CN115347037A - Semiconductor epitaxial structure and preparation method thereof - Google Patents
Semiconductor epitaxial structure and preparation method thereof Download PDFInfo
- Publication number
- CN115347037A CN115347037A CN202211022770.7A CN202211022770A CN115347037A CN 115347037 A CN115347037 A CN 115347037A CN 202211022770 A CN202211022770 A CN 202211022770A CN 115347037 A CN115347037 A CN 115347037A
- Authority
- CN
- China
- Prior art keywords
- epitaxial
- layer
- discontinuous
- unit
- epitaxial growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/50—Physical imperfections
- H10D62/53—Physical imperfections the imperfections being within the semiconductor body
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种半导体外延结构及其制备方法,属于半导体技术领域。The invention relates to a semiconductor epitaxial structure and a preparation method thereof, belonging to the technical field of semiconductors.
背景技术Background technique
氮化镓(GaN)作为第三代半导体材料,具有高禁带宽度、高临界击穿电场、高载流子饱和迁移速度以及高热导率和直接带隙等特点,在高温、高频、大功率微电子器件以及高性能光电子器件领域具有很大的应用前景。由于III族氮化物一般在蓝宝石或SiC等异质衬底上进行异质外延,不同材料之间的晶格常数和热失配会产生位错或缺陷,并随着外延层的生长而向上延伸,这些位错在器件工作时表现为非辐射复合中心而影响器件效率,同时作为漏电通道引起漏电流增大而使器件迅速老化,影响器件的工作效率及寿命,制约了其在半导体电子领域中的应用。Gallium Nitride (GaN), as a third-generation semiconductor material, has the characteristics of high band gap, high critical breakdown electric field, high carrier saturation migration velocity, high thermal conductivity and direct band gap. Power microelectronic devices and high-performance optoelectronic devices have great application prospects. Since III-nitrides are generally heteroepitaxy on heterogeneous substrates such as sapphire or SiC, the lattice constant and thermal mismatch between different materials will generate dislocations or defects, which extend upward as the epitaxial layer grows , these dislocations behave as non-radiative recombination centers when the device is working, which affects the efficiency of the device. At the same time, as a leakage channel, the leakage current increases and the device ages rapidly, affecting the working efficiency and life of the device, which restricts its application in the field of semiconductor electronics. Applications.
发明内容Contents of the invention
本发明的主要目的在于提供一种半导体外延结构及其制备方法,以克服现有技术的不足。The main purpose of the present invention is to provide a semiconductor epitaxial structure and its preparation method to overcome the deficiencies of the prior art.
为实现前述发明目的,本发明采用的技术方案包括:In order to realize the aforementioned object of the invention, the technical solutions adopted in the present invention include:
本发明实施例提供了一种半导体外延结构,包括:高质量外延层,设置在衬底上;所述高质量外延层包括:An embodiment of the present invention provides a semiconductor epitaxial structure, including: a high-quality epitaxial layer disposed on a substrate; the high-quality epitaxial layer includes:
外延限制层,包括外限制单元、内间断单元和第一外延生长层,所述外限制单元呈四周闭合状包围内间断单元和第一外延生长层,其中,所述内间断单元呈间隔设置,且第一外延生长层分布设置于所述外限制单元与内间断单元之间,以及相邻内间断单元之间的区域内;The epitaxial confinement layer includes an outer confinement unit, an inner discontinuity unit and a first epitaxial growth layer, the outer confinement unit surrounds the inner discontinuity unit and the first epitaxial growth layer in a closed shape, wherein the inner discontinuity units are arranged at intervals, And the first epitaxial growth layer is distributed and arranged in the region between the outer confinement unit and the inner discontinuity unit, and between adjacent inner discontinuity units;
第二外延生长层,设置在外延限制层上。The second epitaxial growth layer is arranged on the epitaxial confinement layer.
本发明实施例还提供了一种半导体外延结构的制备方法,其包括:The embodiment of the present invention also provides a method for preparing a semiconductor epitaxial structure, which includes:
在衬底上设置底部外延层;并对所述底部外延层进行刻蚀,形成四周闭合状的外限制单元;setting a bottom epitaxial layer on the substrate; and etching the bottom epitaxial layer to form a closed outer confinement unit;
在所述外限制单元内部交替设置间断外延层和间断牺牲层;discontinuous epitaxial layers and discontinuous sacrificial layers are arranged alternately inside the outer confinement unit;
刻蚀掉部分间断外延层区域和部分间断牺牲层区域,并移除间断牺牲层,保留间断外延层,得到间隔设置的内间断单元;Etching away part of the discontinuous epitaxial layer region and part of the discontinuous sacrificial layer region, removing the discontinuous sacrificial layer, retaining the discontinuous epitaxial layer, and obtaining internal discontinuous units arranged at intervals;
在所述外限制单元与内间断单元之间,以及相邻内间断单元之间的区域内设置第一外延生长层,形成外延限制层;A first epitaxial growth layer is arranged in the region between the outer confinement unit and the inner discontinuity unit, and between adjacent inner discontinuity units, to form an epitaxial confinement layer;
在所述外延限制层上设置第二外延生长层,制得半导体外延结构。A second epitaxial growth layer is arranged on the epitaxial confinement layer to obtain a semiconductor epitaxial structure.
相较于现有技术,本发明的有益效果至少在于:Compared with the prior art, the beneficial effects of the present invention are at least:
本发明提供的半导体外延结构通过在内间断单元设置不连续的间断区间,利用外延限制层在生长过程中衬底和外延层间的高位错在间断区间位置多次转向,促使位错充分转弯达到位错自我湮灭,极大地降低位错向外延生长层中延伸,降低穿透位错的分布,从而可以提高器件漏电和耐压特性,提高异质衬底外延半导体外延层的晶体质量,拓宽了半导体外延片在微电子领域中的应用,可适用于半导体功率器件外延生长。In the semiconductor epitaxial structure provided by the present invention, a discontinuous discontinuity interval is set in the inner discontinuity unit, and the high dislocation between the substrate and the epitaxial layer is turned multiple times at the discontinuity interval position during the growth process of the epitaxial confinement layer, so that the dislocation is fully turned to achieve The self-annihilation of dislocations greatly reduces the extension of dislocations to the epitaxial growth layer and reduces the distribution of threading dislocations, which can improve the leakage and withstand voltage characteristics of devices, improve the crystal quality of epitaxial semiconductor epitaxial layers on heterogeneous substrates, and broaden the The application of semiconductor epitaxial wafers in the field of microelectronics can be applied to the epitaxial growth of semiconductor power devices.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments described in the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1是本发明一典型实施案例中刻蚀生成闭合状外限制单元的过程示意图。Fig. 1 is a schematic diagram of the process of forming closed outer confinement units by etching in a typical embodiment of the present invention.
图2是本发明一典型实施案例中外限制单元的俯视图。Fig. 2 is a top view of an outer confining unit in a typical embodiment of the present invention.
图3是本发明一典型实施案例中在外限制单元内部交替设置间断外延层和间断牺牲层的结构示意图。Fig. 3 is a schematic structural diagram of alternately setting discontinuous epitaxial layers and discontinuous sacrificial layers inside the outer confinement unit in a typical embodiment of the present invention.
图4是本发明一典型实施案例中对间断外延层和间断牺牲层进行刻蚀后的结构示意图。Fig. 4 is a schematic diagram of the structure after etching the discontinuous epitaxial layer and the discontinuous sacrificial layer in a typical implementation case of the present invention.
图5是本发明一典型实施案例中移除间断牺牲层区域后内间断单元的结构示意图。FIG. 5 is a schematic structural diagram of an internal discontinuous unit after removing the discontinuous sacrificial layer region in a typical embodiment of the present invention.
图6是本发明另一典型实施案例中内间断单元的结构示意图。Fig. 6 is a schematic structural diagram of an internal discontinuity unit in another typical embodiment of the present invention.
图7是本发明另一典型实施案例中内间断单元的结构示意图。Fig. 7 is a schematic structural diagram of an internal discontinuity unit in another typical embodiment of the present invention.
图8是本发明一典型实施案例中生长外延限制层时位错转向示意图。Fig. 8 is a schematic diagram of dislocation turning when growing an epitaxial confinement layer in a typical embodiment of the present invention.
图9是本发明一典型实施案例中半导体外延结构的示意图。FIG. 9 is a schematic diagram of a semiconductor epitaxial structure in a typical embodiment of the present invention.
图10是采用XRD对本发明实施例1~5和对比例1~5所获半导体外延片进行(102)面摇摆曲线半峰宽测试图。Fig. 10 is a graph showing half-peak widths of (102) plane rocking curves tested by XRD on the semiconductor epitaxial wafers obtained in Examples 1-5 and Comparative Examples 1-5 of the present invention.
图11和图12分别是本发明对比例4、对比例5所获半导体外延片的光学显微镜图。Fig. 11 and Fig. 12 are the optical microscope pictures of the semiconductor epitaxial wafers obtained in Comparative Example 4 and Comparative Example 5 of the present invention, respectively.
具体实施方式Detailed ways
鉴于现有技术中的不足,本案发明人经长期研究和实践,得以提出本发明的技术方案,如下将对该技术方案、其实施过程及原理等作进一步的解释说明。In view of the deficiencies in the prior art, the inventor of this case has been able to propose the technical solution of the present invention after long-term research and practice. The technical solution, its implementation process and principles will be further explained as follows.
本发明的一些实施例提供的一种半导体外延结构包括设置在衬底上的高质量外延层,所述高质量外延层包括:A semiconductor epitaxial structure provided by some embodiments of the present invention includes a high-quality epitaxial layer disposed on a substrate, and the high-quality epitaxial layer includes:
外延限制层,包括外限制单元、内间断单元和第一外延生长层,所述外限制单元呈四周闭合状包围内间断单元和第一外延生长层,其中,所述内间断单元呈间隔设置,且第一外延生长层分布设置于所述外限制单元与内间断单元之间,以及相邻内间断单元之间的区域内;The epitaxial confinement layer includes an outer confinement unit, an inner discontinuity unit and a first epitaxial growth layer, the outer confinement unit surrounds the inner discontinuity unit and the first epitaxial growth layer in a closed shape, wherein the inner discontinuity units are arranged at intervals, And the first epitaxial growth layer is distributed and arranged in the region between the outer confinement unit and the inner discontinuity unit, and between adjacent inner discontinuity units;
第二外延生长层,设置在外延限制层上。The second epitaxial growth layer is arranged on the epitaxial confinement layer.
在一些实施方案之中,所述外限制单元的高度为1~5μm。In some embodiments, the outer confinement unit has a height of 1-5 μm.
在一些实施方案之中,四周闭合状的所述外限制单元的壁厚为0.2~5μm。In some embodiments, the wall thickness of the peripherally closed outer confinement unit is 0.2-5 μm.
进一步地,所述外限制单元的材质可以是GaN,但不限于此。Further, the material of the outer confinement unit may be GaN, but not limited thereto.
在一些实施方案之中,相邻两个所述内间断单元之间的间距为0.5~2μm。In some embodiments, the distance between two adjacent inner discontinuous units is 0.5-2 μm.
进一步地,所述内间断单元的厚度为0.5~2.5μm。Further, the thickness of the inner discontinuous unit is 0.5-2.5 μm.
进一步地,任意两个所述内间断单元的截面积相同或不同,可不做限制。Further, cross-sectional areas of any two internal discontinuity units are the same or different, which is not limited.
进一步地,所述内间断单元的材质包括氮化物、氧化物、金属、有机物等中的任意一种。例如,可以优选为GaN、AlN、InGaN、AlGaN、AlInGaN、AlInN、InN、Al2O3、SiO2、Si3N4、Ga2O3、ZnO、Fe、Cu、Ag等中的任意一种,但不限于此。Further, the material of the internal discontinuity unit includes any one of nitrides, oxides, metals, organic substances and the like. For example, any of GaN, AlN, InGaN, AlGaN, AlInGaN, AlInN, InN, Al 2 O 3 , SiO 2 , Si 3 N 4 , Ga 2 O 3 , ZnO, Fe, Cu, Ag, etc. may be preferred. , but not limited to this.
在一些实施方案之中,所述内间断单元的两端分别与所述外限制单元的四周壁连接。In some embodiments, both ends of the inner discontinuity unit are respectively connected to the surrounding walls of the outer restriction unit.
在一些实施方案之中,所述第一外延生长层的材质可以是GaN,但不限于此。In some implementations, the material of the first epitaxial growth layer may be GaN, but is not limited thereto.
进一步地,所述第二外延生长层的厚度为1nm~20μm。Further, the thickness of the second epitaxial growth layer is 1 nm-20 μm.
进一步地,所述第二外延生长层的材质可以是GaN,但不限于此。Further, the material of the second epitaxial growth layer may be GaN, but is not limited thereto.
进一步地,所述衬底可以是蓝宝石衬底、硅衬底、碳化硅衬底等,但不限于此。Further, the substrate may be a sapphire substrate, a silicon substrate, a silicon carbide substrate, etc., but is not limited thereto.
本发明中在外限制单元内部设置内间断单元的机理在于:In the present invention, the mechanism of discontinuous unit being set inside the outer limiting unit is:
本发明通过在内间断单元设置不连续的间断区间,利用外延限制层在生长过程中衬底和第一外延生长层间的高位错在间断区间位置多次转向,促使位错充分转弯达到位错自我湮灭,极大地降低位错向第二外延生长层中延伸,降低穿透位错的分布,从而可以提高器件漏电和耐压特性,拓宽了半导体外延片在微电子领域中的应用。In the present invention, discontinuous discontinuities are arranged in the inner discontinuity unit, and the high dislocations between the substrate and the first epitaxial growth layer are turned multiple times in the discontinuity intervals during the growth process of the epitaxial confinement layer, so as to promote the dislocations to fully turn to reach the dislocation Self-annihilation greatly reduces the extension of dislocations to the second epitaxial growth layer and reduces the distribution of threading dislocations, thereby improving device leakage and withstand voltage characteristics, and broadening the application of semiconductor epitaxial wafers in the field of microelectronics.
本发明的一些实施例还提供的一种半导体外延结构的制备方法包括:Some embodiments of the present invention also provide a method for preparing a semiconductor epitaxial structure comprising:
在衬底上设置底部外延层;并对所述底部外延层进行刻蚀,形成四周闭合状的外限制单元;setting a bottom epitaxial layer on the substrate; and etching the bottom epitaxial layer to form a closed outer confinement unit;
在所述外限制单元内部交替设置间断外延层和间断牺牲层;discontinuous epitaxial layers and discontinuous sacrificial layers are arranged alternately inside the outer confinement unit;
刻蚀掉部分间断外延层区域和部分间断牺牲层区域,并移除间断牺牲层,保留间断外延层,得到间隔设置的内间断单元;Etching away part of the discontinuous epitaxial layer region and part of the discontinuous sacrificial layer region, removing the discontinuous sacrificial layer, retaining the discontinuous epitaxial layer, and obtaining internal discontinuous units arranged at intervals;
在所述外限制单元与内间断单元之间,以及相邻内间断单元之间的区域内设置第一外延生长层,形成外延限制层;A first epitaxial growth layer is arranged in the region between the outer confinement unit and the inner discontinuity unit, and between adjacent inner discontinuity units, to form an epitaxial confinement layer;
在所述外延限制层上设置第二外延生长层,制得半导体外延结构。A second epitaxial growth layer is arranged on the epitaxial confinement layer to obtain a semiconductor epitaxial structure.
在一些实施方案之中,所述底部外延层的厚度为1~5μm。In some embodiments, the thickness of the bottom epitaxial layer is 1-5 μm.
进一步地,所述底部外延层的材质可以是GaN,但不限于此。Further, the material of the bottom epitaxial layer may be GaN, but is not limited thereto.
进一步地,四周闭合状的外限制单元的壁厚为0.2~5μm。Further, the wall thickness of the surrounding closed outer confinement unit is 0.2-5 μm.
在一些实施方案之中,所述间断外延层或间断牺牲层的材质不同,且均独立地选自氮化物、氧化物、金属、有机物等中的任意一种。例如,可以优选为GaN、AlN、InGaN、AlGaN、AlInGaN、AlInN、InN、Al2O3、SiO2、Si3N4、Ga2O3、ZnO、Fe、Cu、Ag等中的任意一种,但不限于此。In some embodiments, the materials of the interrupted epitaxial layer or the interrupted sacrificial layer are different, and are independently selected from any one of nitrides, oxides, metals, organics, and the like. For example, any of GaN, AlN, InGaN, AlGaN, AlInGaN, AlInN, InN, Al 2 O 3 , SiO 2 , Si 3 N 4 , Ga 2 O 3 , ZnO, Fe, Cu, Ag, etc. may be preferred. , but not limited to this.
进一步地,所述间断外延层或间断牺牲层的厚度为0.5~2.5μm,且间断外延层和间断牺牲层总厚度不超过外限制单元的高度。Further, the thickness of the interrupted epitaxial layer or the interrupted sacrificial layer is 0.5-2.5 μm, and the total thickness of the interrupted epitaxial layer and the interrupted sacrificial layer does not exceed the height of the outer confinement unit.
进一步地,任意两个所述间断外延层或间断牺牲层的厚度相同或不相同。Further, the thicknesses of any two interrupted epitaxial layers or interrupted sacrificial layers are the same or different.
进一步地,所述制备方法包括:至少采用溶液湿法腐蚀移除间断牺牲层。Further, the preparation method includes: at least removing the interrupted sacrificial layer by solution wet etching.
在一些实施方案之中,所述制备方法包括:采用MOCVD外延生长技术,在所述外限制单元与内间断单元之间,以及相邻内间断单元之间的区域内设置第一外延生长层。优选的,本发明还可以在第一外延生长层生长之前,先对衬底上的外限制单元和内间断单元进行退火处理,消除干法刻蚀带来的外限制单元和内间断单元侧壁损伤,从而在第一外延生长层生长时可以形成完整的界面性能。其中,所述退火处理的温度为500~700℃,时间为1~15min。In some embodiments, the preparation method includes: adopting MOCVD epitaxial growth technology, disposing a first epitaxial growth layer in a region between the outer confinement unit and the inner discontinuity unit, and between adjacent inner discontinuity units. Preferably, the present invention can also anneal the outer confinement unit and the inner discontinuity unit on the substrate before the growth of the first epitaxial growth layer, so as to eliminate the side walls of the outer confinement unit and the inner discontinuity unit caused by dry etching damage, so that complete interfacial properties can be formed when the first epitaxial growth layer grows. Wherein, the temperature of the annealing treatment is 500-700° C., and the time is 1-15 minutes.
在一些实施方案之中,第一外延生长层的生长温度为1000~1100℃,生长压力为200~400torr。In some embodiments, the growth temperature of the first epitaxial growth layer is 1000-1100° C., and the growth pressure is 200-400 torr.
进一步地,所述第二外延生长层的生长温度为1100~1200℃,生长压力为100~300torr。Further, the growth temperature of the second epitaxial growth layer is 1100-1200° C., and the growth pressure is 100-300 torr.
进一步地,所述第一外延生长层、第二外延生长层、衬底的材质、厚度等均如前所述,此处不再赘述。Further, the material and thickness of the first epitaxial growth layer, the second epitaxial growth layer, and the substrate are as described above, and will not be repeated here.
在一些实施方案之中,所述半导体外延结构的制备方法具体包括:In some embodiments, the method for preparing the semiconductor epitaxial structure specifically includes:
1)提供衬底,在衬底上设置底部外延层;1) providing a substrate, and setting a bottom epitaxial layer on the substrate;
2)通过刻蚀对底部外延层进行刻蚀,形成外限制单元,呈闭合状;2) Etching the bottom epitaxial layer by etching to form an outer confinement unit in a closed shape;
3)在外限制单元内部交替设置间断外延层和间断牺牲层;3) discontinuous epitaxial layers and discontinuous sacrificial layers are arranged alternately inside the outer confinement unit;
4)通过刻蚀工艺在外延限制单元内部形成交替的间断外延层区域和间断牺牲层区域;4) forming alternately intermittent epitaxial layer regions and intermittent sacrificial layer regions inside the epitaxial confinement unit by an etching process;
5)移除间断牺牲层区域在外限制单元内部形成内间断单元,内间断区间具有不连续的间断区间;5) removing the discontinuous sacrificial layer region to form an inner discontinuous unit inside the outer confinement unit, and the inner discontinuous section has a discontinuous discontinuous section;
6)在外限制单元和内间断单元以及间断区间相邻的区域设置第一外延生长层,形成外延限制层;6) setting the first epitaxial growth layer in the area adjacent to the outer confinement unit, the inner discontinuity unit and the discontinuity interval to form an epitaxial confinement layer;
7)在外延限制层上设置第二外延生长层,得到高质量的外延层,高质量的外延层和衬底构成半导体外延片。7) A second epitaxial growth layer is arranged on the epitaxial confinement layer to obtain a high-quality epitaxial layer, and the high-quality epitaxial layer and the substrate form a semiconductor epitaxial wafer.
在一个更为具体的实施方案中,本发明提供的一种半导体外延片的制备方法具体包括以下步骤:In a more specific embodiment, the preparation method of a kind of semiconductor epitaxial wafer provided by the present invention specifically comprises the following steps:
1)提供蓝宝石衬底100,在衬底上设置厚度为1~5μm的GaN底部外延层200,如图1所示;1) A
2)如图1所示,通过ICP干法刻蚀对GaN底部外延层200进行刻蚀,形成四周壁厚度为1~10mm的GaN外限制单元210,呈闭合状,其俯视图如图2所示;2) As shown in FIG. 1, the GaN
3)在GaN外限制单元210内部交替设置厚度为0.5~2.5μm的Al2O3间断外延层300和SiO2间断牺牲层400,如图3所示,Al2O3间断外延层300和SiO2间断牺牲层400的总厚度不超过GaN外限制单元210的高度;3) Al 2 O 3 interrupted
4)通过刻蚀工艺在GaN外延限制单元210内部形成交替的Al2O3间断外延层区域310和SiO2间断牺牲层区域410,如图4所示;4) Alternating Al 2 O 3 intermittent
5)采用49%的HF水溶液和40%的NH4F水溶液按照体积比为1∶6的混合溶液湿法腐蚀移除SiO2间断牺牲层区域410,在GaN外限制单元210内部形成Al2O3内间断单元320,内间断区间具有不连续的间断区间,如图5所示。具体的,若将GaN外限制单元210理解为在衬底表面沿垂直方向设置的,则Al2O3内间断单元320是沿与衬底水平平行的方向设置的;5) Use 49% HF aqueous solution and 40% NH 4 F aqueous solution to wet etch the mixed solution with a volume ratio of 1:6 to remove the SiO 2 discontinuous
根据步骤3)中Al2O3间断外延层和SiO2间断牺牲层的生长位置和厚度等条件的不同,最终移除SiO2间断牺牲层后形成的Al2O3内间断单元的结构分布也可以有所不同,例如,请参阅图6和图7所示,也均在本发明的保护范围之内。According to the different conditions such as the growth position and thickness of the Al 2 O 3 interrupted epitaxial layer and the SiO 2 interrupted sacrificial layer in step 3), the structural distribution of the Al 2 O 3 internal interrupted unit formed after the SiO 2 interrupted sacrificial layer is finally removed is also different. It may be different, for example, please refer to FIG. 6 and FIG. 7 , both of which are also within the protection scope of the present invention.
6)采用MOCVD外延生长技术,在N2氛围下对衬底上的外限制单元和内间断单元进行退火处理,然后在GaN外限制单元210和Al2O3内间断单元320以及间断区间相邻的区域设置第一GaN外延生长层500,如图8所示,形成GaN外延限制层600;6) Using MOCVD epitaxial growth technology, the outer confinement unit and inner discontinuity unit on the substrate are annealed in N 2 atmosphere, and then the GaN
7)在GaN外延限制层600上设置第二GaN外延生长层700,得到高质量的GaN外延层,如图9所示,高质量的GaN外延层和蓝宝石衬底构成GaN半导体外延片。7) Set the second GaN
综上所述,本发明提供的半导体外延片通过在内间断单元设置不连续的间断区间,利用外延限制层在生长过程中衬底和外延层间的高位错在间断区间位置多次转向(如图8所示),促使位错充分转弯达到位错自我湮灭,极大地降低位错向外延生长层中延伸,降低穿透位错的分布,从而可以提高器件漏电和耐压特性,提高异质衬底外延半导体外延层的晶体质量,拓宽了半导体外延片在微电子领域中的应用,可适用于半导体功率器件外延生长。In summary, the semiconductor epitaxial wafer provided by the present invention is provided with discontinuous discontinuous intervals in the inner discontinuous unit, and utilizes the high dislocation between the substrate and the epitaxial layer to turn multiple times at the discontinuous interval position during the growth process of the epitaxial confinement layer (such as As shown in Figure 8), dislocations can be fully turned to achieve self-annihilation of dislocations, greatly reducing the extension of dislocations to the epitaxial growth layer, reducing the distribution of threading dislocations, thereby improving device leakage and withstand voltage characteristics, and improving heterogeneous The crystal quality of the substrate epitaxial semiconductor epitaxial layer broadens the application of semiconductor epitaxial wafers in the field of microelectronics and is suitable for epitaxial growth of semiconductor power devices.
以下将结合附图及若干实施例对本申请的技术方案进行更详细的描述,但应当理解,如下实施例仅仅是为了解释和说明该技术方案,但不限制本申请的范围。又及,若非特别说明,如下实施例中所采用的各种原料、反应设备、检测设备及方法等均是本领域已知的。The technical solution of the present application will be described in more detail below with reference to the accompanying drawings and several embodiments, but it should be understood that the following embodiments are only for explaining and illustrating the technical solution, but do not limit the scope of the present application. And, unless otherwise specified, the various raw materials, reaction equipment, detection equipment and methods used in the following examples are all known in the art.
实施例1Example 1
本实施例以高质量GaN外延层为例进行说明,间断外延层采用Al2O3,间断牺牲层采用SiO2。具体制备工艺包括如下步骤:In this embodiment, a high-quality GaN epitaxial layer is taken as an example for illustration, the discontinuous epitaxial layer is made of Al 2 O 3 , and the discontinuous sacrificial layer is made of SiO 2 . Concrete preparation process comprises the following steps:
1)提供蓝宝石衬底,在衬底上生长厚度为3μm的GaN底部外延层,其中生长温度为1085℃,生长压力为150torr,生长气氛为H2;1) Provide a sapphire substrate, grow a GaN bottom epitaxial layer with a thickness of 3 μm on the substrate, wherein the growth temperature is 1085° C., the growth pressure is 150 torr, and the growth atmosphere is H 2 ;
2)通过ICP干法刻蚀对GaN底部外延层进行刻蚀,形成四周壁厚度为2μm的GaN外限制单元,呈闭合状,其中ICP功率为950W,刻蚀气体为20%的BCl3和80%的Cl2,刻蚀压力为10mtorr;2) Etch the GaN bottom epitaxial layer by ICP dry etching to form a closed GaN outer confinement unit with a wall thickness of 2 μm, in which the ICP power is 950W, and the etching gas is 20% BCl 3 and 80 % Cl 2 , the etching pressure is 10mtorr;
3)采用PECVD方法在GaN外限制单元内部交替设置厚度为0.5μm的Al2O3间断外延层和厚度为0.5μm的SiO2间断牺牲层,Al2O3间断外延层和SiO2间断牺牲层的总厚度不超过GaN外限制单元的高度,其中Al2O3间断外延层采用三甲基铝(TMAl)和氧气(O2),生长温度为300℃,生长压力为0.2torr,SiO2间断牺牲层采用硅烷(SiH4)和二氧化氮(NO2),生长温度为400℃,生长压力3.5torr;3) The Al 2 O 3 interrupted epitaxial layer with a thickness of 0.5 μm and the SiO 2 interrupted sacrificial layer with a thickness of 0.5 μm are alternately arranged inside the GaN outer confinement unit by PECVD method, and the Al 2 O 3 interrupted epitaxial layer and the SiO 2 interrupted sacrificial layer The total thickness does not exceed the height of the GaN outer confinement unit, where the Al 2 O 3 intermittent epitaxial layer uses trimethylaluminum (TMAl) and oxygen (O 2 ), the growth temperature is 300°C, the growth pressure is 0.2torr, and the SiO 2 is intermittent The sacrificial layer is made of silane (SiH 4 ) and nitrogen dioxide (NO 2 ), the growth temperature is 400°C, and the growth pressure is 3.5 torr;
4)通过ICP干法刻蚀工艺在GaN外延限制单元内部形成交替的Al2O3间断外延层区域和SiO2间断牺牲层区域,其中ICP功率为950W,刻蚀气体为20%的BCl3和80%的Cl2,刻蚀压力为10mtorr;4) Alternate Al 2 O 3 intermittent epitaxial layer regions and SiO 2 interrupted sacrificial layer regions are formed inside the GaN epitaxial confinement unit by ICP dry etching process, where the ICP power is 950W, and the etching gas is 20% BCl 3 and 80% Cl 2 , the etching pressure is 10mtorr;
5)采用49%的HF水溶液和40%的NH4F水溶液按照体积比为1∶6的混合溶液湿法腐蚀移除SiO2间断牺牲层区域,在GaN外限制单元内部形成Al2O3内间断单元,内间断区间具有不连续的间断区间;5) Use 49% HF aqueous solution and 40% NH 4 F aqueous solution to wet etch the mixed solution with a volume ratio of 1:6 to remove the SiO 2 discontinuous sacrificial layer region, and form an Al 2 O 3 inner layer inside the GaN outer confinement unit. A discontinuous unit, the inner discontinuous interval has discontinuous discontinuous intervals;
6)采用MOCVD外延生长技术,在GaN外限制单元和Al2O3内间断单元以及间断区间相邻的区域设置厚度为3μm的第一GaN外延生长层,形成GaN外延限制层,其中生长温度为1005℃℃,生长压力为400torr;6) Using MOCVD epitaxial growth technology, set the first GaN epitaxial growth layer with a thickness of 3 μm in the adjacent area of the GaN outer confinement unit, the Al 2 O 3 inner discontinuity unit and the discontinuity interval to form the GaN epitaxial confinement layer, wherein the growth temperature is 1005℃℃, the growth pressure is 400torr;
7)在GaN外延限制层上继续外延生长厚度为5μm的第二GaN外延生长层,得到高质量的GaN外延层,高质量的GaN外延层和蓝宝石衬底构成GaN半导体外延片,其中生长温度为1125℃,生长压力为200torr,生长气氛为H2。7) Continue to epitaxially grow the second GaN epitaxial growth layer with a thickness of 5 μm on the GaN epitaxial confinement layer to obtain a high-quality GaN epitaxial layer. The high-quality GaN epitaxial layer and the sapphire substrate constitute a GaN semiconductor epitaxial wafer, wherein the growth temperature is 1125°C, the growth pressure is 200torr, and the growth atmosphere is H 2 .
实施例2Example 2
本实施例与实施例1相比,不同之处在于:Compared with
步骤6)中,生长的第一GaN外延生长层的厚度为1μm,生长温度为1000℃,生长压力为300torr。In step 6), the thickness of the grown first GaN epitaxial growth layer is 1 μm, the growth temperature is 1000° C., and the growth pressure is 300 torr.
步骤7)中,生长的第二GaN外延生长层的厚度为0.2μm。In step 7), the thickness of the grown second GaN epitaxial growth layer is 0.2 μm.
实施例3Example 3
本实施例与实施例1相比,不同之处在于:Compared with
步骤6)中,生长的第一GaN外延生长层的厚度为5μm,生长温度为1100℃,生长压力为200torr。In step 6), the thickness of the grown first GaN epitaxial growth layer is 5 μm, the growth temperature is 1100° C., and the growth pressure is 200 torr.
步骤7)中,生长的第二GaN外延生长层的厚度为15μm。In step 7), the thickness of the grown second GaN epitaxial growth layer is 15 μm.
实施例4Example 4
本实施例与实施例1相比,不同之处在于:Compared with
步骤6)中,先对衬底上的外限制单元和内间断单元进行退火处理,再生长第一GaN外延生长层,退火温度为700℃,时间为1min。In step 6), annealing is first performed on the outer confinement unit and inner discontinuity unit on the substrate, and then the first GaN epitaxial growth layer is grown. The annealing temperature is 700° C. and the time is 1 min.
步骤7)中,第二GaN外延生长层的生长温度为1100℃,生长压力为300torr,生长的第二GaN外延生长层的厚度为1nm。In step 7), the growth temperature of the second GaN epitaxial growth layer is 1100° C., the growth pressure is 300 torr, and the thickness of the grown second GaN epitaxial growth layer is 1 nm.
实施例5Example 5
本实施例与实施例1相比,不同之处在于:Compared with
步骤6)中,先对衬底上的外限制单元和内间断单元进行退火处理,再生长第一GaN外延生长层,退火温度为500℃,时间为15min。In step 6), annealing is first performed on the outer confinement unit and inner discontinuity unit on the substrate, and then the first GaN epitaxial growth layer is grown. The annealing temperature is 500° C. and the time is 15 minutes.
步骤7)中,第二GaN外延生长层的生长温度为1200℃,生长压力为100torr,生长的第二GaN外延生长层的厚度为20μm。In step 7), the growth temperature of the second GaN epitaxial growth layer is 1200° C., the growth pressure is 100 torr, and the thickness of the grown second GaN epitaxial growth layer is 20 μm.
以上实施例中的底部外延层的厚度可以是1~5μm中任意值,四周闭合状的外限制单元的壁厚可以是0.2~5μm中任意值。所述间断外延层或间断牺牲层的厚度控制在0.5~2.5μm即可。The thickness of the bottom epitaxial layer in the above embodiments may be any value in the range of 1-5 μm, and the wall thickness of the surrounding closed outer confinement unit may be any value in the range of 0.2-5 μm. The thickness of the discontinuous epitaxial layer or discontinuous sacrificial layer can be controlled at 0.5-2.5 μm.
对比例1Comparative example 1
本对比例与实施例1相比,区别在于:直接在步骤1)的GaN底部外延层上继续外延生长厚度为5μm的第二GaN外延生长层。Compared with Example 1, this comparative example differs in that: a second GaN epitaxial growth layer with a thickness of 5 μm is continuously epitaxially grown on the GaN bottom epitaxial layer in step 1).
对比例2Comparative example 2
本对比例与实施例1相比,区别在于:直接在步骤1)的GaN底部外延层上继续外延生长厚度为0.2μm的第二GaN外延生长层。Compared with Example 1, this comparative example differs in that: the second GaN epitaxial growth layer with a thickness of 0.2 μm is continuously epitaxially grown on the GaN bottom epitaxial layer in step 1).
对比例3Comparative example 3
本对比例与实施例1相比,区别在于:直接在步骤1)的GaN底部外延层上继续外延生长厚度为15μm的第二GaN外延生长层。Compared with Example 1, this comparative example differs in that: the second GaN epitaxial growth layer with a thickness of 15 μm is continuously epitaxially grown directly on the GaN bottom epitaxial layer in step 1).
对比例4Comparative example 4
与实施例1不同之处在于:直接在步骤1)的GaN底部外延层上继续外延生长第二GaN外延生长层,生长温度为1075℃。The difference from Example 1 is that the second GaN epitaxial growth layer is directly epitaxially grown on the GaN bottom epitaxial layer in step 1), and the growth temperature is 1075°C.
对比例5Comparative example 5
与实施例1不同之处在于:直接在步骤1)的GaN底部外延层上继续外延生长第二GaN外延生长层,生长温度为1275℃。The difference from Example 1 is that the second GaN epitaxial growth layer is directly grown on the GaN bottom epitaxial layer in step 1), and the growth temperature is 1275°C.
采用XRD对实施例1~5和对比例1~5分别及进行(102)面摇摆曲线半峰宽测试,数据如图10所示。Examples 1-5 and Comparative Examples 1-5 were respectively tested by XRD for the half-peak width of the rocking curve of the (102) plane, and the data are shown in FIG. 10 .
从图10可以看出,以上各实施例相比各对比例具有更低的(102)半峰宽,因为(102)半峰宽直接反应外延层中穿透位错分布,低的(102)半峰宽具有低的穿透位错,所以实施例具有更低的穿透位错。此外实施例1~5的(102)半峰宽整体波动较小,而对比例中(102)半峰宽波动较大,尤其对比例4和对比例5中(102)半峰宽超过350arcsec,相比对比例1,对比例4和对比例5的(102)半峰宽受到生长温度影响较大,通过光学显微镜发现对比例4具有大量的黑点分布(如图11所示),而对比例5具有大量的六角缺陷(如图12所示);而相比实施例1,实施例4和实施例5的半峰宽都小于200arcsec,且实施例均具有光滑的表面,说明本发明实施例的生长温度具有较大的工艺窗口,提高了生长工艺的稳定性。As can be seen from Figure 10, the above embodiments have lower (102) half-value widths than the comparative examples, because the (102) half-value widths directly reflect the distribution of threading dislocations in the epitaxial layer, and the low (102) Half width has low threading dislocations, so the examples have lower threading dislocations. In addition, the overall fluctuation of the (102) half-peak width of Examples 1 to 5 is small, while the fluctuation of the (102) half-peak width is relatively large in the comparative examples, especially in comparative examples 4 and 5, the (102) half-peak width exceeds 350arcsec, Compared with Comparative Example 1, the (102) half-maximum width of Comparative Example 4 and Comparative Example 5 is greatly affected by the growth temperature, and it is found that Comparative Example 4 has a large number of black dot distributions (as shown in Figure 11) by optical microscopy, while for Comparative Example 4
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention shall be determined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211022770.7A CN115347037A (en) | 2022-08-26 | 2022-08-26 | Semiconductor epitaxial structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211022770.7A CN115347037A (en) | 2022-08-26 | 2022-08-26 | Semiconductor epitaxial structure and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115347037A true CN115347037A (en) | 2022-11-15 |
Family
ID=83954259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211022770.7A Pending CN115347037A (en) | 2022-08-26 | 2022-08-26 | Semiconductor epitaxial structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115347037A (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1882720A (en) * | 2003-09-26 | 2006-12-20 | 国家科学研究中心 | Method of producing self-supporting substrates comprising iii-nitrides by means of heteroepitaxy on a sacrificial layer |
CN101145516A (en) * | 2007-09-29 | 2008-03-19 | 中国电子科技集团公司第五十五研究所 | Silicon base nitride single crystal thin film epitaxial structure and growth method |
US20110316000A1 (en) * | 2008-12-24 | 2011-12-29 | Saint-Gobain Cristaux & Detecteurs | Manufacturing of low defect density free-standing gallium nitride substrates and devices fabricated thereof |
US20140008766A1 (en) * | 2012-07-06 | 2014-01-09 | Lextar Electronics Corporation | Epitaxial structure and epitaxial growth method for forming epitaxial layer with cavities |
CN106206297A (en) * | 2016-09-05 | 2016-12-07 | 中山大学 | A kind of selective area epitaxial high-quality AlGaN/GaN growing method |
WO2016192434A1 (en) * | 2015-05-29 | 2016-12-08 | 上海芯元基半导体科技有限公司 | Method for removing growth substrate by utilizing chemical corrosion |
CN106653968A (en) * | 2016-12-12 | 2017-05-10 | 上海芯元基半导体科技有限公司 | III-V nitride growth-used composite substrate, device structure and preparation method |
CN108010932A (en) * | 2017-11-29 | 2018-05-08 | 北京工业大学 | A kind of Micro-LED array preparation methods of panchromatic stacking-type extension |
CN109360875A (en) * | 2018-12-04 | 2019-02-19 | 西安赛富乐斯半导体科技有限公司 | Semiconductor member and method of manufacturing the same |
CN111129238A (en) * | 2014-11-06 | 2020-05-08 | 上海芯元基半导体科技有限公司 | III-V group nitride semiconductor epitaxial wafer, device comprising epitaxial wafer and preparation method of device |
CN114203535A (en) * | 2021-12-09 | 2022-03-18 | 北京镓纳光电科技有限公司 | High-quality aluminum nitride template and preparation method and application thereof |
-
2022
- 2022-08-26 CN CN202211022770.7A patent/CN115347037A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1882720A (en) * | 2003-09-26 | 2006-12-20 | 国家科学研究中心 | Method of producing self-supporting substrates comprising iii-nitrides by means of heteroepitaxy on a sacrificial layer |
CN101145516A (en) * | 2007-09-29 | 2008-03-19 | 中国电子科技集团公司第五十五研究所 | Silicon base nitride single crystal thin film epitaxial structure and growth method |
US20110316000A1 (en) * | 2008-12-24 | 2011-12-29 | Saint-Gobain Cristaux & Detecteurs | Manufacturing of low defect density free-standing gallium nitride substrates and devices fabricated thereof |
US20140008766A1 (en) * | 2012-07-06 | 2014-01-09 | Lextar Electronics Corporation | Epitaxial structure and epitaxial growth method for forming epitaxial layer with cavities |
CN111129238A (en) * | 2014-11-06 | 2020-05-08 | 上海芯元基半导体科技有限公司 | III-V group nitride semiconductor epitaxial wafer, device comprising epitaxial wafer and preparation method of device |
WO2016192434A1 (en) * | 2015-05-29 | 2016-12-08 | 上海芯元基半导体科技有限公司 | Method for removing growth substrate by utilizing chemical corrosion |
CN106206297A (en) * | 2016-09-05 | 2016-12-07 | 中山大学 | A kind of selective area epitaxial high-quality AlGaN/GaN growing method |
CN106653968A (en) * | 2016-12-12 | 2017-05-10 | 上海芯元基半导体科技有限公司 | III-V nitride growth-used composite substrate, device structure and preparation method |
CN108010932A (en) * | 2017-11-29 | 2018-05-08 | 北京工业大学 | A kind of Micro-LED array preparation methods of panchromatic stacking-type extension |
CN109360875A (en) * | 2018-12-04 | 2019-02-19 | 西安赛富乐斯半导体科技有限公司 | Semiconductor member and method of manufacturing the same |
CN114203535A (en) * | 2021-12-09 | 2022-03-18 | 北京镓纳光电科技有限公司 | High-quality aluminum nitride template and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
梁李敏等: "高质量GaN薄膜生长工艺的研究进展", 材料导报, vol. 24, no. 07, 30 April 2010 (2010-04-30), pages 127 - 131 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4371202B2 (en) | Nitride semiconductor manufacturing method, semiconductor wafer, and semiconductor device | |
KR100690413B1 (en) | Nitride Semiconductor Growth Substrate | |
KR100902512B1 (en) | Method for growing BaN single crystals on silicon substrate, manufacturing method of BaN-based light emitting devices and BaN-based light emitting devices | |
US6635901B2 (en) | Semiconductor device including an InGaAIN layer | |
JPH0831419B2 (en) | Method for producing compound semiconductor single crystal on single crystal silicon substrate | |
JP5979547B2 (en) | Epitaxial wafer and method for manufacturing the same | |
CN102124575A (en) | Method for manufacturing gallium oxide substrate, light emitting device, and method for manufacturing the light emitting device | |
CN104220651B (en) | The multilayer board of silicon single crystal and group III-nitride monocrystalline with drift angle | |
JP4449357B2 (en) | Method for manufacturing epitaxial wafer for field effect transistor | |
CN108538968B (en) | A kind of growing method and application of aluminium nitride film | |
CN110600547A (en) | Gallium nitride-based semiconductor device and manufacturing method thereof | |
WO2012029216A1 (en) | Method for manufacturing compound semiconductor | |
JP2003178976A (en) | Semiconductor device, and method for manufacturing it | |
CN116682914B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode epitaxial wafer | |
KR20230056686A (en) | Heteroepitaxial structure with diamond heat sink | |
CN115347037A (en) | Semiconductor epitaxial structure and preparation method thereof | |
CN115000149A (en) | Epitaxial structure of gallium nitride device and preparation method | |
TWI808339B (en) | Manufacturing method of nitride semiconductor substrate | |
CN106887495A (en) | Epitaxial wafer of light emitting diode and preparation method thereof | |
KR100304733B1 (en) | Structure of a Ⅲ-nitride semiconductor and method of crystal growing therefor | |
CN118398731B (en) | Method for manufacturing semiconductor structure, semiconductor structure and semiconductor device | |
CN112993099B (en) | A kind of manufacturing method of LED chip with protective layer | |
CN111435694A (en) | GaN epitaxial wafer and preparation method thereof | |
KR101697462B1 (en) | VERTICAL TYPE ULTRA-VIOLET LIGHT EMITTING DEVICE, METHOD FOR MANUFACTURING OF THE SAME, AlN TEMPLETE FOR VERTICAL TYPE ULTRA-VIOLET LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING OF THE SAME | |
JP2005045153A (en) | Nitride semiconductor manufacturing method, semiconductor wafer, and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |