CN115440573A - Single crystal SiC/Si wafer substrate, heterostructure and preparation method thereof - Google Patents
Single crystal SiC/Si wafer substrate, heterostructure and preparation method thereof Download PDFInfo
- Publication number
- CN115440573A CN115440573A CN202110619695.1A CN202110619695A CN115440573A CN 115440573 A CN115440573 A CN 115440573A CN 202110619695 A CN202110619695 A CN 202110619695A CN 115440573 A CN115440573 A CN 115440573A
- Authority
- CN
- China
- Prior art keywords
- sic
- gan
- layer
- single crystal
- wafer substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 153
- 239000013078 crystal Substances 0.000 title claims abstract description 102
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 38
- 230000008569 process Effects 0.000 claims abstract description 34
- 238000000137 annealing Methods 0.000 claims abstract description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 26
- 125000006850 spacer group Chemical group 0.000 claims abstract description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims abstract description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims abstract 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 64
- 235000012239 silicon dioxide Nutrition 0.000 claims description 32
- 239000000377 silicon dioxide Substances 0.000 claims description 32
- 229910052681 coesite Inorganic materials 0.000 claims description 30
- 229910052906 cristobalite Inorganic materials 0.000 claims description 30
- 229910052682 stishovite Inorganic materials 0.000 claims description 30
- 229910052905 tridymite Inorganic materials 0.000 claims description 30
- 229910002704 AlGaN Inorganic materials 0.000 claims description 17
- 239000004065 semiconductor Substances 0.000 claims description 15
- 230000004888 barrier function Effects 0.000 claims description 11
- 239000003575 carbonaceous material Substances 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 7
- 238000007517 polishing process Methods 0.000 claims description 7
- 238000004151 rapid thermal annealing Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 6
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 6
- 230000005669 field effect Effects 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 230000006911 nucleation Effects 0.000 claims description 4
- 238000010899 nucleation Methods 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 238000000407 epitaxy Methods 0.000 claims 1
- 238000004528 spin coating Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 12
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 abstract 1
- 239000012808 vapor phase Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 115
- 235000012431 wafers Nutrition 0.000 description 57
- 229910004298 SiO 2 Inorganic materials 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02447—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
技术领域technical field
本发明涉及异质结构及其制备方法;特别是,涉及一种单晶SiC/Si晶圆基底、单晶GaN/SiC的异质结构及其制备方法。The invention relates to a heterogeneous structure and a preparation method thereof; in particular, it relates to a single-crystal SiC/Si wafer substrate, a single-crystal GaN/SiC heterostructure and a preparation method thereof.
背景技术Background technique
高功率和高频率电路需要基于具有大击穿电压和高电子速度两者的半导体材料的器件。不同于传统的半导体材料,宽禁带的材料、诸如GaN和SiC,由于能够在较高的功率密度下使用而受到特别的关注。生长在硅(Si)衬底上的基于GaN和SiC的器件被预计为下一世代寻求紧邻彼此、无空隙整合RF和数字电路的系统的最佳候选材料之一。High power and high frequency circuits require devices based on semiconductor materials with both large breakdown voltages and high electron velocities. Unlike traditional semiconductor materials, materials with wide bandgap, such as GaN and SiC, have received special attention due to their ability to be used at higher power densities. GaN- and SiC-based devices grown on silicon (Si) substrates are expected to be among the best candidates for the next generation of systems seeking to integrate RF and digital circuits in close proximity to each other without gaps.
由SiC相较于GaN的高热导率所致,SiC亦在功率应用领域得到了广泛地关注,其理论上可承受比现有的多晶SiC更高的功率密度,3C-SiC能够直接生长在Si上而受到关注,还具有极高的电子迁移率。目前,已经在Si衬底上直接生长和集成高品质SiC和GaN器件方面做出了大量的尝试,以用于高品质的功率器件应用。Due to the high thermal conductivity of SiC compared with GaN, SiC has also been widely concerned in the field of power applications. It can theoretically withstand higher power density than the existing polycrystalline SiC, and 3C-SiC can be directly grown on Si has attracted attention and also has extremely high electron mobility. Currently, numerous attempts have been made to directly grow and integrate high-quality SiC and GaN devices on Si substrates for high-quality power device applications.
较为常用的集成技术为混合集成和异质外延,其中混合集成方式、诸如引线键合和倒片方式,提供了短期的解决方案。然而,这种方式具有在互连损失和芯片定位/对准问题和集成密度方面具有诸多限制。此外,将SiC和GaN材料用于显示出的优异性能的功率器件,其成本极大地受到来自高缺陷密度和小尺寸基板的限制。The more commonly used integration technologies are hybrid integration and heteroepitaxy, where hybrid integration methods, such as wire bonding and rewind, provide short-term solutions. However, this approach has limitations in terms of interconnect loss and chip positioning/alignment issues and integration density. Furthermore, the cost of using SiC and GaN materials for power devices exhibiting excellent performance is greatly limited by the high defect density and small size of the substrate.
不同半导体集成到Si衬底上的异质外延是一种更具应用前景的方式,而将化合物半导体(CS)直接生长在Si上所存在的最大问题是晶格失配和热膨胀系数(CTE)的失配。目前,在较大尺寸Si晶圆上形成GaN和SiC的方案看起来成本降低了,而在较大尺寸的Si晶圆上的晶格失配和高缺陷密度问题变得更为严重。或者,需要引入如缓冲层、超晶格层和阻挡层的多个层的复杂工艺。Heteroepitaxial integration of different semiconductors on Si substrates is a more promising approach, while the biggest problems in growing compound semiconductors (CS) directly on Si are lattice mismatch and coefficient of thermal expansion (CTE) mismatch. At present, the scheme of forming GaN and SiC on larger Si wafers seems to be reduced in cost, and the problem of lattice mismatch and high defect density on larger Si wafers becomes more serious. Alternatively, complex processes involving multiple layers such as buffer layers, superlattice layers, and barrier layers are required.
因此,本领域需要一种在大尺寸硅晶圆上生长高品质单晶SiC和GaN的简化方法及其改良的结构。Therefore, there is a need in the art for a simplified method of growing high-quality single-crystal SiC and GaN on large-scale silicon wafers and their improved structures.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种单晶SiC-Si晶圆基底的制备方法,用于解决现有技术中在较大Si衬底上异质生长的SiC层与衬底之间的晶格失配和热膨胀系数不匹配的问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a method for preparing a single crystal SiC-Si wafer substrate, which is used to solve the problem of heterogeneous growth of SiC layers on larger Si substrates in the prior art. The problems of lattice mismatch and thermal expansion coefficient mismatch with the substrate.
为实现上述目的及其他相关目的,本发明提供一种图案化的单晶SiC/Si晶圆基底、图案化的单晶GaN/SiC/Si异质结构的晶圆基底及其制备方法,所述单晶SiC/Si晶圆基底的制备方法至少包括:提供Si衬底;在所述Si衬底上沉积SiO2层,并对所述SiO2层进行图案化以在所述SiO2层中形成多个凹槽,所述凹槽由围绕其四周的SiO2侧壁限定,且所述凹槽底部暴露所述Si衬底;在所述凹槽中形成含碳材料层;通过退火工艺使所述含碳材料层与所述凹槽中暴露出的所述Si衬底反应以选择性地在所述凹槽底部生长单晶SiC层;和通过化学机械抛光工艺去除残留的含碳材料层,形成多个由SiO2侧壁分隔的SiC单元区域。In order to achieve the above purpose and other related purposes, the present invention provides a patterned single crystal SiC/Si wafer substrate, a patterned single crystal GaN/SiC/Si heterostructure wafer substrate and a preparation method thereof. The method for preparing a single crystal SiC/Si wafer substrate at least includes: providing a Si substrate; depositing an SiO2 layer on the Si substrate, and patterning the SiO2 layer to form in the SiO2 layer a plurality of grooves, the grooves are defined by SiO 2 sidewalls surrounding them, and the bottom of the grooves exposes the Si substrate; a carbonaceous material layer is formed in the grooves; the annealing process makes the reacting the carbon-containing material layer with the Si substrate exposed in the groove to selectively grow a single crystal SiC layer at the bottom of the groove; and removing the remaining carbon-containing material layer by a chemical mechanical polishing process, Multiple SiC cell regions separated by SiO2 sidewalls are formed.
优选地,所述退火工艺包括炉内退火或快速热退火。Preferably, the annealing process includes furnace annealing or rapid thermal annealing.
优选地,所述的单晶SiC/Si晶圆基底的制备方法,其特征在于:所述退火工艺是基于激光的局部退火工艺。Preferably, the method for preparing a single crystal SiC/Si wafer substrate is characterized in that: the annealing process is a laser-based local annealing process.
优选地,所述SiC单元区域的尺寸小于或等于4英寸。Preferably, the size of the SiC unit area is less than or equal to 4 inches.
优选地,所述SiC单元区域的形状为平滑的圆角多边形、椭圆形、圆形或上述的组合。Preferably, the shape of the SiC unit area is a smooth polygon with rounded corners, an ellipse, a circle or a combination thereof.
优选地,所述SiC单元区域的厚度为从0.1um至10um。Preferably, the thickness of the SiC unit region is from 0.1um to 10um.
优选地,所述含碳材料层包括通过旋转涂布的聚甲基丙烯酸甲酯或化学气相沉积而形成的碳层。Preferably, the carbonaceous material layer comprises a carbon layer formed by spin-coated polymethyl methacrylate or chemical vapor deposition.
本发明还提供一种单晶SiC/Si的晶圆基底,所述晶圆基底至少包括:Si衬底,所述Si衬底上形成有图案化的多个单元区域,多个所述单元区域彼此由间隔区间隔开,并且每一单元区域包括形成于相应的单元区域上的单晶SiC层。The present invention also provides a single crystal SiC/Si wafer substrate, the wafer substrate at least includes: a Si substrate, a plurality of patterned unit regions are formed on the Si substrate, and a plurality of the unit regions are separated from each other by a spacer, and each unit region includes a single crystal SiC layer formed on the corresponding unit region.
优选地,所述间隔区包括二氧化硅或空隙。Preferably, the spacers comprise silicon dioxide or voids.
优选地,所述单晶SiC是3C-SiC或4H-SiC。Preferably, the single crystal SiC is 3C-SiC or 4H-SiC.
本发明提供了一种SiC基金属氧化物半导体场效应晶体管,所述SiC基金属氧化物半导体场效应晶体管基于前述的图案化的单晶SiC/Si的晶圆基底而形成。The present invention provides a SiC-based metal-oxide-semiconductor field-effect transistor, and the SiC-based metal-oxide-semiconductor field-effect transistor is formed based on the aforementioned patterned single-crystal SiC/Si wafer substrate.
本发明提供了一种图案化的单晶GaN/SiC/Si异质结构的晶圆基底的制备方法,所述制备方法至少包括:提供Si衬底;在所述Si衬底上沉积SiO2层,并且对所述SiO2层进行图案化以在所述SiO2层中形成多个凹槽,所述凹槽由围绕其四周的SiO2侧壁限定,且所述凹槽在底部暴露出Si衬底;在所述凹槽中形成含碳材料层;通过退火工艺将所述含碳材料层与所述凹槽中暴露出的Si衬底反应以选择性地在所述凹槽底部生长单晶SiC层;通过化学机械抛光工艺去除残留的含碳材料层,形成由SiO2侧壁分隔的SiC单元区域;在图案化的SiC/Si晶圆基底上继续沉积GaN堆叠,所述GaN堆叠包括GaN层和AlGaN势垒层;和通过化学机械抛光工艺去除所述SiO2表面上的GaN堆叠。The present invention provides a method for preparing a wafer substrate of a patterned single crystal GaN/SiC/Si heterostructure, the preparation method at least comprising: providing a Si substrate; depositing a SiO2 layer on the Si substrate , and the SiO 2 layer is patterned to form a plurality of grooves in the SiO 2 layer, the grooves are defined by SiO 2 sidewalls around them, and the grooves expose Si at the bottom substrate; forming a carbon-containing material layer in the groove; reacting the carbon-containing material layer with the Si substrate exposed in the groove through an annealing process to selectively grow a single layer at the bottom of the groove crystal SiC layer; the residual carbon-containing material layer is removed by a chemical mechanical polishing process to form SiC cell regions separated by SiO2 sidewalls; GaN stacks are deposited on the patterned SiC/Si wafer substrate, and the GaN stacks include a GaN layer and an AlGaN barrier layer; and removing the GaN stack on the SiO2 surface by a chemical mechanical polishing process.
优选地,所述GaN堆叠进一步包括设置于所述单晶SiC层与GaN层之间的GaN缓冲层。Preferably, the GaN stack further includes a GaN buffer layer disposed between the single crystal SiC layer and the GaN layer.
优选地,通过执行MOCVD外延生长工艺来沉积所述GaN堆叠,所述MOCVD外延生长工艺包括:在500-800℃的温度下形成GaN形核层;和在900-1100℃的温度下形成GaN外延层。。Preferably, the GaN stack is deposited by performing an MOCVD epitaxial growth process, the MOCVD epitaxial growth process comprising: forming a GaN nucleation layer at a temperature of 500-800° C.; and forming a GaN epitaxial layer at a temperature of 900-1100° C. Floor. .
优选地,用于沉积所述GaN堆叠的前驱物包括作为氮源的NH3和含铝、镓的有机气相材料。Preferably, the precursor for depositing the GaN stack includes NH 3 as a nitrogen source and an organic gas phase material containing aluminum and gallium.
优选地,所述含铝的有机气相材料是三甲基铝(TMAl),含镓的有机气相材料是三甲基镓(TMGa)。Preferably, the aluminum-containing organic gas-phase material is trimethylaluminum (TMAl), and the gallium-containing organic gas-phase material is trimethylgallium (TMGa).
本发明还提供了一种图案化的单晶GaN/SiC/Si异质结构的晶圆基底,所述晶圆基底至少包括:Si衬底,所述Si衬底上形成有图案化的多个单元区域,所述多个单元区域彼此由间隔区间隔开,并且每一单元区域包括:形成于相应的单元区域上的单晶SiC层;和GaN堆叠,所述GaN堆叠包括GaN层和AlGaN势垒层。The present invention also provides a wafer substrate of a patterned single crystal GaN/SiC/Si heterostructure, the wafer substrate at least includes: a Si substrate on which a plurality of patterned a cell region, the plurality of cell regions are separated from each other by a spacer, and each cell region includes: a single crystal SiC layer formed on the corresponding cell region; and a GaN stack including a GaN layer and an AlGaN potential Layers.
优选地,所述GaN堆叠进一步包括设置于所述单晶SiC层与GaN层之间的GaN缓冲层。Preferably, the GaN stack further includes a GaN buffer layer disposed between the single crystal SiC layer and the GaN layer.
本发明还提供了一种GaN基高电子迁移率晶体管(HEMT),所述GaN基高电子迁移率晶体管基于前述的图案化的单晶GaN/SiC/Si异质结构的晶圆基底而形成。The present invention also provides a GaN-based high electron mobility transistor (HEMT), which is formed based on the aforementioned patterned single-crystal GaN/SiC/Si heterostructure wafer substrate.
如上所述,本发明的单晶SiC/Si晶圆基底的制备方法具有以下有益效果:在Si衬底上选择性地生长单晶SiC层,可以在衬底上有目的地定位基于化合物半导体的CMOS器件,从而优化电路的性能,同时选择性区域生长可以减少界面处的缺陷密度,由此基于此种晶圆基底的器件具有漏电流小和优化的性能;采用具有高能量的激光,可以提供局部化的加热方案,通过对激光的空间分布进行控制,可以提高对照射区域的分辨率;基于激光的局部化退火,使Si材料能够在极短的时间段内经历熔融和再结晶,快速地使材料达到均匀,这允许在不改变块体区性质的情况下对表面性质进行修改,通过将能量吸收区域限制在被照射的表面区域来降低对衬底和邻近电路的损伤。通过所述的图案化的单晶SiC/Si晶圆基底的制备方法,可以在大尺寸衬底上生长出高品质的单晶SiC和GaN,所得到的晶圆基底结构具有高质量和低缺陷密度,特别适用于制造SiC和GaN功率器件。As mentioned above, the preparation method of the single crystal SiC/Si wafer substrate of the present invention has the following beneficial effects: the single crystal SiC layer can be selectively grown on the Si substrate, and the compound semiconductor based compound semiconductor can be purposely positioned on the substrate. CMOS devices, thereby optimizing the performance of the circuit, while selective area growth can reduce the defect density at the interface, so devices based on this wafer substrate have low leakage current and optimized performance; using high-energy lasers can provide The localized heating scheme can improve the resolution of the irradiation area by controlling the spatial distribution of the laser; the localized annealing based on the laser enables the Si material to undergo melting and recrystallization in a very short period of time, rapidly Homogeneity of the material allows modification of the surface properties without changing the properties of the bulk region, reducing damage to the substrate and adjacent circuitry by confining the energy absorption region to the illuminated surface area. Through the preparation method of the patterned single-crystal SiC/Si wafer substrate, high-quality single-crystal SiC and GaN can be grown on large-scale substrates, and the obtained wafer substrate structure has high quality and low defects density, especially for the fabrication of SiC and GaN power devices.
附图说明Description of drawings
图1显示为本发明的单晶SiC/Si晶圆基底的制备方法的流程图。Fig. 1 is a flowchart showing the method for preparing a single crystal SiC/Si wafer substrate of the present invention.
图2显示为根据本发明的图案化的单晶SiC/Si晶圆基底的结构示意图。FIG. 2 is a schematic diagram showing the structure of a patterned single crystal SiC/Si wafer substrate according to the present invention.
图3至图6显示为采用本发明单晶SiC/Si晶圆基底的制备方法各阶段的结构示意图。FIG. 3 to FIG. 6 are schematic structural diagrams showing various stages of the method for preparing a single crystal SiC/Si wafer substrate according to the present invention.
图7显示为本发明的图案化的单晶GaN/SiC/Si异质结构的晶圆基底的制备方法的流程图。FIG. 7 is a flowchart showing a method for preparing a patterned single-crystal GaN/SiC/Si heterostructure wafer substrate of the present invention.
图8显示为本发明的图案化的单晶GaN/SiC/Si异质结构的晶圆基底的结构示意图。FIG. 8 shows a schematic structural view of a wafer substrate with a patterned single crystal GaN/SiC/Si heterostructure of the present invention.
图9显示为根据本发明的图案化的单晶GaN/SiC/Si异质结构的晶圆基底制备的HEMT器件的平面示意图。9 shows a schematic plan view of a HEMT device prepared for a wafer substrate with a patterned single crystal GaN/SiC/Si heterostructure according to the present invention.
元件标号说明Component designation description
110 Si衬底110 Si substrate
120 SiO2层120 SiO 2 layers
122 SiO2侧壁122 SiO 2 sidewall
124 间隔区124 Spacers
130 凹槽130 grooves
140 SiC层140 SiC layers
142 SiC单元区域142 SiC cell area
250 GaN层250 GaN layers
252 GaN/SiC单元区域252 GaN/SiC cell area
350 GaN堆叠350 GaN stack
352 GaN缓冲层352 GaN buffer layer
354 GaN异质层354 GaN hetero layer
356 AlGaN势垒层356 AlGaN barrier layer
360 栅极金属360 Grid Metal
370 源极金属370 Source metal
380 漏极金属380 Drain Metal
S1~S8 步骤S1~S8 steps
具体实施方式detailed description
此后,通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。出于清楚的目的,对本领域技术人员熟知的部件和步骤进行省略以避免不必要地混淆本发明的要素。Hereinafter, specific examples are used to illustrate the implementation of the present invention, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. For the purpose of clarity, components and steps that are well known to those skilled in the art are omitted to avoid unnecessarily obscuring elements of the invention.
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
为了解决在较大Si衬底上生长的化合物半导体与衬底之间的晶格失配和热膨胀系数失配,以及由高缺陷密度所产生的器件性能劣化的问题,本发明提供了一种新颖的方法以在Si衬底上选择性地或局部地生长SiC。此种方法允许经由有目的地定位基于化合物半导体的CMOS器件于常用的Si衬底上来优化电路的性能。选择性区域生长通过减少位错的交互作用和增殖,而有助于在晶格失配的系统中降低失配位错的密度。由于将生长区域的面积限制到数个mm2,可以更好地优化异质生长化合物半导体的质量。In order to solve the problem of lattice mismatch and thermal expansion coefficient mismatch between the compound semiconductor grown on a larger Si substrate and the substrate, and the degradation of device performance caused by high defect density, the present invention provides a novel method to selectively or locally grow SiC on Si substrates. Such an approach allows the performance of circuits to be optimized by purposefully positioning compound semiconductor-based CMOS devices on commonly used Si substrates. Selective region growth helps reduce the density of misfit dislocations in lattice-mismatched systems by reducing dislocation interactions and propagation. Due to the limitation of the area of the growth region to a few mm 2 , the quality of the heterogeneously grown compound semiconductor can be better optimized.
在本文中,术语“大尺寸衬底”意指以晶圆直径计尺寸超过4英寸的晶圆;由此,根据本发明的单晶SiC/Si晶圆基底的制备方法可以应用至尺寸超过4英寸的较大晶圆,例如大于或等于6英寸的晶圆,举例而言,8英寸的晶圆。Herein, the term "large-sized substrate" means a wafer whose size exceeds 4 inches in terms of wafer diameter; thus, the method for preparing a single crystal SiC/Si wafer substrate according to the present invention can be applied to Inch larger wafers, such as greater than or equal to 6-inch wafers, for example, 8-inch wafers.
常规地,执行在Si衬底上碳化生长SiC的步骤,可以采用本领域常规的退火工艺预先沉积在Si上的碳源,退火工艺会引起碳扩散进入Si。本领域常规的退火工艺的示例包括炉内退火、快速热退火(RTA),其中在RTA工艺中,由于高加热速率下增强的SiC结晶化,仅需在相对更低的温度下执行SiC层的生长,例如,在1000-1400℃的温度下执行生长。较佳地,可以采用高功率激光束局部地退火预先沉积在Si上的碳源。激光照射具有非常高的能量,可以分解碳源,同时使硅熔融,而引发SiC的生长。基于激光的工艺可以提供局部化的加热;具体而言,通过由光学元件聚焦的激光束,来控制激光的空间分布,这样实现对照射能量的局部化以及提高激光的空间分辨率。进一步地,基于激光的局部化退火,可以在环境条件(大气压力和室温条件)下实现较大衬底上的SiC生长,与常规的炉内退火和RTA工艺相比,使得Si衬底的被照射区域能够在极短的时间段内经历熔融和再结晶。Conventionally, the step of carbonizing and growing SiC on the Si substrate is performed, and the carbon source pre-deposited on the Si may be pre-deposited by a conventional annealing process in the art, and the annealing process will cause carbon to diffuse into the Si. Examples of conventional annealing processes in the art include furnace annealing, rapid thermal annealing (RTA), where in the RTA process only the SiC layer needs to be performed at a relatively lower temperature due to enhanced SiC crystallization at high heating rates. The growth is, for example, performed at a temperature of 1000-1400°C. Preferably, a high power laser beam can be used to locally anneal the pre-deposited carbon source on the Si. Laser irradiation has very high energy, which can decompose the carbon source and melt the silicon at the same time, thereby initiating the growth of SiC. Laser-based processes can provide localized heating; specifically, the laser beam is focused by optical elements to control the spatial distribution of the laser light, which can localize the irradiation energy and improve the spatial resolution of the laser light. Furthermore, laser-based localized annealing can achieve SiC growth on larger substrates under ambient conditions (atmospheric pressure and room temperature conditions), compared with conventional furnace annealing and RTA processes, making Si substrates The irradiated area is able to undergo melting and recrystallization in an extremely short period of time.
另一方面,本发明还提供了一种在单晶SiC/Si晶圆基底上生长无裂纹的AlGaN/GaN异质结构的方法,通过金属有机物化学气相沉积(MOCVD)技术在单晶SiC层上外延生长所述AlGaN/GaN异质结构,相对于在整个衬底上的的SiC生长,在Si衬底的选择性区域上生长SiC层,通过调整晶格失配和热膨胀失配的累积,可以有效提高器件的性能;据此,可以在图案化的单晶SiC/Si晶圆基底上形成高质量的GaN/SiC异质结构。此种AlGaN/GaN异质结构可以用于制备高性能的功率器件,诸如高电子迁移率晶体管(HEMTs)。On the other hand, the present invention also provides a method for growing a crack-free AlGaN/GaN heterostructure on a single crystal SiC/Si wafer substrate, by metal-organic chemical vapor deposition (MOCVD) technology on the single crystal SiC layer Epitaxial growth of the AlGaN/GaN heterostructure, as opposed to SiC growth on the entire substrate, grows SiC layers on selective regions of the Si substrate, by tuning the accumulation of lattice mismatch and thermal expansion mismatch, which can The performance of the device is effectively improved; accordingly, a high-quality GaN/SiC heterostructure can be formed on a patterned single-crystal SiC/Si wafer substrate. This AlGaN/GaN heterostructure can be used to fabricate high-performance power devices, such as high electron mobility transistors (HEMTs).
如图1和图3-6所示,本发明提供一种在Si衬底上选择性形成单晶SiC的方法,所述选择性形成单晶SiC层的方法包括以下步骤:As shown in Figure 1 and Figures 3-6, the present invention provides a method for selectively forming a single crystal SiC layer on a Si substrate, the method for selectively forming a single crystal SiC layer includes the following steps:
S1:提供Si衬底。S1: A Si substrate is provided.
S2:在Si衬底上沉积SiO2层。S2: Deposit a SiO2 layer on the Si substrate.
S3:对SiO2层进行图案化以在SiO2层形成多个凹槽。S3: patterning the SiO 2 layer to form a plurality of grooves in the SiO 2 layer.
S4:在凹槽中形成含碳材料层。S4: Forming a carbonaceous material layer in the groove.
S5:通过退火工艺在凹槽中形成SiC层。S5: forming a SiC layer in the groove through an annealing process.
S6:平坦化及清洗。S6: planarization and cleaning.
本发明的单晶SiC/Si晶圆基底的制备方法,采用光刻对SiO2层进行图案化以形成由SiO2侧壁分隔的多个凹槽,所述凹槽底部暴露出Si衬底材料,所述Si衬底具有(111)晶向的表面,在晶向(111)的Si衬底上生长单晶SiC层,此种Si衬底上选择性生长单晶SiC层,可以降低晶格失配的系统中失配位错的密度,使得可以减少单晶SiC/Si异质结构的缺陷密度。此外,通过对退火操作的工艺参数进行调整,可以确定SiC单元区域的几何形状和厚度,因此能够根据器件的定位优化电路的性能。在一实施例中,可以采用局部化退火,例如采用具有极高能量的激光热退火使固态碳源分解,且在极短的时间段内Si衬底的被照射区域将经受熔融和再结晶,相对于常规的退火工艺,可以实现在选择性区域更快地使材料达到均匀,而且在环境条件下局部化退火可以缓解在结点处热失配的累积。The preparation method of the single crystal SiC/Si wafer substrate of the present invention uses photolithography to pattern the SiO2 layer to form a plurality of grooves separated by SiO2 sidewalls, and the bottom of the grooves exposes the Si substrate material , the Si substrate has a surface with a (111) crystal orientation, and a single crystal SiC layer is grown on a Si substrate with a crystal orientation of (111), and a single crystal SiC layer is selectively grown on this Si substrate, which can reduce the crystal lattice The density of misfit dislocations in the mismatched system makes it possible to reduce the defect density of single-crystal SiC/Si heterostructures. Furthermore, by adjusting the process parameters of the annealing operation, the geometry and thickness of the SiC cell region can be determined, thus enabling the optimization of the circuit performance according to the positioning of the device. In one embodiment, localized annealing can be used, such as laser thermal annealing with very high energy to decompose the solid carbon source, and the irradiated area of the Si substrate will undergo melting and recrystallization in a very short period of time, Relative to conventional annealing processes, material homogeneity can be achieved faster in selective regions, and localized annealing at ambient conditions can alleviate the accumulation of thermal mismatch at junctions.
以下将结合图1的方法流程图以及各阶段的结构示意图来具体描述所述图案化的单晶SiC/Si晶圆基底的制备方法。The method for preparing the patterned single-crystal SiC/Si wafer substrate will be described in detail below in conjunction with the method flow chart of FIG. 1 and the structural diagrams of each stage.
具体地,在步骤S1处,图3所示,提供Si衬底110,该Si衬底110具有(111)晶面取向。Specifically, at step S1 , as shown in FIG. 3 , a
如图4所示,在步骤S2处,在所述Si衬底110表面上沉积SiO2层120,所沉积的SiO2层120可具有大于0.1μm的厚度,例如,从0.1μm至5μm的厚度。用于制备SiO2层的工艺的示例可以包括化学气相沉积(LPCVD)、超高真空化学气相沉积(UHCVD),等离子体增强化学气相沉积(PECVD)或高密度等离子体化学气相沉积(HDPCVD)。As shown in FIG. 4, at step S2, a
接下来,参见图5,在步骤S3处执行图案化步骤,在SiO2层120上施加光掩膜并对其进行刻蚀以形成多个凹槽130,所述凹槽130的底部暴露出Si衬底材料,由此得到图案化的Si衬底。Next, referring to FIG. 5, a patterning step is performed at step S3, a photomask is applied on the SiO layer 120 and it is etched to form a plurality of
随后,在步骤S4处,将碳源引入经图案化的Si衬底110以在凹槽130中形成含碳材料层。在一实施例中,根据本实施方式的碳源的示例可以包括聚甲基丙烯酸甲酯(PMMA)、C60、CVD碳层,或者类似的含碳材料,其中PMMA可以采用旋转涂布法施加到经图案化的Si衬底110上。Subsequently, at step S4 , a carbon source is introduced into the
接着,参见图5,执行退火工艺,可以退火处理含碳材料层,以使含碳材料层在凹槽130底部处接触Si衬底材料并生长出SiC层140,而没有SiC生长在SiO2的表面(即,间隔区124的上表面)上。通过由SiO2侧壁围绕凹槽周围来选择性生长单晶SiC层于凹槽底部,可以减少由晶格失配和热膨胀系数失配所造成的缺陷扩展,有助于减少失配位错,从而减少单晶SiC与Si界面处的缺陷。根据本实施方式所采用的退火工艺的示例可以包括炉内退火、快速热退火。在一实施例中,可以对凹槽130进行局部化退火,例如使用基于激光的技术将经整形的高能量激光束施加到Si衬底110的凹槽130区域,以局部化退火Si衬底110上预先沉积的含碳材料层。由于利用高能量的激光对半导体进行局部化退火,所吸收的激光能量直接转化成为热量,通过此种热解作用,具有高于材料熔融的阈值的高能量激光可以在固相中造成更高的溶解度,这样能够更快地使材料达到均匀。所述激光源可以是KrF准分子激光器(λ=248nm),较短波长的激光局部化照射含碳材料层,可以实现在不改变块体区的性质的情况下对表面性质的局部修改。以一定速率激光扫描整个衬底以在Si衬底110的凹槽130中形成单晶SiC层140,取决于SiC/Si晶圆基底的应用,SiC单元区域142可具有从0.1μm至10μm的厚度。本实施方式中,可以通过控制激光的能量和扫描速率来确定SiC单位区域上的厚度;即,适当地增加退火时间来获得更厚的SiC层。Next, referring to FIG. 5, an annealing process is performed, and the carbon-containing material layer can be annealed, so that the carbon-containing material layer contacts the Si substrate material at the bottom of the
随后,可以去除所述间隔区124上表面残留的含碳材料层,例如可以采用化学机械抛光法(CMP)对退火后的衬底表面进行处理以去除残留的碳层,并且得到平坦化的SiC表面,如图6所示。Subsequently, the residual carbon-containing material layer on the upper surface of the
作为第二实施方式,本发明提供一种图案化的GaN/SiC异质结构的晶圆基底的制备方法,所述图案化的GaN/SiC异质结构的制备方法包括以下步骤:As a second embodiment, the present invention provides a method for preparing a patterned GaN/SiC heterostructure wafer substrate, the method for preparing a patterned GaN/SiC heterostructure includes the following steps:
S1:提供Si衬底。S1: A Si substrate is provided.
S2:在Si衬底上沉积SiO2层。S2: Deposit a SiO2 layer on the Si substrate.
S3:对SiO2层进行图案化以在SiO2层形成多个凹槽。S3: patterning the SiO 2 layer to form a plurality of grooves in the SiO 2 layer.
S4:在凹槽中形成含碳材料层。S4: Forming a carbonaceous material layer in the groove.
S5:通过退火工艺在凹槽中形成SiC层。S5: forming a SiC layer in the groove through an annealing process.
S6:平坦化及清洗。S6: planarization and cleaning.
S7:在图案化的SiC/Si晶圆基底上沉积GaN层。S7: Depositing a GaN layer on the patterned SiC/Si wafer substrate.
S8:平坦化及清洗。S8: planarization and cleaning.
参照第一实施方式中的步骤S1至S6,可以形成图案化的SiC/Si晶圆基底。在步骤S6之后的步骤S7,可以通过金属有机化学气相沉积(MOCVD)在整个图案化的Si衬底110上形成GaN层。图案化的SiC/Si晶圆基底包括多个SiC单元区域142和用于分隔SiC单元区域的SiO2侧壁122。本实施方式中,所述MOCVD外延生长工艺可以是两步工艺,包括;首先,在500-800℃的低温下形成GaN形核层,以有效提高后续高温生长的GaN薄膜的的晶体质量,随后升高温度至900-1100℃以在GaN形核层上形成高质量的GaN层。所述GaN层250可以包括GaN堆叠,GaN堆叠包括厚GaN层和AlGaN势垒层。在一实施例中,用于沉积所述GaN层的前驱物可以包括,氮源和含铝、镓的有机气相材料,例如,所述氮源是NH3,所述含铝的有机气相材料是三甲基铝(TMAl),及所述含镓的有机气相材料是三甲基镓(TMGa)。在一实施例中,所述GaN层可以进一步包括设置于单晶SiC层140与GaN层250之间的GaN缓冲层,以调整外延膜中的应力平衡。Referring to steps S1 to S6 in the first embodiment, a patterned SiC/Si wafer substrate may be formed. In step S7 after step S6, a GaN layer may be formed on the entire
参见图7,在步骤S8处,执行选择性去除多晶SiO2表面上沉积的GaN层的步骤,而留下覆盖于单晶SiC层140上的GaN层250,从而在Si衬底上形成多个GaN/SiC单元区域252。例如,可以采用化学机械抛光(CMP)工艺去除多晶SiO2上所沉积的GaN层250。Referring to FIG. 7, at step S8, a step of selectively removing the GaN layer deposited on the surface of the polycrystalline SiO 2 is performed, leaving the
本发明还提供了一种图案化的单晶SiC/Si的晶圆基底。请参见图2,该图为根据本发明的图案化的单晶SiC/Si的晶圆基底的结构示意图,图6可为图2所示的图案化的单晶SiC/Si的晶圆基底沿A-A’截面的局部视图。所述单晶SiC/Si的晶圆基底具有晶向为(111)的Si衬底110,所述Si衬底110上形成有图案化的多个单元区域142,所述多个单元区域彼此由间隔区124间隔开,并且每一单元区域142包括:形成于相应的单元区域上的单晶SiC层。所述SiC单元区域可以具有平滑的圆角多边形、椭圆形、圆形或类似形状,以用于降低在区域边缘处的缺陷生长。取决于器件的应用,单元区域的尺寸可以是相同的,并且不超过目前可获得的SiC衬底的尺寸,例如,不超过4英寸。SiC单元区域的尺寸越小,所生长的SiC层中存在的应力更小、缺陷更少。在一些实施例中,所述单晶SiC可以是3C-SiC或4H-SiC中的任一种。The invention also provides a patterned single crystal SiC/Si wafer substrate. Please refer to FIG. 2, which is a schematic structural view of a patterned single-crystal SiC/Si wafer substrate according to the present invention, and FIG. 6 can be a patterned single-crystal SiC/Si wafer substrate along the Partial view of section A-A'. The wafer substrate of the single crystal SiC/Si has a
另一方面,本发明还提供了一种图案化的GaN/SiC/Si异质结构的晶圆基底,所述图案化的GaN/SiC/Si异质结构的晶圆基底可以包括如前所述的图案化的单晶SiC/Si的晶圆基底,并且每一单元区域可以包括GaN堆叠,所述GaN堆叠可以包括GaN层和AlGaN势垒层。在一实施例中,所述GaN堆叠进一步包括设置于所述SiC层与GaN层之间的GaN缓冲层。On the other hand, the present invention also provides a wafer substrate of a patterned GaN/SiC/Si heterostructure, the wafer substrate of the patterned GaN/SiC/Si heterostructure can include the aforementioned A patterned single-crystal SiC/Si wafer substrate, and each cell region may include a GaN stack, and the GaN stack may include a GaN layer and an AlGaN barrier layer. In one embodiment, the GaN stack further includes a GaN buffer layer disposed between the SiC layer and the GaN layer.
此外,所述单晶SiC/Si的晶圆基底可以用于制造改进的SiC基金属氧化物半导体场效应晶体管(MOSFET)器件,本发明的图案化的单晶SiC/Si的晶圆基底的制备方法提供了一种在大尺寸衬底上选择性生长的多个SiC单元区域,所述SiC单元区域异质生长于大尺寸Si衬底上,基于此种高质量的SiC/Si的晶圆基底制备的SiC型功率器件,例如是MOSFET器件,可以实现器件的性能优化和高良率。In addition, the single crystal SiC/Si wafer substrate can be used to manufacture improved SiC-based metal oxide semiconductor field effect transistor (MOSFET) devices, and the preparation of the patterned single crystal SiC/Si wafer substrate of the present invention The method provides a plurality of SiC unit regions selectively grown on a large-size substrate, and the SiC unit regions are heterogeneously grown on a large-size Si substrate, based on such a high-quality SiC/Si wafer substrate The prepared SiC type power devices, such as MOSFET devices, can realize device performance optimization and high yield.
所述单晶GaN/SiC/Si异质结构的晶圆基底可以用于制造改进的GaN高电子迁移率晶体管(HEMT)器件,本发明的图案化的单晶GaN/SiC/Si异质结构的晶圆基底的制备方法提供了一种高质量、无裂纹的AlGaN/GaN异质结构,所述AlGaN/GaN异质结构外延生长于SiC单元区域142之上,晶格失配和热膨胀失配得以降低,基于此种高质量的AlGaN/GaN异质结构制备的GaN型功率器件、尤其是HEMT器件,可以实现器件的性能优化、高良率和成本效益。如图9所示,基于所述单晶GaN/SiC的异质结构的HEMT结构的侧视截面图,基于所述AlGaN/GaN异质结构的HEMT器件可以包括:衬底、SiC层、GaN堆叠350、栅极金属360、源极金属370及漏极金属380,其中所述GaN堆叠350包括GaN缓冲层352、GaN异质层354和AlGaN势垒层356,所述栅极金属360位于所述源极金属370与漏极金属380之间,所述源极金属370及漏极金属380与所述AlGaN势垒层356为欧姆接触,所述栅极金属360与所述AlGaN势垒层356为肖特基接触,所述栅极金属360用于控制所述GaN异质层354与AlGaN势垒层356所形成的二维电子气的密度。The wafer substrate of the single crystal GaN/SiC/Si heterostructure can be used to manufacture an improved GaN high electron mobility transistor (HEMT) device, and the patterned single crystal GaN/SiC/Si heterostructure of the present invention The fabrication method of the wafer substrate provides a high-quality, crack-free AlGaN/GaN heterostructure epitaxially grown on the
综上所述,本发明的单晶SiC/Si晶圆基底的制备方法至少包括:提供Si衬底;在所述Si衬底上沉积SiO2层,并对所述SiO2层进行图案化以在所述SiO2层中形成多个凹槽,所述凹槽由围绕其四周的SiO2侧壁限定,且所述凹槽底部暴露所述Si衬底;在所述凹槽中形成含碳材料层;通过退火工艺使所述含碳材料层与所述凹槽中暴露出的所述Si衬底反应以选择性地在所述凹槽底部生长单晶SiC层;和通过化学机械抛光工艺去除残留的含碳材料层,形成多个由SiO2侧壁分隔的SiC单元区域。本发明提供的制备方法可以在大尺寸衬底上生长出高品质的单晶SiC和GaN,所得到的晶圆基底结构具有高质量和低缺陷密度,从而可以用大尺寸的Si晶圆基底分别制造出以SiC或GaN为基底的功率器件并能提升良率。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the method for preparing a single crystal SiC/Si wafer substrate of the present invention at least includes: providing a Si substrate; depositing an SiO2 layer on the Si substrate, and patterning the SiO2 layer to A plurality of grooves are formed in the SiO2 layer, the grooves are defined by SiO2 sidewalls surrounding them, and the bottoms of the grooves expose the Si substrate; material layer; reacting the carbon-containing material layer with the Si substrate exposed in the groove through an annealing process to selectively grow a single crystal SiC layer at the bottom of the groove; and through a chemical mechanical polishing process The residual carbonaceous material layer is removed to form multiple SiC cell regions separated by SiO2 sidewalls. The preparation method provided by the present invention can grow high-quality single crystal SiC and GaN on a large-size substrate, and the obtained wafer base structure has high quality and low defect density, so that a large-size Si wafer base can be used respectively Manufacture power devices based on SiC or GaN and improve yield. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110619695.1A CN115440573A (en) | 2021-06-03 | 2021-06-03 | Single crystal SiC/Si wafer substrate, heterostructure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110619695.1A CN115440573A (en) | 2021-06-03 | 2021-06-03 | Single crystal SiC/Si wafer substrate, heterostructure and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115440573A true CN115440573A (en) | 2022-12-06 |
Family
ID=84271907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110619695.1A Pending CN115440573A (en) | 2021-06-03 | 2021-06-03 | Single crystal SiC/Si wafer substrate, heterostructure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115440573A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117438391A (en) * | 2023-12-18 | 2024-01-23 | 北京青禾晶元半导体科技有限责任公司 | High-thermal-conductivity 3C-SiC polycrystalline substrate and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5882983A (en) * | 1997-12-19 | 1999-03-16 | Advanced Micro Devices, Inc. | Trench isolation structure partially bound between a pair of low K dielectric structures |
US20050269671A1 (en) * | 2004-06-03 | 2005-12-08 | Bruce Faure | Support for hybrid epitaxy and method of fabrication |
US20080251812A1 (en) * | 2007-04-16 | 2008-10-16 | Woo Sik Yoo | Heteroepitaxial Crystal Quality Improvement |
US20120061681A1 (en) * | 2010-09-14 | 2012-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanism of forming sic crystalline on si substrates to allow integration of gan and si electronics |
CN104409354A (en) * | 2014-11-26 | 2015-03-11 | 上海华力微电子有限公司 | Preparing method of embedded silicon carbide |
US20170040167A1 (en) * | 2015-08-03 | 2017-02-09 | Board Of Trustees Of Michigan State University | Laser Assisted SiC Growth On Silicon |
-
2021
- 2021-06-03 CN CN202110619695.1A patent/CN115440573A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5882983A (en) * | 1997-12-19 | 1999-03-16 | Advanced Micro Devices, Inc. | Trench isolation structure partially bound between a pair of low K dielectric structures |
US20050269671A1 (en) * | 2004-06-03 | 2005-12-08 | Bruce Faure | Support for hybrid epitaxy and method of fabrication |
US20080251812A1 (en) * | 2007-04-16 | 2008-10-16 | Woo Sik Yoo | Heteroepitaxial Crystal Quality Improvement |
US20120061681A1 (en) * | 2010-09-14 | 2012-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanism of forming sic crystalline on si substrates to allow integration of gan and si electronics |
CN104409354A (en) * | 2014-11-26 | 2015-03-11 | 上海华力微电子有限公司 | Preparing method of embedded silicon carbide |
US20170040167A1 (en) * | 2015-08-03 | 2017-02-09 | Board Of Trustees Of Michigan State University | Laser Assisted SiC Growth On Silicon |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117438391A (en) * | 2023-12-18 | 2024-01-23 | 北京青禾晶元半导体科技有限责任公司 | High-thermal-conductivity 3C-SiC polycrystalline substrate and preparation method thereof |
CN117438391B (en) * | 2023-12-18 | 2024-03-15 | 北京青禾晶元半导体科技有限责任公司 | High-thermal-conductivity 3C-SiC polycrystalline substrate and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102452739B1 (en) | Epitaxial Growth Method for Reducing Interfacial Thermal Resistance of Gallium Nitride High Electron Mobility Field Effect Transistor | |
US8835988B2 (en) | Hybrid monolithic integration | |
JP5545713B2 (en) | Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device | |
CN104205298B (en) | Method for forming group iii/v conformal layers on silicon substrates | |
US9437688B2 (en) | High-quality GaN high-voltage HFETs on silicon | |
CN101145516A (en) | Silicon base nitride single crystal thin film epitaxial structure and growth method | |
US8168517B2 (en) | Method for epitaxial growth and epitaxial layer structure using the method | |
US11232950B2 (en) | Structure of epitaxy on heterogeneous substrate and method for fabricating the same | |
CN115440573A (en) | Single crystal SiC/Si wafer substrate, heterostructure and preparation method thereof | |
JP2007335801A (en) | Semiconductor device and manufacturing method thereof | |
CN112687525A (en) | Epitaxial method for improving quality of ultrathin gallium nitride field effect transistor | |
US10636882B2 (en) | Method for forming a semiconductor structure and a semiconductor structure manufactured thereof | |
CN113539786A (en) | Silicon-based gallium nitride epitaxial structure and preparation method thereof | |
US8846503B1 (en) | Self-aligned and lateral-assembly method for integrating heterogeneous material structures on the same plane | |
CN111584347A (en) | GaN-Si heteroepitaxial structure and preparation method thereof | |
JP7556401B2 (en) | How a transistor is manufactured | |
CN114975600B (en) | Preparation method of high electron mobility transistor | |
JP2014511815A (en) | III / VSi Template Manufacturing Method | |
CN102754189A (en) | Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate | |
WO2023223375A1 (en) | Semiconductor multilayer structure, method for producing same, and method for producing semiconductor device | |
JP2023039743A (en) | Method for manufacturing nitride semiconductor substrate | |
JP2024127730A (en) | Epitaxial structure and method for manufacturing same | |
CN117712148A (en) | A silicon-based gallium nitride epitaxial wafer based on a two-dimensional material mask and its manufacturing method | |
KR20110031080A (en) | Semiconductor Device with Honeycomb Heteroepita Taxi | |
JPH04130717A (en) | Formation method of crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |