[go: up one dir, main page]

CN115369385B - Manufacturing method of LED silicon dioxide film - Google Patents

Manufacturing method of LED silicon dioxide film Download PDF

Info

Publication number
CN115369385B
CN115369385B CN202211039408.0A CN202211039408A CN115369385B CN 115369385 B CN115369385 B CN 115369385B CN 202211039408 A CN202211039408 A CN 202211039408A CN 115369385 B CN115369385 B CN 115369385B
Authority
CN
China
Prior art keywords
silicon dioxide
sccm
seed layer
radio frequency
nitrous oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211039408.0A
Other languages
Chinese (zh)
Other versions
CN115369385A (en
Inventor
尚大可
李刚
林武
李文浩
林静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Fuzhao Semiconductor Co.,Ltd.
Original Assignee
Fujian Prima Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Prima Optoelectronics Co Ltd filed Critical Fujian Prima Optoelectronics Co Ltd
Priority to CN202211039408.0A priority Critical patent/CN115369385B/en
Publication of CN115369385A publication Critical patent/CN115369385A/en
Application granted granted Critical
Publication of CN115369385B publication Critical patent/CN115369385B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/034Manufacture or treatment of coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开一种LED二氧化硅薄膜的制作方法,按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜,使用大于220sccm的硅烷对清除后的二氧化硅种子层进行化学气相沉积,能够改变成膜结构,完善种子层的膜层缺陷,以此提高最终二氧化硅薄膜的折射率,从而有效提高LED的亮度。

The invention discloses a method for making an LED silicon dioxide film. The cleaned silicon dioxide seed layer is chemically vapor deposited according to the first preset radio frequency power and the first preset flow rate of silane to obtain the perfect silicon dioxide. Seed layer, the first preset radio frequency power is greater than 80W, and the first preset flow rate is greater than 220 sccm; chemical vapor deposition is performed based on the perfect silicon dioxide seed layer to form a silicon dioxide film, using greater than 220 sccm Chemical vapor deposition of silane on the cleared silicon dioxide seed layer can change the film structure and improve the film defects of the seed layer, thereby increasing the refractive index of the final silicon dioxide film, thereby effectively increasing the brightness of the LED.

Description

一种LED二氧化硅薄膜的制作方法A method for producing LED silicon dioxide film

技术领域Technical field

本发明涉及半导体电子技术领域,尤其涉及一种LED二氧化硅薄膜的制作方法。The present invention relates to the field of semiconductor electronic technology, and in particular to a method for manufacturing an LED silicon dioxide film.

背景技术Background technique

氮化镓基发光二极管(Light Emitting Diode,LED)具有功能损耗低、寿命长、可靠性好等优点,所有被广泛应用于信号灯、背光源显示、汽车照明及室内照明等领域。二氧化硅(SiO)具有硬度高、耐磨性好、绝缘性好、致密度高、光透过率高、对光的散射吸收少、耐腐蚀能力强以及良好的介电(绝缘)等特性,利用二氧化硅薄膜的致密性和绝缘性可将二氧化硅薄膜作为杂质选择扩散的掩蔽膜,从而用于器件表面的保护层和钝化层,因此,二氧化硅的折射率也会在一定程度上影响LED的亮度;Gallium nitride-based light emitting diodes (LEDs) have the advantages of low functional loss, long life, and good reliability, and are widely used in signal lights, backlight displays, automotive lighting, indoor lighting and other fields. Silicon dioxide (SiO) has the characteristics of high hardness, good wear resistance, good insulation, high density, high light transmittance, low light scattering and absorption, strong corrosion resistance, and good dielectric (insulation). , using the compactness and insulation of the silicon dioxide film, the silicon dioxide film can be used as a masking film for the selective diffusion of impurities, and can be used as a protective layer and passivation layer on the surface of the device. Therefore, the refractive index of silicon dioxide will also be in Affects the brightness of LED to a certain extent;

目前LED所使用的二氧化硅薄膜的折射率多在1.4%~1.5%之内,在该折射率下,LED的亮度较低。The refractive index of the silicon dioxide films currently used in LEDs is mostly within 1.4% to 1.5%. At this refractive index, the brightness of LEDs is low.

发明内容Contents of the invention

本发明所要解决的技术问题是:提供一种LED二氧化硅薄膜的制作方法,能够有效提高LED的亮度。The technical problem to be solved by the present invention is to provide a method for making an LED silicon dioxide film, which can effectively improve the brightness of the LED.

为了解决上述技术问题,本发明采用的一种技术方案为:In order to solve the above technical problems, a technical solution adopted by the present invention is:

一种LED二氧化硅薄膜的制作方法,包括步骤:A method for making an LED silicon dioxide film, including the steps:

按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;Chemical vapor deposition is performed on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power, and the first preset radio frequency power is greater than 80W, and a perfect silicon dioxide seed layer is obtained, The first preset flow rate is greater than 220 sccm;

基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜。Chemical vapor deposition is performed based on the perfected silicon dioxide seed layer to form a silicon dioxide film.

本发明的有益效果在于:按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,基于完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜,第一预设射频功率大于现有化学气相沉积的射频功率,且与现有化学气相沉积使用低硅烷相比,使用大于220sccm的硅烷对清除后的二氧化硅种子层进行化学气相沉积,能够改变成膜结构,完善种子层的膜层缺陷,以此提高最终二氧化硅薄膜的折射率,从而有效提高LED的亮度。The beneficial effect of the present invention is that: chemical vapor deposition is performed on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power to obtain a perfected silicon dioxide seed layer. The silicon dioxide seed layer is chemical vapor deposited to form a silicon dioxide film. The first preset radio frequency power is greater than the radio frequency power of the existing chemical vapor deposition, and compared with the low silane used in the existing chemical vapor deposition, a silane greater than 220 sccm is used. Chemical vapor deposition of the cleared silicon dioxide seed layer can change the film structure and improve the film defects of the seed layer, thereby increasing the refractive index of the final silicon dioxide film, thereby effectively increasing the brightness of the LED.

附图说明Description of the drawings

图1为本发明实施例的一种LED二氧化硅薄膜的制作方法的步骤流程图。Figure 1 is a flow chart of a method for manufacturing an LED silicon dioxide film according to an embodiment of the present invention.

具体实施方式Detailed ways

为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。In order to describe the technical content, achieved objectives and effects of the present invention in detail, the following description will be made in conjunction with the embodiments and the accompanying drawings.

请参照图1,本发明实施例提供了一种LED二氧化硅薄膜的制作方法,包括步骤:Referring to Figure 1, an embodiment of the present invention provides a method for manufacturing an LED silicon dioxide film, including the steps:

按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;Chemical vapor deposition is performed on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power, and the first preset radio frequency power is greater than 80W, and a perfect silicon dioxide seed layer is obtained, The first preset flow rate is greater than 220 sccm;

基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜。Chemical vapor deposition is performed based on the perfected silicon dioxide seed layer to form a silicon dioxide film.

从上述描述可知,本发明的有益效果在于:按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,基于完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜,第一预设射频功率大于现有化学气相沉积的射频功率,且与现有化学气相沉积使用低硅烷相比,使用大于220sccm的硅烷对清除后的二氧化硅种子层进行化学气相沉积,能够改变成膜结构,完善种子层的膜层缺陷,以此提高最终二氧化硅薄膜的折射率,从而有效提高LED的亮度。As can be seen from the above description, the beneficial effect of the present invention is to perform chemical vapor deposition on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power to obtain a perfect silicon dioxide seed layer. , chemical vapor deposition is performed based on the perfected silicon dioxide seed layer to form a silicon dioxide film. The first preset radio frequency power is greater than the radio frequency power of the existing chemical vapor deposition, and compared with the existing chemical vapor deposition using low silane, Using silane greater than 220 sccm to perform chemical vapor deposition on the cleared silicon dioxide seed layer can change the film structure and improve the film defects of the seed layer, thereby increasing the refractive index of the final silicon dioxide film, thereby effectively improving the performance of the LED. brightness.

进一步地,将所述第一预设射频功率设置为100~120W;Further, the first preset radio frequency power is set to 100~120W;

将所述第一预设流量设置为800~1000sccm。The first preset flow rate is set to 800-1000 sccm.

由上述描述可知,将第一预设射频功率设置为100~120W,将第一预设流量设置为800~1000sccm,能够有效改善膜层缺陷,提高二氧化硅薄膜的折射率。It can be seen from the above description that setting the first preset radio frequency power to 100-120W and setting the first preset flow rate to 800-1000 sccm can effectively improve film defects and increase the refractive index of the silicon dioxide film.

进一步地,所述按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层之前包括步骤:Further, the chemical vapor deposition of the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power to obtain the perfect silicon dioxide seed layer includes the following steps:

按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层;According to the radio frequency power of 100~120W, 800~1000sccm of nitrous oxide, 800~1000sccm of silane and 500~700sccm of nitrogen are introduced on the surface of the LED chip for 7~13s of chemical vapor deposition to form an initial silicon dioxide seed layer;

按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子,得到清除后的二氧化硅种子层。The gas ions on the surface of the initial silicon dioxide seed layer are removed by passing 900 sccm of nitrous oxide and a second preset flow rate of nitrogen according to a radio frequency power of 220 to 260 W to obtain a cleaned silicon dioxide seed layer.

由上述描述可知,现有清除气体离子只使用一氧化二氮,而本发明通过使用一氧化二氮和氮气能够更有效地清除初始二氧化硅种子层表面的气体离子,减小膜层间的应力,避免膜层开裂。It can be seen from the above description that the existing gas ion removal only uses nitrous oxide, but the present invention can more effectively remove gas ions on the surface of the initial silicon dioxide seed layer by using nitrous oxide and nitrogen, and reduce the gap between the film layers. stress to avoid film cracking.

进一步地,将所述第二预设流量设置为1150~1350sccm。Further, the second preset flow rate is set to 1150˜1350 sccm.

由上述描述可知,使用1150~1350sccm的氮气可确保初始二氧化硅种子层表面的气体离子被完全清除,保证了膜层的结构稳定性。From the above description, it can be seen that using 1150 to 1350 sccm nitrogen can ensure that the gas ions on the surface of the initial silicon dioxide seed layer are completely removed, ensuring the structural stability of the film layer.

进一步地,所述按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层之前包括步骤:Further, according to the radio frequency power of 100 to 120W, 800 to 1000 sccm of nitrous oxide, 800 to 1000 sccm of silane and 500 to 700 sccm of nitrogen are passed through to perform chemical vapor deposition on the surface of the LED chip for 7 to 13 seconds to form an initial nitrous oxide. The steps before the silicon oxide seed layer include:

通入1150~1350sccm的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;Inject 1150 to 1350 sccm of nitrous oxide to pretreat the surface of the LED chip for 50 to 70 seconds to obtain a pretreated LED chip;

所述按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层包括:According to the described method, 800-1000 sccm of nitrous oxide, 800-1000 sccm of silane and 500-700 sccm of nitrogen are passed through the RF power of 100-120 W to perform chemical vapor deposition on the surface of the LED chip for 7 to 13 seconds to form initial silicon dioxide seeds. Layers include:

按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在所述预处理后的LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层。According to the radio frequency power of 100 to 120W, 800 to 1000 sccm of nitrous oxide, 800 to 1000 sccm of silane and 500 to 700 sccm of nitrogen are passed into the pretreated LED chip surface for 7 to 13 seconds to conduct chemical vapor deposition to form an initial Silica seed layer.

由上述描述可知,通入1150~1350sccm的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,以便更好地形成初始二氧化硅种子层。From the above description, it can be seen that the nitrous oxide introduced at 1150 to 1350 sccm is used to pretreat the surface of the LED chip for 50 to 70 seconds in order to better form the initial silicon dioxide seed layer.

进一步地,所述按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层包括:Further, chemical vapor deposition is performed on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power to obtain the perfect silicon dioxide seed layer including:

按照第一预设射频功率基于第一预设流量的硅烷、第三预设流量的一氧化二氮和第四预设流量的氮气对清除后的二氧化硅种子层进行第一预设时间的化学气相沉积,得到完善后的二氧化硅种子层。According to the first preset radio frequency power, the cleaned silicon dioxide seed layer is treated for the first preset time based on the first preset flow rate of silane, the third preset flow rate of nitrous oxide and the fourth preset flow rate of nitrogen gas. Chemical vapor deposition is used to obtain a perfect silica seed layer.

由上述描述可知,按照第一预设射频功率基于第一预设流量的硅烷、第三预设流量的一氧化二氮和第四预设流量的氮气对清除后的二氧化硅种子层进行第一预设时间的化学气相沉积,以此更加充分地完善种子层的膜层缺陷,提高二氧化硅薄膜的折射率。It can be seen from the above description that the cleaned silicon dioxide seed layer is subjected to the first preset radio frequency power based on the first preset flow rate of silane, the third preset flow rate of nitrous oxide and the fourth preset flow rate of nitrogen gas. A preset time chemical vapor deposition is used to more fully perfect the film defects of the seed layer and improve the refractive index of the silicon dioxide film.

进一步地,所述基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜包括:Further, the chemical vapor deposition based on the perfected silicon dioxide seed layer to form a silicon dioxide film includes:

按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子,得到最终的二氧化硅种子层;According to the radio frequency power of 220 to 260W, 800 to 1000 sccm of nitrous oxide and 1150 to 1350 sccm of nitrogen are passed to remove gas ions on the surface of the perfect silicon dioxide seed layer to obtain the final silicon dioxide seed layer;

使用一氧化二氮、硅烷和氮气对所述最终的二氧化硅种子层进行化学气相沉积,形成二氧化硅生长层;Perform chemical vapor deposition on the final silicon dioxide seed layer using nitrous oxide, silane and nitrogen to form a silicon dioxide growth layer;

使用一氧化二氮清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜。Nitrous oxide is used to clean the gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film.

由上述描述可知,按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除完善后的二氧化硅种子层表面的气体离子,以减小种子层与后续形成的二氧化硅生长层之间的应力,避免膜层开裂。It can be seen from the above description that according to the radio frequency power of 220 to 260W, nitrous oxide of 800 to 1000 sccm and nitrogen of 1150 to 1350 sccm are used to remove gas ions on the surface of the perfect silicon dioxide seed layer to reduce the risk of the seed layer and subsequent formation. The stress between the silicon dioxide growth layers avoids cracking of the film layer.

进一步地,所述使用一氧化二氮、硅烷和氮气对所述最终的二氧化硅种子层进行化学气相沉积,形成二氧化硅生长层包括:Further, the chemical vapor deposition of the final silicon dioxide seed layer using nitrous oxide, silane and nitrogen to form the silicon dioxide growth layer includes:

按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷以及500~700sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层。According to the radio frequency power of 100-120W, 800-1000sccm of nitrous oxide, 800-1000sccm of silane and 500-700sccm of nitrogen are passed into the final silicon dioxide seed layer for 70 seconds to perform chemical vapor deposition to form silicon dioxide. growth layer.

由上述描述可知,按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷以及500~700sccm的氮气对最终的二氧化硅种子层进行70s的化学气相沉积,以此能够保证生长层的制备质量。It can be seen from the above description that according to the radio frequency power of 100 to 120W, 800 to 1000 sccm of nitrous oxide, 800 to 1000 sccm of silane and 500 to 700 sccm of nitrogen are used to conduct chemical vapor deposition for 70 seconds on the final silicon dioxide seed layer. This can ensure the preparation quality of the growth layer.

进一步地,所述使用一氧化二氮清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜包括:Further, the use of nitrous oxide to clean gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film includes:

根据220~260W的射频功率通入第五预设流量的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜。According to the radio frequency power of 220-260W, the fifth preset flow rate of nitrous oxide is passed into the nitrous oxide for 60 seconds to clean the gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film.

由上述描述可知,根据220~260W的射频功率通入第五预设流量的一氧化二氮按照60s的时间清理二氧化硅生长层表面的气体离子,可防止带电离子击伤芯片,保证LED芯片的质量。It can be seen from the above description that according to the radio frequency power of 220 to 260W, the fifth preset flow rate of nitrous oxide is passed through to clean the gas ions on the surface of the silicon dioxide growth layer for 60 seconds, which can prevent the charged ions from damaging the chip and ensure that the LED chip the quality of.

进一步地,将所述第五预设流量设置为700~900sccm。Further, the fifth preset flow rate is set to 700-900 sccm.

由上述描述可知,能够实现二氧化硅生长层表面气体离子的有效清理。It can be seen from the above description that effective cleaning of gas ions on the surface of the silicon dioxide growth layer can be achieved.

本发明上述的一种LED二氧化硅薄膜的制作方法能够适用于LED制作,以下通过具体实施方式进行说明:The above-mentioned manufacturing method of LED silicon dioxide film of the present invention can be applied to LED manufacturing, which will be described below through specific implementations:

实施例一Embodiment 1

请参照图1,本实施例的一种LED二氧化硅薄膜的制作方法,包括步骤:Please refer to Figure 1. A method for manufacturing an LED silicon dioxide film in this embodiment includes the steps:

S0、通入1150~1350sccm(standard cubic centimeter per minute,体积流量单位,表示单位时间流过的气体的体积)的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;S0. Inject nitrous oxide of 1150 to 1350 sccm (standard cubic centimeter per minute, volume flow unit, indicating the volume of gas flowing per unit time) to pretreat the surface of the LED chip for 50 to 70 seconds to obtain pretreatment. The final LED chip;

具体的,在235~265℃的条件下,通入1150~1350sccm的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;Specifically, under the conditions of 235 to 265°C, 1150 to 1350 sccm of nitrous oxide is introduced to pretreat the surface of the LED chip for 50 to 70 seconds to obtain a pretreated LED chip;

在一种可选的实施方式中,在250℃的条件下,通入1250sccm的一氧化二氮按照60s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;In an optional embodiment, under the condition of 250°C, 1250 sccm of nitrous oxide is introduced for 60 seconds to pretreat the surface of the LED chip to obtain a pretreated LED chip;

在另一种可选的实施方式中,在235℃的条件下,通入1150sccm的一氧化二氮按照50s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;In another optional embodiment, under the condition of 235°C, 1150 sccm of nitrous oxide is introduced for 50 seconds to pretreat the surface of the LED chip to obtain a pretreated LED chip;

在另一种可选的实施方式中,在265℃的条件下,通入1350sccm的一氧化二氮按照70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;In another optional embodiment, under the condition of 265°C, 1350 sccm of nitrous oxide is introduced for 70 seconds to pretreat the surface of the LED chip to obtain a pretreated LED chip;

S1、按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层;S1. According to the RF power of 100~120W, 800~1000sccm of nitrous oxide, 800~1000sccm of silane and 500~700sccm of nitrogen are introduced on the surface of the LED chip for 7 to 13 seconds to chemical vapor deposition to form initial silica seeds. layer;

具体的,在235~265℃的条件下,按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在所述预处理后的LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层;Specifically, under the conditions of 235-265°C, 800-1000 sccm of nitrous oxide, 800-1000 sccm of silane and 500-700 sccm of nitrogen are passed into the pre-treated LED chip according to the radio frequency power of 100-120 W. Chemical vapor deposition is performed on the surface for 7 to 13 seconds to form an initial silica seed layer;

在一种可选的实施方式中,在250℃的条件下,按照110W的射频功率通入900sccm的一氧化二氮、900sccm的硅烷和600sccm的氮气在所述预处理后的LED芯片表面进行10s的化学气相沉积,形成初始二氧化硅种子层;In an optional embodiment, under the condition of 250°C, 900 sccm of nitrous oxide, 900 sccm of silane and 600 sccm of nitrogen are passed through the surface of the pre-treated LED chip for 10 seconds at a radio frequency power of 110 W. Chemical vapor deposition to form an initial silica seed layer;

在另一种可选的实施方式中,在235℃的条件下,按照100W的射频功率通入800sccm的一氧化二氮、800sccm的硅烷和500sccm的氮气在所述预处理后的LED芯片表面进行7s的化学气相沉积,形成初始二氧化硅种子层;In another optional embodiment, under the condition of 235°C, 800 sccm of nitrous oxide, 800 sccm of silane and 500 sccm of nitrogen are introduced on the surface of the pre-treated LED chip according to the radio frequency power of 100 W. 7s of chemical vapor deposition to form an initial silica seed layer;

在另一种可选的实施方式中,在265℃的条件下,按照120W的射频功率通入1000sccm的一氧化二氮、1000sccm的硅烷和700sccm的氮气在所述预处理后的LED芯片表面进行13s的化学气相沉积,形成初始二氧化硅种子层;In another optional embodiment, under the condition of 265°C, 1000 sccm of nitrous oxide, 1000 sccm of silane and 700 sccm of nitrogen are introduced on the surface of the pre-treated LED chip according to the radio frequency power of 120 W. 13s of chemical vapor deposition to form an initial silica seed layer;

S2、按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子,得到清除后的二氧化硅种子层;S2, pass in 900 sccm of nitrous oxide and a second preset flow rate of nitrogen according to a radio frequency power of 220 to 260 W to remove gas ions on the surface of the initial silicon dioxide seed layer, and obtain the cleaned silicon dioxide seed layer;

具体的,在235~265℃的条件下,按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子120s,得到清除后的二氧化硅种子层;Specifically, under the conditions of 235 to 265°C, 900 sccm of nitrous oxide and a second preset flow rate of nitrogen are passed in according to a radio frequency power of 220 to 260 W to remove gas ions on the surface of the initial silicon dioxide seed layer for 120 seconds. Obtain the cleared silica seed layer;

其中,将所述第二预设流量设置为1150~1350sccm;Wherein, the second preset flow rate is set to 1150~1350 sccm;

在一种可选的实施方式中,在250℃的条件下,按照240W的射频功率通入900sccm的一氧化二氮和1250sccm的氮气清除所述初始二氧化硅种子层表面的气体离子120s,得到清除后的二氧化硅种子层;In an optional embodiment, under the condition of 250° C., 900 sccm of nitrous oxide and 1250 sccm of nitrogen are passed into the RF power of 240 W to remove the gas ions on the surface of the initial silicon dioxide seed layer for 120 seconds, to obtain Cleaned silica seed layer;

在另一种可选的实施方式中,在235℃的条件下,按照220W的射频功率通入900sccm的一氧化二氮和1150sccm的氮气清除所述初始二氧化硅种子层表面的气体离子120s,得到清除后的二氧化硅种子层;In another optional embodiment, under the condition of 235° C., 900 sccm of nitrous oxide and 1150 sccm of nitrogen are passed into the RF power of 220 W to remove gas ions on the surface of the initial silicon dioxide seed layer for 120 seconds. Obtain the cleared silica seed layer;

在另一种可选的实施方式中,在265℃的条件下,按照260W的射频功率通入900sccm的一氧化二氮和1350sccm的氮气清除所述初始二氧化硅种子层表面的气体离子120s,得到清除后的二氧化硅种子层;In another optional embodiment, under the condition of 265°C, 900 sccm of nitrous oxide and 1350 sccm of nitrogen are passed in according to the radio frequency power of 260 W to remove the gas ions on the surface of the initial silicon dioxide seed layer for 120 seconds. Obtain the cleared silica seed layer;

S3、按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;S3. Perform chemical vapor deposition on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power to obtain a perfect silicon dioxide seed layer. The first preset radio frequency power is greater than 80W, the first preset flow rate is greater than 220sccm;

具体的,在235~265℃的条件下,按照第一预设射频功率基于第一预设流量的硅烷、第三预设流量的一氧化二氮和第四预设流量的氮气对清除后的二氧化硅种子层进行第一预设时间的化学气相沉积,得到完善后的二氧化硅种子层;Specifically, under the conditions of 235-265°C, according to the first preset radio frequency power based on the first preset flow rate of silane, the third preset flow rate of nitrous oxide and the fourth preset flow rate of nitrogen, the cleaned The silicon dioxide seed layer is subjected to chemical vapor deposition for a first preset time to obtain a perfect silicon dioxide seed layer;

其中,将所述第一预设射频功率设置为100~120W;将所述第一预设流量设置为800~1000sccm;将所述第三预设流量设置为800~1000sccm,将所述第四预设流量设置为500~700sccm,将所述第一预设时间设置为15~25s;Wherein, the first preset radio frequency power is set to 100-120W; the first preset flow rate is set to 800-1000 sccm; the third preset flow rate is set to 800-1000 sccm, and the fourth preset flow rate is set to 800-1000 sccm. The preset flow rate is set to 500~700sccm, and the first preset time is set to 15~25s;

在一种可选的实施方式中,在250℃的条件下,按照110W的射频功率基于900sccm的硅烷、900sccm的一氧化二氮和600sccm的氮气对清除后的二氧化硅种子层进行20s的化学气相沉积,得到完善后的二氧化硅种子层;In an optional embodiment, the cleaned silicon dioxide seed layer is chemically treated with 110 W of radio frequency power based on 900 sccm of silane, 900 sccm of nitrous oxide and 600 sccm of nitrogen for 20 seconds at 250°C. Vapor deposition to obtain a perfect silica seed layer;

在另一种可选的实施方式中,在235℃的条件下,按照100W的射频功率基于800sccm的硅烷、800sccm的一氧化二氮和500sccm的氮气对清除后的二氧化硅种子层进行15s的化学气相沉积,得到完善后的二氧化硅种子层;In another optional embodiment, the cleaned silicon dioxide seed layer is treated with 100 W of radio frequency power for 15 seconds based on 800 sccm of silane, 800 sccm of nitrous oxide and 500 sccm of nitrogen at 235°C. Chemical vapor deposition is used to obtain the perfect silica seed layer;

在另一种可选的实施方式中,在265℃的条件下,按照120W的射频功率基于1000sccm的硅烷、1000sccm的一氧化二氮和700sccm的氮气对清除后的二氧化硅种子层进行25s的化学气相沉积,得到完善后的二氧化硅种子层;In another optional embodiment, the cleaned silicon dioxide seed layer is treated with 120 W of radio frequency power based on 1000 sccm of silane, 1000 sccm of nitrous oxide and 700 sccm of nitrogen for 25 seconds at 265°C. Chemical vapor deposition is used to obtain the perfect silica seed layer;

S4、基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜,具体包括:S4. Perform chemical vapor deposition based on the perfected silicon dioxide seed layer to form a silicon dioxide film, which specifically includes:

S41、按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子,得到最终的二氧化硅种子层;S41. According to the radio frequency power of 220 to 260W, 800 to 1000 sccm of nitrous oxide and 1150 to 1350 sccm of nitrogen are passed to remove the gas ions on the surface of the perfect silicon dioxide seed layer to obtain the final silicon dioxide seed layer;

具体的,在235~265℃的条件下,按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子120s,得到最终的二氧化硅种子层;Specifically, under the conditions of 235-265°C, nitrous oxide of 800-1000 sccm and nitrogen of 1150-1350 sccm are passed in according to the radio frequency power of 220-260 W to remove gas ions on the surface of the perfect silicon dioxide seed layer. 120s to obtain the final silica seed layer;

在一种可选的实施方式中,在250℃的条件下,按照240W的射频功率通入900sccm的一氧化二氮和1250sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子120s,得到最终的二氧化硅种子层;In an optional embodiment, under the condition of 250°C, 900 sccm of nitrous oxide and 1250 sccm of nitrogen are passed through according to the radio frequency power of 240 W to remove the gas ions on the surface of the perfect silicon dioxide seed layer for 120s. , to obtain the final silica seed layer;

在另一种可选的实施方式中,在235℃的条件下,按照220W的射频功率通入800sccm的一氧化二氮和1150sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子120s,得到最终的二氧化硅种子层;In another optional embodiment, under the condition of 235° C., 800 sccm of nitrous oxide and 1150 sccm of nitrogen are passed into the RF power of 220 W to remove gas ions on the surface of the perfect silicon dioxide seed layer. 120s to obtain the final silica seed layer;

在另一种可选的实施方式中,在265℃的条件下,按照260W的射频功率通入1000sccm的一氧化二氮和1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子120s,得到最终的二氧化硅种子层;In another optional embodiment, under the condition of 265° C., 1000 sccm of nitrous oxide and 1350 sccm of nitrogen are passed into the RF power of 260 W to remove gas ions on the surface of the perfected silicon dioxide seed layer. 120s to obtain the final silica seed layer;

S42、使用一氧化二氮、硅烷和氮气对所述最终的二氧化硅种子层进行化学气相沉积,形成二氧化硅生长层;S42. Use nitrous oxide, silane and nitrogen to perform chemical vapor deposition on the final silicon dioxide seed layer to form a silicon dioxide growth layer;

具体的,在235~265℃的条件下,按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷以及500~700sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层;Specifically, under the conditions of 235-265°C, 800-1000 sccm of nitrous oxide, 800-1000 sccm of silane and 500-700 sccm of nitrogen are introduced into the final silica seeds according to the radio frequency power of 100-120 W. The layer is subjected to chemical vapor deposition for 70 seconds to form a silicon dioxide growth layer;

在一种可选的实施方式中,在250℃的条件下,按照110W的射频功率通入900sccm的一氧化二氮、900sccm的硅烷以及600sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层;In an optional embodiment, under the condition of 250° C., the final silicon dioxide seed layer is treated with 110W radio frequency power of 900sccm nitrous oxide, 900sccm silane and 600sccm nitrogen for 70s. Chemical vapor deposition to form a silicon dioxide growth layer;

在另一种可选的实施方式中,在235℃的条件下,按照100W的射频功率通入800sccm的一氧化二氮、800sccm的硅烷以及500sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层;In another optional embodiment, under the condition of 235° C., the final silicon dioxide seed layer is treated with 100 W of radio frequency power through 800 sccm of nitrous oxide, 800 sccm of silane and 500 sccm of nitrogen. 70s of chemical vapor deposition to form a silicon dioxide growth layer;

在另一种可选的实施方式中,在265℃的条件下,按照120W的射频功率通入1000sccm的一氧化二氮、1000sccm的硅烷以及700sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层;In another optional embodiment, under the condition of 265° C., the final silicon dioxide seed layer is treated with 120 W of radio frequency power through 1000 sccm of nitrous oxide, 1000 sccm of silane and 700 sccm of nitrogen. 70s of chemical vapor deposition to form a silicon dioxide growth layer;

S43、使用一氧化二氮清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;S43. Use nitrous oxide to clean the gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film;

具体的,在235~265℃的条件下,根据220~260W的射频功率通入第五预设流量的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;Specifically, under the conditions of 235-265°C, the fifth preset flow rate of nitrous oxide is introduced according to the radio frequency power of 220-260W for 60 seconds to clean the gas ions on the surface of the silicon dioxide growth layer to form nitrous oxide. silicon oxide film;

其中,将所述第五预设流量设置为700~900sccm;Wherein, the fifth preset flow rate is set to 700~900 sccm;

在一种可选的实施方式中,在250℃的条件下,根据240W的射频功率通入800sccm的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;In an optional embodiment, under the condition of 250°C, 800 sccm of nitrous oxide is passed in according to the radio frequency power of 240 W for 60 seconds to clean the gas ions on the surface of the silicon dioxide growth layer to form dioxide. silicon film;

在另一种可选的实施方式中,在235℃的条件下,根据220W的射频功率通入700sccm的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;In another optional embodiment, under the condition of 235°C, 700 sccm of nitrous oxide is passed through according to the radio frequency power of 220 W for 60 seconds to clean the gas ions on the surface of the silicon dioxide growth layer to form nitrous oxide. silicon oxide film;

在另一种可选的实施方式中,在265℃的条件下,根据260W的射频功率通入900sccm的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;In another optional embodiment, under the condition of 265°C, 900 sccm of nitrous oxide is passed through according to the radio frequency power of 260W for 60 seconds to clean the gas ions on the surface of the silicon dioxide growth layer to form nitrous oxide. silicon oxide film;

目前LED中的二氧化硅薄膜的折射率多在1.4~1.5%之间,而使用本发明上述的LED二氧化硅薄膜的制作方法制作出的二氧化硅薄膜的折射率提高到1.52~1.55%之间,如表1所示,通过提高折射率进而提高了LED的亮度。At present, the refractive index of silicon dioxide films in LEDs is mostly between 1.4 and 1.5%. However, the refractive index of the silicon dioxide film produced by using the above-mentioned LED silicon dioxide film production method of the present invention is increased to 1.52 to 1.55%. As shown in Table 1, the brightness of the LED is improved by increasing the refractive index.

表1现有技术的二氧化硅薄膜与本发明二氧化硅薄膜的实验数据比对表Table 1 Comparison of experimental data between silicon dioxide films of the prior art and silicon dioxide films of the present invention

综上所述,本发明提供的一种LED二氧化硅薄膜的制作方法,按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子,得到清除后的二氧化硅种子层;按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜;将所述第一预设射频功率设置为100~120W;将所述第一预设流量设置为800~1000sccm;通过使用一氧化二氮和氮气能够更有效地清除初始二氧化硅种子层表面的气体离子,减小膜层间的应力,避免膜层开裂;与现有化学气相沉积使用低硅烷相比,使用大于220sccm的硅烷对清除后的二氧化硅种子层进行化学气相沉积,能够改变成膜结构,完善种子层的膜层缺陷,以此提高最终二氧化硅薄膜的折射率,从而有效提高LED的亮度。In summary, the present invention provides a method for making an LED silicon dioxide film. According to a radio frequency power of 220 to 260W, 900 sccm of nitrous oxide and a second preset flow rate of nitrogen are introduced to remove the initial silicon dioxide. The gas ions on the surface of the seed layer are used to obtain a cleaned silicon dioxide seed layer; the cleaned silicon dioxide seed layer is chemically vapor deposited according to the first preset radio frequency power and based on the first preset flow rate of silane to obtain a perfected silicon dioxide seed layer. Silicon dioxide seed layer, the first preset radio frequency power is greater than 80W, and the first preset flow rate is greater than 220 sccm; chemical vapor deposition is performed based on the perfect silicon dioxide seed layer to form a silicon dioxide film; The first preset radio frequency power is set to 100-120W; the first preset flow rate is set to 800-1000 sccm; the gas on the surface of the initial silicon dioxide seed layer can be more effectively removed by using nitrous oxide and nitrogen ions to reduce the stress between film layers and avoid film cracking; compared with the existing chemical vapor deposition using low silane, using silane greater than 220 sccm for chemical vapor deposition of the cleared silica seed layer can change the film formation The structure improves the film defects of the seed layer, thereby improving the refractive index of the final silicon dioxide film, thereby effectively increasing the brightness of the LED.

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only embodiments of the present invention, and do not limit the patent scope of the present invention. Any equivalent transformations made using the contents of the description and drawings of the present invention, or directly or indirectly applied in related technical fields, are equally included in within the scope of patent protection of this invention.

Claims (4)

1. The manufacturing method of the LED silicon dioxide film is characterized by comprising the following steps:
introducing 800-1000 sccm of nitrous oxide, 800-1000 sccm of silane and 500-700 sccm of nitrogen gas to perform chemical vapor deposition for 7-13 s on the surface of the LED chip according to the radio frequency power of 100-120W to form an initial silicon dioxide seed layer;
introducing 900sccm of nitrous oxide and a second preset flow of nitrogen gas according to the radio frequency power of 220-260W to remove gas ions on the surface of the initial silicon dioxide seed layer, so as to obtain a removed silicon dioxide seed layer;
performing chemical vapor deposition on the cleaned silicon dioxide seed layer for 15-25 seconds based on 800-1000 sccm silane, 800-1000 sccm nitrous oxide and 500-700 sccm nitrogen according to the radio frequency power of 100-120W to obtain a complete silicon dioxide seed layer;
introducing 800-1000 sccm of nitrous oxide and 1150-1350 sccm of nitrogen according to 220-260W of radio frequency power to remove gas ions on the surface of the perfect silicon dioxide seed layer, so as to obtain a final silicon dioxide seed layer;
introducing 800-1000 sccm of nitrous oxide, 800-1000 sccm of silane and 500-700 sccm of nitrogen according to the radio frequency power of 100-120W, and performing chemical vapor deposition on the final silicon dioxide seed layer for 70s to form a silicon dioxide growth layer;
and introducing nitrous oxide with a fifth preset flow according to the radio frequency power of 220-260W, and cleaning gas ions on the surface of the silicon dioxide growth layer according to the time of 60s to form a silicon dioxide film.
2. The method for manufacturing the LED silica film according to claim 1, wherein the second preset flow rate is 1150-1350 sccm.
3. The method for manufacturing an LED silicon dioxide film according to claim 1, wherein the steps of introducing 800-1000 sccm of nitrous oxide, 800-1000 sccm of silane and 500-700 sccm of nitrogen gas to form an initial silicon dioxide seed layer on the surface of the LED chip by performing chemical vapor deposition for 7-13 s at a radio frequency power of 100-120 w, and before forming the initial silicon dioxide seed layer, comprise:
introducing 1150-1350 sccm of nitrous oxide to pretreat the surface of the LED chip according to the time of 50-70 s to obtain a pretreated LED chip;
introducing 800-1000 sccm of nitrous oxide, 800-1000 sccm of silane and 500-700 sccm of nitrogen gas into the surface of the LED chip according to the radio frequency power of 100-120W for 7-13 s of chemical vapor deposition, and forming an initial silicon dioxide seed layer comprises:
and introducing 800-1000 sccm of nitrous oxide, 800-1000 sccm of silane and 500-700 sccm of nitrogen gas according to the radio frequency power of 100-120W, and performing chemical vapor deposition for 7-13 s on the surface of the pretreated LED chip to form an initial silicon dioxide seed layer.
4. The method for manufacturing the LED silicon dioxide film according to claim 1, wherein the fifth preset flow is set to 700-900 sccm.
CN202211039408.0A 2022-08-29 2022-08-29 Manufacturing method of LED silicon dioxide film Active CN115369385B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211039408.0A CN115369385B (en) 2022-08-29 2022-08-29 Manufacturing method of LED silicon dioxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211039408.0A CN115369385B (en) 2022-08-29 2022-08-29 Manufacturing method of LED silicon dioxide film

Publications (2)

Publication Number Publication Date
CN115369385A CN115369385A (en) 2022-11-22
CN115369385B true CN115369385B (en) 2024-01-09

Family

ID=84070066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211039408.0A Active CN115369385B (en) 2022-08-29 2022-08-29 Manufacturing method of LED silicon dioxide film

Country Status (1)

Country Link
CN (1) CN115369385B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115613011B (en) * 2022-09-01 2024-10-29 福建兆元光电有限公司 Improve rear electrode SiO2Method for falling off chemical vapor deposition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403106A (en) * 2008-11-11 2009-04-08 上海蓝光科技有限公司 Technique for producing high-insulativity SiO2 film
CN102916093A (en) * 2012-08-31 2013-02-06 扬州中科半导体照明有限公司 Method for depositing high insulating property SiO2 film with low-damage PECVD (Plasma Enhanced Chemical Vapor Deposition)
KR101256979B1 (en) * 2011-10-14 2013-04-19 전북대학교산학협력단 Light emitting device with wedge structure and fabrication method thereof
CN103390703A (en) * 2013-08-05 2013-11-13 聚灿光电科技(苏州)有限公司 Preparation method of low-damage and high-density film and LED chip provided with film
CN105448651A (en) * 2014-08-15 2016-03-30 北大方正集团有限公司 Epitaxial wafer on substrate and manufacturing method
CN114899084A (en) * 2022-04-14 2022-08-12 上海华力集成电路制造有限公司 Method for producing amorphous silicon layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403106A (en) * 2008-11-11 2009-04-08 上海蓝光科技有限公司 Technique for producing high-insulativity SiO2 film
KR101256979B1 (en) * 2011-10-14 2013-04-19 전북대학교산학협력단 Light emitting device with wedge structure and fabrication method thereof
CN102916093A (en) * 2012-08-31 2013-02-06 扬州中科半导体照明有限公司 Method for depositing high insulating property SiO2 film with low-damage PECVD (Plasma Enhanced Chemical Vapor Deposition)
CN103390703A (en) * 2013-08-05 2013-11-13 聚灿光电科技(苏州)有限公司 Preparation method of low-damage and high-density film and LED chip provided with film
CN105448651A (en) * 2014-08-15 2016-03-30 北大方正集团有限公司 Epitaxial wafer on substrate and manufacturing method
CN114899084A (en) * 2022-04-14 2022-08-12 上海华力集成电路制造有限公司 Method for producing amorphous silicon layer

Also Published As

Publication number Publication date
CN115369385A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
CN115369385B (en) Manufacturing method of LED silicon dioxide film
US6566174B1 (en) Thin-film transistor elements and methods of making same
CN104584200B (en) Thin film transistor (TFT) and display device
JP2010118664A (en) AMINO VINYLSILANE PRECURSOR FOR STRESSED SiN FILM
JP2004134560A (en) Method of manufacturing silicon carbide film
TWI518201B (en) Methods of depositing sio2 films
TW201427032A (en) Thin film transistor and display device
CN108400206A (en) LED chip structure and preparation method thereof
CN105914280B (en) The preparation method and a kind of LED chip of a kind of LED chip protective layer
CN1944308B (en) A method of depositing a hydrogenated amorphous silicon-carbon alloy thin film on a glass substrate
CN102569564B (en) Deposition method of SiOx passive film and LED (light emitting diode) chip with passive film
CN103311104A (en) Method for manufacturing graphene
CN108346561A (en) Polysilicon layer processing method and processing system before gate insulating layer film forming
CN101640242A (en) Manufacturing method for light-emitting diode chip
KR101223724B1 (en) Passivation film for electronic device and method of manufacturing the same
CN111129240A (en) Epitaxial growth method for improving current expansion capability of nitride LED
CN102157636B (en) Method for strengthening silicon-based thin film electroluminescence
CN116207186B (en) Solar cell and preparation method thereof
CN110863188A (en) Graphite-like hydrogen-containing carbon film, preparation method and optical film
CN115613011B (en) Improve rear electrode SiO2Method for falling off chemical vapor deposition
CN112951954B (en) Light-emitting diode chip and manufacturing process thereof
TW201444118A (en) Recycling method for sapphire substrate having gallium nitride epitaxial layer
TWI260682B (en) A method of reducing dielectric constant of a low-k dielectric layer
CN1268783C (en) Method for growth of InN film through In deposition in advance
CN118507606B (en) LED epitaxial layer growth method for improving luminous efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20241224

Address after: Building 1, 3rd Floor, No. 236 Wujiang, Yaosha Village, Nanyu Town, Minhou County, Fuzhou City, Fujian Province 350109

Patentee after: Fujian Fuzhao Semiconductor Co.,Ltd.

Country or region after: China

Address before: 350000 Biomedical and Electromechanical Industrial Park, Nanyu Town, Minhou County, Fuzhou, Fujian

Patentee before: FUJIAN PRIMA OPTOELECTRONICS Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right