CN115449691B - Ultrahigh-strength-plasticity matched high-entropy alloy and preparation method thereof - Google Patents
Ultrahigh-strength-plasticity matched high-entropy alloy and preparation method thereof Download PDFInfo
- Publication number
- CN115449691B CN115449691B CN202211246896.2A CN202211246896A CN115449691B CN 115449691 B CN115449691 B CN 115449691B CN 202211246896 A CN202211246896 A CN 202211246896A CN 115449691 B CN115449691 B CN 115449691B
- Authority
- CN
- China
- Prior art keywords
- alloy
- alloy body
- entropy
- treatment
- ingot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 235
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 234
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 23
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 22
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 21
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 19
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000002244 precipitate Substances 0.000 claims abstract description 10
- 230000032683 aging Effects 0.000 claims description 17
- 238000000137 annealing Methods 0.000 claims description 17
- 238000005096 rolling process Methods 0.000 claims description 16
- 229910001325 element alloy Inorganic materials 0.000 claims description 14
- 238000005242 forging Methods 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 238000000265 homogenisation Methods 0.000 claims description 10
- 238000010791 quenching Methods 0.000 claims description 10
- 238000005097 cold rolling Methods 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 7
- 239000006104 solid solution Substances 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 6
- 238000003723 Smelting Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 5
- 230000000171 quenching effect Effects 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 9
- 239000012770 industrial material Substances 0.000 abstract 1
- 239000010955 niobium Substances 0.000 description 21
- 239000010936 titanium Substances 0.000 description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 238000005728 strengthening Methods 0.000 description 17
- 239000011651 chromium Substances 0.000 description 15
- 238000001556 precipitation Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 9
- 229910001005 Ni3Al Inorganic materials 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000000930 thermomechanical effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000010835 comparative analysis Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001887 electron backscatter diffraction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910002545 FeCoNi Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- VRKNSQQFHRIXPD-UHFFFAOYSA-N chromium cobalt iron nickel Chemical compound [Fe][Ni][Cr][Co] VRKNSQQFHRIXPD-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
Abstract
一种超高强度‑塑性匹配的高熵合金及其制备方法,所述高熵合金包括主元元素、副元元素,所述主元元素包括Ni、Fe、Co、Cr,所述副元元素包括Al、Ti、W、Mo、Nb,通过添加所述副元元素,使得主元元素引入了不同的沉淀物。所述高熵合金为经过特定的热处理工艺处理,可以使合金的晶粒尺寸、位错数量、沉淀相形貌达到优异的配合,本申请的高熵合金的屈服强度均达到1700MPa以上,抗拉强度大多都达到了2.0GPa以上,兼具良好的韧性和较高的屈服强度,满足现代工业材料力学性能的要求。
A high-entropy alloy with ultra-high strength-plasticity matching and a preparation method thereof, the high-entropy alloy includes a main element and an auxiliary element, the main element includes Ni, Fe, Co, Cr, and the auxiliary element Including Al, Ti, W, Mo, Nb, by adding the auxiliary element, the main element is introduced into different precipitates. The high-entropy alloy is processed by a specific heat treatment process, which can make the alloy grain size, dislocation quantity, and precipitated phase morphology achieve excellent coordination. The yield strength of the high-entropy alloy of the present application can reach more than 1700 MPa, and the tensile strength is 1700 MPa. Most of the strengths have reached above 2.0GPa, with good toughness and high yield strength, meeting the requirements of the mechanical properties of modern industrial materials.
Description
技术领域technical field
本申请涉及金属材料技术领域,特别是一种超高强度-塑性匹配的高熵合金及其制备方法。The application relates to the technical field of metal materials, in particular to an ultra-high strength-plastic matching high-entropy alloy and a preparation method thereof.
背景技术Background technique
高熵合金(HEA)中元素数目多而且每种合金元素含量均较高,使得合金的混合熵较大,致使合金元素倾向于混乱排列而形成简单的体心立方(BCC)或面心立方(FCC)相,这种新型合金材料因其具有高硬度、高强度、抗高温蠕变、耐高温氧化、耐腐蚀、高电阻率和良好电磁特性等优良的综合性能,在研究领域引起了广泛的关注,并具有广袤的应用前景。The number of elements in high-entropy alloys (HEA) is large and the content of each alloy element is relatively high, which makes the mixing entropy of the alloy larger, which makes the alloy elements tend to be chaotically arranged to form a simple body-centered cubic (BCC) or face-centered cubic ( FCC) phase, this new alloy material has aroused widespread interest in the research field because of its excellent comprehensive properties such as high hardness, high strength, high temperature creep resistance, high temperature oxidation resistance, corrosion resistance, high resistivity and good electromagnetic properties. attention, and has broad application prospects.
近年来,FCC型FeCoCrNi基高熵合金(即以铁、钴、铬、镍四种金属为主要元素形成的多主元素高熵合金,其基体成分主要为铁、钴、铬、镍,晶格类型为面心立方FCC晶格)的强化得到广泛的研究。结果表明,通过掺杂合金元素和热机械加工促进沉淀的形成,对强化此类合金非常有效。然而,沉淀物也很容易导致延展性下降,这限制了合金获得具有理想强度-延展性“权衡”的优异拉伸性能。In recent years, FCC-type FeCoCrNi-based high-entropy alloys (that is, multi-element high-entropy alloys formed with iron, cobalt, chromium, and nickel as the main elements, the matrix components are mainly iron, cobalt, chromium, and nickel, and the lattice type of face-centered cubic FCC lattice) has been extensively studied. The results show that promoting the formation of precipitates by doping with alloying elements and thermomechanical working is very effective in strengthening such alloys. However, the precipitates can also easily lead to a decrease in ductility, which limits the alloy to obtain excellent tensile properties with the ideal strength-ductility "tradeoff".
高熵合金中最常用的合金元素是铝(Al)或钛(Ti)。这些元素的添加通常导致几何密排相(GCP相,包括γ′-Ni3Al相、η-Ni3Ti相和α-Ni2AlTi相等,其中,γ′-Ni3Al相,其晶格类型为LI2(有序体心立方晶格),化学成分为Ni3Al;η-Ni3Ti相,其晶格类型为有序密排六方晶格,化学成分为Ni3Ti;α-Ni2AlTi相,其晶格类型为面心立方结构,化学成分为Ni2AlTi)形成。这些相的晶格与基体相一致。Zhaoping Lu等人的研究表明,低晶格失配降低了沉淀相的成核壁垒,从而使纳米沉淀相得以产生并稳定。通过优化Al和Ti浓度,纳米级共格LI2-γ′相(γ′-LI2-Ni3Al相,其晶格类型为LI2(有序体心立方晶格),化学成分为Ni3Al,为沉淀相,分布在合金的基体中)粒子在CoCrFeNi基高熵合金中沉淀。细小的共格沉淀相有利于增强强度-延性协同效应。例如,LI2型纳米颗粒强化的(FeCoNi)86-Al7Ti7 HEA(即通过γ′-LI2-Ni3Al相来进行强化的,其晶格与基体为共格关系,为共格强化,不但会提升强度,还不会对塑性产生不利影响的高熵合金)的屈服强度可达到约1.0GPa,并具有约50%的延展性。LI2-γ′纳米沉淀物的形成为高熵合金的强化提供了突出的贡献,从而得到具有良好的强度和延展性组合,其中Ti在γ′相(即γ′-LI2-Ni3Al相)沉淀中起关键作用,而Al提高了γ′相的稳定性。The most commonly used alloying elements in high entropy alloys are aluminum (Al) or titanium (Ti). The addition of these elements usually results in geometrically close-packed phases (GCP phases, including γ′-Ni3Al phases, η-Ni3Ti phases, and α-Ni2AlTi phases, among them, γ′-Ni3Al phases, whose lattice type is LI2 (ordered body-centered Cubic lattice), chemical composition is Ni3Al; η-Ni3Ti phase, its lattice type is ordered hexagonal close-packed lattice, chemical composition is Ni3Ti; α-Ni2AlTi phase, its lattice type is face-centered cubic structure, chemical composition For Ni2AlTi) formation. The lattice of these phases is consistent with the matrix. The study by Zhaoping Lu et al. showed that the low lattice mismatch reduces the nucleation barrier of the precipitated phase, thus enabling the generation and stabilization of the nano-precipitated phase. By optimizing the concentrations of Al and Ti, the nanoscale coherent LI2-γ′ phase (γ′-LI2-Ni3Al phase, whose lattice type is LI2 (ordered body-centered cubic lattice) and whose chemical composition is Ni3Al, is a precipitated phase, Distributed in the matrix of the alloy) particles precipitate in the CoCrFeNi-based high-entropy alloy. The fine coherent precipitate phase is beneficial to enhance the strength-ductility synergistic effect. For example, the (FeCoNi)86-Al7Ti7 HEA reinforced by LI2 nanoparticles (i.e. strengthened by the γ′-LI2-Ni3Al phase has a coherent relationship between the lattice and the matrix, which is coherent strengthening, which not only improves the strength, High-entropy alloys, which also do not adversely affect plasticity, can have a yield strength of about 1.0 GPa and a ductility of about 50%. The formation of LI2-γ′ nanoprecipitates provides an outstanding contribution to the strengthening of high-entropy alloys, resulting in a combination of good strength and ductility, where Ti is precipitated in the γ′ phase (i.e., the γ′-LI2-Ni3Al phase) Plays a key role, while Al improves the stability of the γ′ phase.
最近,一些以钼(Mo)为代表的小原子半径合金元素已用于强化HEA。Mo的添加可以产生不同类型的拓扑密排相(TCP相,包括σ相、μ相和Laves相等),这取决于其掺杂含量和热处理参数。与镍基高温合金不同,FCC-HEA中的这些相可有效强化合金,而不会产生严重脆性。这是由于固溶体FCC基体相通常表现出非常高的塑性,在沉淀强化后仍保持一定的韧性。结果表明,通过热机械加工在CoCrFeNiMo0.3 HEA中析出的σ相和μ相有效地强化了合金,从而得到了抗拉强度1.2GPa和伸长率19%的结合良好。除Mo外,还可以通过添加铌(Nb)、锰(Mn)和钒(V)等元素来产生TCP沉淀相来强化HEA。有趣的是,添加Nb可以在HEA中形成TCP,同时促进γ′、γ′和ε的几何密排相的形成。然而,Nb在强化强度-延性协同效应的方面没有充分发挥其作用。一般情况下拉伸屈服强均低于1000MPa,而具有较高的伸长率(15-55%)。Recently, some alloying elements with small atomic radius represented by molybdenum (Mo) have been used to strengthen HEA. The addition of Mo can produce different types of topological close-packed phases (TCP phase, including σ phase, μ phase, and Laves equal), depending on its doping content and heat treatment parameters. Unlike nickel-based superalloys, these phases in FCC-HEA effectively strengthen the alloy without developing severe brittleness. This is due to the fact that the solid solution FCC matrix phase usually exhibits very high plasticity and still maintains some toughness after precipitation strengthening. The results show that the σ and μ phases precipitated in CoCrFeNiMo0.3 HEA by thermomechanical processing effectively strengthen the alloy, resulting in a good combination of tensile strength of 1.2 GPa and elongation of 19%. In addition to Mo, HEA can also be strengthened by adding elements such as niobium (Nb), manganese (Mn), and vanadium (V) to generate a TCP precipitated phase. Interestingly, the addition of Nb can form TCP in HEA while promoting the formation of geometrically close-packed phases of γ′, γ′, and ε. However, Nb does not fully exert its role in strengthening the strength-ductility synergistic effect. In general, the tensile yield strength is lower than 1000MPa, but has a higher elongation (15-55%).
为了有效地强化FeCoCrNi HEA(即铁铬钴镍基高熵合金),组织设计具有重要意义。一种通过热机械加工优化沉淀并引入非均匀微观结构的策略被提出。具有非均匀组织的共晶AlCoCrFeNi2.1合金通过低温轧制和温轧处理,可达到约1800MPa的拉伸屈服强度和约5%的伸长率。这种强度的提升依赖于位错强化和沉淀强化,表现出前所未有的强度-塑性匹配。In order to effectively strengthen FeCoCrNi HEA (that is, iron-chromium-cobalt-nickel-based high-entropy alloy), microstructure design is of great significance. A strategy to optimize precipitation and introduce a heterogeneous microstructure by thermomechanical processing is proposed. The eutectic AlCoCrFeNi2.1 alloy with heterogeneous structure can reach a tensile yield strength of about 1800MPa and an elongation of about 5% through low temperature rolling and warm rolling treatment. This strength enhancement relies on dislocation strengthening and precipitation strengthening, showing unprecedented strength-plastic matching.
尽管上述拉伸性能具有较好的强度-塑性匹配,但其低的延伸率、负的应变硬化率和难以进行大批量生产的局限性,使其很难应用到实际的工业结构材料中。Although the above-mentioned tensile properties have good strength-plastic matching, their low elongation, negative strain hardening rate, and limitations in mass production make it difficult to apply to practical industrial structural materials.
然而,异质微观结构可能产生协同强化效应,其遵循:However, heterogeneous microstructures may produce synergistic strengthening effects, which follow:
σ0.2=σ1+ΔσG+ΔσS+ΔσP+ΔσD (1)σ 0.2 =σ 1 +Δσ G +Δσ S +Δσ P +Δσ D (1)
其中,σ0.2为增强屈服强度;σ1为原始屈服强度;ΔσS、ΔσG、ΔσD和ΔσP分别代表固溶强化、晶界硬化、位错强化和沉淀强化。热机械加工后,高熵合金可以获得非均匀的微观结构,表现出优异的强化效果。Among them, σ0.2 is the enhanced yield strength; σ1 is the original yield strength; ΔσS, ΔσG, ΔσD and ΔσP represent solid solution strengthening, grain boundary hardening, dislocation strengthening and precipitation strengthening, respectively. After thermomechanical processing, high-entropy alloys can obtain non-uniform microstructures and exhibit excellent strengthening effects.
因此,获得具有优异强度和延展性组合的CoCrFeNi基高熵合金仍然是研究领域的一个挑战。在实践中,制备的高熵合金具有足够高的强度、延展性和应变硬化率具有重要意义。Therefore, obtaining CoCrFeNi-based high-entropy alloys with an excellent combination of strength and ductility remains a challenge in the research field. In practice, it is of great importance to prepare high-entropy alloys with sufficiently high strength, ductility, and strain hardening rate.
发明内容Contents of the invention
本申请的目的在于提供一种超高强度-塑性匹配的高熵合金及其制备方法,从而使高熵合金可以在强度大幅度提升的同时,保持高延伸率和正硬化率,满足现代工业对材料力学性能的要求,以解决现有高熵合金强度不足,塑性差,强度-塑性匹配不佳,且难以进行大批量生产的问题。The purpose of this application is to provide a high-entropy alloy with ultra-high strength-plasticity matching and its preparation method, so that the high-entropy alloy can maintain high elongation and positive hardening rate while the strength is greatly improved, and meet the modern industry's requirements for materials. Requirements for mechanical properties to solve the problems of insufficient strength, poor plasticity, poor strength-plasticity matching, and difficulty in mass production of existing high-entropy alloys.
本申请的实施例可以通过以下技术方案实现:Embodiments of the application can be achieved through the following technical solutions:
一种超高强度-塑性匹配的高熵合金,所述高熵合金包括主元元素、副元元素,所述主元元素包括Ni、Fe、Co、Cr,所述副元元素包括Al、Ti、W、Mo、Nb,通过添加所述副元元素,A high-entropy alloy with ultra-high strength-plasticity matching, the high-entropy alloy includes a main element and an auxiliary element, the main element includes Ni, Fe, Co, Cr, and the auxiliary element includes Al, Ti , W, Mo, Nb, by adding the secondary elements,
使得所述主元元素引入了不同的沉淀物。Such that the principal element introduces different precipitates.
进一步地,所述主元元素、所述副元元素中各元素的原子百分比含量为,Further, the atomic percentage content of each element in the main element and the auxiliary element is,
主元元素,Ni 22at.%~25%at.%,Fe 13at.%~16at.%,Co 32.5at.%~35.5at.%,Cr 12at.%~15at.%;Main element, Ni 22at.%~25%at.%, Fe 13at.%~16at.%, Co 32.5at.%~35.5at.%, Cr 12at.%~15at.%;
副元元素,Al 3.0at.%~5.0at.%,Ti 1.5at.%~3.5at.%,W 0.5at.%~2.0at.%,Mo 1.0at.%~2.5at.%,Nb 0.25at.%~1.25at.%。Auxiliary element, Al 3.0at.%~5.0at.%, Ti 1.5at.%~3.5at.%, W 0.5at.%~2.0at.%, Mo 1.0at.%~2.5at.%, Nb 0.25 at.%~1.25at.%.
一种根据上述的超高强度-塑性匹配的高熵合金的制备方法,包括以下步骤:A method for preparing a high-entropy alloy according to the above-mentioned ultrahigh strength-plasticity matching, comprising the following steps:
第一步,合金熔炼:将金属单质Ni、Fe、Co、Cr、Al、Ti、W、Mo、Nb作为原料,按上述高熵合金各元素的原子百分比含量设计成分配比,得到纯度99.95wt.%以上纯金属,将纯金属放至感应熔炼炉内熔炼,得到多主元素合金熔体,再将所述多主元素合金熔体浇铸在模具中,以形成铸锭坯料;The first step, alloy smelting: use metal elemental Ni, Fe, Co, Cr, Al, Ti, W, Mo, Nb as raw materials, design the distribution ratio according to the atomic percentage content of each element of the above-mentioned high-entropy alloy, and obtain a purity of 99.95wt .% or more pure metal, put the pure metal into an induction melting furnace for melting to obtain a multi-principal element alloy melt, and then cast the multi-principal element alloy melt in a mold to form an ingot blank;
第二步,均匀化处理:将所述铸锭坯料在1200℃的真空热处理炉中进行24h的均匀化处理,然后,再取出空冷,得到第一合金体;The second step, homogenization treatment: the ingot billet is subjected to a homogenization treatment for 24 hours in a vacuum heat treatment furnace at 1200°C, and then taken out and air-cooled to obtain the first alloy body;
第三步,锻造成型:将所述第一合金体加热至1200℃,然后,再进行热锻,将所述第一合金体热锻造为指定尺寸的第二合金体;The third step is forging forming: heating the first alloy body to 1200°C, and then performing hot forging to hot forge the first alloy body into a second alloy body of a specified size;
第四步,固溶处理:将所述第二合金体放至1200℃的真空炉中保温2小时后进行水淬,得到第三合金体;The fourth step, solid solution treatment: put the second alloy body in a vacuum furnace at 1200°C for 2 hours, and then perform water quenching to obtain the third alloy body;
第五步,冷轧处理:在室温下将所述第三合金体进行多道次75%-90%下压量的轧制,将所述第三合金体轧制为指定尺寸的第四合金体;The fifth step, cold rolling treatment: the third alloy body is subjected to multi-pass rolling of 75%-90% reduction at room temperature, and the third alloy body is rolled into a fourth alloy with a specified size body;
第六步,退火处理:将所述第四合金体在750℃-900℃的条件下保温30分钟后水淬,得到第五合金体;The sixth step, annealing treatment: heat the fourth alloy body at 750°C-900°C for 30 minutes and then water quench to obtain the fifth alloy body;
第七步,时效处理:将所述第五合金体在500℃-600℃的条件下保温48小时后进行空冷,得到高熵合金成品。The seventh step, aging treatment: heat the fifth alloy body under the condition of 500°C-600°C for 48 hours, then air-cool to obtain a finished high-entropy alloy.
进一步地,所述铸锭坯料包括铸锭棒体坯料和铸锭板材体坯料,所述铸锭板材坯料为通过切割所述铸锭棒体坯料而获得的坯料。Further, the ingot billet includes an ingot rod body billet and an ingot plate body billet, and the ingot plate body billet is a billet obtained by cutting the ingot bar body billet.
进一步地,所述铸锭棒体坯料横切面积的尺寸为铸锭板材体坯料横切面积的尺寸为/> Further, the size of the cross-sectional area of the ingot rod blank is The size of the cross-sectional area of the ingot plate body blank is />
进一步地,所述第四合金体在800℃或825℃或850℃的条件下保温30分钟后水淬,得到第五合金体。Further, the fourth alloy body is water-quenched after being kept at 800°C, 825°C, or 850°C for 30 minutes to obtain the fifth alloy body.
本申请的实施例提供的一种超高强度-塑性匹配的高熵合金及其制备方法至少具有以下有益效果:An ultra-high strength-plastic matching high-entropy alloy and its preparation method provided by the embodiments of the present application have at least the following beneficial effects:
本申请通过副元元素W、Mo、Al、Ti和Nb的添加,使得引入不同的沉淀物而得到多主元素合金产品,通过对多主元素合金产品锻造、轧制、退火和时效工艺处理后,高熵合金呈现异质微观结构,使得高熵合金在沉淀强化得到大幅提高的同时,产生超细再结晶晶粒并保留一定数量的位错,从而实现了高熵合金不仅强度大幅度提升,同时还保持了高延伸率和正硬化率;In this application, through the addition of auxiliary element elements W, Mo, Al, Ti and Nb, different precipitates are introduced to obtain multi-main element alloy products. After forging, rolling, annealing and aging processes for multi-main element alloy products , the high-entropy alloy presents a heterogeneous microstructure, which makes the high-entropy alloy produce ultra-fine recrystallized grains and retain a certain number of dislocations while the precipitation strengthening of the high-entropy alloy is greatly improved, so that the strength of the high-entropy alloy is not only greatly improved, At the same time, it also maintains high elongation and positive hardening rate;
使用本申请方法制备的高熵合金,可以制备出具有一定体积的板材和棒材,改变了传统的超高强高熵合金仅能使用电弧熔炼炉制备尺寸极小的高熵合金纽扣铸锭,可应用于航空工业等高强螺栓和板材的制备,具有优良的成型性能;The high-entropy alloy prepared by the method of the present application can produce plates and rods with a certain volume, which changes the traditional ultra-high-strength high-entropy alloy that can only use an arc melting furnace to prepare extremely small high-entropy alloy button ingots. It is used in the preparation of high-strength bolts and plates in the aviation industry, with excellent formability;
通过本申请的热处理工艺,尤其是第六步退火处理、第七步的时效处理会使合金的晶粒尺寸极为细小,并且保留了一定数量的位错引起加工硬化,使合金的强度达到一定保障。另外该工艺下合金的沉淀相可以被控制到纳米级别,对合金产生强化的同时不产生塑性的急剧下降,因此,使用本申请的热处理工艺才可以使合金的晶粒尺寸、位错数量、沉淀相形貌达到优异的配合,从而可以产生优异的强度-塑性匹配合金。使得获得的高熵合金的最优强度塑性-匹配可以达到罕见的屈服强度2.2GPa,延伸率10%以上,并可以通过调整热处理工艺得到不同强度-塑性匹配的高熵合金,展现出了广阔的应用前景。Through the heat treatment process of this application, especially the sixth step annealing treatment and the seventh step aging treatment, the grain size of the alloy will be extremely small, and a certain number of dislocations will be retained to cause work hardening, so that the strength of the alloy can be guaranteed to a certain extent . In addition, the precipitation phase of the alloy under this process can be controlled to the nanometer level, and the alloy will be strengthened without a sharp drop in plasticity. Therefore, the heat treatment process of the application can make the grain size, dislocation number, and precipitation of the alloy The phase morphology achieves excellent coordination, which can produce excellent strength-plasticity matching alloys. The optimal strength-plasticity matching of the obtained high-entropy alloy can reach a rare yield strength of 2.2GPa, and the elongation rate is more than 10%, and the high-entropy alloy with different strength-plasticity matching can be obtained by adjusting the heat treatment process, showing a broad field of view. Application prospect.
附图说明Description of drawings
图1为本申请实施例1、实施例8、实施例9所制备的样例在扫描电镜下的图片及电子背散射衍射分析图;Fig. 1 is the picture and electron backscatter diffraction analysis diagram of the sample prepared by embodiment 1, embodiment 8 and embodiment 9 of the present application under the scanning electron microscope;
图2-图4分别为实施例1、实施例8、实施例9所制备的高熵合金的拉伸工程应力-应变曲线。Figures 2-4 are the tensile engineering stress-strain curves of the high-entropy alloys prepared in Example 1, Example 8, and Example 9, respectively.
具体实施方式Detailed ways
以下,基于优选的实施方式并参照附图对本申请进行进一步说明。Hereinafter, the present application will be further described based on preferred embodiments with reference to the drawings.
此外,为了方便理解,放大(厚)或者缩小(薄)了图纸上的各种构件,但这种做法不是为了限制本申请的保护范围。In addition, for the convenience of understanding, various components on the drawings are enlarged (thick) or reduced (thin), but this approach is not intended to limit the scope of protection of the present application.
单数形式的词汇也包括复数含义,反之亦然。Words in the singular include the plural and vice versa.
在本申请实施例中的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是本申请实施例的产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,本申请的描述中,为了区分不同的单元,本说明书上用了第一、第二等词汇,但这些不会受到制造的顺序限制,也不能理解为指示或暗示相对重要性,其在本申请的详细说明与权利要求书上,其名称可能会不同。In the description of the embodiments of the present application, it should be noted that if the orientation or positional relationship indicated by the terms "upper", "lower", "inner" and "outer" appear, it is based on the orientation or position shown in the drawings relationship, or the usual orientation or positional relationship of the products in the embodiments of the application when used, is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, in order to Specific orientation configurations and operations, therefore, are not to be construed as limitations on the application. In addition, in the description of the present application, in order to distinguish different units, words such as first and second are used in this specification, but these are not limited by the order of manufacture, nor can they be interpreted as indicating or implying relative importance. The titles in the detailed description of the application may be different from those in the claims.
本说明书中词汇是为了说明本申请的实施例而使用的,但不是试图要限制本申请。还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,可以是直接相连,也可以通过中间媒介间接连接,可以是两个元件内部的连通。对于本领域的技术人员而言,可以具体理解上述术语在本申请中的具体含义。The terms used in this specification are used to describe the embodiments of the present application, but are not intended to limit the present application. It should also be noted that, unless otherwise clearly stipulated and limited, the terms "set", "connected" and "connected" should be interpreted in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be a mechanical connection, a direct connection, or an indirect connection through an intermediary, or an internal connection between two components. Those skilled in the art can specifically understand the specific meanings of the above terms in this application.
一种超高强度-塑性匹配的高熵合金,所述高熵合金包括主元元素、副元元素,所述主元元素包括Ni、Fe、Co、Cr,所述副元元素包括Al、Ti、W、Mo、Nb,通过添加所述副元元素,使得主元元素引入了不同的沉淀物。A high-entropy alloy with ultra-high strength-plasticity matching, the high-entropy alloy includes a main element and an auxiliary element, the main element includes Ni, Fe, Co, Cr, and the auxiliary element includes Al, Ti , W, Mo, Nb, by adding the auxiliary element, the main element introduces different precipitates.
所述高熵合金的各元素的原子百分比含量为:The atomic percent content of each element of the high-entropy alloy is:
主元元素,Ni 22at.%~25%at.%,Fe 13at.%~16at.%,Co 32.5at.%~35.5at.%,Cr 12at.%~15at.%;Main element, Ni 22at.%~25%at.%, Fe 13at.%~16at.%, Co 32.5at.%~35.5at.%, Cr 12at.%~15at.%;
副元元素,Al 3.0at.%~5.0at.%,Ti 1.5at.%~3.5at.%,W 0.5at.%~2.0at.%,Mo 1.0at.%~2.5at.%,Nb 0.25at.%~1.25at.%;Auxiliary element, Al 3.0at.%~5.0at.%, Ti 1.5at.%~3.5at.%, W 0.5at.%~2.0at.%, Mo 1.0at.%~2.5at.%, Nb 0.25 at.%~1.25at.%;
其中,杂质中单个杂质元素≤0.05at.%,所有杂质元素总量≤0.15at.%。Among them, a single impurity element in the impurities is ≤0.05 at.%, and the total amount of all impurity elements is ≤0.15 at.%.
优选的,各元素金属单质的纯度为99.95wt.%以上。Preferably, the purity of each element metal is above 99.95wt.%.
所述副元元素中W、Mo、Al、Ti和Nb的添加是为了引入不同的沉淀物而得到多主元素合金产品,用于进一步发挥沉淀强化的作用,再通过对多主元素合金产品锻造、轧制、退火和时效工艺处理后,高熵合金呈现异质微观结构,使得高熵合金在沉淀强化得到大幅提高的同时,产生超细再结晶晶粒并保留一定数量的位错,从而实现了高熵合金不仅强度大幅度提升,同时还保持了高延伸率和正硬化率。The addition of W, Mo, Al, Ti and Nb in the auxiliary elements is to introduce different precipitates to obtain multi-primary element alloy products, which are used to further exert the effect of precipitation strengthening, and then through forging the multi-main element alloy products , after rolling, annealing and aging treatment, the high-entropy alloy presents a heterogeneous microstructure, which makes the high-entropy alloy greatly improve the precipitation strengthening, and at the same time produce ultra-fine recrystallized grains and retain a certain number of dislocations, so as to realize The high-entropy alloy not only greatly improves the strength, but also maintains high elongation and positive hardening rate.
一种超高强度-塑性匹配的高熵合金的制备方法,包括以下步骤:A method for preparing a high-entropy alloy with ultra-high strength-plasticity matching, comprising the following steps:
第一步,合金熔炼:将金属单质Ni、Fe、Co、Cr、Al、Ti、W、Mo、Nb作为原料,按上述高熵合金各元素的原子百分比含量设计成分配比,得到纯度99.95wt.%以上纯金属,将纯金属放至感应熔炼炉内熔炼,得到多主元素合金熔体,再将所述多主元素合金熔体浇铸在模具中,以形成铸锭坯料;The first step, alloy smelting: use metal elemental Ni, Fe, Co, Cr, Al, Ti, W, Mo, Nb as raw materials, design the distribution ratio according to the atomic percentage content of each element of the above-mentioned high-entropy alloy, and obtain a purity of 99.95wt .% or more pure metal, put the pure metal into an induction melting furnace for melting to obtain a multi-principal element alloy melt, and then cast the multi-principal element alloy melt in a mold to form an ingot blank;
第二步,均匀化处理:将所述铸锭坯料在1200℃的真空热处理炉中进行24h的均匀化处理,然后,再取出空冷,得到第一合金体;The second step, homogenization treatment: the ingot billet is subjected to a homogenization treatment for 24 hours in a vacuum heat treatment furnace at 1200°C, and then taken out and air-cooled to obtain the first alloy body;
第三步,锻造成型:将所述第一合金体加热至1200℃,然后,再进行热锻,将所述第一合金体热锻造为指定尺寸的第二合金体;The third step is forging forming: heating the first alloy body to 1200°C, and then performing hot forging to hot forge the first alloy body into a second alloy body of a specified size;
第四步,固溶处理:将所述第二合金体放至1200℃的真空炉中保温2小时后进行水淬,得到第三合金体;The fourth step, solid solution treatment: put the second alloy body in a vacuum furnace at 1200°C for 2 hours, and then perform water quenching to obtain the third alloy body;
第五步,冷轧处理:在室温下将所述第三合金体进行多道次75%-90%下压量的轧制,将所述第三合金体轧制为指定尺寸的第四合金体;The fifth step, cold rolling treatment: the third alloy body is subjected to multi-pass rolling of 75%-90% reduction at room temperature, and the third alloy body is rolled into a fourth alloy with a specified size body;
通常情况下,冷轧处理的总压下率一般为60%~90%,经反复试验测得,经75%-90%下压量的轧制后获得的第四合金的组织均匀、表面质量优越,力学性能和工艺性能更优异。Under normal circumstances, the total reduction rate of cold rolling treatment is generally 60% to 90%. It is measured through repeated tests that the structure of the fourth alloy obtained after rolling with a reduction rate of 75% to 90% is uniform and the surface quality is uniform. Superior, more excellent mechanical properties and process performance.
第六步,退火处理:将所述第四合金体在750℃-900℃的条件下保温30分钟后水淬,得到第五合金体,用于通过高温退火可以使合金的冷轧变形组织发生再结晶,使合金塑性提升,强度略微下降,时间较短保温30分钟的原因是为了防止晶粒的过分长大,而造成不利于细晶强化,因为细晶强化对强度和塑性都产生积极影响;The sixth step, annealing treatment: the fourth alloy body is kept at 750°C-900°C for 30 minutes and then water quenched to obtain the fifth alloy body, which is used to generate the cold-rolled deformed structure of the alloy through high-temperature annealing Recrystallization improves the plasticity of the alloy and slightly reduces the strength. The reason for keeping the temperature for 30 minutes is short is to prevent excessive growth of grains, which is not conducive to fine-grain strengthening, because fine-grain strengthening has a positive impact on both strength and plasticity. ;
第七步,时效处理:将所述第五合金体在500℃-600℃的条件下保温48小时后进行空冷,得到高熵合金成品,在低温下长时间时效的意义是使合金在低温下缓慢地析出沉淀相,也是为了产生大量的、细小的第二相沉淀,使合金的强度进一步提升,而不产生塑性的剧烈下降。The seventh step, aging treatment: the fifth alloy body is kept at 500°C-600°C for 48 hours and then air-cooled to obtain a finished high-entropy alloy. The meaning of long-term aging at low temperature is to make the alloy at low temperature The slow precipitation of the precipitated phase is also to produce a large amount of fine second phase precipitation, so that the strength of the alloy can be further improved without a sharp drop in plasticity.
进一步地,在上述制备方法的第一步中,所述铸锭坯料包括铸锭棒体坯料和铸锭板材体坯料,其中,所述铸锭板材坯料为采用线切割方式切割所述铸锭棒体坯料而获得的坯料。Further, in the first step of the above preparation method, the ingot blank includes an ingot rod body blank and an ingot plate body blank, wherein the ingot plate blank is cut by wire cutting. A blank obtained from a body blank.
在一些优选的实施例中,所述铸锭棒体坯料横切面积的尺寸为铸锭板材体坯料横切面积的尺寸为/> In some preferred embodiments, the size of the cross-sectional area of the ingot rod blank is The size of the cross-sectional area of the ingot plate body blank is />
相应地,在上述制备方法的第二步中,所述第一合金体包括第一合金棒体、第一合金板材体,其中,所述第一合金棒体、所述第一合金板材体分别为由所述铸锭棒体坯料、所述铸锭板材体坯料经均匀化处理获得的合金体。Correspondingly, in the second step of the above-mentioned preparation method, the first alloy body includes a first alloy rod body and a first alloy plate body, wherein the first alloy rod body and the first alloy plate body are respectively It is an alloy body obtained by homogenizing the ingot rod body blank and the ingot plate body blank.
相应地,在上述制备方法的第三步中,所述第二合金体包括第二合金棒体、第二合金板体,所述第二合金棒体、所述第二合金板体分别为所述第一合金棒体、所述第一合金板材体经锻造成型获得的合金体。Correspondingly, in the third step of the above preparation method, the second alloy body includes a second alloy rod body and a second alloy plate body, and the second alloy rod body and the second alloy plate body are respectively the An alloy body obtained by forging the first alloy rod body and the first alloy plate body.
在一些优选的实施例中,经所述第三步的热锻造后,所述第二合金棒体的直径为60mm的短棒,所述第二合金板体的厚度为15mm的方板。In some preferred embodiments, after the third step of hot forging, the second alloy rod body is a short rod with a diameter of 60 mm, and the second alloy plate body is a square plate with a thickness of 15 mm.
相应地,在上述制备方法的第四步中,所述第三合金体包括第三合金棒体、第三合金板体,所述第三合金棒体、所述第三合金板体分别为第二合金棒体、第二合金板体经固溶处理后获得的合金体。Correspondingly, in the fourth step of the above preparation method, the third alloy body includes a third alloy rod body and a third alloy plate body, and the third alloy rod body and the third alloy plate body are respectively the third alloy rod body and the third alloy plate body. The alloy body obtained after the second alloy rod body and the second alloy plate body are subjected to solid solution treatment.
相应地,在上述制备方法的第五步中,所述第四合金体包括第四合金棒体、第四合金板体,所述第四合金棒体、所述第四合金板体为分别由第三合金棒体、第三合金板体经冷轧处理获得的合金体。Correspondingly, in the fifth step of the above preparation method, the fourth alloy body includes a fourth alloy rod body and a fourth alloy plate body, and the fourth alloy rod body and the fourth alloy plate body are formed by An alloy body obtained by cold rolling the third alloy rod body and the third alloy plate body.
在一些优选的实施例中,经所述第五步的轧制后,第四合金棒体的直径为19mm、第四合金板体的厚度为1.5mm。In some preferred embodiments, after the fifth step of rolling, the diameter of the fourth alloy rod body is 19 mm, and the thickness of the fourth alloy plate body is 1.5 mm.
相应地,在上述制备方法的第六步中,所述第五合金体包括第五合金棒体、第五合金板体,所述第五合金棒体、第五合金板体分别为所述第四合金棒体、所述第四合金板体经退火处理获得的。Correspondingly, in the sixth step of the above preparation method, the fifth alloy body includes a fifth alloy rod body and a fifth alloy plate body, and the fifth alloy rod body and the fifth alloy plate body are respectively the first The four-alloy rod body and the fourth alloy plate body are obtained through annealing treatment.
相应地,在上述制备方法的第七步中,所述高熵合金成品包括高熵合金棒体成品、高熵合金板体成品,所述高熵合金棒体成品、所述高熵合金板体成品为分别由所述第五合金棒体、所述第五合金板体经时效处理后获得的成品。Correspondingly, in the seventh step of the above preparation method, the finished high-entropy alloy includes finished high-entropy alloy rods and finished high-entropy alloy plates, the finished high-entropy alloy rods, the finished high-entropy alloy plates The finished product is a finished product obtained from the fifth alloy rod body and the fifth alloy plate body after aging treatment respectively.
通过以上特定工艺的热处理工艺,会使合金的晶粒尺寸极为细小,并且保留了一定体积分数的变形组织保留一定的加工硬化,使合金的强度达到一定保障。低温下长时间时效合金,可以使沉淀相可以被控制到纳米级别,对合金产生强化的同时不产生塑性下降,因此使用特定热处理工艺才可以使合金的晶粒尺寸、位错数量、沉淀相形貌达到完美配合,从而产生优异的强度-塑性匹配的高熵合金。热处理的意义是使合金的组织中晶粒尺寸、位错密度、再结晶百分比、沉淀相的形貌达到一个良好的配合,从而产生优异的强度塑性匹配性能。Through the heat treatment process of the above specific process, the grain size of the alloy will be extremely small, and a certain volume fraction of the deformed structure will be retained to retain a certain amount of work hardening, so that the strength of the alloy can be guaranteed to a certain extent. Long-term aging alloys at low temperatures can control the precipitated phases to the nanometer level, which can strengthen the alloy without reducing the plasticity. Therefore, only by using a specific heat treatment process can the grain size, number of dislocations, and precipitated phases of the alloy be reduced. The appearance can be perfectly matched, resulting in a high-entropy alloy with excellent strength-plasticity matching. The significance of heat treatment is to achieve a good match between the grain size, dislocation density, recrystallization percentage, and the morphology of the precipitated phase in the structure of the alloy, thereby producing excellent strength-plastic matching properties.
实施例1Example 1
第一步,合金熔炼:将金属单质Ni、Fe、Co、Cr、Al、Ti、W、Mo、Nb作为原料,按照Co:Cr:Fe:Ni:W:Mo:Al:Ti:Nb=34.25%:15%:15%:24%:1.5%:1.5%:5%:3%:0.75%的原子百分比进行配比,精确称量出20kg的混合原料,投入感应熔炼炉内,熔炼后浇铸获得横切面积尺寸为的铸锭棒体坯料,再使用线切割将所述铸锭棒体坯料切割为横切面积尺寸为/>的铸锭板材坯料;The first step, alloy smelting: use metal elemental Ni, Fe, Co, Cr, Al, Ti, W, Mo, Nb as raw materials, according to Co: Cr: Fe: Ni: W: Mo: Al: Ti: Nb = 34.25 %: 15%: 15%: 24%: 1.5%: 1.5%: 5%: 3%: 0.75% atomic percentage for proportioning, accurately weigh 20kg of mixed raw materials, put them into the induction melting furnace, and cast after melting Obtain the cross-sectional area size as The ingot rod blank, and then use wire cutting to cut the ingot rod blank into a cross-sectional area size of /> Ingot plate blanks;
第二步,均匀化处理:将所述铸锭板材坯料在1200℃的真空热处理炉中进行24h的均匀化处理,然后,再取出空冷,得到第一合金板体;The second step, homogenization treatment: the ingot plate blank is subjected to a homogenization treatment for 24 hours in a vacuum heat treatment furnace at 1200° C., and then taken out and air-cooled to obtain the first alloy plate body;
第三步,锻造成型:第一合金板体加热至1200℃,然后,再进行热锻,将所述第一合金板体锻造为厚度为15mm的第二合金板体;The third step is forging forming: the first alloy plate body is heated to 1200° C., and then hot forged to forge the first alloy plate body into a second alloy plate body with a thickness of 15 mm;
第四步,固溶处理:将所述第二合金板体放至在1200℃的真空炉内保温2h后进行水淬,得到第三合金板体;The fourth step, solution treatment: put the second alloy plate body in a vacuum furnace at 1200°C for 2 hours and then water quench to obtain the third alloy plate body;
第五步,冷轧处理:在室温下将所述第三合金板体进行多道次90%下压量的轧制,轧制至获得厚度为1.5mm的第四合金板体;The fifth step, cold rolling treatment: rolling the third alloy plate body with a 90% downdraft for multiple passes at room temperature until a fourth alloy plate body with a thickness of 1.5 mm is obtained;
第六步,退火处理:将所述第四合金板体在800℃下保温30分钟后水淬,得到第五合金板体;The sixth step, annealing treatment: heat the fourth alloy plate body at 800°C for 30 minutes and then water quench to obtain the fifth alloy plate body;
第七步,时效处理:将所述第五合金板体在500℃下保温48小时后进行空冷,得到高熵合金板体成品,记为高熵合金1。The seventh step, aging treatment: heat the fifth alloy plate body at 500° C. for 48 hours and then air-cool to obtain a finished high-entropy alloy plate body, which is denoted as high-entropy alloy 1.
实施例2-6:Embodiment 2-6:
在实施例1的基础上,只改变Ni、Fe、Co、Cr、Al、Ti、W、Mo、Nb之间的原子百分比,On the basis of embodiment 1, only change the atomic percent among Ni, Fe, Co, Cr, Al, Ti, W, Mo, Nb,
其他步骤及条件与实施例1相同,分别制备得到高熵合金2-6;其中,Ni、Fe、Co、Cr、Al、Ti、W、Mo、Nb之间的原子百分比详见表1:Other steps and conditions are the same as in Example 1, and high-entropy alloys 2-6 are prepared respectively; wherein, the atomic percentages among Ni, Fe, Co, Cr, Al, Ti, W, Mo, and Nb are shown in Table 1:
表1Table 1
实施例7-10Example 7-10
在实施例1的基础上,不改变Ni、Fe、Co、Cr、Al、Ti、W、Mo、Nb之间的原子百分比,只改变第六步中的保温温度,将经第五步处理得到的第四合金板体分别在750℃、825℃、850℃、900℃下保温30分钟后水淬,其余步骤及条件与实施例1相同,分别制备得到高熵合金7、高熵合金8、高熵合金9、高熵合金10。On the basis of Example 1, without changing the atomic percentage between Ni, Fe, Co, Cr, Al, Ti, W, Mo, Nb, only changing the holding temperature in the sixth step, the fifth step will be processed to obtain The fourth alloy plate body was kept at 750°C, 825°C, 850°C, and 900°C for 30 minutes, and then quenched in water. The rest of the steps and conditions were the same as in Example 1, and high-entropy alloy 7, high-entropy alloy 8, and High entropy alloy 9, high entropy alloy 10.
实施例11Example 11
在实施例1的基础上,不改变Ni、Fe、Co、Cr、Al、Ti、W、Mo、Nb之间的原子百分比,只改变第五步中的冷轧下压量,在室温下将经第四步处理得到的第三合金板体进行多道次75%下压量的轧制,其余步骤与条件与实施1相同,制备得到高熵合金11。On the basis of Example 1, do not change the atomic percentage between Ni, Fe, Co, Cr, Al, Ti, W, Mo, Nb, only change the cold rolling reduction in the fifth step, at room temperature The third alloy plate body obtained through the fourth step treatment was subjected to multi-pass rolling with a 75% downdraft, and the rest of the steps and conditions were the same as those in Implementation 1, and the high entropy alloy 11 was prepared.
实施例12Example 12
在实施例1的基础上,不改变Ni、Fe、Co、Cr、Al、Ti、W、Mo、Nb之间的原子百分比,只改变第七步中的保温温度,将经第六步处理得到的第五合金板体在600℃下保温48小时后进行空冷,其余步骤与条件与实施例1相同,制备得到高熵合金12。On the basis of Example 1, do not change the atomic percentage between Ni, Fe, Co, Cr, Al, Ti, W, Mo, Nb, only change the holding temperature in the seventh step, and obtain The fifth alloy plate body was kept at 600° C. for 48 hours and then air-cooled. The rest of the steps and conditions were the same as in Example 1 to prepare high-entropy alloy 12.
分别对以上实施例所制备的高熵合金1-12进行室温准静态拉伸力学性能测试,结果详见表2。The quasi-static tensile mechanical properties at room temperature were tested on the high-entropy alloys 1-12 prepared in the above examples, and the results are shown in Table 2.
表2Table 2
分析表2可知,本申请各实施例中的高熵合金的屈服强度均达到1700MPa以上,抗拉强度大多都达到了2.0GPa以上,对比分析实施例1、实施例7-10可知,通过高温退火可以使合金的冷轧变形组织发生再结晶,使合金塑性提升,强度略微下降;对比分析实施例1、实施例12可知,在低温下长时间时效,低温使合金的强度进一步提升,而不产生塑性的剧烈下降;对比分析实施例1、实施例11可知、下压量越大,轧制后获得的第四合金的组织均匀、表面质量越优越,高熵合金的强度越高、塑形降低。Analysis of Table 2 shows that the yield strength of the high-entropy alloys in each embodiment of the present application has reached more than 1700MPa, and most of the tensile strengths have reached more than 2.0GPa. Comparative analysis of Example 1 and Examples 7-10 shows that through high-temperature annealing It can recrystallize the cold-rolled deformed structure of the alloy, improve the plasticity of the alloy, and slightly decrease the strength; comparative analysis of Example 1 and Example 12 shows that aging at low temperature for a long time, low temperature can further improve the strength of the alloy without producing Sharp decrease in plasticity; comparative analysis of Example 1 and Example 11 shows that the greater the amount of pressing force, the more uniform the structure of the fourth alloy obtained after rolling, the better the surface quality, the higher the strength of the high-entropy alloy, and the lower the plasticity .
为更直观地展示出将所述副元元素中W、Mo、Al、Ti和Nb添加在主元元素后而得到多主元素合金产品,再通过对多主元素合金产品锻造、轧制、退火和时效工艺处理后,获得的高熵合金不仅强度大幅度提升,同时还保持了高延伸率和正硬化率的事实,以下结合图1至图4进行进一步地说明:In order to more intuitively show that W, Mo, Al, Ti and Nb in the auxiliary elements are added after the main elements to obtain multi-principal element alloy products, and then through forging, rolling and annealing the multi-principal element alloy products After treatment with the aging process, the obtained high-entropy alloy not only has a greatly improved strength, but also maintains a high elongation and positive hardening rate. The following is further explained in conjunction with Figures 1 to 4:
图1为本申请实施例1、实施例8、实施例9所制备的样例在扫描电镜下的图片及电子背散射衍射分析图,其中,(a)、(b)、(c)分别代表实施例1中高熵合金1、实施例8中高熵合金8、实施例9中高熵合金9,如图1所示,经过90%轧制、退火和时效后,在扫描电子显微镜(SEM)图中观察到富(Ti,Nb)的相颗粒(由黄色箭头表示)沿轧制方向排列,周围未发现裂纹。Fig. 1 is the picture and the electron backscatter diffraction analysis figure of the sample prepared by embodiment 1, embodiment 8 and embodiment 9 of the present application under the scanning electron microscope, wherein, (a), (b), and (c) represent respectively High-entropy alloy 1 in Example 1, high-entropy alloy 8 in Example 8, and high-entropy alloy 9 in Example 9, as shown in Figure 1, after 90% rolling, annealing and aging, in the scanning electron microscope (SEM) figure It was observed that the (Ti, Nb)-rich phase particles (indicated by yellow arrows) were aligned along the rolling direction, and no cracks were found around them.
经过退火时效处理后,剪切带发生再结晶,σ相以亚微米尺寸沉淀(由红色箭头指示)。在这种情况下,在SEM下仍然可以观察到剪切带。After annealing and aging treatment, the shear bands recrystallized and the σ phase precipitated in submicron size (indicated by the red arrow). In this case, shear bands can still be observed under SEM.
经过退火时效处理后,在EBSD-IPF图(电子背散射-反极图)可以很好地观察到再结晶晶粒。KAM图(Kernel Average Misorientation局部取向差)表明,再结晶区域的位错应变减小,再结晶面积较小。在SEM观察下,随着退火温度的升高,再结晶区域扩大,剪切带消失,同时亚微米σ相颗粒的数量在825℃下退火产生的数量最多,升至850℃后含量降低。在高温下退火,由于更充分的再结晶,EBSD图清楚地显示了具有非常高分度率的再结晶晶粒。KAM图显示位错应变进一步减小,这表明合金在更高的温度下退火后再结晶更充分。After annealing and aging treatment, the recrystallized grains can be well observed in the EBSD-IPF diagram (electron backscattering-inverse pole figure). The KAM diagram (Kernel Average Misorientation local misorientation) shows that the dislocation strain in the recrystallized region decreases and the recrystallized area is smaller. Under SEM observation, as the annealing temperature increases, the recrystallization region expands and the shear band disappears. At the same time, the number of submicron σ phase particles annealed at 825°C is the largest, and the content decreases after rising to 850°C. Annealed at high temperature, the EBSD map clearly shows recrystallized grains with a very high division rate due to more complete recrystallization. The KAM diagram shows that the dislocation strain is further reduced, which indicates that the alloy is recrystallized more fully after annealing at a higher temperature.
图2-图4为各实施例1、实施例8、实施例9所制备的高熵合金的拉伸工程应力-应变曲线,其中,纵坐标为应力,横坐标为应变,如图2-图4所示,本申请实施例1、实施例8、实施例9中的高熵合金的屈服强度均达到1700MPa以上,抗拉强度达到了2.0GPa以上,强度较高。关于塑性,合金经过热机械处理后,仍保留一定的塑性可以满足一定的工程应用。Fig. 2-Fig. 4 is the tensile engineering stress-strain curve of the high-entropy alloy prepared by each embodiment 1, embodiment 8, and embodiment 9, wherein, the ordinate is the stress, and the abscissa is the strain, as shown in Fig. 2-Fig. As shown in 4, the yield strength of the high-entropy alloys in Example 1, Example 8, and Example 9 of the present application all reached more than 1700 MPa, and the tensile strength reached more than 2.0 GPa, and the strength was relatively high. With regard to plasticity, after thermomechanical treatment, the alloy still retains a certain degree of plasticity to meet certain engineering applications.
对比三条应力应变曲线,可见经过800℃保温30分钟后水淬,再在500℃保温48小时后空冷时效处理的高熵合金1的强度最高,其抗拉强度为2606MPa,屈服强度为2486MPa,但塑性较低为3.5%。Comparing the three stress-strain curves, it can be seen that the high-entropy alloy 1 after heat preservation at 800°C for 30 minutes, water quenching, and air cooling and aging treatment at 500°C for 48 hours has the highest strength, with a tensile strength of 2606MPa and a yield strength of 2486MPa, but The plasticity is as low as 3.5%.
塑性最好的高熵合金是经过850℃保温30分钟后水淬的高熵合金9,其延伸率为17.9%,但屈服强度仅为1138MPa。强塑性结合较好的合金是经过825℃保温30分钟后水淬的高熵合金8,其屈服强度为2221MPa,并结合了11.2%的延伸率。The high-entropy alloy with the best plasticity is the high-entropy alloy 9 which has been water-quenched at 850°C for 30 minutes. Its elongation is 17.9%, but its yield strength is only 1138MPa. The alloy with better strong-plastic combination is high-entropy alloy 8, which is water-quenched after holding at 825°C for 30 minutes. Its yield strength is 2221MPa, combined with an elongation of 11.2%.
以上对本申请的具体实施方式作了详细介绍,对于本技术领域的技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也属于本申请权利要求的保护范围。The specific implementation of the application has been described in detail above. For those skilled in the art, without departing from the principle of the application, some improvements and modifications can be made to the application, and these improvements and modifications also belong to the application. The scope of the claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211246896.2A CN115449691B (en) | 2022-10-12 | 2022-10-12 | Ultrahigh-strength-plasticity matched high-entropy alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211246896.2A CN115449691B (en) | 2022-10-12 | 2022-10-12 | Ultrahigh-strength-plasticity matched high-entropy alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115449691A CN115449691A (en) | 2022-12-09 |
CN115449691B true CN115449691B (en) | 2023-08-25 |
Family
ID=84308573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211246896.2A Active CN115449691B (en) | 2022-10-12 | 2022-10-12 | Ultrahigh-strength-plasticity matched high-entropy alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115449691B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115852276B (en) * | 2022-12-23 | 2024-09-17 | 中国科学院金属研究所 | Grain boundary regulation and control technology for inhibiting precipitation of harmful grain boundary precipitated phase in face-centered cubic high-entropy alloy |
CN116162875B (en) * | 2023-03-14 | 2024-12-06 | 西安交通大学 | A heat treatment method for preparing a high entropy alloy with non-uniform composition and the prepared high entropy alloy |
CN116516227B (en) * | 2023-03-17 | 2025-03-11 | 齐齐哈尔大学 | Multi-scale tissue composite reinforced high-entropy alloy and preparation method thereof |
CN116351994B (en) * | 2023-05-25 | 2023-12-19 | 北京中辰至刚科技有限公司 | Isothermal forging method of refractory high-entropy alloy product and processed product thereof |
CN119036003B (en) * | 2024-11-01 | 2025-01-28 | 东方蓝天钛金科技有限公司 | Processing method of high-entropy alloy bolt for aerospace |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019127610A1 (en) * | 2017-12-29 | 2019-07-04 | 北京理工大学 | Precipitation-enhanced alcrfeniv system high-entropy alloy and preparation method therefor |
CN113430444A (en) * | 2021-06-18 | 2021-09-24 | 哈尔滨工程大学 | High-plasticity high-strength high-entropy alloy and preparation method thereof |
-
2022
- 2022-10-12 CN CN202211246896.2A patent/CN115449691B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019127610A1 (en) * | 2017-12-29 | 2019-07-04 | 北京理工大学 | Precipitation-enhanced alcrfeniv system high-entropy alloy and preparation method therefor |
CN113430444A (en) * | 2021-06-18 | 2021-09-24 | 哈尔滨工程大学 | High-plasticity high-strength high-entropy alloy and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
The superior strength-ductility combination of a (Ni2FeCoCr)88.25-Al5Ti3W1.5Mo1.5Nb0.75 high entropy alloy enhanced with the heterogeneous microstructure via thermo-mechanical processing;Jiale Man等;《Materials Science & Engineering A》;20221006;第144137页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115449691A (en) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115449691B (en) | Ultrahigh-strength-plasticity matched high-entropy alloy and preparation method thereof | |
CN105568151B (en) | A kind of aluminium enhancing Maraging steel and preparation method thereof | |
CN115011858B (en) | High-strength high-plasticity CoCrNiAlTi multi-principal-element alloy and preparation method thereof | |
CN112522645B (en) | Preparation method of high-strength high-toughness homogeneous fine-grain CrCoNi intermediate-entropy alloy thin plate | |
CN114921732B (en) | Multiphase reinforced ultra-high strength maraging stainless steel and preparation method thereof | |
CN104694808A (en) | High-entropy alloy with dispersion nano-sized precipitate strengthening effect and preparing method thereof | |
CN108251760A (en) | The martensitic stain less steel and its manufacturing method of the mutually compound precipitation strength of nanometer | |
JP2024504210A (en) | High entropy austenitic stainless steel and its manufacturing method | |
CN104911501B (en) | A kind of superhigh intensity high-carbon dislocation type martensite steel and preparation method thereof | |
CN110951946B (en) | A kind of heat treatment process of low density steel and preparation method thereof | |
CN112063921A (en) | Air-cooled hardened steel sheet with ultra-high strength, high toughness and ultra-fine microstructure and its preparation process | |
CN114921730B (en) | Ultra-high-strength high-performance sheet maraging stainless steel and preparation method thereof | |
CN113718154B (en) | Ultrahigh-strength-toughness high-density high-entropy alloy and preparation method thereof | |
CN113502427B (en) | Co-Ni-Cr-based alloy with strength grade of 2.3GPa and preparation method thereof | |
CN114517273A (en) | 2400 MPa-grade high-ductility high-corrosion-resistance maraging stainless steel and preparation method thereof | |
CN114990408B (en) | NiCoCrFeAlTi intermediate entropy alloy with excellent comprehensive mechanical property and preparation method thereof | |
CN107974632B (en) | A kind of austenitic hot work die steel and preparation method thereof | |
CN115141911A (en) | Method for improving or eliminating alloy segregation and coarse precipitated phase and alloy | |
CN116926442B (en) | Nanophase synergistic precipitation strengthening low yield ratio ultrahigh strength steel and preparation method thereof | |
CN116254448B (en) | Twin induced plasticity high-entropy alloy based on B2 phase and nano ordered phase double precipitation strengthening and preparation method thereof | |
CN115821171B (en) | Trace B element doped modified high-strength high-plasticity multicomponent alloy, and preparation method and application thereof | |
CN115011890A (en) | A method for improving high-temperature strength-plastic product of high-entropy alloy by precipitation | |
CN114086086A (en) | Nano-phase carbon-nitrogen composite particle enhanced invar alloy wire and preparation method thereof | |
CN116574939B (en) | High-strength titanium alloy and preparation method thereof | |
CN118531270B (en) | Ultra-high-strength aluminum alloy wire for aerospace fasteners and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |