CN203178061U - Wind wave flow test pool - Google Patents
Wind wave flow test pool Download PDFInfo
- Publication number
- CN203178061U CN203178061U CN 201320136885 CN201320136885U CN203178061U CN 203178061 U CN203178061 U CN 203178061U CN 201320136885 CN201320136885 CN 201320136885 CN 201320136885 U CN201320136885 U CN 201320136885U CN 203178061 U CN203178061 U CN 203178061U
- Authority
- CN
- China
- Prior art keywords
- wind
- wave
- water
- flow
- stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
本实用新型提供了一种风波流试验水池,其特征在于,包括:水池本体,其底部局部凹陷设有调节底;造波部,包含造波板、铰接轴、驱动机构以及杆件;造流部,设置水池本体的外部,包含管道、水泵;造风部,包含变频风机、旋转吊架以及稳流格栅;波浪测量仪,用于测量波浪的频率和幅度;流速测量仪,用于测量水流的流速;风速测量仪,用于测量风的风速,被设置在入流风的路径上;以及控制部,用于控制调节底来调节深度,并基于频率和幅度、流速以及风速来分别控制造波部、造流部以及造风部,其中,管道靠近水池本体的两端分别都设有廊道。
The utility model provides a test pool for wind, wave and flow, which is characterized in that it comprises: a pool body, the bottom of which is partially recessed and provided with an adjusting bottom; The external part of the pool body is set up, including pipes and water pumps; the wind making part includes frequency conversion fans, rotating hangers and steady flow grids; the wave measuring instrument is used to measure the frequency and amplitude of waves; the flow rate measuring instrument is used to measure the flow velocity of the water flow; the anemometer for measuring the wind velocity of the wind, which is provided on the path of the inflow wind; and the control part, which controls the adjustment bottom to adjust the depth, and controls the manufacturing based on the frequency and amplitude, the flow velocity, and the wind velocity, respectively. The wave part, the flow part and the wind part are provided with corridors at both ends of the pipeline close to the pool body.
Description
技术领域 technical field
本实用新型涉及一种模拟海洋环境的试验水池,特别涉及一种用水来形成波浪和水流以及在所述水的水面上形成风的风波流试验水池。 The utility model relates to a test pool for simulating the ocean environment, in particular to a wind wave flow test pool for forming waves and currents with water and forming wind on the water surface. the
背景技术 Background technique
模拟深水海洋的试验水池是国家海洋战略资源的重要组成部分也是发展海洋高新技术必不可少的配套基础研究设施,各个海洋科技发达的国家,都具有先进的海洋深水的试验池。漂浮式风力机作为风力机发展的必然趋势,势必需要能够模拟海洋环境中的波浪、水流以及风的试验水池来进行相关试验研究。一般情况下,深水试验池具有造价昂贵、筑建时间长、结构复杂以及占地空间大等缺陷。无疑,使用现存技术的深水试验池造成了严重的资源浪费。 The test pool for simulating deep-water oceans is an important part of national marine strategic resources and an essential supporting basic research facility for the development of marine high-tech. Every country with advanced marine technology has advanced deep-water test pools. Floating wind turbines, as an inevitable trend in the development of wind turbines, will inevitably require test pools that can simulate waves, currents, and winds in the marine environment to conduct relevant experimental research. In general, deep-water test pools have disadvantages such as high cost, long construction time, complex structure, and large space occupation. Undoubtedly, using the deep-water test pool of existing technology has caused serious waste of resources. the
实用新型内容 Utility model content
本实用新型的目的在于提供一种用水来形成波浪和水流以及在所述水的水面上形成风的风波流试验水池,该风波流试验水池结构简单、性价比高以及占地空间小并且同样能满足试验需求。 The purpose of this utility model is to provide a kind of water to form waves and currents and wind wave flow test pool on the water surface of the water, the wind wave flow test pool structure is simple, cost-effective and occupy a small space and can also meet Test needs. the
本实用新型提供的一种用水来形成波浪和水流以及在水的水面上形成风的风波流试验水池,具有这样的特征:水池本体,用于盛放水,其底部局部凹陷设有用于调节水的深度的调节底;造波部,用于制造波浪,被设置在水池本体一侧壁面上,包含纵向设置的造波板、用于将造波板的一端固定在水池本体底部的铰接轴、驱动造波板绕铰接轴往复摆动的驱动机构以 及用于连接造波板和驱动机构的杆件;造流部,用于制造水流,被设置在水池本体的外部,包含与水池本体的两个相对的侧壁面分别连接且都设有通口的管道、用于使流经管道中的水定向流动的水泵;造风部,用于制造风,被设置在水面的上方,包含形成风的变频风机、用于使变频风机在与水面平行的平面内旋转的旋转吊架以及设置在风的路径上用于形成风速分布均匀的入流风的稳流格栅;波浪测量仪,用于测量波浪的频率和幅度;流速测量仪,用于测量水流的的流速;风速测量仪,用于测量风的风速,被设置在入流风的路径上;以及控制部,用于控制调节底来调节深度,并基于频率和幅度、流速以及风速来分别控制造波部、造流部以及造风部,其中,管道靠近水池本体的两端分别都设有廊道。 The utility model provides a wind-wave-flow test pool that uses water to form waves and currents and forms wind on the water surface. The depth adjustment bottom; the wave-making part is used to make waves and is arranged on the side wall of the pool body, including a wave-making plate arranged longitudinally, a hinge shaft for fixing one end of the wave-making plate on the bottom of the pool body, and a drive The driving mechanism for the reciprocating swing of the wave-making plate around the hinge shaft and the rod for connecting the wave-making plate and the driving mechanism; The opposite side walls are respectively connected with pipes with openings, and a water pump for directional flow of water flowing through the pipes; the wind generating part is used to make wind, which is set above the water surface and includes a frequency converter for forming wind. A fan, a rotating hanger used to rotate the variable frequency fan in a plane parallel to the water surface, and a steady flow grid arranged on the path of the wind to form an inflow wind with a uniform wind speed distribution; a wave measuring instrument used to measure the wave frequency and amplitude; a flow velocity measuring instrument for measuring the flow velocity of the water flow; an anemometer for measuring the wind velocity of the wind, which is set on the path of the inflow wind; and a control part for controlling the adjustment bottom to adjust the depth, and The wave-making part, the flow-making part and the wind-making part are respectively controlled based on frequency and amplitude, flow velocity and wind speed, wherein corridors are respectively provided at both ends of the pipeline close to the pool body. the
在本实用新型中的风波流试验水池中,还可以具有这样的特征:还包括,位于与侧壁面相对的另一侧壁面上的消波滩。 In the wind-wave-flow test pool of the present invention, it may also have such a feature: it also includes a wave-dissipating beach located on the other side wall surface opposite to the side wall surface. the
在本实用新型中的风波流试验水池中,还可以具有这样的特征:其中,廊道旁设有整流设备,用于对管道中的水进行整流以使定向流动的速度均匀。 In the wind wave flow test pool of the present invention, it may also have such a feature: wherein, a rectification device is provided beside the corridor, which is used to rectify the water in the pipeline to make the speed of the directional flow uniform. the
在本实用新型中的风波流试验水池中,还可以具有这样的特征:还包括,风力机部,用于进行漂浮式风力机试验,包含被设置在入流风的路径上的风力机模型、使风力机模型漂浮在水中的漂浮平台以及固定漂浮平台位置的系泊。 In the wind wave flow test pool in the utility model, it can also have such characteristics: it also includes a wind turbine part, which is used to carry out the floating wind turbine test, including a wind turbine model arranged on the path of the inflow wind, using A floating platform where the wind turbine model floats in the water and a mooring that fixes the position of the floating platform. the
在本实用新型中的风波流试验水池中,还可以具有这样的特征:其中,风力机部还包含,安装在漂浮平台上的船模运动六分量非接触式测量仪,用于进行浮台响应试验。 In the wind wave flow test pool in the utility model, it can also have such a feature: wherein, the wind turbine part also includes a six-component non-contact measuring instrument for the movement of the ship model installed on the floating platform, which is used for responding to the floating platform. test. the
在本实用新型中的风波流试验水池中,还可以具有这样的特征:其中,风力机部还包含,与系泊连接设置的缆力测量系统,用于进行系泊拉力测量。 In the wind-wave flow test pool of the present invention, it may also have such a feature: wherein, the wind turbine part also includes a cable force measurement system connected to the mooring, which is used to measure the mooring tension. the
本实用新型的效果在于: The utility model has the following effects:
本实用新型提供的风波流试验水池可以模拟深海环境中的风、波浪以及水流,造风部、造波部、以及造流部的各个结构简单且具有独立的功能。 The wind, wave and flow test pool provided by the utility model can simulate the wind, waves and water flow in the deep sea environment, and each structure of the wind generating part, the wave generating part and the current generating part is simple and has independent functions. the
本实用新型提供的风波流试验水池可根据试验要求设计为不同大小规模,占地空间小且合理。 The wind, wave and flow test pool provided by the utility model can be designed in different sizes according to the test requirements, and the floor space is small and reasonable. the
本实用新型提供的风波流试验水池中风、波浪以及水流等试验条件因素为可统一控制的并且试验数据重复性强,根据试验要求也可以利用单独的某个试验条件或者两两结合进行有针对性的试验。 The test condition factors such as wind, wave and water flow in the wind wave flow test pool provided by the utility model can be uniformly controlled and the test data repeatability is strong. According to the test requirements, a single test condition or a combination of two can also be used for targeted testing. test. the
本实用新型提供的风波流试验水池的水池本体的底部设有局部凹陷,该局部凹陷设有调节底,可控制该调节底进行活塞式的运动以调节水深,适合多种试验水深条件。在驱动机构的往复摆动下纵向设置造波板推动水以形成波浪,该摆动的幅度和频率都是可以调节的,从而波浪的幅度和频率也可调节。水泵驱使管道中的水定向流动,以使水池本体中的水从管道的一端流经管道定向流动到管道的另一端,根据试验要求可控制造流部来形成不同流速的水流。变频风机设置在旋转吊架上,可实现风的方向与波浪的方向之间任意相位差。稳流格栅设置在风的路径上,用于获得风速均匀分布的入流风。造风部由控制部控制可形成不同风速下的环境,均能满足试验要求。 The bottom of the pool body of the wind wave flow test pool provided by the utility model is provided with a partial depression, and the local depression is provided with an adjustment bottom, which can be controlled to perform piston-like movement to adjust the water depth, and is suitable for various test water depth conditions. Under the reciprocating swing of the driving mechanism, the wave-making plate is arranged longitudinally to push the water to form waves. The amplitude and frequency of the swing can be adjusted, so that the amplitude and frequency of the waves can also be adjusted. The water pump drives the water in the pipeline to flow directionally, so that the water in the pool body flows from one end of the pipeline through the pipeline to the other end of the pipeline. According to the test requirements, the flow generator can be controlled to form water flow at different flow rates. The frequency conversion fan is set on the rotating hanger, which can realize any phase difference between the direction of the wind and the direction of the wave. The flow stabilizing grille is arranged on the path of the wind, and is used to obtain the inflow wind with uniform distribution of wind speed. The wind generation part is controlled by the control part to form environments under different wind speeds, all of which can meet the test requirements. the
附图说明 Description of drawings
图1是本实用新型的具体实施例中结构示意图; Fig. 1 is a structural representation in a specific embodiment of the present utility model;
图2是本实用新型的具体实施例中控制框图。 Fig. 2 is a control block diagram in a specific embodiment of the present utility model. the
具体实施方式Detailed ways
下面结合附图和具体实施例对本实用新型做进一步说明。 Below in conjunction with accompanying drawing and specific embodiment the utility model is described further. the
图1是本实用新型的具体实施例中结构示意图。 Fig. 1 is a schematic structural view of a specific embodiment of the present invention. the
如图1所示,具体实施例中提供的一种风波流试验水池100具有用于盛放水的水池本体1,该水池本体1的规格为10m×2.5m×2m,该水池本体1的底部局部凹陷设有调节底2,该调节底2的凹陷深度为4m,用于调节水池本体1中水的深度,以适合多种水深条件。
As shown in Figure 1, a wind wave
造波部3,用于制造波浪,被设置在水池本体1的如图1中所示的左侧壁面上,造波部3包含纵向设置的造波板3a、铰接轴3b、驱动机构3c以及杆件3d。铰接轴3b将造波板3a的下端固定在水池本体1的底部,造波板3a和驱动机构3c之间通过杆件3d连接,驱动机构3c通过推拉杆件3d来驱动造波板3a绕着铰接轴3b往复摆动,驱动机构3c推拉的幅度和频率不同,则所制造的波浪也就幅度和频率不同。与造波部3对向设置的,位于如图1中所示的右侧壁面上设有消波滩4,用于消除造波部所形成的波流,该消波滩4为抛物线斜坡造型,具有数十个突起构件4a,更加符合模拟真实试验环境的需求。
The wave-making
造流部5,用于制造水流,被设置在水池本体1的如图1中所示的底侧外部,包含管道6、水泵7,该管道6的一端与水池本体1的如图1中所 示的左侧壁面连接且设有可经水流通过的图1中未显示的左通口,该管道6的另一端与水池本体1的另一对向的如图1中所示的右侧壁面连接且设有可经水流通过的图1中未显示的右通口。水泵7设置在管道6的中部,用于使流经管道6中的水可定向流动,那么在水泵7的驱动下,管道6中的水流可沿着管道6的方向如图1中所示的向左流动或者向右流动,水池本体中的水则会形成向右或者向左的水流,即、在管道6和水泵7可使水池本体1和管道6中的水形成如图1中所示的顺时针或者逆时针方向的水流,并且水流的速度或者方向可由水泵7进行调节。管道6靠近水池本体1的两端分别设有用于进出水的第一廊道8和第二廊道9。第一廊道8、第二廊道9旁分别都设有整流设备10,用于对管道6中的水进行整流以使定向流动的速度更均匀。
The stream-making
造风部11,用于制造风,被设置在水池本体1中水面的上方,包含形成风的变频风机12、旋转吊架13以及稳流格栅14,变频风机12安装在旋转吊架13上,该旋转吊架13可使变频风机12在与水面平行的平面内360°旋转,使制造出的风的方向可实现与波浪之间的任意相位差,稳流格栅14被设置在风的路径上用于形成风速分布均匀的入流风15。
The wind-making
波浪测量仪16,用于测量波浪的频率和幅度,被设置在水池本体1中的水中。
The
流速测量仪17,用于测量所述水流的的流速,被设置在水池本体1中的水中。
The flow
风速测量仪18,用于测量所述风的风速,被设置在经过稳流格栅14后所形成的入流风15的路径上。
An
风力机部19,用于进行漂浮式风力机试验,包含风力机模型20、漂浮平台21以及系泊22。风力机模型20被设置在入流风15的路径上,风力机模型20安装在漂浮平台21上,使风力机模型20漂浮在水中,系泊22如图1中所示连接在漂浮平台21和调节底2之间,或者连接在水池本体1的底部,固定漂浮平台21的位置即可。风力机部19还包含船模运动六分量非接触式测量仪23、图1中未显示的缆力测量系统。船模运动六分量非接触式测量仪23安装在漂浮平台21上,用于进行浮台响应试验。图1中未显示的缆力测量系统与系泊22连接设置,用于进行系泊22的拉力测量。
The
图2是本实用新型的具体实施例中控制框图。 Fig. 2 is a control block diagram in a specific embodiment of the present utility model. the
如图2所示,本实用新型的具体实施例中的风波流试验水池100还包括控制部24,分别与波浪测量仪16、流速测量仪17、风速测量仪18、调节底2、造波部3中的驱动机构3c、造流部5中水泵7和整流设备10以及造风部11中的旋转吊架13和变频风机12连接,用于控制调节底2来调节水的深度,并基于波浪测量仪16测得的频率和幅度来控制驱动机构3c以改变频率和幅度,基于流速测量仪17测得流速来控制水泵7和整流设备10以改变水流的速度和方向,基于风速测量仪18测得的风速来控制旋转吊架13和变频风机12以改变风与波浪之间的相位和风速。
As shown in Figure 2, the wind wave
实用新型的作用与效果 Function and effect of utility model
综上所述,本实用新型的作用和效果在于: In summary, the utility model has the following functions and effects:
本实用新型提供的风波流试验水池可以模拟深海环境中的风、波浪以 及水流,造风部、造波部、以及造流部的各个结构简单且具有独立的功能。 The wind, wave and flow test pool provided by the utility model can simulate the wind, waves and currents in the deep sea environment, and each structure of the wind-making part, the wave-making part and the flow-making part is simple and has independent functions. the
本实用新型提供的风波流试验水池可根据试验要求设计为不同大小规模,占地空间小且合理。 The wind, wave and flow test pool provided by the utility model can be designed in different sizes according to the test requirements, and the floor space is small and reasonable. the
本实用新型提供的风波流试验水池中风、波浪以及水流等试验条件因素为可统一控制的并且试验数据重复性强,根据试验要求也可以利用单独的某个试验条件或者两两结合进行有针对性的试验。 The test condition factors such as wind, wave and water flow in the wind wave flow test pool provided by the utility model can be uniformly controlled and the test data repeatability is strong. According to the test requirements, a single test condition or a combination of two can also be used for targeted testing. test. the
本实用新型提供的风波流试验水池的水池本体的底部设有局部凹陷,该局部凹陷设有调节底,可控制该调节底进行活塞式的运动以调节水深,适合多种试验水深条件。在驱动机构的往复摆动下纵向设置造波板推动水以形成波浪,该摆动的幅度和频率都是可以调节的,从而波浪的幅度和频率也可调节。水泵驱使管道中的水定向流动,以使水池本体中的水从管道的一端流经管道定向流动到管道的另一端,根据试验要求可控制造流部来形成不同流速的水流。变频风机设置在旋转吊架上,可实现风的方向与波浪的方向之间任意相位差。稳流格栅设置在风的路径上,用于获得风速均匀分布的入流风。造风部由控制部控制可形成不同风速下的环境,均能满足试验要求。 The bottom of the pool body of the wind wave flow test pool provided by the utility model is provided with a partial depression, and the local depression is provided with an adjustment bottom, which can be controlled to perform piston-like movement to adjust the water depth, and is suitable for various test water depth conditions. Under the reciprocating swing of the driving mechanism, the wave-making plate is arranged longitudinally to push the water to form waves. The amplitude and frequency of the swing can be adjusted, so that the amplitude and frequency of the waves can also be adjusted. The water pump drives the water in the pipeline to flow directionally, so that the water in the pool body flows from one end of the pipeline through the pipeline to the other end of the pipeline. According to the test requirements, the flow generator can be controlled to form water flow at different flow rates. The frequency conversion fan is set on the rotating hanger, which can realize any phase difference between the direction of the wind and the direction of the wave. The flow stabilizing grille is arranged on the path of the wind, and is used to obtain the inflow wind with uniform distribution of wind speed. The wind generation part is controlled by the control part to form environments under different wind speeds, all of which can meet the test requirements. the
设置在廊道旁的整流设备用于对管道中的水进行整流,以使定向流动的速度更均匀。 The rectifying equipment arranged beside the corridor is used to rectify the water in the pipeline to make the speed of the directional flow more uniform. the
消波滩用于消除造波部所形成的波流,更加符合模拟真实试验环境的需求。 The wave breaker is used to eliminate the wave flow formed by the wave-making part, which is more in line with the needs of simulating the real test environment. the
本实用新型提供的风波流试验水池可进行风力机浮台响应、系泊拉力特性以及浮台倾覆试验等多项需要风、波浪以及水流条件的试验。 The wind, wave and flow test pool provided by the utility model can carry out many tests requiring wind, wave and water flow conditions, such as the response of the wind turbine floating platform, the characteristics of the mooring pull force, and the overturning test of the floating platform. the
上述实施方式为本实用新型的优选案例,并不用来限制本实用新型的保护范围。 The above embodiments are preferred cases of the present utility model, and are not intended to limit the protection scope of the present utility model. the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320136885 CN203178061U (en) | 2013-03-22 | 2013-03-22 | Wind wave flow test pool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320136885 CN203178061U (en) | 2013-03-22 | 2013-03-22 | Wind wave flow test pool |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203178061U true CN203178061U (en) | 2013-09-04 |
Family
ID=49074743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201320136885 Expired - Fee Related CN203178061U (en) | 2013-03-22 | 2013-03-22 | Wind wave flow test pool |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203178061U (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103926080A (en) * | 2014-04-16 | 2014-07-16 | 上海交通大学 | Wind generating device used for sea floating wind machine pool model test |
CN105003395A (en) * | 2015-07-24 | 2015-10-28 | 中国能源建设集团广东省电力设计研究院有限公司 | Motion performance test model and method for floating draught fan |
CN105424315A (en) * | 2015-11-05 | 2016-03-23 | 河海大学 | Device and method for measuring impact on horizontal bearing performance of pile foundation from waves |
CN105973569A (en) * | 2016-07-06 | 2016-09-28 | 中国电建集团华东勘测设计研究院有限公司 | Offshore structure wave test apparatus capable of circulating currents |
CN106248344A (en) * | 2016-08-09 | 2016-12-21 | 河海大学 | A kind of prototype experiment wave run-up analog |
CN106314680A (en) * | 2016-09-23 | 2017-01-11 | 江苏科技大学 | Remote testing system and method for course keeping in ship or ship model wind waves |
CN106771664A (en) * | 2016-12-02 | 2017-05-31 | 上海无线电设备研究所 | Contract than analogy method and test system on sea based on JONSWAP seas spectrum |
CN107421716A (en) * | 2017-09-07 | 2017-12-01 | 交通运输部天津水运工程科学研究所 | Wave physical experiments wave simulator free of discontinuities and method under SEA LEVEL VARIATION |
CN109036070A (en) * | 2018-08-08 | 2018-12-18 | 江苏科技大学 | Catamaran crankling vibration experimental provision and analogy method in wave navigation |
CN109238647A (en) * | 2018-10-26 | 2019-01-18 | 河海大学 | A kind of compbined test sink for studying sea bed wall effect |
CN110763426A (en) * | 2019-09-29 | 2020-02-07 | 哈尔滨工程大学 | Method and device for simulating rip current in a pool |
CN110789687A (en) * | 2019-12-17 | 2020-02-14 | 秦露露 | Mooring test device for ship |
CN110879126A (en) * | 2019-12-19 | 2020-03-13 | 中国长江三峡集团有限公司 | Wind, wave and flow full-coupling power experiment system |
CN111289218A (en) * | 2018-12-07 | 2020-06-16 | 重庆交通大学 | Experimental system for researching collision avoidance in meeting of multiple ships under severe wind conditions |
CN111284649A (en) * | 2018-12-07 | 2020-06-16 | 重庆交通大学 | A Comprehensive Experiment Platform for Studying Ship Navigation Safety in All-Meteorological Environment |
CN113405766A (en) * | 2021-05-13 | 2021-09-17 | 河海大学 | Model test device and method for response simulation of in-service tensioned mooring system |
WO2022021587A1 (en) * | 2020-07-30 | 2022-02-03 | 青岛理工大学 | Test system for simulating multi-field coupling effect of offshore wind power rock-socketed pile |
CN117949167A (en) * | 2023-12-25 | 2024-04-30 | 哈尔滨工程大学 | Wind wave and sea ice coupling experimental device and experimental method based on internal circulation |
-
2013
- 2013-03-22 CN CN 201320136885 patent/CN203178061U/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103926080A (en) * | 2014-04-16 | 2014-07-16 | 上海交通大学 | Wind generating device used for sea floating wind machine pool model test |
CN103926080B (en) * | 2014-04-16 | 2016-03-23 | 上海交通大学 | Wind-generating device for model test of offshore floating wind turbine pool |
CN105003395A (en) * | 2015-07-24 | 2015-10-28 | 中国能源建设集团广东省电力设计研究院有限公司 | Motion performance test model and method for floating draught fan |
CN105424315A (en) * | 2015-11-05 | 2016-03-23 | 河海大学 | Device and method for measuring impact on horizontal bearing performance of pile foundation from waves |
CN105973569A (en) * | 2016-07-06 | 2016-09-28 | 中国电建集团华东勘测设计研究院有限公司 | Offshore structure wave test apparatus capable of circulating currents |
CN106248344A (en) * | 2016-08-09 | 2016-12-21 | 河海大学 | A kind of prototype experiment wave run-up analog |
CN106314680A (en) * | 2016-09-23 | 2017-01-11 | 江苏科技大学 | Remote testing system and method for course keeping in ship or ship model wind waves |
CN106771664A (en) * | 2016-12-02 | 2017-05-31 | 上海无线电设备研究所 | Contract than analogy method and test system on sea based on JONSWAP seas spectrum |
CN107421716A (en) * | 2017-09-07 | 2017-12-01 | 交通运输部天津水运工程科学研究所 | Wave physical experiments wave simulator free of discontinuities and method under SEA LEVEL VARIATION |
CN107421716B (en) * | 2017-09-07 | 2023-05-23 | 交通运输部天津水运工程科学研究所 | Uninterrupted wave generation device and method for wave physical model test under water level change |
CN109036070A (en) * | 2018-08-08 | 2018-12-18 | 江苏科技大学 | Catamaran crankling vibration experimental provision and analogy method in wave navigation |
CN109238647A (en) * | 2018-10-26 | 2019-01-18 | 河海大学 | A kind of compbined test sink for studying sea bed wall effect |
CN109238647B (en) * | 2018-10-26 | 2020-11-10 | 河海大学 | A comprehensive test tank for the study of seabed wall effects |
CN111284649B (en) * | 2018-12-07 | 2022-04-22 | 重庆交通大学 | Comprehensive experiment platform for researching ship navigation safety in all-weather environment |
CN111289218B (en) * | 2018-12-07 | 2022-04-08 | 重庆交通大学 | An experimental system to study collision avoidance of multiple ships in severe wind conditions |
CN111289218A (en) * | 2018-12-07 | 2020-06-16 | 重庆交通大学 | Experimental system for researching collision avoidance in meeting of multiple ships under severe wind conditions |
CN111284649A (en) * | 2018-12-07 | 2020-06-16 | 重庆交通大学 | A Comprehensive Experiment Platform for Studying Ship Navigation Safety in All-Meteorological Environment |
CN110763426B (en) * | 2019-09-29 | 2021-09-10 | 哈尔滨工程大学 | Method and device for simulating offshore flow in pool |
CN110763426A (en) * | 2019-09-29 | 2020-02-07 | 哈尔滨工程大学 | Method and device for simulating rip current in a pool |
CN110789687B (en) * | 2019-12-17 | 2021-05-25 | 江苏新大陆船舶设备有限公司 | Mooring test device for ship |
CN110789687A (en) * | 2019-12-17 | 2020-02-14 | 秦露露 | Mooring test device for ship |
CN110879126A (en) * | 2019-12-19 | 2020-03-13 | 中国长江三峡集团有限公司 | Wind, wave and flow full-coupling power experiment system |
WO2022021587A1 (en) * | 2020-07-30 | 2022-02-03 | 青岛理工大学 | Test system for simulating multi-field coupling effect of offshore wind power rock-socketed pile |
CN113405766A (en) * | 2021-05-13 | 2021-09-17 | 河海大学 | Model test device and method for response simulation of in-service tensioned mooring system |
CN117949167A (en) * | 2023-12-25 | 2024-04-30 | 哈尔滨工程大学 | Wind wave and sea ice coupling experimental device and experimental method based on internal circulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN203178061U (en) | Wind wave flow test pool | |
JP3230500U (en) | Simulated experimental system of fully coupled power of wind wave flow | |
Wan et al. | Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes | |
CN206847903U (en) | A comprehensive marine comprehensive parameter simulation laboratory | |
CN103969010B (en) | Bridge stormy waves stream coupled field, elastic model and dynamic response test system | |
Calderer et al. | Fluid–structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines | |
Khalid et al. | Research article harnessing tidal energy using vertical axis tidal turbine | |
JP2009540169A (en) | Ocean wave energy conversion | |
CN205015144U (en) | Bridge full -bridge elasticity model stormy waves flows coupling dynamic response testing system | |
Hu et al. | An experimental investigation on the performance and the wake characteristics of a wind turbine subjected to surge motion | |
Feist et al. | A quasi-coupled wind wave experimental framework for testing offshore wind turbine floating systems | |
KR101243786B1 (en) | Fluid static load measuring apparatus for marine structure | |
Connolly et al. | Fully coupled aero-hydro-structural simulation of new floating wind turbine concept | |
CN202991336U (en) | Self-regulating water turbine device | |
CN203231879U (en) | Test system for bridge wind wave flow coupled field, elastic model and dynamic response experiments | |
KR101652372B1 (en) | Deep offshore engineering basin making uniform current open flow by double impeller system | |
Kalvig et al. | A method for wave driven wind simulations with CFD | |
CN110630450A (en) | An on-water combined wind turbine and its test system | |
Zhang et al. | Energy conversion performance of a triplet BBDB device model under regular wave conditions | |
Coiro et al. | Experimental tests of GEM-Ocean's kite, an innovative patented submerged system for marine current energy production | |
Ma et al. | Research on coupling prediction of mooring line tension and motion response of vertical axis floating tidal energy converter | |
Germain et al. | Protocols for testing marine current energy converters in controlled conditions. Where are we in 2018 | |
CN115901175A (en) | Experimental method for transient failure study of buoy mooring system based on truncated design | |
Tsao et al. | Scale model study of basic functions of the cross-stream active mooring for marine current power systems | |
US10087910B2 (en) | Kinetic energy harvesting using cyber-physical systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130904 Termination date: 20140322 |