[go: up one dir, main page]

CN115369385A - Manufacturing method of LED silicon dioxide film - Google Patents

Manufacturing method of LED silicon dioxide film Download PDF

Info

Publication number
CN115369385A
CN115369385A CN202211039408.0A CN202211039408A CN115369385A CN 115369385 A CN115369385 A CN 115369385A CN 202211039408 A CN202211039408 A CN 202211039408A CN 115369385 A CN115369385 A CN 115369385A
Authority
CN
China
Prior art keywords
silicon dioxide
seed layer
radio frequency
frequency power
sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211039408.0A
Other languages
Chinese (zh)
Other versions
CN115369385B (en
Inventor
尚大可
李刚
林武
李文浩
林静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Fuzhao Semiconductor Co.,Ltd.
Original Assignee
Fujian Prima Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Prima Optoelectronics Co Ltd filed Critical Fujian Prima Optoelectronics Co Ltd
Priority to CN202211039408.0A priority Critical patent/CN115369385B/en
Publication of CN115369385A publication Critical patent/CN115369385A/en
Application granted granted Critical
Publication of CN115369385B publication Critical patent/CN115369385B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/034Manufacture or treatment of coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开一种LED二氧化硅薄膜的制作方法,按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜,使用大于220sccm的硅烷对清除后的二氧化硅种子层进行化学气相沉积,能够改变成膜结构,完善种子层的膜层缺陷,以此提高最终二氧化硅薄膜的折射率,从而有效提高LED的亮度。

Figure 202211039408

The invention discloses a method for manufacturing an LED silicon dioxide film. According to the first preset radio frequency power and based on the first preset flow rate of silane, chemical vapor deposition is carried out on the cleaned silicon dioxide seed layer to obtain the perfected silicon dioxide. For the seed layer, the first preset radio frequency power is greater than 80W, and the first preset flow rate is greater than 220sccm; chemical vapor deposition is carried out based on the perfected silicon dioxide seed layer to form a silicon dioxide film, and a silicon dioxide film greater than 220sccm is used The chemical vapor deposition of silane on the cleaned silicon dioxide seed layer can change the film structure and improve the film defects of the seed layer, so as to increase the refractive index of the final silicon dioxide film, thereby effectively improving the brightness of the LED.

Figure 202211039408

Description

一种LED二氧化硅薄膜的制作方法A kind of preparation method of LED silicon dioxide thin film

技术领域technical field

本发明涉及半导体电子技术领域,尤其涉及一种LED二氧化硅薄膜的制作方法。The invention relates to the technical field of semiconductor electronics, in particular to a method for manufacturing an LED silicon dioxide film.

背景技术Background technique

氮化镓基发光二极管(Light Emitting Diode,LED)具有功能损耗低、寿命长、可靠性好等优点,所有被广泛应用于信号灯、背光源显示、汽车照明及室内照明等领域。二氧化硅(SiO)具有硬度高、耐磨性好、绝缘性好、致密度高、光透过率高、对光的散射吸收少、耐腐蚀能力强以及良好的介电(绝缘)等特性,利用二氧化硅薄膜的致密性和绝缘性可将二氧化硅薄膜作为杂质选择扩散的掩蔽膜,从而用于器件表面的保护层和钝化层,因此,二氧化硅的折射率也会在一定程度上影响LED的亮度;Gallium nitride-based light emitting diodes (Light Emitting Diodes, LEDs) have the advantages of low functional loss, long life, and good reliability, and are widely used in signal lights, backlight displays, automotive lighting, and indoor lighting. Silicon dioxide (SiO) has the characteristics of high hardness, good wear resistance, good insulation, high density, high light transmittance, less scattering and absorption of light, strong corrosion resistance and good dielectric (insulation) , the silicon dioxide film can be used as a masking film for the selective diffusion of impurities by utilizing the compactness and insulation of the silicon dioxide film, so as to be used as a protective layer and a passivation layer on the surface of the device. Therefore, the refractive index of silicon dioxide will also be in Affect the brightness of LED to a certain extent;

目前LED所使用的二氧化硅薄膜的折射率多在1.4%~1.5%之内,在该折射率下,LED的亮度较低。At present, the refractive index of silicon dioxide thin films used in LEDs is mostly within 1.4% to 1.5%. Under this refractive index, the brightness of LEDs is low.

发明内容Contents of the invention

本发明所要解决的技术问题是:提供一种LED二氧化硅薄膜的制作方法,能够有效提高LED的亮度。The technical problem to be solved by the present invention is to provide a method for manufacturing an LED silicon dioxide film, which can effectively improve the brightness of the LED.

为了解决上述技术问题,本发明采用的一种技术方案为:In order to solve the above-mentioned technical problems, a kind of technical scheme that the present invention adopts is:

一种LED二氧化硅薄膜的制作方法,包括步骤:A method for making an LED silicon dioxide film, comprising the steps of:

按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;Perform chemical vapor deposition on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power to obtain a perfected silicon dioxide seed layer, the first preset radio frequency power is greater than 80W, The first preset flow rate is greater than 220 sccm;

基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜。Carrying out chemical vapor deposition based on the perfected silicon dioxide seed layer to form a silicon dioxide film.

本发明的有益效果在于:按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,基于完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜,第一预设射频功率大于现有化学气相沉积的射频功率,且与现有化学气相沉积使用低硅烷相比,使用大于220sccm的硅烷对清除后的二氧化硅种子层进行化学气相沉积,能够改变成膜结构,完善种子层的膜层缺陷,以此提高最终二氧化硅薄膜的折射率,从而有效提高LED的亮度。The beneficial effects of the present invention are: according to the first preset radio frequency power based on the silane of the first preset flow rate, chemical vapor deposition is performed on the cleaned silicon dioxide seed layer to obtain a perfected silicon dioxide seed layer, based on the perfected silicon dioxide seed layer The silicon dioxide seed layer is chemically vapor deposited to form a silicon dioxide film. The first preset radio frequency power is greater than the radio frequency power of the existing chemical vapor deposition, and compared with the low silane used in the existing chemical vapor deposition, the use of silane greater than 220sccm Chemical vapor deposition of the removed silicon dioxide seed layer can change the film structure and improve the film defects of the seed layer, so as to increase the refractive index of the final silicon dioxide film, thereby effectively improving the brightness of the LED.

附图说明Description of drawings

图1为本发明实施例的一种LED二氧化硅薄膜的制作方法的步骤流程图。FIG. 1 is a flow chart of the steps of a method for manufacturing an LED silicon dioxide film according to an embodiment of the present invention.

具体实施方式Detailed ways

为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。In order to describe the technical content, achieved goals and effects of the present invention in detail, the following descriptions will be made in conjunction with the embodiments and accompanying drawings.

请参照图1,本发明实施例提供了一种LED二氧化硅薄膜的制作方法,包括步骤:Please refer to Fig. 1, an embodiment of the present invention provides a method for manufacturing an LED silicon dioxide film, including steps:

按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;Perform chemical vapor deposition on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power to obtain a perfected silicon dioxide seed layer, the first preset radio frequency power is greater than 80W, The first preset flow rate is greater than 220 sccm;

基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜。Carrying out chemical vapor deposition based on the perfected silicon dioxide seed layer to form a silicon dioxide film.

从上述描述可知,本发明的有益效果在于:按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,基于完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜,第一预设射频功率大于现有化学气相沉积的射频功率,且与现有化学气相沉积使用低硅烷相比,使用大于220sccm的硅烷对清除后的二氧化硅种子层进行化学气相沉积,能够改变成膜结构,完善种子层的膜层缺陷,以此提高最终二氧化硅薄膜的折射率,从而有效提高LED的亮度。From the above description, it can be seen that the beneficial effect of the present invention is that the silicon dioxide seed layer after removal is chemically vapor deposited according to the first preset radio frequency power based on the first preset flow rate of silane to obtain a perfected silicon dioxide seed layer , based on the perfect silicon dioxide seed layer for chemical vapor deposition to form a silicon dioxide film, the first preset radio frequency power is greater than the radio frequency power of the existing chemical vapor deposition, and compared with the existing chemical vapor deposition using low silane, Using silane greater than 220sccm to perform chemical vapor deposition on the cleaned silicon dioxide seed layer can change the film structure and improve the film defects of the seed layer, thereby increasing the refractive index of the final silicon dioxide film, thereby effectively improving LED performance. brightness.

进一步地,将所述第一预设射频功率设置为100~120W;Further, the first preset radio frequency power is set to 100-120W;

将所述第一预设流量设置为800~1000sccm。The first preset flow rate is set to 800-1000 sccm.

由上述描述可知,将第一预设射频功率设置为100~120W,将第一预设流量设置为800~1000sccm,能够有效改善膜层缺陷,提高二氧化硅薄膜的折射率。It can be seen from the above description that setting the first preset radio frequency power to 100-120W and setting the first preset flow rate to 800-1000 sccm can effectively improve the film layer defects and increase the refractive index of the silicon dioxide film.

进一步地,所述按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层之前包括步骤:Further, performing chemical vapor deposition on the cleaned silicon dioxide seed layer according to the first preset radio frequency power based on the first preset flow rate of silane, before obtaining the perfect silicon dioxide seed layer, includes steps:

按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层;According to the radio frequency power of 100-120W, nitrous oxide of 800-1000sccm, silane of 800-1000sccm and nitrogen of 500-700sccm are passed into the surface of the LED chip for 7-13s to form the initial silicon dioxide seed layer;

按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子,得到清除后的二氧化硅种子层。Purging gas ions on the surface of the initial silicon dioxide seed layer by passing 900 sccm of nitrous oxide and nitrogen gas at a second preset flow rate according to a radio frequency power of 220-260 W to obtain a silicon dioxide seed layer after removal.

由上述描述可知,现有清除气体离子只使用一氧化二氮,而本发明通过使用一氧化二氮和氮气能够更有效地清除初始二氧化硅种子层表面的气体离子,减小膜层间的应力,避免膜层开裂。As can be seen from the above description, the existing scavenging gas ions only use nitrous oxide, but the present invention can more effectively remove the gas ions on the surface of the initial silicon dioxide seed layer by using nitrous oxide and nitrogen, and reduce the interlayer gap. Stress to avoid cracking of the film layer.

进一步地,将所述第二预设流量设置为1150~1350sccm。Further, the second preset flow rate is set to 1150-1350 sccm.

由上述描述可知,使用1150~1350sccm的氮气可确保初始二氧化硅种子层表面的气体离子被完全清除,保证了膜层的结构稳定性。It can be seen from the above description that the use of 1150-1350 sccm of nitrogen gas can ensure that the gas ions on the surface of the initial silicon dioxide seed layer are completely removed, ensuring the structural stability of the film layer.

进一步地,所述按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层之前包括步骤:Further, according to the radio frequency power of 100-120W, nitrous oxide of 800-1000 sccm, silane of 800-1000 sccm and nitrogen of 500-700 sccm are passed on the surface of the LED chip for 7-13 seconds to form the initial dinitrogen monoxide. Before the silicon oxide seed layer includes steps:

通入1150~1350sccm的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;Pretreat the surface of the LED chip by injecting 1150-1350 sccm of nitrous oxide for 50-70 seconds to obtain the pre-treated LED chip;

所述按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层包括:According to the radio frequency power of 100-120W, nitrous oxide of 800-1000 sccm, silane of 800-1000 sccm and nitrogen of 500-700 sccm are passed into the surface of the LED chip for 7-13 seconds to form the initial silicon dioxide seed. Layers include:

按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在所述预处理后的LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层。According to the radio frequency power of 100-120W, nitrous oxide of 800-1000sccm, silane of 800-1000sccm and nitrogen of 500-700sccm are passed into the surface of the pretreated LED chip for 7-13s to form the initial Silica seed layer.

由上述描述可知,通入1150~1350sccm的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,以便更好地形成初始二氧化硅种子层。It can be seen from the above description that the surface of the LED chip is pretreated by injecting 1150-1350 sccm of nitrous oxide for 50-70 seconds, so as to better form the initial silicon dioxide seed layer.

进一步地,所述按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层包括:Further, the chemical vapor deposition is performed on the cleaned silicon dioxide seed layer according to the first preset radio frequency power based on the first preset flow rate of silane, and the perfected silicon dioxide seed layer includes:

按照第一预设射频功率基于第一预设流量的硅烷、第三预设流量的一氧化二氮和第四预设流量的氮气对清除后的二氧化硅种子层进行第一预设时间的化学气相沉积,得到完善后的二氧化硅种子层。According to the first preset radio frequency power based on the silane of the first preset flow rate, the nitrous oxide of the third preset flow rate and the nitrogen gas of the fourth preset flow rate, the silicon dioxide seed layer after removal is subjected to the first preset time. Chemical vapor deposition to obtain a perfected silicon dioxide seed layer.

由上述描述可知,按照第一预设射频功率基于第一预设流量的硅烷、第三预设流量的一氧化二氮和第四预设流量的氮气对清除后的二氧化硅种子层进行第一预设时间的化学气相沉积,以此更加充分地完善种子层的膜层缺陷,提高二氧化硅薄膜的折射率。It can be seen from the above description that the silicon dioxide seed layer after removal is subjected to the first preset flow rate of silane, the third preset flow rate of nitrous oxide and the fourth preset flow rate of nitrogen according to the first preset radio frequency power. Chemical vapor deposition for a preset time, so as to more fully perfect the film defects of the seed layer and increase the refractive index of the silicon dioxide film.

进一步地,所述基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜包括:Further, performing chemical vapor deposition based on the perfected silicon dioxide seed layer to form a silicon dioxide film includes:

按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子,得到最终的二氧化硅种子层;According to the radio frequency power of 220-260W, nitrous oxide of 800-1000sccm and nitrogen gas of 1150-1350sccm are passed through to remove the gas ions on the surface of the perfected silicon dioxide seed layer to obtain the final silicon dioxide seed layer;

使用一氧化二氮、硅烷和氮气对所述最终的二氧化硅种子层进行化学气相沉积,形成二氧化硅生长层;chemical vapor deposition of the final silicon dioxide seed layer using nitrous oxide, silane and nitrogen to form a silicon dioxide growth layer;

使用一氧化二氮清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜。Nitrous oxide is used to clean the gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film.

由上述描述可知,按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除完善后的二氧化硅种子层表面的气体离子,以减小种子层与后续形成的二氧化硅生长层之间的应力,避免膜层开裂。It can be known from the above description that according to the radio frequency power of 220-260W, nitrous oxide of 800-1000 sccm and nitrogen gas of 1150-1350 sccm are passed through to remove the gas ions on the surface of the perfect silicon dioxide seed layer, so as to reduce the impact of the seed layer on the subsequent formation. The stress between the silicon dioxide growth layers avoids cracking of the film layer.

进一步地,所述使用一氧化二氮、硅烷和氮气对所述最终的二氧化硅种子层进行化学气相沉积,形成二氧化硅生长层包括:Further, the chemical vapor deposition of the final silicon dioxide seed layer by using nitrous oxide, silane and nitrogen to form a silicon dioxide growth layer includes:

按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷以及500~700sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层。According to the radio frequency power of 100-120W, nitrous oxide of 800-1000sccm, silane of 800-1000sccm and nitrogen of 500-700sccm are passed into the final silicon dioxide seed layer for 70s to form silicon dioxide. growth layer.

由上述描述可知,按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷以及500~700sccm的氮气对最终的二氧化硅种子层进行70s的化学气相沉积,以此能够保证生长层的制备质量。It can be seen from the above description that according to the radio frequency power of 100-120W, nitrous oxide of 800-1000 sccm, silane of 800-1000 sccm and nitrogen of 500-700 sccm are passed to the final silicon dioxide seed layer for 70 seconds. This can guarantee the preparation quality of the growth layer.

进一步地,所述使用一氧化二氮清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜包括:Further, the use of nitrous oxide to clean the gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film includes:

根据220~260W的射频功率通入第五预设流量的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜。According to the radio frequency power of 220-260W, the nitrous oxide at the fifth preset flow rate is passed to clean the gas ions on the surface of the silicon dioxide growth layer for 60 seconds to form a silicon dioxide film.

由上述描述可知,根据220~260W的射频功率通入第五预设流量的一氧化二氮按照60s的时间清理二氧化硅生长层表面的气体离子,可防止带电离子击伤芯片,保证LED芯片的质量。It can be seen from the above description that according to the radio frequency power of 220-260W, the nitrous oxide at the fifth preset flow rate can be used to clean the gas ions on the surface of the silicon dioxide growth layer according to the time of 60s, which can prevent the charged ions from damaging the chip and ensure that the LED chip the quality of.

进一步地,将所述第五预设流量设置为700~900sccm。Further, the fifth preset flow rate is set to 700-900 sccm.

由上述描述可知,能够实现二氧化硅生长层表面气体离子的有效清理。It can be seen from the above description that the effective cleaning of gas ions on the surface of the silicon dioxide growth layer can be realized.

本发明上述的一种LED二氧化硅薄膜的制作方法能够适用于LED制作,以下通过具体实施方式进行说明:The above-mentioned manufacturing method of a kind of LED silicon dioxide thin film of the present invention can be applicable to LED making, and is described below through specific embodiment:

实施例一Embodiment one

请参照图1,本实施例的一种LED二氧化硅薄膜的制作方法,包括步骤:Please refer to Fig. 1, a kind of manufacturing method of LED silicon dioxide thin film of the present embodiment, comprises steps:

S0、通入1150~1350sccm(standard cubic centimeter per minute,体积流量单位,表示单位时间流过的气体的体积)的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;S0. Inject nitrous oxide of 1150-1350 sccm (standard cubic centimeter per minute, volume flow unit, indicating the volume of gas flowing per unit time) to pre-treat the surface of the LED chip for 50-70 s to obtain pre-treated After the LED chip;

具体的,在235~265℃的条件下,通入1150~1350sccm的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;Specifically, under the condition of 235-265° C., nitrous oxide of 1150-1350 sccm is introduced to pretreat the surface of the LED chip for 50-70 seconds to obtain the pretreated LED chip;

在一种可选的实施方式中,在250℃的条件下,通入1250sccm的一氧化二氮按照60s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;In an optional embodiment, under the condition of 250° C., 1250 sccm of nitrous oxide is injected to pretreat the surface of the LED chip for 60 seconds to obtain a pretreated LED chip;

在另一种可选的实施方式中,在235℃的条件下,通入1150sccm的一氧化二氮按照50s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;In another optional embodiment, under the condition of 235° C., 1150 sccm of nitrous oxide is injected to pretreat the surface of the LED chip for 50 seconds to obtain a pretreated LED chip;

在另一种可选的实施方式中,在265℃的条件下,通入1350sccm的一氧化二氮按照70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;In another optional embodiment, under the condition of 265° C., 1350 sccm of nitrous oxide is injected to pretreat the surface of the LED chip for 70 seconds to obtain a pretreated LED chip;

S1、按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层;S1. According to the radio frequency power of 100-120W, nitrous oxide of 800-1000sccm, silane of 800-1000sccm and nitrogen of 500-700sccm are passed on the surface of the LED chip for 7-13s to form the initial silicon dioxide seed. Floor;

具体的,在235~265℃的条件下,按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在所述预处理后的LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层;Specifically, under the condition of 235-265°C, nitrous oxide of 800-1000 sccm, silane of 800-1000 sccm and nitrogen of 500-700 sccm are passed into the LED chip after the pretreatment according to the radio frequency power of 100-120W. The surface is subjected to chemical vapor deposition for 7-13s to form an initial silicon dioxide seed layer;

在一种可选的实施方式中,在250℃的条件下,按照110W的射频功率通入900sccm的一氧化二氮、900sccm的硅烷和600sccm的氮气在所述预处理后的LED芯片表面进行10s的化学气相沉积,形成初始二氧化硅种子层;In an optional embodiment, under the condition of 250°C, 900 sccm of nitrous oxide, 900 sccm of silane and 600 sccm of nitrogen are passed through the surface of the pretreated LED chip for 10 seconds according to the radio frequency power of 110 W. chemical vapor deposition to form an initial silica seed layer;

在另一种可选的实施方式中,在235℃的条件下,按照100W的射频功率通入800sccm的一氧化二氮、800sccm的硅烷和500sccm的氮气在所述预处理后的LED芯片表面进行7s的化学气相沉积,形成初始二氧化硅种子层;In another optional embodiment, under the condition of 235°C, according to the radio frequency power of 100W, the nitrous oxide of 800 sccm, the silane of 800 sccm and the nitrogen of 500 sccm are passed through the surface of the LED chip after the pretreatment. 7s chemical vapor deposition to form an initial silica seed layer;

在另一种可选的实施方式中,在265℃的条件下,按照120W的射频功率通入1000sccm的一氧化二氮、1000sccm的硅烷和700sccm的氮气在所述预处理后的LED芯片表面进行13s的化学气相沉积,形成初始二氧化硅种子层;In another optional embodiment, under the condition of 265° C., 1000 sccm of nitrous oxide, 1000 sccm of silane and 700 sccm of nitrogen are passed through the surface of the pretreated LED chip according to 120 W of radio frequency power. 13s of chemical vapor deposition to form an initial silicon dioxide seed layer;

S2、按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子,得到清除后的二氧化硅种子层;S2. Purging gas ions on the surface of the initial silicon dioxide seed layer by passing 900 sccm of nitrous oxide and a second preset flow rate of nitrogen according to a radio frequency power of 220 to 260 W to obtain a silicon dioxide seed layer after removal;

具体的,在235~265℃的条件下,按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子120s,得到清除后的二氧化硅种子层;Specifically, under the condition of 235-265°C, according to the radio frequency power of 220-260W, 900sccm of nitrous oxide and nitrogen gas of the second preset flow rate are passed through to remove the gas ions on the surface of the initial silicon dioxide seed layer for 120s, Obtain the silicon dioxide seed layer after removal;

其中,将所述第二预设流量设置为1150~1350sccm;Wherein, the second preset flow rate is set to 1150-1350 sccm;

在一种可选的实施方式中,在250℃的条件下,按照240W的射频功率通入900sccm的一氧化二氮和1250sccm的氮气清除所述初始二氧化硅种子层表面的气体离子120s,得到清除后的二氧化硅种子层;In an optional embodiment, under the condition of 250° C., according to the radio frequency power of 240 W, 900 sccm of nitrous oxide and 1250 sccm of nitrogen gas are passed through to remove the gas ions on the surface of the initial silicon dioxide seed layer for 120 seconds, to obtain Silica seed layer after removal;

在另一种可选的实施方式中,在235℃的条件下,按照220W的射频功率通入900sccm的一氧化二氮和1150sccm的氮气清除所述初始二氧化硅种子层表面的气体离子120s,得到清除后的二氧化硅种子层;In another optional embodiment, under the condition of 235° C., 900 sccm of nitrous oxide and 1150 sccm of nitrogen gas are passed through according to the radio frequency power of 220 W to remove the gas ions on the surface of the initial silicon dioxide seed layer for 120 seconds, Obtain the silicon dioxide seed layer after removal;

在另一种可选的实施方式中,在265℃的条件下,按照260W的射频功率通入900sccm的一氧化二氮和1350sccm的氮气清除所述初始二氧化硅种子层表面的气体离子120s,得到清除后的二氧化硅种子层;In another optional embodiment, under the condition of 265° C., 900 sccm of nitrous oxide and 1350 sccm of nitrogen gas are passed through according to the radio frequency power of 260 W to remove the gas ions on the surface of the initial silicon dioxide seed layer for 120 seconds, Obtain the silicon dioxide seed layer after removal;

S3、按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;S3. Perform chemical vapor deposition on the cleaned silicon dioxide seed layer based on the first preset radio frequency power based on the first preset flow rate of silane to obtain a perfected silicon dioxide seed layer, the first preset radio frequency power is greater than 80W, the first preset flow is greater than 220sccm;

具体的,在235~265℃的条件下,按照第一预设射频功率基于第一预设流量的硅烷、第三预设流量的一氧化二氮和第四预设流量的氮气对清除后的二氧化硅种子层进行第一预设时间的化学气相沉积,得到完善后的二氧化硅种子层;Specifically, under the condition of 235-265°C, according to the first preset radio frequency power based on the first preset flow rate of silane, the third preset flow rate of nitrous oxide and the fourth preset flow rate of nitrogen on the purged The silicon dioxide seed layer is subjected to chemical vapor deposition for a first preset time to obtain a perfected silicon dioxide seed layer;

其中,将所述第一预设射频功率设置为100~120W;将所述第一预设流量设置为800~1000sccm;将所述第三预设流量设置为800~1000sccm,将所述第四预设流量设置为500~700sccm,将所述第一预设时间设置为15~25s;Wherein, the first preset radio frequency power is set to 100-120W; the first preset flow rate is set to 800-1000 sccm; the third preset flow rate is set to 800-1000 sccm, and the fourth The preset flow rate is set to 500-700sccm, and the first preset time is set to 15-25s;

在一种可选的实施方式中,在250℃的条件下,按照110W的射频功率基于900sccm的硅烷、900sccm的一氧化二氮和600sccm的氮气对清除后的二氧化硅种子层进行20s的化学气相沉积,得到完善后的二氧化硅种子层;In an optional embodiment, under the condition of 250° C., according to the radio frequency power of 110 W, based on 900 sccm of silane, 900 sccm of nitrous oxide and 600 sccm of nitrogen, the silicon dioxide seed layer after removal is chemically treated for 20 seconds. Vapor deposition to obtain a perfected silicon dioxide seed layer;

在另一种可选的实施方式中,在235℃的条件下,按照100W的射频功率基于800sccm的硅烷、800sccm的一氧化二氮和500sccm的氮气对清除后的二氧化硅种子层进行15s的化学气相沉积,得到完善后的二氧化硅种子层;In another optional embodiment, under the condition of 235°C, according to 100W radio frequency power, based on 800sccm of silane, 800sccm of nitrous oxide and 500sccm of nitrogen, the cleaned silicon dioxide seed layer is treated for 15s. Chemical vapor deposition to obtain a perfect silicon dioxide seed layer;

在另一种可选的实施方式中,在265℃的条件下,按照120W的射频功率基于1000sccm的硅烷、1000sccm的一氧化二氮和700sccm的氮气对清除后的二氧化硅种子层进行25s的化学气相沉积,得到完善后的二氧化硅种子层;In another optional embodiment, under the condition of 265°C, according to 120W radio frequency power, based on 1000sccm of silane, 1000sccm of nitrous oxide and 700sccm of nitrogen, the silicon dioxide seed layer after removal is subjected to 25s Chemical vapor deposition to obtain a perfect silicon dioxide seed layer;

S4、基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜,具体包括:S4. Carrying out chemical vapor deposition based on the improved silicon dioxide seed layer to form a silicon dioxide film, specifically including:

S41、按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子,得到最终的二氧化硅种子层;S41, passing 800-1000 sccm of nitrous oxide and 1150-1350 sccm of nitrogen according to the radio frequency power of 220-260 W to remove the gas ions on the surface of the perfected silicon dioxide seed layer to obtain the final silicon dioxide seed layer;

具体的,在235~265℃的条件下,按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子120s,得到最终的二氧化硅种子层;Specifically, under the condition of 235-265°C, nitrous oxide of 800-1000 sccm and nitrogen gas of 1150-1350 sccm are passed through according to the radio frequency power of 220-260W to remove the gas ions on the surface of the perfected silicon dioxide seed layer 120s to obtain the final silicon dioxide seed layer;

在一种可选的实施方式中,在250℃的条件下,按照240W的射频功率通入900sccm的一氧化二氮和1250sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子120s,得到最终的二氧化硅种子层;In an optional embodiment, under the condition of 250° C., 900 sccm of nitrous oxide and 1250 sccm of nitrogen gas are passed through according to the radio frequency power of 240 W to remove the gas ions on the surface of the perfected silicon dioxide seed layer for 120 seconds. , to obtain the final silica seed layer;

在另一种可选的实施方式中,在235℃的条件下,按照220W的射频功率通入800sccm的一氧化二氮和1150sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子120s,得到最终的二氧化硅种子层;In another optional embodiment, under the condition of 235°C, according to the radio frequency power of 220W, 800sccm of nitrous oxide and 1150sccm of nitrogen are passed through to remove the gas ions on the surface of the perfected silicon dioxide seed layer 120s to obtain the final silicon dioxide seed layer;

在另一种可选的实施方式中,在265℃的条件下,按照260W的射频功率通入1000sccm的一氧化二氮和1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子120s,得到最终的二氧化硅种子层;In another optional embodiment, under the condition of 265°C, according to the radio frequency power of 260W, 1000 sccm of nitrous oxide and 1350 sccm of nitrogen gas are passed through to remove the gas ions on the surface of the perfected silicon dioxide seed layer 120s to obtain the final silicon dioxide seed layer;

S42、使用一氧化二氮、硅烷和氮气对所述最终的二氧化硅种子层进行化学气相沉积,形成二氧化硅生长层;S42, using nitrous oxide, silane and nitrogen to perform chemical vapor deposition on the final silicon dioxide seed layer to form a silicon dioxide growth layer;

具体的,在235~265℃的条件下,按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷以及500~700sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层;Specifically, under the condition of 235-265°C, nitrous oxide of 800-1000 sccm, silane of 800-1000 sccm and nitrogen of 500-700 sccm are passed into the final silicon dioxide seed according to the radio frequency power of 100-120W. The layer is subjected to chemical vapor deposition for 70s to form a silicon dioxide growth layer;

在一种可选的实施方式中,在250℃的条件下,按照110W的射频功率通入900sccm的一氧化二氮、900sccm的硅烷以及600sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层;In an optional embodiment, under the condition of 250° C., nitrous oxide of 900 sccm, silane of 900 sccm and nitrogen of 600 sccm are injected into the final silicon dioxide seed layer according to 110 W of radio frequency power for 70 seconds. chemical vapor deposition to form a silicon dioxide growth layer;

在另一种可选的实施方式中,在235℃的条件下,按照100W的射频功率通入800sccm的一氧化二氮、800sccm的硅烷以及500sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层;In another optional embodiment, under the condition of 235°C, according to the radio frequency power of 100W, 800sccm of nitrous oxide, 800sccm of silane and 500sccm of nitrogen are passed through the final silicon dioxide seed layer. 70s of chemical vapor deposition to form a silicon dioxide growth layer;

在另一种可选的实施方式中,在265℃的条件下,按照120W的射频功率通入1000sccm的一氧化二氮、1000sccm的硅烷以及700sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层;In another optional embodiment, under the condition of 265° C., 1000 sccm of nitrous oxide, 1000 sccm of silane and 700 sccm of nitrogen are passed through 120 W of radio frequency power to treat the final silicon dioxide seed layer. 70s of chemical vapor deposition to form a silicon dioxide growth layer;

S43、使用一氧化二氮清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;S43, using nitrous oxide to clean the gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film;

具体的,在235~265℃的条件下,根据220~260W的射频功率通入第五预设流量的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;Specifically, under the condition of 235-265°C, according to the radio frequency power of 220-260W, the nitrous oxide at the fifth preset flow rate is passed through for 60s to clean the gas ions on the surface of the silicon dioxide growth layer to form dinitrogen monoxide. Silicon oxide film;

其中,将所述第五预设流量设置为700~900sccm;Wherein, the fifth preset flow rate is set to 700-900 sccm;

在一种可选的实施方式中,在250℃的条件下,根据240W的射频功率通入800sccm的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;In an optional embodiment, under the condition of 250°C, according to the radio frequency power of 240W, nitrous oxide of 800 sccm is passed through for 60 seconds to clean the gas ions on the surface of the silicon dioxide growth layer to form Silicon film;

在另一种可选的实施方式中,在235℃的条件下,根据220W的射频功率通入700sccm的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;In another optional implementation manner, under the condition of 235°C, according to the radio frequency power of 220W, 700sccm of nitrous oxide is passed through for 60s to clean the gas ions on the surface of the silicon dioxide growth layer to form dinitrogen oxide. Silicon oxide film;

在另一种可选的实施方式中,在265℃的条件下,根据260W的射频功率通入900sccm的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜;In another optional implementation manner, under the condition of 265°C, according to the radio frequency power of 260W, nitrous oxide of 900 sccm is passed through for 60 seconds to clean the gas ions on the surface of the silicon dioxide growth layer to form dinitrogen oxide. Silicon oxide film;

目前LED中的二氧化硅薄膜的折射率多在1.4~1.5%之间,而使用本发明上述的LED二氧化硅薄膜的制作方法制作出的二氧化硅薄膜的折射率提高到1.52~1.55%之间,如表1所示,通过提高折射率进而提高了LED的亮度。At present, the refractive index of silicon dioxide thin films in LEDs is mostly between 1.4% and 1.5%, but the refractive index of silicon dioxide thin films produced by using the above-mentioned LED silicon dioxide thin film manufacturing method of the present invention is increased to 1.52% to 1.55%. Between, as shown in Table 1, the brightness of LED is improved by increasing the refractive index.

表1现有技术的二氧化硅薄膜与本发明二氧化硅薄膜的实验数据比对表The silicon dioxide thin film of table 1 prior art and the experimental data comparison table of silicon dioxide thin film of the present invention

Figure BDA0003819486360000091
Figure BDA0003819486360000091

综上所述,本发明提供的一种LED二氧化硅薄膜的制作方法,按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子,得到清除后的二氧化硅种子层;按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜;将所述第一预设射频功率设置为100~120W;将所述第一预设流量设置为800~1000sccm;通过使用一氧化二氮和氮气能够更有效地清除初始二氧化硅种子层表面的气体离子,减小膜层间的应力,避免膜层开裂;与现有化学气相沉积使用低硅烷相比,使用大于220sccm的硅烷对清除后的二氧化硅种子层进行化学气相沉积,能够改变成膜结构,完善种子层的膜层缺陷,以此提高最终二氧化硅薄膜的折射率,从而有效提高LED的亮度。To sum up, the present invention provides a method for manufacturing an LED silicon dioxide film, which involves feeding 900 sccm of nitrous oxide and a second preset flow rate of nitrogen to remove the initial silicon dioxide according to a radio frequency power of 220-260W. Gas ions on the surface of the seed layer to obtain a silicon dioxide seed layer after removal; according to the first preset radio frequency power based on the silane of the first preset flow rate, the silicon dioxide seed layer after removal is chemically vapor deposited to obtain a perfected silicon dioxide seed layer. For the silicon dioxide seed layer, the first preset radio frequency power is greater than 80W, and the first preset flow rate is greater than 220 sccm; chemical vapor deposition is performed based on the perfected silicon dioxide seed layer to form a silicon dioxide film; The first preset radio frequency power is set to 100-120W; the first preset flow rate is set to 800-1000 sccm; the gas on the surface of the initial silicon dioxide seed layer can be removed more effectively by using nitrous oxide and nitrogen ions, reduce the stress between the film layers, and avoid film cracking; compared with the low silane used in the existing chemical vapor deposition, the use of silane greater than 220sccm for chemical vapor deposition on the cleaned silicon dioxide seed layer can change the film formation structure, improve the film defects of the seed layer, so as to increase the refractive index of the final silicon dioxide film, thereby effectively improving the brightness of the LED.

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。The above description is only an embodiment of the present invention, and does not limit the patent scope of the present invention. All equivalent transformations made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in related technical fields, are all included in the same principle. Within the scope of patent protection of the present invention.

Claims (10)

1.一种LED二氧化硅薄膜的制作方法,其特征在于,包括步骤:1. a kind of manufacture method of LED silicon dioxide thin film is characterized in that, comprises steps: 按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层,所述第一预设射频功率大于80W,所述第一预设流量大于220sccm;Perform chemical vapor deposition on the cleaned silicon dioxide seed layer based on the first preset flow rate of silane according to the first preset radio frequency power to obtain a perfected silicon dioxide seed layer, the first preset radio frequency power is greater than 80W, The first preset flow rate is greater than 220 sccm; 基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜。Carrying out chemical vapor deposition based on the perfected silicon dioxide seed layer to form a silicon dioxide film. 2.根据权利要求1所述的一种LED二氧化硅薄膜的制作方法,其特征在于,将所述第一预设射频功率设置为100~120W;2. The method for manufacturing a silicon dioxide film for LED according to claim 1, wherein the first preset radio frequency power is set to 100-120W; 将所述第一预设流量设置为800~1000sccm。The first preset flow rate is set to 800-1000 sccm. 3.根据权利要求1所述的一种LED二氧化硅薄膜的制作方法,其特征在于,所述按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层之前包括步骤:3. The manufacturing method of a kind of LED silicon dioxide film according to claim 1, characterized in that, the silicon dioxide seed layer after the removal of the silane based on the first preset flow rate according to the first preset radio frequency power is characterized in that Carrying out chemical vapor deposition, including steps before obtaining the perfect silicon dioxide seed layer: 按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层;According to the radio frequency power of 100-120W, nitrous oxide of 800-1000sccm, silane of 800-1000sccm and nitrogen of 500-700sccm are passed into the surface of the LED chip for 7-13s to form the initial silicon dioxide seed layer; 按照220~260W的射频功率通入900sccm的一氧化二氮和第二预设流量的氮气清除所述初始二氧化硅种子层表面的气体离子,得到清除后的二氧化硅种子层。Purging gas ions on the surface of the initial silicon dioxide seed layer by passing 900 sccm of nitrous oxide and nitrogen gas at a second preset flow rate according to a radio frequency power of 220-260 W to obtain a silicon dioxide seed layer after removal. 4.根据权利要求3所述的一种LED二氧化硅薄膜的制作方法,其特征在于,将所述第二预设流量设置为1150~1350sccm。4 . The method for manufacturing an LED silicon dioxide film according to claim 3 , wherein the second preset flow rate is set to 1150-1350 sccm. 5.根据权利要求3所述的一种LED二氧化硅薄膜的制作方法,其特征在于,所述按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层之前包括步骤:5. The manufacturing method of a kind of LED silicon dioxide film according to claim 3, characterized in that, according to the radio frequency power of 100~120W, nitrous oxide of 800~1000sccm, silane of 800~1000sccm and 500-700 sccm of nitrogen gas is deposited on the surface of the LED chip for 7-13 seconds to form the initial silicon dioxide seed layer, including the following steps: 通入1150~1350sccm的一氧化二氮按照50~70s的时间对LED芯片表面进行预处理,得到预处理后的LED芯片;Pretreat the surface of the LED chip by injecting 1150-1350 sccm of nitrous oxide for 50-70 seconds to obtain the pre-treated LED chip; 所述按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层包括:According to the radio frequency power of 100-120W, nitrous oxide of 800-1000 sccm, silane of 800-1000 sccm and nitrogen of 500-700 sccm are passed into the surface of the LED chip for 7-13 seconds to form the initial silicon dioxide seed. Layers include: 按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷和500~700sccm的氮气在所述预处理后的LED芯片表面进行7~13s的化学气相沉积,形成初始二氧化硅种子层。According to the radio frequency power of 100-120W, nitrous oxide of 800-1000sccm, silane of 800-1000sccm and nitrogen of 500-700sccm are passed into the surface of the pretreated LED chip for 7-13s to form the initial Silica seed layer. 6.根据权利要求1所述的一种LED二氧化硅薄膜的制作方法,其特征在于,所述按照第一预设射频功率基于第一预设流量的硅烷对清除后的二氧化硅种子层进行化学气相沉积,得到完善后的二氧化硅种子层包括:6. The manufacturing method of a kind of LED silicon dioxide film according to claim 1, characterized in that, the silicon dioxide seed layer after the removal of the silane based on the first preset flow rate according to the first preset radio frequency power Chemical vapor deposition is carried out to obtain a refined silica seed layer consisting of: 按照第一预设射频功率基于第一预设流量的硅烷、第三预设流量的一氧化二氮和第四预设流量的氮气对清除后的二氧化硅种子层进行第一预设时间的化学气相沉积,得到完善后的二氧化硅种子层。According to the first preset radio frequency power based on the silane of the first preset flow rate, the nitrous oxide of the third preset flow rate and the nitrogen gas of the fourth preset flow rate, the silicon dioxide seed layer after removal is subjected to the first preset time. Chemical vapor deposition to obtain a perfected silicon dioxide seed layer. 7.根据权利要求1所述的一种LED二氧化硅薄膜的制作方法,其特征在于,所述基于所述完善后的二氧化硅种子层进行化学气相沉积,形成二氧化硅薄膜包括:7. The manufacturing method of a kind of LED silicon dioxide thin film according to claim 1, characterized in that, said performing chemical vapor deposition based on said perfect silicon dioxide seed layer, forming a silicon dioxide thin film comprises: 按照220~260W的射频功率通入800~1000sccm的一氧化二氮和1150~1350sccm的氮气清除所述完善后的二氧化硅种子层表面的气体离子,得到最终的二氧化硅种子层;According to the radio frequency power of 220-260W, nitrous oxide of 800-1000sccm and nitrogen gas of 1150-1350sccm are passed through to remove the gas ions on the surface of the perfected silicon dioxide seed layer to obtain the final silicon dioxide seed layer; 使用一氧化二氮、硅烷和氮气对所述最终的二氧化硅种子层进行化学气相沉积,形成二氧化硅生长层;chemical vapor deposition of the final silicon dioxide seed layer using nitrous oxide, silane and nitrogen to form a silicon dioxide growth layer; 使用一氧化二氮清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜。Nitrous oxide is used to clean the gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film. 8.根据权利要求7所述的一种LED二氧化硅薄膜的制作方法,其特征在于,所述使用一氧化二氮、硅烷和氮气对所述最终的二氧化硅种子层进行化学气相沉积,形成二氧化硅生长层包括:8. the manufacture method of a kind of LED silicon dioxide thin film according to claim 7, is characterized in that, described use dinitrogen monoxide, silane and nitrogen to carry out chemical vapor deposition to described final silicon dioxide seed layer, Forming the silicon dioxide growth layer includes: 按照100~120W的射频功率通入800~1000sccm的一氧化二氮、800~1000sccm的硅烷以及500~700sccm的氮气对所述最终的二氧化硅种子层进行70s的化学气相沉积,形成二氧化硅生长层。According to the radio frequency power of 100-120W, nitrous oxide of 800-1000sccm, silane of 800-1000sccm and nitrogen of 500-700sccm are passed into the final silicon dioxide seed layer for 70s to form silicon dioxide. growth layer. 9.根据权利要求7所述的一种LED二氧化硅薄膜的制作方法,其特征在于,所述使用一氧化二氮清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜包括:9. The manufacturing method of a kind of LED silicon dioxide film according to claim 7, characterized in that, the use of dinitrogen monoxide to clean the gas ions on the surface of the silicon dioxide growth layer to form a silicon dioxide film comprises : 根据220~260W的射频功率通入第五预设流量的一氧化二氮按照60s的时间清理所述二氧化硅生长层表面的气体离子,形成二氧化硅薄膜。According to the radio frequency power of 220-260W, the nitrous oxide at the fifth preset flow rate is passed to clean the gas ions on the surface of the silicon dioxide growth layer for 60 seconds to form a silicon dioxide film. 10.根据权利要求9所述的一种LED二氧化硅薄膜的制作方法,其特征在于,将所述第五预设流量设置为700~900sccm。10 . The method for manufacturing an LED silicon dioxide film according to claim 9 , wherein the fifth preset flow rate is set to 700-900 sccm. 11 .
CN202211039408.0A 2022-08-29 2022-08-29 Manufacturing method of LED silicon dioxide film Active CN115369385B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211039408.0A CN115369385B (en) 2022-08-29 2022-08-29 Manufacturing method of LED silicon dioxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211039408.0A CN115369385B (en) 2022-08-29 2022-08-29 Manufacturing method of LED silicon dioxide film

Publications (2)

Publication Number Publication Date
CN115369385A true CN115369385A (en) 2022-11-22
CN115369385B CN115369385B (en) 2024-01-09

Family

ID=84070066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211039408.0A Active CN115369385B (en) 2022-08-29 2022-08-29 Manufacturing method of LED silicon dioxide film

Country Status (1)

Country Link
CN (1) CN115369385B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115613011A (en) * 2022-09-01 2023-01-17 福建兆元光电有限公司 A Chemical Vapor Deposition Method for Improving Rear Electrode SiO2 Shedding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403106A (en) * 2008-11-11 2009-04-08 上海蓝光科技有限公司 Technique for producing high-insulativity SiO2 film
CN102916093A (en) * 2012-08-31 2013-02-06 扬州中科半导体照明有限公司 Method for depositing high insulating property SiO2 film with low-damage PECVD (Plasma Enhanced Chemical Vapor Deposition)
KR101256979B1 (en) * 2011-10-14 2013-04-19 전북대학교산학협력단 Light emitting device with wedge structure and fabrication method thereof
CN103390703A (en) * 2013-08-05 2013-11-13 聚灿光电科技(苏州)有限公司 Preparation method of low-damage and high-density film and LED chip provided with film
CN105448651A (en) * 2014-08-15 2016-03-30 北大方正集团有限公司 Epitaxial wafer on substrate and manufacturing method
CN114899084A (en) * 2022-04-14 2022-08-12 上海华力集成电路制造有限公司 Method for producing amorphous silicon layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403106A (en) * 2008-11-11 2009-04-08 上海蓝光科技有限公司 Technique for producing high-insulativity SiO2 film
KR101256979B1 (en) * 2011-10-14 2013-04-19 전북대학교산학협력단 Light emitting device with wedge structure and fabrication method thereof
CN102916093A (en) * 2012-08-31 2013-02-06 扬州中科半导体照明有限公司 Method for depositing high insulating property SiO2 film with low-damage PECVD (Plasma Enhanced Chemical Vapor Deposition)
CN103390703A (en) * 2013-08-05 2013-11-13 聚灿光电科技(苏州)有限公司 Preparation method of low-damage and high-density film and LED chip provided with film
CN105448651A (en) * 2014-08-15 2016-03-30 北大方正集团有限公司 Epitaxial wafer on substrate and manufacturing method
CN114899084A (en) * 2022-04-14 2022-08-12 上海华力集成电路制造有限公司 Method for producing amorphous silicon layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115613011A (en) * 2022-09-01 2023-01-17 福建兆元光电有限公司 A Chemical Vapor Deposition Method for Improving Rear Electrode SiO2 Shedding
CN115613011B (en) * 2022-09-01 2024-10-29 福建兆元光电有限公司 Improve rear electrode SiO2Method for falling off chemical vapor deposition

Also Published As

Publication number Publication date
CN115369385B (en) 2024-01-09

Similar Documents

Publication Publication Date Title
EP2192207B1 (en) Method using amino vinylsilane precursors for the deposition of intrinsically compressively stressed SiN films
JP4066332B2 (en) Method for manufacturing silicon carbide film
JP5006428B2 (en) Deposition of dielectric barriers using nitrogen-containing precursors
CN115369385B (en) Manufacturing method of LED silicon dioxide film
TWI518201B (en) Methods of depositing sio2 films
CN102569564B (en) Deposition method of SiOx passive film and LED (light emitting diode) chip with passive film
CN101231950A (en) Method for curing porous low-k layers
JP4930095B2 (en) Wet etching method and semiconductor device manufacturing method
KR101223724B1 (en) Passivation film for electronic device and method of manufacturing the same
CN111129240A (en) Epitaxial growth method for improving current expansion capability of nitride LED
CN102157636B (en) Method for strengthening silicon-based thin film electroluminescence
CN101154574A (en) Method for forming grid side wall layer
US20100093184A1 (en) Method for making a metal oxide layer
CN116246945A (en) A SiC substrate pretreatment method for improving surface morphology
KR102125511B1 (en) Method of fabricating amorphous silicon layer
CN116207186A (en) Solar cell and preparation method thereof
CN115613011B (en) Improve rear electrode SiO2Method for falling off chemical vapor deposition
CN118507606B (en) LED epitaxial layer growth method for improving luminous efficiency
CN102610512B (en) Method for forming front metal dielectric layer
CN102623329B (en) Method for forming front metal dielectric layer
KR100598347B1 (en) Manufacturing method of semiconductor device
CN108389780B (en) Silicon nitride film and preparation method thereof
CN119008426A (en) Passivation film preparation method and semiconductor device
CN105336677B (en) The forming method of semiconductor structure
CN115332421A (en) A kind of PV deposition method of light-emitting diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20241224

Address after: Building 1, 3rd Floor, No. 236 Wujiang, Yaosha Village, Nanyu Town, Minhou County, Fuzhou City, Fujian Province 350109

Patentee after: Fujian Fuzhao Semiconductor Co.,Ltd.

Country or region after: China

Address before: 350000 Biomedical and Electromechanical Industrial Park, Nanyu Town, Minhou County, Fuzhou, Fujian

Patentee before: FUJIAN PRIMA OPTOELECTRONICS Co.,Ltd.

Country or region before: China