或多个细胞中产生基因组DNA片段并用所述微孔独有的所述空间索引接头标记所述基因组DNA片段;
c)将所述阵列的每个微孔中存在的细胞汇集并分选到包含多个孔的多孔板中;
d)用细胞索引引物进行扩增反应,所述细胞索引引物包含从5’至3’包含以下的核酸分子:
i)退火结构域,其包含被第二测序引物识别的核苷酸序列;以及
ii)细胞条形码结构域,其包含所述多孔板的每个孔独有的核苷酸序列;
e)使用所述第一测序引物和所述第二测序引物对步骤d)中获得的扩增反应产物进行测序;以及
f)检测给定空间条形码结构域的核苷酸序列和给定细胞条形码结构域的核苷酸序列、或与给定空间条形码结构域和给定细胞条形码结构域互补的序列的存在,其中所述阵列的给定特定微孔独有的所述空间条形码结构域的特定核苷酸序列或与其互补的序列的存在和所述细胞条形码结构域的特定核苷酸序列或与其互补的序列的存在表明所述基因组DNA片段是从所述样品中包含的单个细胞在所述样品接触所述测定的所述特定微孔的所述不同位置处获得的。
147.如权利要求146所述的方法,其中所述方法还包括在使每个子样品与每个空间索引引物接触之前提供包含多个微孔的阵列的步骤。
148.如权利要求146或147所述的方法,其中所述插入酶是转座酶。
149.如权利要求148所述的方法,其中所述转座酶是Tn5转座酶或MuA转座酶。
150.如权利要求146至149中任一项所述的方法,其中所述阵列包含至少约10个、50个、100个、200个、500个、1000个、2000个或4000个微孔。
151.如权利要求146至150中任一项所述的方法,其中所述阵列中的每个微孔是三角形、正方形、五边形、六边形或圆形的。
152.如权利要求146至151中任一项所述的方法,其中所述阵列中的每个微孔是五边形的。
153.如权利要求146至152中任一项所述的方法,其中所述阵列中的每个微孔的深度为约50至约500微米。
154.如权利要求146至153中任一项所述的方法,其中所述阵列中的每个微孔的深度为约400微米。
155.如权利要求146至154中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约50微米至约500微米。
156.如权利要求146至155中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约200微米。
157.如权利要求146至156中任一项所述的方法,其中所述阵列中的所述微孔的中心与中心间距为约500微米。
158.如权利要求146至157中任一项所述的方法,其中所述多孔板包含约24个、48个、96个、192个、384个或768个孔。
159.如权利要求146至158中任一项所述的方法,其中所述多孔板包含约96个孔。
160.如权利要求146至159中任一项所述的方法,其中所述多孔板包含约384个孔。
161.如权利要求146至160中任一项所述的方法,其中约10至约100个细胞被分选到所述多孔板的每个孔中。
162.如权利要求146至161中任一项所述的方法,其中约20至约50个细胞被分选到所述多孔板的每个孔中。
163.如权利要求146至162中任一项所述的方法,其中所述空间条形码结构域包含约10至约30个核苷酸。
164.如权利要求146至163中任一项所述的方法,其中所述细胞条形码结构域包含约10至约30个核苷酸。
165.如权利要求146至164中任一项所述的方法,其中所述样品是组织切片或细胞悬液。
166.如权利要求146至165中任一项所述的方法,其中所述样品是组织切片。
167.如权利要求1至32中任一项所述的方法,其中位于每个微孔中的所述一个或多个细胞用抗体标记。
168.如权利要求167所述的方法,所述方法包括通过所述抗体分选所述一个或多个细胞。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062979235P | 2020-02-20 | 2020-02-20 | |
US62/979235 | 2020-02-20 | ||
PCT/US2021/019126 WO2021168455A1 (en) | 2020-02-20 | 2021-02-22 | Methods of spatially resolved single cell rna sequencing |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115461473A true CN115461473A (zh) | 2022-12-09 |
Family
ID=77391366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180030893.2A Pending CN115461473A (zh) | 2020-02-20 | 2021-02-22 | 空间分辨单细胞rna测序方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230212656A1 (zh) |
EP (1) | EP4107262A4 (zh) |
KR (1) | KR20220156837A (zh) |
CN (1) | CN115461473A (zh) |
AU (1) | AU2021222056A1 (zh) |
CA (1) | CA3168485A1 (zh) |
WO (1) | WO2021168455A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116024307A (zh) * | 2023-02-20 | 2023-04-28 | 北京寻因生物科技有限公司 | 一种含组织位置信息的单细胞文库构建方法及测序方法 |
CN117019248A (zh) * | 2023-08-17 | 2023-11-10 | 杭州跃真生物科技有限公司 | 一种微孔芯片与单细胞分析方法 |
WO2025077082A1 (zh) * | 2023-10-13 | 2025-04-17 | 北京寻因生物科技有限公司 | 一种空间条形码芯片的制备方法及其应用 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210230681A1 (en) | 2020-01-24 | 2021-07-29 | 10X Genomics, Inc. | Methods for spatial analysis using proximity ligation |
CN116097360A (zh) * | 2020-07-17 | 2023-05-09 | 密执安大学评议会 | 用于组织样品中核酸的局部检测的材料和方法 |
EP4479555A1 (en) * | 2022-02-14 | 2024-12-25 | The University of Chicago | Materials and methods for large-scale spatial transcriptomics |
CN116694730B (zh) * | 2022-02-28 | 2025-02-14 | 南方科技大学 | 一种单细胞开放染色质和转录组共测序文库的构建方法 |
CN114863994B (zh) * | 2022-07-06 | 2022-09-30 | 新格元(南京)生物科技有限公司 | 污染评估方法、装置、电子设备及存储介质 |
WO2024081869A1 (en) * | 2022-10-14 | 2024-04-18 | 10X Genomics, Inc. | Methods for analysis of biological samples |
WO2024178403A1 (en) * | 2023-02-23 | 2024-08-29 | Factorial Diagnostics, Inc. | In situ library preparation and cell barcoding methods in partitions |
EP4560314A1 (en) | 2023-11-27 | 2025-05-28 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE) | Method and device for high-resolution spatial and temporal mapping of large-scale electrophysiological dynamics and transcriptional profiles within intact brain tissues |
CN117947152B (zh) * | 2024-01-25 | 2025-03-21 | 华中科技大学同济医学院附属协和医院 | 一种基于单细胞核转录组测序技术检测主动脉瓣膜破骨细胞的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120301925A1 (en) * | 2011-05-23 | 2012-11-29 | Alexander S Belyaev | Methods and compositions for dna fragmentation and tagging by transposases |
WO2019113457A1 (en) * | 2017-12-07 | 2019-06-13 | Massachusetts Institute Of Technology | Single cell analyses |
CN110249057A (zh) * | 2016-11-17 | 2019-09-17 | 空间转录公司 | 用于空间标记和分析生物样本中的核酸的方法 |
WO2019213254A1 (en) * | 2018-05-02 | 2019-11-07 | The General Hospital Corporation | High-resolution spatial macromolecule abundance assessment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2504103A2 (en) * | 2009-11-23 | 2012-10-03 | 3M Innovative Properties Company | Microwell array articles and methods of use |
KR102640255B1 (ko) * | 2018-05-17 | 2024-02-27 | 일루미나, 인코포레이티드 | 감소된 증폭 편향을 갖는 고속-대량 단일 세포 서열분석 |
IL272234B1 (en) * | 2018-06-04 | 2025-06-01 | Illumina Inc | High-throughput single-cell transcriptome libraries and methods for their production and use |
-
2021
- 2021-02-22 EP EP21757776.6A patent/EP4107262A4/en active Pending
- 2021-02-22 CN CN202180030893.2A patent/CN115461473A/zh active Pending
- 2021-02-22 CA CA3168485A patent/CA3168485A1/en active Pending
- 2021-02-22 KR KR1020227031908A patent/KR20220156837A/ko active Pending
- 2021-02-22 US US17/801,517 patent/US20230212656A1/en active Pending
- 2021-02-22 WO PCT/US2021/019126 patent/WO2021168455A1/en unknown
- 2021-02-22 AU AU2021222056A patent/AU2021222056A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120301925A1 (en) * | 2011-05-23 | 2012-11-29 | Alexander S Belyaev | Methods and compositions for dna fragmentation and tagging by transposases |
CN110249057A (zh) * | 2016-11-17 | 2019-09-17 | 空间转录公司 | 用于空间标记和分析生物样本中的核酸的方法 |
WO2019113457A1 (en) * | 2017-12-07 | 2019-06-13 | Massachusetts Institute Of Technology | Single cell analyses |
WO2019213254A1 (en) * | 2018-05-02 | 2019-11-07 | The General Hospital Corporation | High-resolution spatial macromolecule abundance assessment |
Non-Patent Citations (2)
Title |
---|
FREDRIK SALMÉN: ""Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in mammalian tissue sections", NATURE PROTOCOLS, vol. 13, 1 December 2018 (2018-12-01), pages 2501 - 2534, XP055872517, DOI: 10.1038/s41596-018-0045-2 * |
JUNYUE CAO: "Comprehensive single-cell transcriptional profiling of a multicellular organism", SCIENCE, 18 August 2017 (2017-08-18), pages 661 - 667, XP055624798, DOI: 10.1126/science.aam8940 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116024307A (zh) * | 2023-02-20 | 2023-04-28 | 北京寻因生物科技有限公司 | 一种含组织位置信息的单细胞文库构建方法及测序方法 |
CN116024307B (zh) * | 2023-02-20 | 2023-08-11 | 北京寻因生物科技有限公司 | 一种含组织位置信息的单细胞文库构建方法及测序方法 |
WO2024174916A1 (zh) * | 2023-02-20 | 2024-08-29 | 北京寻因生物科技有限公司 | 一种含组织位置信息的单细胞文库构建方法及测序方法 |
CN117019248A (zh) * | 2023-08-17 | 2023-11-10 | 杭州跃真生物科技有限公司 | 一种微孔芯片与单细胞分析方法 |
WO2025077082A1 (zh) * | 2023-10-13 | 2025-04-17 | 北京寻因生物科技有限公司 | 一种空间条形码芯片的制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
WO2021168455A1 (en) | 2021-08-26 |
US20230212656A1 (en) | 2023-07-06 |
EP4107262A1 (en) | 2022-12-28 |
AU2021222056A1 (en) | 2022-09-01 |
EP4107262A4 (en) | 2024-03-27 |
CA3168485A1 (en) | 2021-08-26 |
KR20220156837A (ko) | 2022-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115461473A (zh) | 空间分辨单细胞rna测序方法 | |
EP4058598B1 (en) | Generating capture probes for spatial analysis | |
US11161087B2 (en) | Methods and compositions for tagging and analyzing samples | |
US20220205035A1 (en) | Methods and applications for cell barcoding | |
EP3286326B1 (en) | Method for whole transcriptome amplification | |
Kanter et al. | Single cell transcriptomics: methods and applications | |
JP2023015159A (ja) | マルチプレットを決定するための合成マルチプレット | |
EP3259602B1 (en) | Method for rapid accurate dispensing, visualization and analysis of single cells | |
EP3901282A1 (en) | Spatially distinguished, multiplex nucleic acid analysis of biological specimens | |
US20210062272A1 (en) | Systems and methods for using the spatial distribution of haplotypes to determine a biological condition | |
CN114008199A (zh) | 高通量单细胞文库及其制备和使用方法 | |
Salvianti et al. | Single circulating tumor cell sequencing as an advanced tool in cancer management | |
Li et al. | Single cell technologies: beyond microfluidics | |
Khan et al. | Single-circulating tumor cell whole genome amplification to unravel cancer heterogeneity and actionable biomarkers | |
US20230366009A1 (en) | Simultaneous amplification of dna and rna from single cells | |
Lemuth et al. | Microarrays as research tools and diagnostic devices | |
Pulverer et al. | Principles and Application of Microarray Technology in Thyroid Cancer Research | |
Deharvengt et al. | Molecular assessment of human diseases in the clinical laboratory | |
US20220373544A1 (en) | Methods and systems for determining cell-cell interaction | |
Simonetti | Developing methods for mapping genetic heterogeneity in tumors: from bulk to single-cell resolution | |
HK40062808B (zh) | 生物樣本的空間區別、多重核酸分析 | |
HK40062809A (zh) | 生物樣本的空間區別、多重核酸分析 | |
HK40047245A (zh) | 用於前列腺癌復發的預後的基因表達面板 | |
HK40062809B (zh) | 生物樣本的空間區別、多重核酸分析 | |
HK40062808A (zh) | 生物樣本的空間區別、多重核酸分析 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |