CN115324844A - Unmanned ship small-sized wind driven generator performance measuring device - Google Patents
Unmanned ship small-sized wind driven generator performance measuring device Download PDFInfo
- Publication number
- CN115324844A CN115324844A CN202211160348.8A CN202211160348A CN115324844A CN 115324844 A CN115324844 A CN 115324844A CN 202211160348 A CN202211160348 A CN 202211160348A CN 115324844 A CN115324844 A CN 115324844A
- Authority
- CN
- China
- Prior art keywords
- wind
- wind speed
- generator
- small
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000010248 power generation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D17/00—Monitoring or testing of wind motors, e.g. diagnostics
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
本发明的无人艇小型风力发电机性能测量装置涉及海洋自然能航行器领域,目的是为了克服现有测量装置无法量化风力发电机工作时的船体阻力的问题,包括:两根片体固定杆平行设置,且分别滑动配合于长方体框架的底部矩形框上;且两根片体固定杆分别与无人艇的两个片体固定;发电机位置调节装置滑动配合于长方体框架的顶部矩形框上,且发电机位置调节装置固定有风力发电机;造风装置,用于驱动风力发电机;阻力测量系统包括阻力杆和拉力计;长方体框架的一条底边通过拉力计与阻力杆中点处连接;拉力计,用于测量长方体框架与阻力杆之间的拉力;能源控制器,用于获取风力发电机的发电功率。
The device for measuring the performance of a small wind power generator for an unmanned boat of the present invention relates to the field of marine natural energy vehicles. They are arranged in parallel and are slidably fitted on the bottom rectangular frame of the cuboid frame; and the two sheet body fixing rods are respectively fixed with the two sheet bodies of the unmanned boat; the generator position adjustment device is slidably fitted on the top rectangular frame of the cuboid frame. , and the generator position adjustment device is fixed with a wind generator; the wind generator is used to drive the wind generator; the resistance measurement system includes a resistance rod and a tension gauge; a bottom edge of the cuboid frame is connected to the midpoint of the resistance rod through the tension gauge ; Tensile meter, used to measure the tension between the cuboid frame and the resistance rod; Energy controller, used to obtain the power generated by the wind turbine.
Description
技术领域technical field
本发明涉及海洋自然能航行器领域,具体涉及一种模拟无人艇小型风力发电机工作环境对风力发电机的性能进行测试的装置。The invention relates to the field of marine natural energy vehicles, in particular to a device for testing the performance of a wind-driven generator by simulating the working environment of an unmanned small-sized wind-driven generator.
背景技术Background technique
自然能驱动无人艇的供电系统通常包含小型风力发电机、太阳能光伏板等,通过利用海面上丰富的太阳能和风能达到为自然能驱动无人艇供能的目的。但自然能无人艇上的小型风力发电机的存在除了为蓄电池供能外,还有因搭载小型风力发电机受到的额外阻力,增大无人艇受到的阻力的负面效果。The power supply system of natural energy-driven unmanned boats usually includes small wind turbines, solar photovoltaic panels, etc., and uses the abundant solar and wind energy on the sea to provide energy for natural energy-driven unmanned boats. However, the existence of the small-scale wind generator on the unmanned boat can not only supply energy for the battery, but also have the negative effect of increasing the resistance of the unmanned boat due to the additional resistance received by the small-scale wind generator.
而自然能无人艇适用的小型风力发电机通常需要环境风速达到12m/s才能达到额定功率,但海面上的风速通常达不到要求,那么自然能无人艇在不同风速下小型风力发电机的发电功率和船体阻力间的关系就有了探究的意义。目前并没有量化自然能无人艇上的小型风力发电机工作时的船体阻力的方法,以及准确测量额外阻力的测量装置。The small wind turbines suitable for natural energy unmanned boats usually need the ambient wind speed to reach 12m/s to reach the rated power, but the wind speed on the sea usually does not meet the requirements, so the natural energy unmanned boats can operate small wind turbines at different wind speeds. The relationship between the generated power and the hull resistance has the meaning of exploration. At present, there is no method to quantify the hull resistance when the small wind turbine on the natural energy unmanned boat is working, and there is no measuring device to accurately measure the additional resistance.
综上,一种可以量化不同风速下小型风力发电机发电量和船体阻力的测量装置对于自然能无人艇的总体设计具有非常重要的意义。In summary, a measurement device that can quantify the power generation of small wind turbines and hull resistance under different wind speeds is of great significance for the overall design of natural energy unmanned boats.
发明内容Contents of the invention
本发明的目的是为了克服现有测量装置无法量化风力发电机工作时的船体阻力的问题,提供了一种无人艇小型风力发电机性能测量装置。The object of the present invention is to provide a performance measurement device for small-sized wind-driven generators of unmanned boats in order to overcome the problem that the existing measuring devices cannot quantify the hull resistance when the wind-driven generators are working.
本发明的无人艇小型风力发电机性能测量装置,包括长方体框架、两根片体固定杆、发电机位置调节装置、造风装置、阻力测量系统和能源控制器;The performance measurement device of the unmanned small-sized wind power generator of the present invention comprises a cuboid frame, two sheet body fixing rods, a generator position adjustment device, a wind generating device, a resistance measurement system and an energy controller;
两根片体固定杆平行设置,且分别滑动配合于长方体框架的底部矩形框上;且两根片体固定杆分别与无人艇的两个片体固定;Two sheet body fixing rods are arranged in parallel, and are respectively slidably fitted on the bottom rectangular frame of the cuboid frame; and the two sheet body fixing rods are respectively fixed to the two sheet bodies of the unmanned boat;
发电机位置调节装置滑动配合于长方体框架的顶部矩形框上,且发电机位置调节装置固定有风力发电机;The generator position adjustment device is slidably fitted on the top rectangular frame of the cuboid frame, and the generator position adjustment device is fixed with a wind generator;
当长方体框架设置于循环水池的水面上时,两个片体的中心线、风力发电机的对称线和循环水池的中心线均位于同一铅垂面内;When the cuboid frame is set on the water surface of the circulating pool, the centerlines of the two sheets, the symmetry line of the wind turbine and the centerline of the circulating pool are all located in the same vertical plane;
造风装置,用于驱动风力发电机;A wind generating device for driving a wind generator;
阻力测量系统包括阻力杆和拉力计;The resistance measurement system includes resistance rods and tension gauges;
长方体框架的一条底边通过拉力计与阻力杆中点处连接;A bottom edge of the cuboid frame is connected to the midpoint of the resistance rod through the tension gauge;
拉力计,用于测量长方体框架与阻力杆之间的拉力;Tension gauge for measuring the tension between the cuboid frame and the resistance bar;
能源控制器,用于获取风力发电机的发电功率。The energy controller is used to obtain the power generated by the wind generator.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明的目的是为了提供一种能够模拟自然能无人艇所处海洋环境,用于循环水池中进行自然能无人艇小型风力发电机性能的实时测量,可以模拟海气界面以及无人艇所处工况,可以调节片体间距、小型风力发电机空间位置、不同的风速环境,实时测量得到不同风速下船体阻力以及小型风力发电机的发电功率,并得到小型风力发电机的发电功率和船体阻力间的关系,可以为自然能无人艇的设计提供实验数据支持,为自然能无人艇的设计提供参考信息,并且使用成本较低。The purpose of the present invention is to provide a real-time measurement of the performance of small wind power generators for natural energy unmanned boats in a circulating pool to simulate the sea-air interface and unmanned boats. In the working condition, you can adjust the distance between the blades, the space position of the small wind turbine, and the environment of different wind speeds, measure the hull resistance and the power generation of the small wind turbine at different wind speeds in real time, and obtain the power generation and the power of the small wind turbine. The relationship between hull resistance can provide experimental data support for the design of natural energy unmanned boats, provide reference information for the design of natural energy unmanned boats, and the use cost is low.
附图说明Description of drawings
图1为本发明的无人艇小型风力发电机性能测量装置不带有束风外壳的结构示意图;Fig. 1 is the structure schematic diagram that the unmanned boat small-sized wind-driven generator performance measuring device of the present invention does not have beam wind casing;
图2为本发明的无人艇小型风力发电机性能测量装置不带有束风外壳的另一方向的结构示意图;Fig. 2 is the structure schematic diagram of the other direction of the unmanned boat small-sized wind-driven generator performance measurement device without beam wind casing of the present invention;
图3为本发明的无人艇小型风力发电机性能测量装置中不带有发电机吊装杆的框架体的结构示意图;Fig. 3 is the structure schematic diagram of the framework body that does not have the generator lifting rod in the unmanned boat small-sized wind power generator performance measuring device of the present invention;
图4为本发明的无人艇小型风力发电机性能测量装置的结构示意图;Fig. 4 is the structural representation of the performance measuring device of the unmanned boat small-scale wind-driven generator of the present invention;
图5为本发明的无人艇小型风力发电机性能测量装置的另一方向的结构示意图;Fig. 5 is the structural representation of another direction of the performance measurement device of the unmanned boat small-scale wind-driven generator of the present invention;
图6为本发明的无人艇小型风力发电机性能测量装置中阻力测量系统与框架体配合结构示意图;Fig. 6 is a schematic diagram of the cooperation structure between the resistance measurement system and the frame body in the performance measurement device of the unmanned small-scale wind power generator of the present invention;
图7为本发明的无人艇小型风力发电机性能测量装置中风力发电机与能源控制器的配合结构示意图;Fig. 7 is a schematic diagram of the cooperative structure of the wind power generator and the energy controller in the performance measuring device of the small wind power generator of the unmanned boat of the present invention;
图8为本发明的无人艇小型风力发电机性能测量装置中造风装置2的结构示意图。Fig. 8 is a structural schematic diagram of the
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other.
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
具体实施方式一,本实施方式的无人艇小型风力发电机性能测量装置,包括长方体框架1-1、两根片体固定杆1-2、发电机位置调节装置、造风装置2、阻力测量系统和能源控制器3;Specific embodiment one, the unmanned boat small wind power generator performance measurement device of the present embodiment, comprises cuboid frame 1-1, two sheet body fixing rods 1-2, generator position adjustment device,
两根片体固定杆1-2平行设置,且分别滑动配合于长方体框架1-1的底部矩形框上;且两根片体固定杆1-2分别与无人艇的两个片体固定;Two sheet body fixing rods 1-2 are arranged in parallel, and are respectively slidably fitted on the bottom rectangular frame of the cuboid frame 1-1; and the two sheet body fixing rods 1-2 are respectively fixed to the two sheet bodies of the unmanned boat;
发电机位置调节装置滑动配合于长方体框架1-1的顶部矩形框上,且发电机位置调节装置固定有风力发电机4;The generator position adjustment device is slidably fitted on the top rectangular frame of the cuboid frame 1-1, and the generator position adjustment device is fixed with a
当长方体框架1-1设置于循环水池的水面上时,两个片体的中心线、风力发电机4的对称线和循环水池的中心线均位于同一铅垂面内;When the cuboid frame 1-1 is set on the water surface of the circulating pool, the centerlines of the two sheets, the symmetry line of the wind-driven
造风装置2,用于驱动风力发电机4;The
阻力测量系统包括阻力杆6-1和拉力计6-2;The resistance measuring system comprises a resistance rod 6-1 and a tension gauge 6-2;
长方体框架1-1的一条底边通过拉力计6-2与阻力杆6-1中点处连接;A base of the cuboid frame 1-1 is connected to the midpoint of the resistance rod 6-1 through the tension gauge 6-2;
拉力计6-2,用于测量长方体框架1-1与阻力杆6-1之间的拉力;Tensile gauge 6-2, used to measure the tension between the cuboid frame 1-1 and the resistance bar 6-1;
能源控制器3,用于获取风力发电机4的发电功率。The energy controller 3 is used to obtain the generated power of the
具体地,本发明应用于循环水池中进行小型风力发电机发电功率以及船体阻力测量。根据船舶原理的知识,循环水池进行的敞水试验是阻力测量常用的方式,同时,循环水池与造风装置2组合制造海气界面可以模拟自然能无人艇所处海洋环境,水池场地有足够面积的平台可供布置控制器(可作为风速控制器、能源控制器3、工作机)等岸基设备,方便数据采集和分析。Specifically, the present invention is applied in a circulating water pool to measure the power generated by a small wind power generator and the resistance of a ship. According to the knowledge of the ship principle, the open water test in the circulating pool is a common way to measure the resistance. At the same time, the combination of the circulating pool and the wind generating
本发明包括由片体和框架体组成的架体、造风装置2和阻力测量系统,整个装置布置在循环水池上使用。The invention includes a frame body composed of a sheet body and a frame body, a
其中,框架体由十四根型材拼接而成,内部布置有发电机位置调节装置和一个片体间距调节丝杆1-4,其中十二根型材拼接成长方体框架1-1,型材与型材的连接处用角码固定,底部矩形框有两根片体固定杆1-2分别与两个片体通过不锈钢轧带固定,两根片体固定杆1-2间通过可调节长度的片体间距调节丝杆1-4连接,两根片体固定杆1-2通过两端装有的滑环与由四根型材组成的底部矩形框连接。Among them, the frame body is spliced by fourteen profiles, and a generator position adjustment device and a sheet spacing adjustment screw 1-4 are arranged inside, twelve of which are spliced into a rectangular cuboid frame 1-1, and the profile and profile The connection is fixed with corner codes, and the bottom rectangular frame has two sheet body fixing rods 1-2 respectively fixed with the two sheet bodies by stainless steel rolling strips, and the length of the sheet body spacing can be adjusted between the two sheet body fixing rods 1-2 The adjustment screw rods 1-4 are connected, and the two sheet body fixing rods 1-2 are connected with the bottom rectangular frame composed of four profiles through slip rings provided at both ends.
阻力测量系统是测量系统的一部分,由两个压块和一根可以横跨在循环水池上的阻力杆6-1和一个拉力计6-2组成的结构,阻力杆6-1轴向中点处开有圆形孔,底部矩形框的四根型材中与开有圆形孔的阻力测量系统平行且距离最近的型材(与阻力杆6-1靠近且平行的一条底边)轴向中点处焊接一个圆形套圈,在圆形套圈与圆形孔之间布置一个拉力计6-2。The resistance measurement system is a part of the measurement system. It is a structure composed of two pressure blocks, a resistance rod 6-1 that can span the circulating pool, and a tension gauge 6-2. The axial midpoint of the resistance rod 6-1 is There is a circular hole at the bottom of the rectangular frame, and the axial midpoint of the profile parallel to and closest to the resistance measuring system with the circular hole (a bottom edge close to and parallel to the resistance rod 6-1) among the four profiles of the rectangular frame at the bottom A circular ferrule is welded at the place, and a tension gauge 6-2 is arranged between the circular ferrule and the circular hole.
当实验装置工作时,通过拉力计6-2测得框架体及片体整体受到的推力,根据牛顿第三定律,获得不同风速下小型风力发电机4工作时产生的船体阻力。When the experimental device is working, the thrust of the frame body and the sheet body as a whole is measured by the tension meter 6-2, and according to Newton's third law, the hull resistance generated when the
测量系统还包括能源测量系统,能源测量系统包括小型风力发电机4、能源控制器3和未满电的可充电蓄电池8,当实验装置工作时可以通过能源控制器3直接读出小型风力发电机4的发电量。The measurement system also includes an energy measurement system. The energy measurement system includes a
发电机位置调节装置可以调节小型风力发电机4在与水面平行的平面上的位置。The generator position adjusting device can adjust the position of the small wind-driven
最佳实施例,本实施例是对实施方式一的进一步说明,本实施例中,还包括片体间距调节丝杆1-4;The best embodiment, this embodiment is a further description of the first embodiment, in this embodiment, it also includes the sheet spacing adjustment screw 1-4;
片体间距调节丝杆1-4的两端分别与两根片体固定杆1-2的杆身连接。Both ends of the sheet spacing adjusting screw rod 1-4 are respectively connected with the shafts of the two sheet fixing rods 1-2.
最佳实施例,本实施例是对实施方式一的进一步说明,本实施例中,发电机位置调节装置包括两根调节杆1-3-1、连接滑块1-3-2和发电机吊装杆1-3-3;The best embodiment, this embodiment is a further description of
一根调节杆1-3-1的两端分别与顶部矩形框的两条平行边滑动配合,另一根调节杆1-3-1的两端分别与顶部矩形框的另两条平行边滑动配合;The two ends of one adjustment rod 1-3-1 are slidingly matched with the two parallel sides of the top rectangular frame respectively, and the two ends of the other adjustment rod 1-3-1 are respectively slid with the other two parallel sides of the top rectangular frame Cooperate;
连接滑块1-3-2包括两个相互垂直且不相连通的滑道,两根调节杆1-3-1分别贯穿两个滑道;The connecting slide block 1-3-2 includes two mutually perpendicular and disconnected slideways, and the two adjusting rods 1-3-1 run through the two slideways respectively;
发电机吊装杆1-3-3的一端与连接滑块1-3-2连接,另一端用于与风力发电机4连接,并使得风力发电机4能够悬吊在长方体框架1-1的内部。One end of the generator lifting rod 1-3-3 is connected with the connecting slider 1-3-2, and the other end is used to connect with the
具体地,顶部矩形框上布置有发电机位置调节装置,即十字型布置的两根调节杆1-3-1,两根调节杆1-3-1交叉处通过连接滑块1-3-2连接,连接滑块1-3-2下方焊接发电机吊装杆1-3-3(可以是伸缩三节杆,发电机吊装杆1-3-3下方与小型风力发电机4连接,两根调节杆1-3-1两端分别装有滑环与顶部矩形框连接,通过移动发电机位置调节装置的连接滑块1-3-2可以调节小型风力发电机4在与水面平行平面上的位置。Specifically, a generator position adjustment device is arranged on the top rectangular frame, that is, two adjustment rods 1-3-1 arranged in a cross shape, and the intersection of the two adjustment rods 1-3-1 is connected to the slider 1-3-2 Connect, connect the generator lifting rod 1-3-3 under the connecting slider 1-3-2 (it can be a telescopic three-section rod, the bottom of the generator lifting rod 1-3-3 is connected with the
最佳实施例,本实施例是对实施方式一的进一步说明,本实施例中,电机吊装杆1-3-3为伸缩杆。The best embodiment, this embodiment is a further description of the first embodiment, in this embodiment, the motor lifting rod 1-3-3 is a telescopic rod.
具体地,通过改变发电机吊装杆1-3-3的伸缩程度可以调节小型风力发电机4在与水面垂直方向上的位置。Specifically, the position of the small
最佳实施例,本实施例是对实施方式一的进一步说明,本实施例中,造风装置2包括造风装置支架2-1、多个风速传感器2-2、多个离心风机2-3、多个变频器2-4和风速控制器;且变频器2-4的数量和风速传感器2-2的数量均与离心风机2-3的数量相等;The best embodiment, this embodiment is a further description of
所有离心风机2-3均固定在造风装置支架2-1上;All centrifugal fans 2-3 are fixed on the wind-making device support 2-1;
风速传感器2-2一一对应地固定在每个离心风机2-3出风口处,用于测量相应离心风机2-3的实际风速,并发送至风速控制器;Wind speed sensors 2-2 are fixed one by one at the air outlet of each centrifugal fan 2-3, used to measure the actual wind speed of the corresponding centrifugal fan 2-3, and send it to the wind speed controller;
变频器2-4一一对应地与每个离心风机2-3连接,用于调节相应离心风机2-3的输入电压频率;The frequency converter 2-4 is connected to each centrifugal fan 2-3 in one-to-one correspondence, and is used to adjust the input voltage frequency of the corresponding centrifugal fan 2-3;
风速控制器,用于在不同离心风机2-3的实际风速中随机选取一个实际风速作为一致风速,并将每个实际风速与一致风速比较获得对应的第一风速差值,根据风速与输入电压频率的关系,生成与每个第一风速差值对应的第一电压频率调节信号,并发送至相应的变频器2-4;The wind speed controller is used to randomly select an actual wind speed among the actual wind speeds of different centrifugal fans 2-3 as a consistent wind speed, and compare each actual wind speed with the consistent wind speed to obtain a corresponding first wind speed difference, according to the wind speed and the input voltage Frequency relationship, generating a first voltage frequency adjustment signal corresponding to each first wind speed difference, and sending it to the corresponding frequency converter 2-4;
变频器2-4用于根据接收的第一电压频率调节信号控制相应离心风机2-3的输入电压频率,改变相应离心风机2-3的转速;从而令所有离心风机2-3的风速为一致风速。The frequency converter 2-4 is used to control the input voltage frequency of the corresponding centrifugal fan 2-3 according to the received first voltage frequency adjustment signal, and change the speed of the corresponding centrifugal fan 2-3; thereby making the wind speeds of all the centrifugal fans 2-3 consistent wind speed.
具体地,造风装置2包括造风装置支架2-1、四个离心风机2-3、四个变频器2-4和四个风速传感器2-2,在造风装置支架2-1上布置四个离心风机2-3,考虑到单个离心风机2-3无法制造风速较大的风,使用四个离心风机2-3呈田字型布置,考虑到造风装置2在输入电压不变的情况下无法改变造风大小,在电源与每个离心风机2-3之间均设置一个变频器2-4,通过改变输入电压的频率大小来改变离心风机2-3的造风大小,调节离心风机2-3出风口风速。Specifically, the
考虑到四个离心风机2-3的造风大小会有差异,在每个离心风机2-3的出风口处分别布置一个风速传感器2-2。风速传感器2-2可以实时监控每个出风口风速,并通过自动控制调节四个离心风机2-3的造风大小一致,,使四个离心风机2-3出风口风速相同,产生均匀的风,使小型风力发电机4受到的风均匀。其中,风速传感器2-2、变频器2-4与风速控制器(岸基系统)连接。Considering that the four centrifugal fans 2-3 have different sizes of wind generation, a wind speed sensor 2-2 is respectively arranged at the air outlet of each centrifugal fan 2-3. The wind speed sensor 2-2 can monitor the wind speed of each air outlet in real time, and adjust the wind-making size of the four centrifugal fans 2-3 to be consistent through automatic control, so that the wind speed of the air outlets of the four centrifugal fans 2-3 is the same to generate uniform wind. , so that the wind that the small-
并且在造风装置2布置前需确定小型风力发电机4的垂向位置,保证四个离心风机2-3的几何中心与小型风力发电机4扇叶面的几何中心在同一高度。And before the
最佳实施例,本实施例是对实施方式一的进一步说明,本实施例中,还包括两个风速仪7;The best embodiment, this embodiment is a further description of
两个风速仪7分别安装在与风向平行的调节杆1-3-1两端,用于测量风力发电机4的前方风速和后方风速,并发送至风速控制器;Two
风速控制器,还用于通过前方风速和后方风速得到平均风速,并将平均风速和设定风速比较获得第二风速差值,根据风速与输入电压频率的关系,生成与第二风速差值对应的第二电压频率调节信号,并发送至所有的变频器2-4;The wind speed controller is also used to obtain the average wind speed through the front wind speed and the rear wind speed, and compare the average wind speed with the set wind speed to obtain the second wind speed difference, and generate a wind speed corresponding to the second wind speed difference according to the relationship between the wind speed and the input voltage frequency. The second voltage frequency adjustment signal is sent to all frequency converters 2-4;
变频器2-4,还用于根据第二电压频率调节信号控制对应离心风机2-3的输入电压频率,从而使得平均风速达到设定风速。The frequency converter 2-4 is also used to control the input voltage frequency corresponding to the centrifugal fan 2-3 according to the second voltage frequency adjustment signal, so that the average wind speed reaches the set wind speed.
具体地,测量系统还包括风速测量系统,风速测量系统的目的是对小型风力发电机4位置处的风速进行测量,但在小型风力发电机4前方直接布置风速仪7会影响小型风力发电机4位置处的流场,故改为在发电机位置调节装置上布置风速仪支架,并在两个风速仪支架上分别布置风速仪7,考虑到与造风装置2距离不同对风速大小产生的影响,通过将前后布置两个风速仪7读数取算术平均值的方法获得更加合理的小型风力发电机4位置处的风速值。目前风速的测量方法已经相对成熟,现有的各种风速仪都可以对风速进行测量。Specifically, the measurement system also includes a wind speed measurement system. The purpose of the wind speed measurement system is to measure the wind speed at the position of the
通过顶部矩形框2上沿风向的调节杆1-3-1两端的滑环上分别装有风速仪支架。两个风速仪支架固定两个风速仪7,在同一高度测量小型风力发电机4前后的风速。Through the slip rings at both ends of the adjustment bar 1-3-1 along the wind direction on the top
通过两个风速仪7读数取平均的方式,获得小型风力发电机4处的更合理的平均风速。本发明通过风速传感器2-2、风速仪7、变频器2-4和岸基组成的风速自动调节系统控制造风装置2造风大小,在岸基输入期望风速,通过控制器调节造风装置2输入电压的频率,快速调节小型风力发电机4位置处风速大小,直到顶部矩形框2上的两个风速仪7示数的平均值达到期望风速(设定风速)。A more reasonable average wind speed at the
最佳实施例,本实施例是对实施方式一的进一步说明,本实施例中,还包括束风外壳5,且束风外壳5为两端和底部均开口的长方体壳体;The best embodiment, this embodiment is a further description of
该束风外壳5罩设于框架体和造风装置2外部,且造风装置2位于该束风外壳5的一端开口处。The
具体地,本发明还包括束风外壳5,束风外壳5是两端及底部开口的长方体空壳。本发明通过使用造风装置2和束风外壳5制造了模拟风洞的实验环境。Specifically, the present invention also includes a
束风外壳5是一个进口、出口、底部开放的长方体空壳,束风外壳5纵向布置在循环水池上,俯视图中,束风外壳5顶部长方形长边平行于循环水池中心线且束风外壳5顶部长方形与长边平行的中心线与循环水池中心线在同一铅垂面上。The
束风外壳5的作用在于,与造风装置2相互配合制造简易风洞,由于束风外壳5为长方体结构,内部任意横切面的矩形在形状与面积上完全相同,将内部看作流管,根据理想流管理论(V1S1=V2S2可知,理想情况下束风外壳5内部任意位置处风速大小相同,从而使小型风力发电机4所处环境的风更加均匀。该装置只能测量得到风力发电机在一定风速下达到最佳功率的叶尖速比,功能性不强,且将装置内部假定为理想流管,将出风口处风速等同为风力发电机工作环境风速,没有考虑设备精密程度等问题导致的动量损耗。The function of the
最佳实施例,本实施例是对实施方式一的进一步说明,本实施例中,还包括能源控制器3The best embodiment, this embodiment is a further description of
能源控制器3,还用于获取风力发电机4的转速。The energy controller 3 is also used to obtain the rotational speed of the
具体地,当实验装置工作时可以通过能源控制器3直接读出小型风力发电机4的扇叶转速。Specifically, when the experimental device is working, the energy controller 3 can directly read the fan blade speed of the small
本发明的装置在使用时,整个装置横跨于循环水池上,造风装置2上四个离心风机2-3的几何中心与循环水池中心线在同一铅垂面上;与水池两侧通过压块固定的阻力测量系统的圆形孔与循环水池中心线在同一铅垂面上;确定片体间距后,调节与片体通过不锈钢轧带连接的两根片体固定杆1-2间的片体间距调节丝杆1-4使片体间距达到预期,且片体沿框架中线对称布置;框架中线与循环水池中心线在同一铅垂面布置;通过发电机位置调节装置的十字调节杆1-3-1交叉处的连接滑块1-3-2、型材两端的滑环与发电机吊装杆1-3-3调整小型风力发电机4的空间位置,需保证小型风力发电机4中线与循环水池中心线在同一铅垂面内,且小型风力发电机4的扇叶面的几何中心与四个离心风机2-3的几何中心在同一高度;在顶部矩形框的两个风速仪支架处分别安装风速仪7;在与水池两侧通过压块固定的阻力测量系统的圆形孔与底部矩形框的圆形套圈中间安装拉力计6-2,在初始状态下保证拉力计6-2指数为零;将造风装置2四个离心风机2-3出风口处的风速传感器2-2、与离心风机2-3连接的变频器2-4、框架体处的风速仪7与风速控制器连接;将变频器2-4与电源连接;将小型风力发电机4的三芯线缆与能源控制器3连接,将能源控制器与未满电的可充电蓄电池8连接;用束风外壳5罩住整个装置,开启造风装置2,可以测得当前风速下小型风力发电机4的发电量、扇叶转速以及船体阻力,通过调节变频器2-4可以实现对风速的控制,改变风速继续测量可以测得不同风速下小型风力发电机4的发电量、扇叶转速以及船体阻力。When the device of the present invention is in use, the whole device spans over the circulating pool, and the geometric centers of the four centrifugal fans 2-3 on the wind-making
本发明的具体使用方法:Concrete method of use of the present invention:
1、将横跨循环水池的阻力测量系统固定在循环水池的合适位置,经试验确定,当小型风力发电机4与造风装置2距离达到4米,小型风力发电机4处的风较均匀且风速衰减较小,故距离横跨循环水池的阻力测量系统固定的位置4米处需要留出合适的空间布置造风装置2,且反方向需要留出合适的空间布置框架体与片体。1. Fix the resistance measurement system across the circulating pool at a suitable position in the circulating pool. It is determined through experiments that when the distance between the
2、集成两个片体、小型风力发电机4、风速仪7与框架体,根据需要确定期望片体间距,调节与片体通过不锈钢轧带固定的型材之间的片体间距调节丝杆1-4使片体间距达到期望片体间距,将框架体及片体整体布置在循环水池中,通过与片体连接的型材两端滑环、发电机位置调节装置的中心连接滑块1-3-2与四个滑环调节片体位置和小型风力发电机4的水平位置,使两片体中心线、小型风力发电机4对称线、两个风速仪7中心线与循环水池中心线在同一铅垂面内。2. Integrate two sheets, small
3、将造风装置2布置在距离小型风力发电机4米处,离心风机2-3出风方向正对小型风力发电机4,四个离心风机2-3的几何中心与循环水池中心线在同一铅垂面内。3. Arrange the
4、通过发电机位置调节装置的发电机吊装杆1-3-3调节小型风力发电机4的垂向位置,使小型风力发电机4扇叶面的几何中心和造风装置2四个离心风机2-3的几何中心在同一高度。4. Adjust the vertical position of the small
5、集成岸基系统,将离心风机2-3与变频器2-4连接,将变频器2-4与电源连接,将造风装置2四个离心风机2-3出风口处的四个风速传感器2-2、顶部矩形框处的两个风速仪7、变频器2-4与控制器连接,将未满电的可充电蓄电池8与能源控制器连接,将小型风力发电机4与能源控制器3连接。在布置能源测量系统时,需要先连接能源控制器与未满电的可充电蓄电池8,再连接能源控制器与小型风力发电机4,避免能源控制器损坏。5. Integrate the shore-based system, connect the centrifugal fan 2-3 to the frequency converter 2-4, connect the frequency converter 2-4 to the power supply, and connect the four wind speeds at the air outlets of the four centrifugal fans 2-3 of the
6、在横跨循环水池的阻力测量系统与框架体之间布置拉力计6-2,并使拉力计6-2示数在初始位置下刚好为零。6. Arrange the tension meter 6-2 between the resistance measuring system across the circulating pool and the frame body, and make the reading of the tension meter 6-2 be exactly zero at the initial position.
7、布置束风外壳5覆盖造风装置2与框架体,保证束风外壳5的顶部与长边平行的中心线与循环水池中心线在同一铅垂面内。7. Arrange the
8、接通电源,根据实验要求测量不同风速下,自然能无人艇小型风力发电机4的发电量与船体阻力。8. Turn on the power supply, and measure the power generation and hull resistance of the small wind-driven
本发明用于循环水池中进行自然能无人艇小型风力发电机4性能的实时测量,可以模拟海气界面以及无人艇所处工况,实时测量得到不同风速下小型风力发电机4的扇叶转速和发电量以及船体阻力,为自然能无人艇的设计提供参考信息,并且使用成本较低。The present invention is used for real-time measurement of the performance of the small-scale wind-driven
本发明的目的是为了提供一种能够模拟自然能无人艇所处海洋环境,可以调节片体间距、小型风力发电机4空间位置、风速环境,并且实时测量小型风力发电机4性能的自然能无人艇小型风力发电机4性能测量装置,具体性能包括小型风力发电机4的发电量,扇叶转速和船体阻力。The object of the present invention is to provide a natural energy unmanned boat that can simulate the marine environment where the natural energy unmanned boat is located, which can adjust the space between the sheets, the space position of the
与现有技术相比,目前常用于测量风机性能的风洞测量方法,普遍仅能应用于只有空气的单相流环境测量,极少的支持船模实验的大型风洞又存在使用成本极高的问题,且很难模拟出特定流速下的海气界面。使用水池试验的方法虽然可以降低成本,但由于随着造风装置与船模距离的增加,风会变得不稳定,风速衰减严重,很难模拟风速较大的海况。本发明利用循环水池使用成本更低、流速好操控、实验设备好布置的特性,通过造风装置2与束风外壳5配合可以产生稳定的风,与现有技术相比更具优势。Compared with the existing technology, the wind tunnel measurement method commonly used to measure the performance of fans at present can only be applied to the measurement of single-phase flow environment with only air, and there are very few large-scale wind tunnels that support ship model experiments, and the use cost is extremely high problem, and it is difficult to simulate the air-sea interface at a specific flow rate. Although the method of using the pool test can reduce the cost, as the distance between the wind generating device and the ship model increases, the wind will become unstable and the wind speed attenuation is serious, so it is difficult to simulate sea conditions with high wind speed. The present invention utilizes the characteristics of lower cost of use of the circulating water pool, easy control of the flow rate, and easy layout of experimental equipment, and can generate stable wind through the cooperation of the
1、本发明利用自动控制原理,只需要在岸基控制期望风速,即可改变变频器频率,调节离心风机出风口风速,进而改变小型风力发电机所处位置的风速并保证风均匀;1. The present invention utilizes the principle of automatic control, and only needs to control the desired wind speed at the shore base to change the frequency of the frequency converter, adjust the wind speed at the air outlet of the centrifugal fan, and then change the wind speed at the location of the small wind turbine and ensure uniform wind;
2、本发明通过造风装置与束风外壳产生模拟风洞实验环境,使小型风力发电机所处位置的风均匀;2. The present invention creates a simulated wind tunnel experiment environment through the wind-generating device and the wind beam shell, so that the wind at the location of the small wind-driven generator is uniform;
3、本发明通过两片体间的片体间距调节丝杆与发电机位置调节装置,可以根据需要改变片体间距与小型风力发电机的空间位置,适用不同的自然能无人艇;3. The present invention adjusts the screw rod and the position adjustment device of the generator through the space between the two plates, and can change the space between the plates and the space position of the small wind power generator as required, and is suitable for different natural energy unmanned boats;
4、本发明利用循环水池的特性,实验装置占用空间小,对空气-水双介质环境下的小型风力发电机4性能进行测量,与陆地实验相比,更贴近实际实验环境。4. The present invention utilizes the characteristics of the circulating pool, and the experimental device occupies a small space to measure the performance of the small
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他实施例中。Although the invention is described herein with reference to specific embodiments, it should be understood that these embodiments are merely illustrative of the principles and applications of the invention. It is therefore to be understood that numerous modifications may be made to the exemplary embodiments and that other arrangements may be devised without departing from the spirit and scope of the invention as defined by the appended claims. It shall be understood that different dependent claims and features herein may be combined in a different way than that described in the original claims. It will also be appreciated that features described in connection with individual embodiments can be used on other embodiments.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211160348.8A CN115324844B (en) | 2022-09-22 | 2022-09-22 | Unmanned boat small wind turbine performance measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211160348.8A CN115324844B (en) | 2022-09-22 | 2022-09-22 | Unmanned boat small wind turbine performance measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115324844A true CN115324844A (en) | 2022-11-11 |
CN115324844B CN115324844B (en) | 2024-05-10 |
Family
ID=83914228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211160348.8A Active CN115324844B (en) | 2022-09-22 | 2022-09-22 | Unmanned boat small wind turbine performance measurement device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115324844B (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10316095A (en) * | 1997-05-19 | 1998-12-02 | Dam Suigenchi Kankyo Seibi Center | Control system for unmanned remote navigation ship |
US20070284885A1 (en) * | 2006-06-10 | 2007-12-13 | Menges Pamela A | Wind generator system |
CN201378202Y (en) * | 2009-04-24 | 2010-01-06 | 重庆大学 | Small Wind Turbine Performance Test System |
CN101871844A (en) * | 2010-06-13 | 2010-10-27 | 清华大学 | Wind turbine performance analysis and fault simulation experiment system |
CN105003395A (en) * | 2015-07-24 | 2015-10-28 | 中国能源建设集团广东省电力设计研究院有限公司 | Motion performance test model and method for floating draught fan |
CN105292398A (en) * | 2015-11-10 | 2016-02-03 | 四方继保(武汉)软件有限公司 | Unmanned aerial vehicle mixed system carried by unmanned ship |
CN106494600A (en) * | 2016-12-28 | 2017-03-15 | 安奥克斯汤姆逊(青岛)游艇有限公司 | The quick unmanned boat energy management system of long-range composite power |
KR101828512B1 (en) * | 2016-10-10 | 2018-02-12 | 울산과학기술원 | Operation system of unmanned aerial vehicle |
CN108482595A (en) * | 2018-03-14 | 2018-09-04 | 武汉理工大学 | The combined system and working method of floating marine generation platform and unmanned boat cluster |
CN108557047A (en) * | 2018-03-20 | 2018-09-21 | 哈尔滨工程大学 | A kind of miniature self-service ship wind propulsion equipment |
CN109733544A (en) * | 2019-01-15 | 2019-05-10 | 哈尔滨工程大学 | A naturally driven wing-rudder linkage long-endurance catamaran unmanned boat |
EP3501966A1 (en) * | 2017-12-20 | 2019-06-26 | Xocean Limited | An unmanned marine surface vessel |
CN110588938A (en) * | 2019-09-30 | 2019-12-20 | 国家海洋技术中心 | A hybrid energy drive system for unmanned boats |
CN114035567A (en) * | 2021-09-08 | 2022-02-11 | 哈尔滨工程大学 | A surface unmanned boat navigation control system |
-
2022
- 2022-09-22 CN CN202211160348.8A patent/CN115324844B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10316095A (en) * | 1997-05-19 | 1998-12-02 | Dam Suigenchi Kankyo Seibi Center | Control system for unmanned remote navigation ship |
US20070284885A1 (en) * | 2006-06-10 | 2007-12-13 | Menges Pamela A | Wind generator system |
CN201378202Y (en) * | 2009-04-24 | 2010-01-06 | 重庆大学 | Small Wind Turbine Performance Test System |
CN101871844A (en) * | 2010-06-13 | 2010-10-27 | 清华大学 | Wind turbine performance analysis and fault simulation experiment system |
CN105003395A (en) * | 2015-07-24 | 2015-10-28 | 中国能源建设集团广东省电力设计研究院有限公司 | Motion performance test model and method for floating draught fan |
CN105292398A (en) * | 2015-11-10 | 2016-02-03 | 四方继保(武汉)软件有限公司 | Unmanned aerial vehicle mixed system carried by unmanned ship |
KR101828512B1 (en) * | 2016-10-10 | 2018-02-12 | 울산과학기술원 | Operation system of unmanned aerial vehicle |
CN106494600A (en) * | 2016-12-28 | 2017-03-15 | 安奥克斯汤姆逊(青岛)游艇有限公司 | The quick unmanned boat energy management system of long-range composite power |
EP3501966A1 (en) * | 2017-12-20 | 2019-06-26 | Xocean Limited | An unmanned marine surface vessel |
CN108482595A (en) * | 2018-03-14 | 2018-09-04 | 武汉理工大学 | The combined system and working method of floating marine generation platform and unmanned boat cluster |
CN108557047A (en) * | 2018-03-20 | 2018-09-21 | 哈尔滨工程大学 | A kind of miniature self-service ship wind propulsion equipment |
CN109733544A (en) * | 2019-01-15 | 2019-05-10 | 哈尔滨工程大学 | A naturally driven wing-rudder linkage long-endurance catamaran unmanned boat |
CN110588938A (en) * | 2019-09-30 | 2019-12-20 | 国家海洋技术中心 | A hybrid energy drive system for unmanned boats |
CN114035567A (en) * | 2021-09-08 | 2022-02-11 | 哈尔滨工程大学 | A surface unmanned boat navigation control system |
Non-Patent Citations (1)
Title |
---|
姜权权;李可;廖煜雷;贾琪;李晔;苗玉刚;: "自然能驱动无人艇融合TD滤波的无模型自适应航速控制方法", 无人系统技术, no. 02, 15 March 2020 (2020-03-15), pages 37 - 42 * |
Also Published As
Publication number | Publication date |
---|---|
CN115324844B (en) | 2024-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101871844B (en) | Performance analysis and fault simulation experiment system of wind machine | |
CN105004503B (en) | Self-elevating ocean platform wind force coefficient testing experimental system | |
CN203178061U (en) | Wind wave flow test pool | |
CN111120208B (en) | A hydraulic constant pressure energy storage and release system and intelligent control method | |
CN104655393B (en) | Simple wind field simulation system | |
CN102507184B (en) | Common test bed device for use in vertical-axis wind wheel performance test | |
CN105003395A (en) | Motion performance test model and method for floating draught fan | |
CN110849575A (en) | Wind turbine complete machine aerodynamic force measuring system and method | |
CN112729749B (en) | A Measuring Device for Aerodynamic Characteristics of Airfoil in Direct Air Suction Wind Tunnel | |
CN108844600A (en) | A kind of adjustable measuring device for level of reservoir based on network technology | |
CN106777499B (en) | A complete machine dynamic modeling method for a doubly-fed asynchronous wind turbine | |
CN118275075A (en) | Experimental device and method for oscillating float integrated system based on floating wind turbine | |
CN114458516B (en) | On-line indirect measurement system and method for pitching and yawing moments of wind energy or tidal current energy generator set | |
CN202255877U (en) | Universal testing platform device for detecting performance of vertical-axis wind wheel | |
CN115324844A (en) | Unmanned ship small-sized wind driven generator performance measuring device | |
CN115560796A (en) | A real-time monitoring and intelligent control system for floating wind turbines based on digital twins and environmental tests | |
CN114910249A (en) | Dynamic coupling experimental device for wind wave current and sea ice and drifting and accumulating experimental method for sea ice | |
CN105958908A (en) | Floating base and water floating-type photovoltaic power generation system | |
CN106560685A (en) | Airfoil-shaped dynamic aerodynamic characteristic test bench for horizontal-axis wind turbine | |
Ozbay | Experimental investigations on the wake interferences of multiple wind turbines | |
CN107654340B (en) | Digital vertical axis wind power generation test device using multi-wireless network communication | |
CN203570507U (en) | Scaling control system for large wind generating set | |
CN216483834U (en) | Aerodynamic force test system of building membrane structure under wind load effect | |
CN204877800U (en) | Test model of floating fan exercise performance | |
CN116296234A (en) | A dynamic response test device for floating tunnels under the coupling effect of wind, wave and current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |