CN115396037A - A multi-wavelength interval DFB array light source, optical fiber code demodulation system and method - Google Patents
A multi-wavelength interval DFB array light source, optical fiber code demodulation system and method Download PDFInfo
- Publication number
- CN115396037A CN115396037A CN202211030570.6A CN202211030570A CN115396037A CN 115396037 A CN115396037 A CN 115396037A CN 202211030570 A CN202211030570 A CN 202211030570A CN 115396037 A CN115396037 A CN 115396037A
- Authority
- CN
- China
- Prior art keywords
- light source
- wavelength
- optical fiber
- dfb array
- dfb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/506—Multiwavelength transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/572—Wavelength control
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本发明公开了一种多波长间隔DFB阵列光源、光纤编码解调系统及方法,DFB光源包括:基底;以及成型于基底上的:至少两个光源组,每个光源组皆具有多个不同波长的光源,且光源皆具有温度调制单元以实现不重叠的波长段;光源组的多个波长段之间构成连续的波长区间;至少两个波长耦合模块,用于耦合相应所述光源组的多个光源输出;波导耦合器,分别与不同波长耦合模块的输出端连接。本方案利用光源温度变化与波长之间存在调制变化,直接利用温度调制来改变光源的输出波长,使一个光源可以覆盖更宽的波段,并且两个及以上的光源组分交错波长耦合,可弥补传统密集波分复用器的相邻波长段之间的间隙,实现了全覆盖波长区间的可调光源。
The invention discloses a DFB array light source with multiple wavelength intervals, an optical fiber code demodulation system and a method. The DFB light source includes: a base; and at least two light source groups formed on the base, each light source group has multiple different wavelengths The light sources, and the light sources all have temperature modulation units to achieve non-overlapping wavelength bands; multiple wavelength bands of the light source group form continuous wavelength ranges; at least two wavelength coupling modules are used to couple the corresponding multiple wavelength bands of the light source group output of a light source; waveguide couplers are respectively connected to the output ends of different wavelength coupling modules. This scheme uses the modulation change between the temperature change of the light source and the wavelength, directly uses the temperature modulation to change the output wavelength of the light source, so that one light source can cover a wider band, and two or more light source components are interleaved wavelength coupling, which can make up for The gap between adjacent wavelength bands of the traditional dense wavelength division multiplexer realizes the adjustable light source covering the whole wavelength range.
Description
技术领域technical field
本发明涉及光纤通讯领域,特别涉及一种多波长间隔DFB阵列光源、光纤编码解调系统及方法。The invention relates to the field of optical fiber communication, in particular to a multi-wavelength interval DFB array light source, an optical fiber code demodulation system and method.
背景技术Background technique
常规的多光源汇合形成可调光源实现光纤编码解调,主要使用光开关切换、两两Y耦合器、AWG(阵列波导光栅)或者密集波分复用器耦合,但是光开关切换较慢,很难达到所需要的ms级别,两两Y耦合器在多光源下耦合后的衰耗过大,AWG或者密集波分复用器耦合存在波长间隔不能全覆盖。Conventional multi-light sources are combined to form an adjustable light source to realize optical fiber code demodulation. Optical switches, two-two Y couplers, AWG (arrayed waveguide gratings) or dense wavelength division multiplexers are mainly used for coupling, but the switching of optical switches is slow and very slow. It is difficult to achieve the required ms level, the attenuation of two Y couplers after coupling under multiple light sources is too large, and the wavelength interval of AWG or dense wavelength division multiplexer coupling cannot be fully covered.
发明内容Contents of the invention
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种基于一种多波长间隔DFB阵列光源,可降低衰耗且程序波长间隔全覆盖;本发明还提供了一种光纤编码解调系统及方法,实现光纤编码的解调。The present invention aims to solve at least one of the technical problems existing in the prior art. For this reason, the present invention proposes a light source based on a multi-wavelength interval DFB array, which can reduce attenuation and fully cover the program wavelength interval; the present invention also provides an optical fiber code demodulation system and method to realize the demodulation of optical fiber code .
根据本发明第一方面实施例的一种多波长间隔DFB阵列光源,包括:基底;以及成型于所述基底上的:至少两个光源组,每个所述光源组皆具有多个不同波长的光源,且所述光源皆具有温度调制单元以实现不重叠的波长段;所述光源组的多个波长段之间构成连续的波长区间;至少两个波长耦合模块,与所述光源组的数量一致,用于耦合相应所述光源组的多个光源输出;波导耦合器,分别与不同所述波长耦合模块的输出端连接。A multi-wavelength spaced DFB array light source according to an embodiment of the first aspect of the present invention, comprising: a base; and formed on the base: at least two light source groups, each of which has a plurality of light sources with different wavelengths A light source, and the light sources all have a temperature modulation unit to achieve non-overlapping wavelength bands; multiple wavelength bands of the light source group form a continuous wavelength range; at least two wavelength coupling modules, and the number of the light source groups Consistent, for coupling multiple light source outputs corresponding to the light source group; waveguide couplers, respectively connected to the output ends of different wavelength coupling modules.
根据本发明第一实施例的一种多波长间隔DFB阵列光源,至少具有如下有益效果:本方案利用光源温度变化与波长之间存在调制变化,直接利用温度调制来改变光源的输出波长,使一个光源可以覆盖更宽的波段,这样一方面可以减少光源的数量成本,另一方面在多光源使用时只需要温度传感器和低成本的光强检测装置即可,温度传感器的温度信号可以温度-波长关系匹配出光源波长,光强检测装置单独测量光波能量。并且两个及以上的光源组分交错波长耦合,可弥补传统密集波分复用器的相邻波长段之间的间隙,实现了全覆盖波长区间的可调光源。According to the first embodiment of the present invention, a multi-wavelength spaced DFB array light source has at least the following beneficial effects: This solution uses the modulation change between the temperature change of the light source and the wavelength, and directly uses temperature modulation to change the output wavelength of the light source, so that a The light source can cover a wider wavelength band, so that on the one hand, the quantity cost of the light source can be reduced. On the other hand, when multiple light sources are used, only a temperature sensor and a low-cost light intensity detection device are required. The temperature signal of the temperature sensor can be determined by temperature-wavelength The relationship matches the wavelength of the light source, and the light intensity detection device separately measures the light wave energy. In addition, the interleaved wavelength coupling of two or more light source components can make up the gap between adjacent wavelength bands of the traditional dense wavelength division multiplexer, and realize the adjustable light source covering the whole wavelength range.
根据本发明第一方面的一些实施例,所述光源为窄波光源,所述波长段的长度为4纳米。According to some embodiments of the first aspect of the present invention, the light source is a narrow-wave light source, and the length of the wavelength segment is 4 nanometers.
根据本发明第一方面的一些实施例,所述波长耦合模块为密集波分复用器。According to some embodiments of the first aspect of the present invention, the wavelength coupling module is a dense wavelength division multiplexer.
根据本发明第一方面的一些实施例,所述波长耦合模块为阵列波导光栅。According to some embodiments of the first aspect of the present invention, the wavelength coupling module is an arrayed waveguide grating.
根据本发明第一方面的一些实施例,不同所述波长耦合模块的输出端与所述波导耦合器之间皆设置有SOA光开关。According to some embodiments of the first aspect of the present invention, SOA optical switches are arranged between the output terminals of different wavelength coupling modules and the waveguide couplers.
根据本发明第一方面的一些实施例,所述波导耦合器为Y结构耦合器。According to some embodiments of the first aspect of the present invention, the waveguide coupler is a Y-structure coupler.
根据本发明第一方面的一些实施例,所述波导耦合器的输出端连接有成型于所述基底边缘的光纤引出槽。According to some embodiments of the first aspect of the present invention, the output end of the waveguide coupler is connected with an optical fiber lead-out groove formed on the edge of the substrate.
根据本发明第一方面的一些实施例,所述基底为硅基底。According to some embodiments of the first aspect of the present invention, the substrate is a silicon substrate.
根据本发明第二方面实施例的一种光纤编码解调系统,包括An optical fiber coding and demodulation system according to a second embodiment of the present invention, comprising
如所述的多波长间隔DFB阵列光源,用于输出不同波长的光波;The multi-wavelength spaced DFB array light source as described is used to output light waves of different wavelengths;
环形器,所述环形器的第一端通过光纤连接所述多波长间隔DFB阵列光源的输出端,所述环形器的第二端用于通过光纤连接待解调的光纤编码;A circulator, the first end of the circulator is connected to the output end of the multi-wavelength interval DFB array light source through an optical fiber, and the second end of the circulator is used to connect the optical fiber code to be demodulated through an optical fiber;
APD光电转换单元,与所述环形器的第三端连接,以接收并转换所述光纤编码反射的光波;APD photoelectric conversion unit, connected to the third end of the circulator, to receive and convert the light wave reflected by the optical fiber code;
AD高速采集单元,与所述APD光电转换单元连接,用于采集所述APD光电转换单元转换后的光波信号;AD high-speed acquisition unit, connected with the APD photoelectric conversion unit, for collecting the light wave signal converted by the APD photoelectric conversion unit;
高速控制模块,分别与所述多波长间隔DFB阵列光源、所述AD高速采集单元电性连接,用于控制所述多波长间隔DFB阵列光源的光波输出、接收所述AD高速采集单元传输的光波信号,并根据所述AD高速采集单元传输的光波信号解析出光纤编码的中心波长组合、反射能量、距离。The high-speed control module is electrically connected to the multi-wavelength interval DFB array light source and the AD high-speed acquisition unit respectively, and is used to control the light wave output of the multi-wavelength interval DFB array light source and receive the light wave transmitted by the AD high-speed acquisition unit signal, and analyze the central wavelength combination, reflected energy, and distance of the optical fiber code according to the light wave signal transmitted by the AD high-speed acquisition unit.
根据本发明第二方面实施例的一种光纤编码解调系统,至少具有如下有益效果:本方案利用光源温度变化与波长之间存在调制变化,直接利用温度调制来改变光源的输出波长,使一个光源可以覆盖更宽的波段,这样一方面可以减少光源的数量成本,另一方面在多光源使用时只需要温度传感器和低成本的光强检测装置即可,温度传感器的温度信号可以温度-波长关系匹配出光源波长,光强检测装置单独测量光波能量。并且两个及以上的光源组分交错波长耦合,可弥补传统密集波分复用器的相邻波长段之间的间隙,实现了全覆盖波长区间的可调光源,更有利于实现低成本的光纤编码解调。According to the second aspect of the present invention, an optical fiber code demodulation system has at least the following beneficial effects: This solution uses the modulation change between the temperature change of the light source and the wavelength, and directly uses the temperature modulation to change the output wavelength of the light source, so that a The light source can cover a wider wavelength band, so that on the one hand, the quantity cost of the light source can be reduced. On the other hand, when multiple light sources are used, only a temperature sensor and a low-cost light intensity detection device are required. The temperature signal of the temperature sensor can be determined by temperature-wavelength The relationship matches the wavelength of the light source, and the light intensity detection device separately measures the light wave energy. And two or more light source components are interleaved wavelength coupling, which can make up the gap between adjacent wavelength bands of the traditional dense wavelength division multiplexer, and realize the adjustable light source with full coverage of the wavelength range, which is more conducive to the realization of low-cost Optical fiber code demodulation.
根据本发明第三方面实施例的一种光纤编码解调方法,应用于所述的一种光纤编码解调系统,所述光纤编码解调方法包括:An optical fiber coding and demodulation method according to the embodiment of the third aspect of the present invention is applied to the above-mentioned optical fiber coding and demodulation system, and the optical fiber coding and demodulation method includes:
高速控制模块控制所述多波长间隔DFB阵列光源,实现单个光源发出稳定的中心波长光波;The high-speed control module controls the multi-wavelength spaced DFB array light source, so that a single light source emits a stable central wavelength light wave;
光波经环形器输入光纤编码,光纤编码反射对应波长,经环形器被APD光电转换单元采集并转换成电信号;The light wave enters the optical fiber code through the circulator, and the optical fiber code reflects the corresponding wavelength, and is collected by the APD photoelectric conversion unit through the circulator and converted into an electrical signal;
高速控制模块在控制光源发送脉冲光波时,同步对AD高速采集单元进行高速采集;When the high-speed control module controls the light source to send pulsed light waves, it simultaneously performs high-speed acquisition on the AD high-speed acquisition unit;
控制光源发送不同中心波长的光波,最终形成以波长为坐标的数据组;Control the light source to send light waves with different central wavelengths, and finally form a data group with wavelength as the coordinate;
高速控制模块按采集到的时间点成X坐标、波长为Y坐标、能量为纵坐标的三维数据组,相同时间点的数据为同一光纤编码反射,根据能量差异最终计算出中心波长和反射能量,时间点计算出距离,最终形成光纤编码的中心波长组合、反射能量、距离。According to the collected time point, the high-speed control module forms a three-dimensional data group with X coordinate, wavelength as Y coordinate, and energy as vertical coordinate. The data at the same time point is the reflection of the same optical fiber code, and finally calculates the center wavelength and reflection energy according to the energy difference. Calculate the distance at the time point, and finally form the central wavelength combination, reflected energy, and distance of the optical fiber code.
根据本发明第三方面实施例的一种光纤编码解调方法,至少具有如下有益效果:本方案利用光源温度变化与波长之间存在调制变化,直接利用温度调制来改变光源的输出波长,使一个光源可以覆盖更宽的波段,这样一方面可以减少光源的数量成本,另一方面在多光源使用时只需要温度传感器和低成本的光强检测装置即可,温度传感器的温度信号可以温度-波长关系匹配出光源波长,光强检测装置单独测量光波能量。并且两个及以上的光源组分交错波长耦合,可弥补传统密集波分复用器的相邻波长段之间的间隙,实现了全覆盖波长区间的可调光源,更有利于实现低成本的光纤编码解调。According to the third aspect of the present invention, an optical fiber code demodulation method has at least the following beneficial effects: This solution uses the modulation change between the temperature change of the light source and the wavelength, and directly uses temperature modulation to change the output wavelength of the light source, so that a The light source can cover a wider wavelength band, so that on the one hand, the quantity cost of the light source can be reduced. On the other hand, when multiple light sources are used, only a temperature sensor and a low-cost light intensity detection device are required. The temperature signal of the temperature sensor can be determined by temperature-wavelength The relationship matches the wavelength of the light source, and the light intensity detection device separately measures the light wave energy. And two or more light source components are interleaved wavelength coupling, which can make up the gap between adjacent wavelength bands of the traditional dense wavelength division multiplexer, and realize the adjustable light source with full coverage of the wavelength range, which is more conducive to the realization of low-cost Optical fiber code demodulation.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:
图1为本发明第一方面实施例的多波长间隔DFB阵列光源原理图;Fig. 1 is a schematic diagram of a multi-wavelength spaced DFB array light source of an embodiment of the first aspect of the present invention;
图2为本发明第一方面实施例的多波长间隔DFB阵列光源剖面结构图;2 is a cross-sectional structure diagram of a multi-wavelength spaced DFB array light source according to the first embodiment of the present invention;
图3为本发明第二方面实施例的光纤编码解调系统原理图;FIG. 3 is a schematic diagram of an optical fiber coding and demodulation system according to an embodiment of the second aspect of the present invention;
图4a、图4b、图4c分别为不同种类的光纤编码示意图;Figure 4a, Figure 4b, and Figure 4c are schematic diagrams of different types of optical fiber encoding;
图5为本发明第三方面实施例的光纤编码解调方法流程图。Fig. 5 is a flow chart of an optical fiber code demodulation method according to an embodiment of the third aspect of the present invention.
附图标记:Reference signs:
多波长间隔DFB阵列光源100、基底110、光源组120、光源121、温度调制单元122、光栅123、波长耦合模块130、波导耦合器140、SOA光开关150、光纤引出槽160、Multi-wavelength interval DFB
环形器200、
APD光电转换单元300、APD
AD高速采集单元400、AD high-
高速控制模块500、High-
光纤编码600。
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the orientation descriptions, such as up, down, front, back, left, right, etc. indicated orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only In order to facilitate the description of the present invention and simplify the description, it does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present invention.
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。In the description of the present invention, unless otherwise clearly defined, words such as setting, installation, and connection should be understood in a broad sense, and those skilled in the art can reasonably determine the specific meanings of the above words in the present invention in combination with the specific content of the technical solution.
参考图1、图2所示,为本技术方案第一方面实施例的一种多波长间隔DFB阵列光源100,包括:基底110;以及成型于基底110上的:两个光源组120或多个光源组120,每个光源组120皆具有多个不同波长的光源121,且光源121皆具有温度调制单元122以实现不重叠的波长段;光源组120的多个波长段之间构成连续的波长区间;两个波长耦合模块130或多个波长耦合模块130,与光源组120的数量一致,用于耦合相应光源组120的多个光源121输出;波导耦合器140,分别与不同波长耦合模块130的输出端连接。Referring to Fig. 1 and Fig. 2, it is a multi-wavelength interval DFB
其中,每个光源利用温度调制单元122,最大可以将波长增大4.2nm,即满足0.1nm/度,由20-62度是完全满足光源芯片的工作要求,多个光源整体覆盖1510-1590nm,实现无间隙覆盖,比如,第1组光源组120中,有1510、1518、1526、1534,利用温度调制4nm,即可以覆盖1510-1514、1518-1522、1526-1530、1534-1538nm等不同波长段,其密集波分就可以选择1512±2、1520±2、1528±2、1536±2;第2组光源组120中,有1514、1522、1530,利用温度调制4nm,即可以覆盖1514-1518、1522-1526、1530-1534等不同波长段,其密集波分就可以选择1516±2、1524±2、1532±2;这样两组光源能组合覆盖1510-1538nm,同时又能满足密集波分带来的间隙波长填充。最后将两个波长耦合模块130输出采用Y结构耦合,其光纤衰耗又降低。如果密集波分的波长间隙更宽,就需要再增加光源组120的数量。Among them, each light source uses the
如图2所示,光源121是在发光体上设置光栅123,每个光源都有一个不同波长的光栅123来选择波长,光栅123会受温度变化,其波长也会变化,利用温度调制单元122TEC便可改变光栅123的温度,进而改变输出的光波波长,实现光源的输出波长温度调制。具体的,将温度控制在所需要的温度,以此调制光源波长的增加值,基本按照0.1nm/度,比如光源121在20度下的波长是1520.00nm,我们需要1521.nm则需要将温度调至30度即可发出1521.00nm的波长。As shown in Figure 2, the
本方案利用光源温度变化与波长之间存在调制变化,直接利用温度调制来改变光源的输出波长,使一个光源可以覆盖更宽的波段,这样一方面可以减少光源的数量成本,另一方面在多光源使用时只需要温度传感器和低成本的光强检测装置即可,温度传感器的温度信号可以温度-波长关系匹配出光源波长,光强检测装置单独测量光波能量。并且两个及以上的光源组120分交错波长耦合,可弥补传统密集波分复用器的相邻波长段之间的间隙,实现了全覆盖波长区间的可调光源。This solution uses the modulation change between the temperature change of the light source and the wavelength, directly uses the temperature modulation to change the output wavelength of the light source, so that a light source can cover a wider band, so that on the one hand, the quantity cost of the light source can be reduced; When the light source is used, only a temperature sensor and a low-cost light intensity detection device are required. The temperature signal of the temperature sensor can match the wavelength of the light source with the temperature-wavelength relationship, and the light intensity detection device measures the light wave energy alone. In addition, two or more light source groups are coupled with 120 points of interleaved wavelengths, which can make up the gap between adjacent wavelength bands of traditional dense wavelength division multiplexers, and realize an adjustable light source that covers a full range of wavelengths.
可以看出,本方案是针对:密集波分技术主要是实现多波长段的汇聚,但是相邻波长段之间存在一定的间隙,这就需要至少两个及以上的密集波分错开波长段,相互叠加才能完成完整波长的覆盖,为本方案的主要发明构思。It can be seen that this solution is aimed at: the dense wavelength division technology mainly realizes the convergence of multiple wavelength bands, but there is a certain gap between adjacent wavelength bands, which requires at least two or more dense wavelength division staggered wavelength bands, The complete wavelength coverage can only be completed by superimposing each other, which is the main inventive idea of this solution.
在本发明第一方面的一些实施例中,波长耦合模块130为密集波分复用器。In some embodiments of the first aspect of the present invention, the
在本发明第一方面的一些实施例中,波长耦合模块130为阵列波导光栅,用以替代密集波分复用器,两者皆适用于本方案,其中阵列波导光栅可以直接在硅基芯片加工,因此更为优选。In some embodiments of the first aspect of the present invention, the
考虑到光波耦合后存在光强减弱的问题,如图1所述,在本发明第一方面的一些实施例中,不同波长耦合模块130的输出端与波导耦合器140之间皆设置有SOA光开关150,具有一定的放大作用,鉴于SOA光开关150覆盖波长宽度的限制,SOA光开关150置于波长耦合模块130后,实现光强的增加。Considering the problem of light intensity weakening after light wave coupling, as shown in FIG. 1, in some embodiments of the first aspect of the present invention, SOA light The
在本发明第一方面的一些实施例中,波导耦合器140为Y结构耦合器,虽然也有一定的衰耗,但是相比所有光源全部使用Y结构耦合器来两两耦合,本技术方案的Y结构耦合器使用占比极少,可以大大降低衰耗。In some embodiments of the first aspect of the present invention, the
为了便于连接外部器件,在本发明第一方面的一些实施例中,波导耦合器140的输出端连接有成型于基底110边缘的光纤引出槽160,便于光波输出。In order to facilitate the connection of external devices, in some embodiments of the first aspect of the present invention, the output end of the
在本发明第一方面的一些实施例中,基底110为硅基底,通过直接在硅基底上利用全息曝光等技术加工出光源、温度调制单元122、波长耦合模块130、SOA光开关150和波导耦合器140,可以实现DFB光源的芯片化,结构更加紧凑且成本大大降低。需要指出的是,硅基底是相对成熟的现有技术,但不是唯一,也可以实用氮化镓等其他基底来替代。In some embodiments of the first aspect of the present invention, the
如图3所示,为本发明第二方面实施例的一种光纤编码解调系统,包括多波长间隔DFB阵列光源100,用于输出不同波长的光波;As shown in FIG. 3 , it is a kind of optical fiber code demodulation system according to the embodiment of the second aspect of the present invention, including a multi-wavelength spaced DFB array
环形器200,环形器200的第一端通过光纤连接多波长间隔DFB阵列光源的输出端,环形器200的第二端用于通过光纤连接待解调的光纤编码600;A
APD光电转换单元300,与环形器200的第三端连接,以接收并转换光纤编码反射的光波;The APD
AD高速采集单元400,与APD光电转换单元300连接,用于采集APD光电转换单元300转换后的光波信号;The AD high-
高速控制模块500,分别与多波长间隔DFB阵列光源100、AD高速采集单元400电性连接,用于控制多波长间隔DFB阵列光源100的光波输出、接收AD高速采集单元400传输的光波信号,并根据AD高速采集单元400传输的光波信号解析出光纤编码600的中心波长组合、反射能量、距离。The high-
本实施例利用光源温度变化与波长之间存在调制变化,直接利用温度调制来改变光源的输出波长,使一个光源可以覆盖更宽的波段,这样一方面可以减少光源的数量成本,另一方面在多光源使用时只需要温度传感器和低成本的光强检测装置即可,温度传感器的温度信号可以温度-波长关系匹配出光源波长,光强检测装置单独测量光波能量。并且两个及以上的光源组120分交错波长耦合,可弥补传统密集波分复用器的相邻波长段之间的间隙,实现了全覆盖波长区间的可调光源,更有利于实现低成本的光纤编码解调。This embodiment takes advantage of the modulation change between the temperature change of the light source and the wavelength, directly uses the temperature modulation to change the output wavelength of the light source, so that one light source can cover a wider wave band, so that on the one hand, the quantity cost of the light source can be reduced, and on the other hand, the output wavelength of the light source can be changed. When using multiple light sources, only a temperature sensor and a low-cost light intensity detection device are required. The temperature signal of the temperature sensor can match the wavelength of the light source according to the temperature-wavelength relationship, and the light intensity detection device measures the light wave energy alone. In addition, two or more light source groups with 120-point interleaving wavelength coupling can make up the gap between adjacent wavelength bands of traditional dense wavelength division multiplexers, and realize an adjustable light source with full coverage of the wavelength range, which is more conducive to realizing low-cost Fiber code demodulation.
本技术方案中的光纤编码600,是由单个或者多个对光波形成反射或者透射的标识点组成,其可以通过波长不同进行组合实现唯一识别;也可以使用相邻间的距离差异形成不同组合实现唯一识别;也可以使用反射或者透射能量之间的差异形成组合实现唯一识别;光纤编码的特性主要在于实现光波的唯一识别特性,这就需要标识点具有对光波的反射或者透射能量,在光波的光谱上形成差异化;从反射角度,可以为光纤光栅、滤波器件、熔接点、物理连接点都可以形成反射或者透射,但是,其中熔接点和物理连接点都会有整体性的衰耗,即对光波形成大量的能量衰减;滤波器件,除光纤光栅滤波外,还有片式滤波和膜式滤波,现有工艺其波长宽度太大,从工程角度并不利于大规模应用;光纤光栅拥有光纤材质、衰减小等特点,为本实施例的优选;光纤光栅可以在光纤介质、硅基电路上刻制不同波长的光纤光栅,其拥有光纤上加工和硅基电路板上加工以及和光纤直接耦合和传输光波的优良特性,作为本实施例的优选;The
在光纤光栅中,布拉格光纤光栅具有波长窄、单一波长可控、反射能量可能等优点,在本实施例中作为优选;但是光纤光栅中还有啁啾光纤光栅、相位光纤光栅、取样光纤光栅,其拥有一个非常特殊的优点,就是可以同时产生多个不同波长的光纤光栅,但是,由于现有加工功能对波长的稳定性控制较差,不能有效的大规模实现;Among fiber gratings, fiber Bragg gratings have the advantages of narrow wavelength, controllable single wavelength, and possible reflection energy, which are preferred in this embodiment; however, there are also chirped fiber gratings, phase fiber gratings, and sampling fiber gratings in fiber gratings. It has a very special advantage, that is, it can produce multiple fiber gratings with different wavelengths at the same time. However, due to the poor control of the wavelength stability of the existing processing functions, it cannot be effectively realized on a large scale;
光纤编码600中,各标识点的组合方式,可以波长组合、间距组合、反射能量组合以及混合组合的方式,如图4a、图4b、图4c所示,分别为不同波长组合的光纤编码示意图、相同波长且不同间距的光线编码示意图、不同反射能量组合的光纤编码示意图。In the
其中,反射能量组合为标识点加工时按照不同反射率进行加工,进而形成不同反射能量的组合方式;这种方式适用于短距离、光纤编码数量少的条件下使用。主要原因为:其一,反射能量精准控制加工难度大;其二是多个光纤编码组合使用相互之间存在能量遮挡影响最终反射能量识别;其三,光纤会产生相应的衰耗,距离长后,其反射能量会降低,不利于反射能量差异识别。Among them, the combination of reflected energy is a combination of different reflected energies that is processed according to different reflectivities when the marking points are processed; this method is suitable for use under the conditions of short distances and a small number of optical fiber codes. The main reasons are as follows: First, it is difficult to accurately control and process the reflected energy; second, the energy shielding between multiple optical fiber coding combinations affects the final reflected energy recognition; third, the optical fiber will produce corresponding attenuation, and after a long distance , its reflected energy will be reduced, which is not conducive to the identification of reflected energy differences.
相同波长且不同间距间距组合为标识点按照一定的距离差进行加工,可以大规模使用,但是,其任然存在一定的局限性,其一,距离差过大不便于应用;其二,距离差过小,又对光源发光脉冲提出更小的要求,脉冲越小光强越小,识别距离就越短,比如5ns的光源脉冲,其覆盖距离大约为0.5米,也就是说距离差必须大于0.5米才能形成不同反射点,除非实时控制光源强度,降低光强,但是又影响识别距离;其三,APD光电转换单元300和AD高速采集单元400采集的频率,及采样空间精度,其采用空间精度越小所识别的距离差越小,但成本也会越高。但是间距组合的方式,可以使用单波长光源或者相对较窄的光源,这样成本也会降低。The combination of the same wavelength and different spacing distances can be processed into marking points according to a certain distance difference, which can be used on a large scale. However, it still has certain limitations. First, the distance difference is too large to be convenient for application; second, the distance difference If the pulse is too small, the light pulse of the light source is required to be smaller. The smaller the pulse, the smaller the light intensity, and the shorter the recognition distance. Only meters can form different reflection points, unless the light source intensity is controlled in real time to reduce the light intensity, but it also affects the recognition distance; third, the frequency collected by the APD
不同波长组合的光纤编码600,即采用不同中心波长的标识点进行加工,其在同一时间表反射不同的中心波长,以此实现唯一化组合。其缺点为需要对波长进行解调,成本较高,但是不受距离等限制。The
如图5所示,为本发明第三方面实施例的一种光纤编码解调方法,应用于上述的一种光纤编码解调系统,光纤编码解调方法包括:As shown in FIG. 5, it is an optical fiber coding and demodulation method according to the embodiment of the third aspect of the present invention, which is applied to the above-mentioned optical fiber coding and demodulation system. The optical fiber coding and demodulation method includes:
S100、高速控制模块500控制多波长间隔DFB阵列光源100,实现单个光源121发出稳定的中心波长光波;S100. The high-
S200、光波经环形器200输入光纤编码600,光纤编码600反射对应波长,经环形器200被APD光电转换单元300采集并转换成电信号;S200, the light wave enters the
S300、高速控制模块500在控制光源发送脉冲光波时,同步对AD高速采集单元400进行高速采集;S300. When the high-
S400、控制光源121发送不同中心波长的光波,最终形成以波长为坐标的数据组;S400. Control the
S500、高速控制模块500按采集到的时间点成X坐标、波长为Y坐标、能量为纵坐标的三维数据组,相同时间点的数据为同一光纤编码反射,根据能量差异最终计算出中心波长和反射能量,时间点计算出距离,最终形成光纤编码600的中心波长组合、反射能量、距离。S500, the high-
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, references to the terms "one embodiment," "some embodiments," "exemplary embodiments," "example," "specific examples," or "some examples" are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and modifications can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211030570.6A CN115396037B (en) | 2022-08-25 | 2022-08-25 | A multi-wavelength interval DFB array light source, optical fiber coding demodulation system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211030570.6A CN115396037B (en) | 2022-08-25 | 2022-08-25 | A multi-wavelength interval DFB array light source, optical fiber coding demodulation system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115396037A true CN115396037A (en) | 2022-11-25 |
CN115396037B CN115396037B (en) | 2025-07-01 |
Family
ID=84121999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211030570.6A Active CN115396037B (en) | 2022-08-25 | 2022-08-25 | A multi-wavelength interval DFB array light source, optical fiber coding demodulation system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115396037B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1162856A (en) * | 1996-02-10 | 1997-10-22 | 三星电子株式会社 | Optical amplifiers |
CN104638511A (en) * | 2013-11-08 | 2015-05-20 | 南京大学科技园发展有限公司 | Method and device for realizing low-cost tunable semiconductor laser based on reconstruction-equivalent chirp and series/parallel hybrid integration technologies |
CN104779520A (en) * | 2015-03-25 | 2015-07-15 | 南京大学 | Rapid tunable semiconductor laser and preparation method based on reconstitution-equivalent chirp |
WO2020215518A1 (en) * | 2019-04-22 | 2020-10-29 | 中山水木光华电子信息科技有限公司 | Narrowband light wave-based rapid optical fiber code recognition system and recognition method |
CN112702115A (en) * | 2021-01-05 | 2021-04-23 | 中山水木光华电子信息科技有限公司 | Optical fiber coding identification system and method for temperature modulation multi-spectral matrix |
CN218162465U (en) * | 2022-08-25 | 2022-12-27 | 中山水木光华电子信息科技有限公司 | Multi-wavelength interval DFB array light source and optical fiber coding and demodulating system |
-
2022
- 2022-08-25 CN CN202211030570.6A patent/CN115396037B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1162856A (en) * | 1996-02-10 | 1997-10-22 | 三星电子株式会社 | Optical amplifiers |
CN104638511A (en) * | 2013-11-08 | 2015-05-20 | 南京大学科技园发展有限公司 | Method and device for realizing low-cost tunable semiconductor laser based on reconstruction-equivalent chirp and series/parallel hybrid integration technologies |
CN104779520A (en) * | 2015-03-25 | 2015-07-15 | 南京大学 | Rapid tunable semiconductor laser and preparation method based on reconstitution-equivalent chirp |
WO2020215518A1 (en) * | 2019-04-22 | 2020-10-29 | 中山水木光华电子信息科技有限公司 | Narrowband light wave-based rapid optical fiber code recognition system and recognition method |
CN112702115A (en) * | 2021-01-05 | 2021-04-23 | 中山水木光华电子信息科技有限公司 | Optical fiber coding identification system and method for temperature modulation multi-spectral matrix |
CN218162465U (en) * | 2022-08-25 | 2022-12-27 | 中山水木光华电子信息科技有限公司 | Multi-wavelength interval DFB array light source and optical fiber coding and demodulating system |
Also Published As
Publication number | Publication date |
---|---|
CN115396037B (en) | 2025-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1211681C (en) | Integrated optical multiplexer and demultiplexer | |
CN1726664B (en) | Optical interrogation system and sensor system | |
US9110259B1 (en) | Interleaved aliased AWG filter for continuous wideband wavelength discrimination | |
US7009743B2 (en) | Optical processor | |
CN203385436U (en) | Fiber grating multiplexing system employing frequency-modulated continuous wave technology | |
CN103398800B (en) | A kind of for large structure quasi-distributed fiber grating temperature strain measuring system | |
CN109520532B (en) | A multi-sensor multiplexing demodulation system and processing method of a fiber optic Faber sensor | |
CN103604446A (en) | Multi-channel fiber bragg grating absolute wavelength demodulation system based on single detector and method thereof | |
CN108663671A (en) | Laser radar system based on DWDM | |
KR100831916B1 (en) | Optical pulse time spread device | |
CN101267254B (en) | Two-line optical sensing network and its method based on spectrum division multiplexing method | |
CN109254365A (en) | Light-receiving mould group and preparation method thereof, light receiving element | |
CN101540469B (en) | Optical generation method and device for tunable high-frequency microwave signal | |
CN117834005A (en) | An all-optical link monitoring system based on densely encoded weak reflectivity grating arrays | |
CN218162465U (en) | Multi-wavelength interval DFB array light source and optical fiber coding and demodulating system | |
CN115396037A (en) | A multi-wavelength interval DFB array light source, optical fiber code demodulation system and method | |
CN101977336B (en) | Bragg diffraction principle-based optical packet switching system and method | |
US20090010646A1 (en) | Optical pulse time spreading device | |
CN106646755B (en) | Based on the wavelength division multiplexed light of fiber reflector and LCFBG delay tuner and application | |
CN101383677B (en) | Star type optical fiber grating sensing network based on CDMA multiplexing and demodulation method | |
CN2852541Y (en) | Communication device for realizing millimeter wave frequency shift keying by fiber grating | |
CN100399728C (en) | Fiber Bragg Grating Realizes Millimeter Wave Frequency Shift Keying Communication Device | |
CN115473579A (en) | Interval binary optical fiber code and identification system and identification method thereof | |
KR20240088145A (en) | COHERENT RECEIVER FOR ON-BOARD INTEGRATION OF FMCW LiDAR INTERFEROMETER AND MANUFACTURING METHOD THEREOF | |
JP4759665B2 (en) | Reciprocating frequency modulation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |