CN115303131A - An electric vehicle hybrid system based on symmetrical electrode SOFC and its control method - Google Patents
An electric vehicle hybrid system based on symmetrical electrode SOFC and its control method Download PDFInfo
- Publication number
- CN115303131A CN115303131A CN202211068770.0A CN202211068770A CN115303131A CN 115303131 A CN115303131 A CN 115303131A CN 202211068770 A CN202211068770 A CN 202211068770A CN 115303131 A CN115303131 A CN 115303131A
- Authority
- CN
- China
- Prior art keywords
- sofc
- symmetrical electrode
- fuel
- supply module
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000000446 fuel Substances 0.000 claims abstract description 114
- 238000002485 combustion reaction Methods 0.000 claims abstract description 49
- 230000001105 regulatory effect Effects 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000012544 monitoring process Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052799 carbon Inorganic materials 0.000 abstract description 11
- 230000008021 deposition Effects 0.000 abstract description 10
- 230000007774 longterm Effects 0.000 abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 abstract description 5
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 5
- 239000002803 fossil fuel Substances 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/30—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
- B60L58/31—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/70—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
- B60L50/72—Constructional details of fuel cells specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/75—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Fuel Cell (AREA)
Abstract
本发明提供了一种基于对称电极SOFC的电动车混合动力系统及其控制方法,其系统包括燃料供应模块、空气供应模块、燃烧室、对称电极SOFC、蓄电池、电机及控制器;控制器用于控制燃料供应模块和空气供应模块分别向燃烧室供应燃料和空气;燃烧室根据燃料和空气向对称电极SOFC提供热量;对称电极SOFC的阳极侧和阴极侧与燃料供应模块和空气供应模块连通,用于基于燃烧室提供的热量生成电流;控制器还用于控制对称电极SOFC和/或蓄电池驱动电机。本发明利用对称电极SOFC电极可相互切换的特点,避免了积碳,确保了电动车的长期稳定性;利用碳氢化合物作为燃料,摆脱了对化石燃料的依赖;设置蓄电池和/或SOFC对电机进行供电,可满足电动车长期运行需求。
The invention provides an electric vehicle hybrid system based on a symmetrical electrode SOFC and a control method thereof. The system includes a fuel supply module, an air supply module, a combustion chamber, a symmetrical electrode SOFC, a battery, a motor and a controller; the controller is used for controlling The fuel supply module and the air supply module respectively supply fuel and air to the combustion chamber; the combustion chamber provides heat to the symmetrical electrode SOFC according to the fuel and air; the anode side and the cathode side of the symmetrical electrode SOFC are communicated with the fuel supply module and the air supply module for The current is generated based on the heat provided by the combustion chamber; the controller is also used to control the symmetrical electrode SOFC and/or the battery driven motor. The invention utilizes the feature that the symmetrical electrodes SOFC electrodes can be switched to each other, avoids carbon deposition and ensures the long-term stability of the electric vehicle; uses hydrocarbons as fuel to get rid of the dependence on fossil fuels; sets the battery and/or SOFC to the motor Power supply to meet the long-term running needs of electric vehicles.
Description
技术领域technical field
本发明涉及电动车动力系统技术领域,具体涉及一种基于对称电极SOFC的电动车混合动力系统及其控制方法。The invention relates to the technical field of electric vehicle power systems, in particular to an electric vehicle hybrid power system based on a symmetrical electrode SOFC and a control method thereof.
背景技术Background technique
作为燃料电池的最理想的燃料是氢能,在21世纪,氢的需求量将持续增加,最主要的应用可能是燃料电池和燃料电池电动车。燃料电池通过补加燃料实现连续的运转,尤其适用于偏远地区的使用,但是氢气储存以及运送问题阻碍了燃料电池的商业化发展。而解决这一问题的办法就是使用具有高能量密度的液体燃料催化转换即时产生氢气。固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)采用固体氧化物作为电解质,除了高效、环境友好等特点之外,它的燃料适用范围广,除了能够使用氢气之外,还能直接使用液体燃料。The most ideal fuel for fuel cells is hydrogen energy. In the 21st century, the demand for hydrogen will continue to increase, and the most important applications may be fuel cells and fuel cell electric vehicles. Fuel cells can achieve continuous operation by refueling, especially suitable for use in remote areas, but hydrogen storage and transportation problems hinder the commercial development of fuel cells. The solution to this problem is to use catalytic conversion of liquid fuels with high energy density to generate hydrogen instantly. Solid Oxide Fuel Cell (Solid Oxide Fuel Cell, SOFC) uses solid oxide as the electrolyte. In addition to its high efficiency and environmental friendliness, it has a wide range of fuel applications. In addition to being able to use hydrogen, it can also directly use liquid fuels .
而在当SOFC电池使用碳氢化合物作为燃料时,会出现积碳现象,积碳效应会影响电池长期稳定性从而电池的性能输出,因此,急需提出一种基于对称电极SOFC的电动车混合动力系统及其控制方法,用于消除SOFC电池的积碳效应,以保证SOFC电池和电动车的长期稳定运行。However, when the SOFC battery uses hydrocarbons as fuel, carbon deposition will occur. The carbon deposition effect will affect the long-term stability of the battery and thus the performance output of the battery. Therefore, it is urgent to propose a hybrid power system for electric vehicles based on symmetrical electrode SOFC. The control method thereof is used for eliminating the carbon deposition effect of the SOFC battery, so as to ensure the long-term stable operation of the SOFC battery and the electric vehicle.
发明内容Contents of the invention
有鉴于此,有必要提供一种基于对称电极SOFC的电动车混合动力系统及其控制方法,用以解决现有技术中存在的由于当SOFC电池使用碳氢化合物作为燃料时,出现的积碳现象导致SOFC电池和电动车的无法长期稳定运行的技术问题。In view of this, it is necessary to provide a hybrid electric vehicle system based on symmetrical electrode SOFC and its control method, in order to solve the carbon deposition phenomenon that occurs when the SOFC battery uses hydrocarbons as fuel in the prior art Technical problems that lead to the inability of long-term stable operation of SOFC batteries and electric vehicles.
一方面,本发明提供了一种基于对称电极SOFC的电动车混合动力系统,包括燃料供应模块、空气供应模块、燃烧室、对称电极SOFC、蓄电池、电机以及控制器;所述燃烧室的入口分别与所述燃料供应模块和所述空气供应模块连通,所述燃烧室的出口与所述对称电极SOFC的入口连通,所述对称电极SOFC的出口分别与所述蓄电池和所述控制器连通,所述蓄电池与所述控制器连通;On the one hand, the present invention provides a hybrid power system for electric vehicles based on a symmetrical electrode SOFC, including a fuel supply module, an air supply module, a combustion chamber, a symmetrical electrode SOFC, a battery, a motor, and a controller; the inlets of the combustion chamber are respectively It communicates with the fuel supply module and the air supply module, the outlet of the combustion chamber communicates with the inlet of the symmetrical electrode SOFC, and the outlet of the symmetrical electrode SOFC communicates with the battery and the controller respectively, so The storage battery communicates with the controller;
所述控制器用于控制所述燃料供应模块和所述空气供应模块分别向所述燃烧室供应燃料和空气;The controller is configured to control the fuel supply module and the air supply module to supply fuel and air to the combustion chamber, respectively;
所述燃烧室根据所述燃料和所述空气向所述对称电极SOFC提供热量;The combustion chamber provides heat to the symmetrical electrode SOFC according to the fuel and the air;
所述对称电极SOFC的阳极侧和阴极侧与所述燃料供应模块和所述空气供应模块连通,用于基于所述燃烧室提供的热量生成电流;an anode side and a cathode side of the symmetrical electrode SOFC communicate with the fuel supply module and the air supply module for generating electrical current based on heat provided by the combustor;
所述控制器还用于控制所述对称电极SOFC和/或所述蓄电池驱动所述电机;The controller is also used to control the symmetrical electrode SOFC and/or the storage battery to drive the motor;
所述控制器还用于控制所述对称电极SOFC向所述蓄电池供电。The controller is also used to control the symmetrical electrode SOFC to supply power to the storage battery.
在一些可能的实现方式中,所述基于对称电极SOFC的电动车混合动力系统还包括两位四通电磁阀,所述两位四通电磁阀包括第一入口、第二入口、第一出口、第二出口以及第三出口,当所述两位四通电磁阀位于第一工作状态时,所述第一入口和所述第一出口连通,所述第二入口和所述第二出口连通;当所述两位四通电磁阀位于第二工作状态时,所述第一入口和所述第二出口连通,所述第二入口和所述第三出口连通;In some possible implementations, the electric vehicle hybrid system based on symmetrical electrode SOFC further includes a two-position four-way solenoid valve, and the two-position four-way solenoid valve includes a first inlet, a second inlet, a first outlet, The second outlet and the third outlet, when the two-position four-way solenoid valve is in the first working state, the first inlet communicates with the first outlet, and the second inlet communicates with the second outlet; When the two-position four-way solenoid valve is in the second working state, the first inlet communicates with the second outlet, and the second inlet communicates with the third outlet;
当所述两位四通电磁阀位于第一工作状态时,所述燃料供应模块与所述第一入口连通,所述空气供应模块与所述第二入口连通,所述第一出口与所述对称电极SOFC的阳极侧连通,所述第二出口与所述对称电极SOFC的阴极侧连通;When the two-position four-way solenoid valve is in the first working state, the fuel supply module communicates with the first inlet, the air supply module communicates with the second inlet, and the first outlet communicates with the The anode side of the symmetrical electrode SOFC is connected, and the second outlet is connected to the cathode side of the symmetrical electrode SOFC;
当所述两位四通电磁阀位于第二工作状态时,所述燃料供应模块与所述第一入口连通,所述空气供应模块与所述第二入口连通,所述第二出口与所述对称电极SOFC的阴极侧连通,所述第三出口与所述对称电极SOFC的阳极侧连通。When the two-position four-way solenoid valve is in the second working state, the fuel supply module communicates with the first inlet, the air supply module communicates with the second inlet, and the second outlet communicates with the The cathode side of the symmetrical electrode SOFC communicates, and the third outlet communicates with the anode side of the symmetrical electrode SOFC.
在一些可能的实现方式中,所述控制器还用于实时监测所述对称电极SOFC的开路电压,当所述开路电压小于预设电压时,控制所述两位四通电磁阀由第一工作状态切换至第二工作状态,或控制所述两位四通电磁阀由第二工作状态切换至第一工作状态。In some possible implementations, the controller is also used to monitor the open circuit voltage of the symmetrical electrode SOFC in real time, and when the open circuit voltage is lower than the preset voltage, control the two-position four-way solenoid valve to work by the first The state is switched to the second working state, or the two-position four-way solenoid valve is controlled to switch from the second working state to the first working state.
在一些可能的实现方式中,所述燃料供应模块包括燃料泵、燃料流量调节阀以及混合器;In some possible implementations, the fuel supply module includes a fuel pump, a fuel flow regulating valve, and a mixer;
所述燃料泵用于提供燃料;The fuel pump is used to provide fuel;
所述燃料流量调节阀用于根据所述控制器的第一控制信号调节进入所述混合器以及进入所述燃烧室的燃料流量;The fuel flow regulating valve is used to adjust the fuel flow entering the mixer and entering the combustion chamber according to the first control signal of the controller;
所述混合器的进口分别与所述燃料流量调节阀以及所述对称电极SOFC的出口连通,所述混合器的出口与所述对称电极SOFC的入口连通,用于将燃料和所述对称电极SOFC尾气中的水蒸气进行混合,生成混合燃料,并将所述混合燃料输送至所述对称电极SOFC。The inlet of the mixer communicates with the fuel flow regulating valve and the outlet of the symmetric electrode SOFC respectively, and the outlet of the mixer communicates with the inlet of the symmetric electrode SOFC for mixing fuel and the symmetric electrode SOFC The water vapor in the exhaust gas is mixed to form a mixed fuel, which is delivered to the symmetrical electrode SOFC.
在一些可能的实现方式中,所述燃料供应模块还包括设置在所述混合器和所述对称电极SOFC之间的燃料路换热器;In some possible implementation manners, the fuel supply module further includes a fuel path heat exchanger arranged between the mixer and the symmetrical electrode SOFC;
所述燃料路换热器的热流进口与所述燃烧室的出口连通,所述燃料路换热器的气流进口与所述混合器的出口连通,用于基于燃烧室生成的热量对所述混合燃料进行预热。The heat flow inlet of the fuel path heat exchanger communicates with the outlet of the combustion chamber, and the air flow inlet of the fuel path heat exchanger communicates with the outlet of the mixer for mixing the mixture based on the heat generated by the combustion chamber. The fuel is preheated.
在一些可能的实现方式中,所述空气供应模块包括空气压缩机以及气体流量调节阀;In some possible implementations, the air supply module includes an air compressor and a gas flow regulating valve;
所述空气压缩机用于获取并压缩空气;The air compressor is used to obtain and compress air;
所述气体流量调节阀用于根据所述控制器的第二控制信号调节进入所述对称电极SOFC以及进入所述燃烧室的空气流量。The gas flow regulating valve is used for regulating the air flow entering the symmetrical electrode SOFC and entering the combustion chamber according to the second control signal of the controller.
在一些可能的实现方式中,所述空气供应模块还包括设置在所述气体流量调节阀与所述对称电极SOFC之间的空气路换热器;In some possible implementation manners, the air supply module further includes an air path heat exchanger arranged between the gas flow regulating valve and the symmetrical electrode SOFC;
所述空气路换热器的气流进口与所述气体流量调节阀连通,所述空气路换热器的热流进口与所述燃料路换热器的热流出口连通,用于基于燃烧室生成的热量对空气进行预热。The airflow inlet of the air path heat exchanger is connected with the gas flow regulating valve, and the heat flow inlet of the air path heat exchanger is connected with the heat flow outlet of the fuel path heat exchanger, for Preheat the air.
在一些可能的实现方式中,所述空气供应模块还包括设置在所述燃料路换热器和所述空气路换热器之间的热量调节电磁阀,所述热量调节电磁阀用于根据所述控制器的第三控制信号调节进入到所述空气路换热器中的热量。In some possible implementation manners, the air supply module further includes a heat regulating solenoid valve arranged between the fuel path heat exchanger and the air path heat exchanger, and the heat regulating solenoid valve is used to The third control signal of the controller adjusts the heat entering the air path heat exchanger.
在一些可能的实现方式中,所述基于对称电极SOFC的电动车混合动力系统还包括设置在所述燃烧室和所述对称电极SOFC之间的温度传感器,所述温度传感器用于监测所述对称电极SOFC的温度;In some possible implementation manners, the electric vehicle hybrid system based on symmetrical electrode SOFC further includes a temperature sensor arranged between the combustion chamber and the symmetrical electrode SOFC, and the temperature sensor is used to monitor the symmetrical electrode SOFC. The temperature of the electrode SOFC;
所述控制器用于根据所述对称电极SOFC的温度生成所述第一控制信号、第二控制信号以及第三控制信号。The controller is used for generating the first control signal, the second control signal and the third control signal according to the temperature of the symmetrical electrode SOFC.
在一些可能的实现方式中,所述基于对称电极SOFC的电动车混合动力系统还包括与所述对称电极SOFC的出口连通的水汽分离器、水箱以及蒸汽发生器;In some possible implementations, the electric vehicle hybrid power system based on symmetrical electrode SOFC further includes a water vapor separator, a water tank, and a steam generator communicated with the outlet of the symmetrical electrode SOFC;
所述水汽分离器用于收集所述对称电极SOFC的尾气,并将所述尾气中的水分输送至所述水箱,将所述尾气中气体输送至所述燃烧室;The water vapor separator is used to collect the tail gas of the symmetrical electrode SOFC, and transport the moisture in the tail gas to the water tank, and transport the gas in the tail gas to the combustion chamber;
所述水箱将所述水分输送至所述蒸汽发生器;the water tank delivers the moisture to the steam generator;
所述蒸汽发生器用于将所述水分变换为水蒸气,并输入至所述混合器。The steam generator is used to convert the moisture into water vapor, which is input to the mixer.
另一方面,本发明还提供了一种基于对称电极SOFC的电动车混合动力系统的控制方法,适用于上述任意一种可能的实现方式中所述的基于对称电极SOFC的电动车混合动力系统,所述基于对称电极SOFC的电动车混合动力系统的控制方法包括:On the other hand, the present invention also provides a control method for an electric vehicle hybrid power system based on a symmetrical electrode SOFC, which is applicable to the electric vehicle hybrid power system based on a symmetrical electrode SOFC described in any of the above possible implementation modes, The control method of the electric vehicle hybrid system based on symmetrical electrode SOFC includes:
实时监测蓄电池的电量,并判断所述蓄电池的电量是否小于预设电量;Real-time monitoring of the power of the battery, and judging whether the power of the battery is less than the preset power;
当所述蓄电池的电量大于或等于预设电量时,控制所述蓄电池驱动所述电机;When the power of the battery is greater than or equal to a preset power, control the battery to drive the motor;
当所述蓄电池的电量小于预设电量时,控制燃料供应模块以及空气供应模块向燃烧室提供燃料和空气,以使燃烧室向对称电极SOFC提供热量;When the power of the storage battery is less than the preset power, control the fuel supply module and the air supply module to provide fuel and air to the combustion chamber, so that the combustion chamber provides heat to the symmetrical electrode SOFC;
当所述对称电极SOFC的温度达到预设温度值,控制燃料供应模块以及空气供应模块向所述对称电极SOFC提供燃料和空气,以使所述对称电极SOFC反应;When the temperature of the symmetrical electrode SOFC reaches a preset temperature value, control the fuel supply module and the air supply module to supply fuel and air to the symmetrical electrode SOFC, so that the symmetrical electrode SOFC reacts;
控制所述对称电极SOFC向所述蓄电池供电,或控制所述对称电极SOFC和/或所述蓄电池驱动所述电机。Control the symmetrical electrode SOFC to supply power to the storage battery, or control the symmetrical electrode SOFC and/or the storage battery to drive the motor.
采用上述实施例的有益效果是:本发明提供的基于对称电极SOFC的电动车混合动力系统,通过设置对称电极SOFC,利用对称电极SOFC电极可以相互切换的特点,可避免产生积碳现象,从而可确保对称电极SOFC及电动车的长期稳定性。The beneficial effects of adopting the above embodiment are: the electric vehicle hybrid power system based on the symmetrical electrode SOFC provided by the present invention can avoid carbon deposition by setting the symmetrical electrode SOFC and utilizing the characteristic that the symmetrical electrode SOFC electrodes can switch between each other. Ensure the long-term stability of symmetrical electrode SOFC and electric vehicles.
进一步地,本发明利用碳氢化合物作为燃料,摆脱了对化石燃料的依赖;并且可控制对称电极SOFC和/或蓄电池驱动电机,在蓄电池电量不足情况下,对称电极SOFC可进行单独对电机供电并对蓄电池进行充电,可满足电动车长期运行需求。Further, the present invention utilizes hydrocarbons as fuel, thus getting rid of the dependence on fossil fuels; and can control the symmetrical electrode SOFC and/or the battery-driven motor, and when the battery power is insufficient, the symmetrical electrode SOFC can independently supply power to the motor and Charging the battery can meet the long-term operation needs of electric vehicles.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1为本发明提供的基于对称电极SOFC的电动车混合动力系统的一个实施例结构示意图;Fig. 1 is a schematic structural diagram of an embodiment of an electric vehicle hybrid power system based on a symmetrical electrode SOFC provided by the present invention;
图2为本发明提供的两位四通电磁阀的一个实施例结构示意图;Fig. 2 is a schematic structural view of an embodiment of a two-position four-way solenoid valve provided by the present invention;
图3为本发明提供的基于对称电极SOFC的电动车混合动力系统的控制方法的一个实施例流程示意图。Fig. 3 is a schematic flow chart of an embodiment of a control method for a hybrid system of an electric vehicle based on a symmetrical electrode SOFC provided by the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.
在本发明实施例的描述中,除非另有说明,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如:A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。In the description of the embodiments of the present invention, unless otherwise specified, "and/or" describes the association relationship of associated objects, indicating that there may be three kinds of relationships, for example: A and/or B, may indicate: A exists alone, and at the same time There are three cases of A and B, and B alone.
应当理解,示意性的附图并未按实物比例绘制。本发明中使用的流程图示出了根据本发明的一些实施例实现的操作。应当理解,流程图的操作可以不按顺序实现,没有逻辑的上下文关系的步骤可以反转顺序或者同时实施。此外,本领域技术人员在本发明内容的指引下,可以向流程图添加一个或多个其他操作,也可以从流程图中移除一个或多个操作。It should be understood that the schematic drawings are not drawn to scale. The flowcharts used in this disclosure illustrate operations implemented in accordance with some embodiments of the present invention. It should be understood that the operations of the flowcharts may be performed out of order, and steps that do not have a logical context may be performed in reverse order or simultaneously. In addition, those skilled in the art may add one or more other operations to the flowchart, or remove one or more operations from the flowchart under the guidance of the content of the present invention.
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference herein to an "embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the present invention. The occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
本发明实施例提供了一种基于对称电极SOFC的电动车混合动力系统及其控制方法,以下分别进行说明。Embodiments of the present invention provide an electric vehicle hybrid power system based on symmetrical electrode SOFC and a control method thereof, which will be described respectively below.
图1为本发明提供的基于对称电极SOFC的电动车混合动力系统的一个实施例流程示意图,如图1所示,基于对称电极SOFC的电动车混合动力系统10包括燃料供应模块100、空气供应模块200、燃烧室300、对称电极SOFC(固体氧化物燃料电池,Solid Oxide FuelCell)400、蓄电池500、电机600以及控制器700;燃烧室300的入口分别与燃料供应模块100和空气供应模块200连通,燃烧室300的出口与对称电极SOFC400的入口连通,对称电极SOFC400的出口分别与蓄电池500和控制器700连通,蓄电池500与控制器700连通;Fig. 1 is a schematic flow chart of an embodiment of an electric vehicle hybrid power system based on symmetrical electrode SOFC provided by the present invention. As shown in Fig. 1 , the electric vehicle
控制器700用于控制燃料供应模块100和空气供应模块200分别向燃烧室300供应燃料和空气;The
燃烧室300根据燃料和空气向对称电极SOFC400提供热量;
对称电极SOFC400的阳极侧和阴极侧与空气供应模块100和燃料供应模块200连通,用于基于燃烧室提供的热量生成电流;The anode side and the cathode side of the
控制器700还用于控制对称电极SOFC400和/或蓄电池500驱动电机600;The
控制器700还用于控制对称电极SOFC400向蓄电池500供电。The
与现有技术相比,本发明实施例提供的基于对称电极SOFC的电动车混合动力系统10,通过设置对称电极SOFC400,利用对称电极SOFC400电极可以相互切换的特点,可避免产生积碳现象,从而可确保对称电极SOFC400及电动车的长期稳定性。Compared with the prior art, the electric vehicle
进一步地,本发明实施例利用碳氢化合物作为燃料,摆脱了对化石燃料的依赖;并且可控制对称电极SOFC400和/或蓄电池500驱动电机600,在蓄电池500电量不足情况下,对称电极SOFC400可进行单独对电机600供电并对蓄电池500进行充电,可满足电动车长期运行需求。Further, the embodiments of the present invention use hydrocarbons as fuels, which breaks away from the dependence on fossil fuels; and can control the symmetrical electrode SOFC400 and/or
需要说明的是:本发明实施例中燃料供应模块100供应的燃料为乙醇。It should be noted that the fuel supplied by the
由于乙醇来源广成本低,因此通过设置燃料为乙醇可降低基于对称电极SOFC的电动车混合动力系统10的成本,且摆脱对化石燃料的依赖,并摆脱了对加氢站的依赖。Since ethanol has a wide range of sources and low cost, setting the fuel as ethanol can reduce the cost of the electric
进一步地,本发明实施例可控制对称电极SOFC400和/或蓄电池500驱动电机600,在蓄电池500电量不足情况下,对称电极SOFC400可进行单独对电机600供电并对蓄电池500进行充电,可满足电动车长期运行需求。Further, the embodiment of the present invention can control the
在本发明的具体实施例中,如图1和图2所示,基于对称电极SOFC的电动车混合动力系统还包括两位四通电磁阀800,两位四通电磁阀800包括第一入口810、第二入口820、第一出口830、第二出口840以及第三出口850,当两位四通电磁阀800位于第一工作状态时,第一入口810和第一出口830连通,第二入口820和第二出口840连通;当两位四通电磁阀800位于第二工作状态时,第一入口810和第二出口840连通,第二入口820和第三出口850连通;In a specific embodiment of the present invention, as shown in FIG. 1 and FIG. 2 , the electric vehicle hybrid power system based on symmetrical electrode SOFC further includes a two-position four-
当两位四通电磁阀800位于第一工作状态时,燃料供应模块100与第一入口810连通,空气供应模块200与第二入口820连通,第一出口830与对称电极SOFC400的阳极侧连通,第二出口840与对称电极SOFC400的阴极侧连通;When the two-position four-
当两位四通电磁阀800位于第二工作状态时,燃料供应模块100与第一入口810连通,空气供应模块200与第二入口820连通,第二出口840与对称电极SOFC400的阴极侧连通,第三出口850与对称电极SOFC400的阳极侧连通。When the two-position four-
本发明实施例通过设置两位四通电磁阀800的不同工作状态与对称电极SOFC400中阳极侧及阴极侧的连通关系,可实现阳极侧和阴极侧的转换,从而可消除积碳现象。In the embodiment of the present invention, the switching between the anode side and the cathode side can be realized by setting the different working states of the two-position four-
在本发明的一些实施例中,控制器700还用于实时监测对称电极SOFC400的开路电压,当开路电压小于预设电压时,控制两位四通电磁阀800由第一工作状态切换至第二工作状态,或控制两位四通电磁阀800由第二工作状态切换至第一工作状态。In some embodiments of the present invention, the
应当理解的是:当监测到对称电极SOFC400的开路电压小于预设电压时,两位四通电磁阀800的工作状态为第一工作状态,则控制器700控制两位四通电磁阀800由第一工作状态切换至第二工作状态;而当监测到对称电极SOFC400的开路电压小于预设电压时,两位四通电磁阀800的工作状态为第二工作状态,则控制器700控制两位四通电磁阀800由第二工作状态切换至第一工作状态。It should be understood that: when it is detected that the open circuit voltage of the symmetrical electrode SOFC400 is less than the preset voltage, the working state of the two-position four-
本发明实施例通过控制两位四通电磁阀800的工作状态切换,使得不同通道的打开改变了对称电极SOFC400的工作状态(即阴阳极对换),从而能够消除积碳效应。In the embodiment of the present invention, by controlling the switching of the working state of the two-position four-
在本发明的一些实施例中,如图1所示,燃料供应模块100包括燃料泵110、燃料流量调节阀120以及混合器130;In some embodiments of the present invention, as shown in FIG. 1 , the
燃料泵110用于提供燃料;The
燃料流量调节阀120用于根据控制器700的第一控制信号调节进入混合器130以及进入燃烧室300的燃料流量;The fuel
混合器130的进口分别与燃料流量调节阀120以及对称电极SOFC400的出口连通,混合器130的出口与对称电极SOFC400的入口连通,用于将燃料和对称电极SOFC400尾气中的水蒸气进行混合,生成混合燃料,并将混合燃料输送至对称电极SOFC400。The inlet of the
本发明实施例通过设置燃料流量调节阀120可实现对燃烧室300生成热量的调节,从而可实现对对称电极SOFC400的温度的精确调节,提高对称电极SOFC400的工作可靠性。In the embodiment of the present invention, by setting the fuel
进一步地,本发明实施例将将燃料和对称电极SOFC400尾气中的水蒸气进行混合,生成混合燃料,并将混合燃料输送至对称电极SOFC400,可对对称电极SOFC400的尾气进行再利用,提高了基于对称电极SOFC的电动车混合动力系统10的利用率。Further, in the embodiment of the present invention, the fuel and the water vapor in the tail gas of the symmetrical electrode SOFC400 are mixed to generate a mixed fuel, and the mixed fuel is delivered to the symmetrical electrode SOFC400, so that the tail gas of the symmetrical electrode SOFC400 can be reused, and the improvement based on Utilization of Symmetrical Electrode SOFCs in Electric
为了进一步提高对称电极SOFC400的效率,在本发明的一些实施例中,如图1所示,燃料供应模块100还包括设置在混合器130和对称电极SOFC400之间的燃料路换热器140;In order to further improve the efficiency of the symmetrical electrode SOFC400, in some embodiments of the present invention, as shown in FIG.
燃料路换热器140的热流进口与燃烧室300的出口连通,燃料路换热器140的气流进口与混合器130的出口连通,用于基于燃烧室生成的热量对混合燃料进行预热。The heat flow inlet of the
本发明实施例通过设置燃料路换热器140,可实现通过燃烧室300生成的热量对混合燃料进行预热,无需在对称电极SOFC400中对混合燃料进行预热,可进一步提高对称电极SOFC400的效率。In the embodiment of the present invention, by setting the fuel
在本发明的一些实施例中,如图1所示,空气供应模块200包括空气压缩机210以及气体流量调节阀220;In some embodiments of the present invention, as shown in FIG. 1 , the
空气压缩机210用于获取并压缩空气;
气体流量调节阀220用于根据控制器700的第二控制信号调节进入对称电极SOFC400以及进入燃烧室300的空气流量。The gas
本发明实施例通过设置气体流量调节阀220可实现对燃烧室300生成热量的调节,从而可实现对对称电极SOFC400的温度的精确调节,进一步提高对称电极SOFC400的工作可靠性。In the embodiment of the present invention, by setting the gas
为了避免空气中存在的杂质对燃烧室300生成热量的影响,在本发明的一些实施例中,如图1所示,空气供应模块200还包括空气净化器230,空气净化器230用于对进入空气压缩机210中的空气进行净化。In order to avoid the impact of impurities in the air on the heat generated by the
本发明实施例通过设置空气净化器230,可提高空气的纯净度,从而可进一步提高对对称电极SOFC400温度调控的精确性。In the embodiment of the present invention, by setting the
在本发明的一些实施例中,如图1所示,空气供应模块200还包括设置在气体流量调节阀220与对称电极SOFC400之间的空气路换热器240;In some embodiments of the present invention, as shown in FIG. 1 , the
空气路换热器240的气流进口与气体流量调节阀220连通,空气路换热器240的热流进口与燃料路换热器140的热流出口连通,用于基于燃烧室300生成的热量对空气进行预热。The airflow inlet of the air
本发明实施例通过设置空气路换热器240,从而实现通过燃烧室300生成的热量对空气进行预热,无需在对称电极SOFC400中对空气进行预热,可进一步提高对称电极SOFC400的效率。In the embodiment of the present invention, by setting the air
为了避免对称电极SOFC400中的温度过高,在本发明的一些实施例中,如图1所示,空气供应模块200还包括设置在燃料路换热器140和空气路换热器240之间的热量调节电磁阀250,热量调节电磁阀250用于根据控制器700的第三控制信号调节进入到空气路换热器240中的热量。In order to prevent the temperature in the symmetrical electrode SOFC400 from being too high, in some embodiments of the present invention, as shown in FIG. 1 , the
本发明实施例通过设置热量调节电磁阀250,可在当对称电极SOFC400中的温度过高时,控制热量调节电磁阀250不向空气路换热器240中提供热量,从而避免对空气进行预热,起到空气冷却的作用。In the embodiment of the present invention, by setting the heat regulating
由于对称电极SOFC400的温度对对称电极SOFC400的效率有较大影响,因此,在本发明的一些实施例中,如图1所示,基于对称电极SOFC的电动车混合动力系统10还包括设置在燃烧室300和对称电极SOFC400之间的温度传感器900,温度传感器900用于监测对称电极SOFC400的温度;Because the temperature of the symmetrical electrode SOFC400 has a great influence on the efficiency of the symmetrical electrode SOFC400, therefore, in some embodiments of the present invention, as shown in FIG. A
控制器700用于根据对称电极SOFC400的温度生成第一控制信号、第二控制信号以及第三控制信号。The
本发明实施例通过根据对称电极SOFC400的温度生成第一控制信号、第二控制信号以及第三控制信号,以对燃料流量调节阀120、气体流量调节阀220以及热量调节电磁阀250进行调节,可提高对燃料流量调节阀120、气体流量调节阀220以及热量调节电磁阀250进行调节的合理性,从而提高对称电极SOFC400的温度的合理性,进而可确保对称电极SOFC400的效率。In the embodiment of the present invention, the first control signal, the second control signal, and the third control signal are generated according to the temperature of the symmetrical electrode SOFC400 to adjust the fuel
在本发明的一些实施例中,如图1所示,基于对称电极SOFC的电动车混合动力系统10还包括与对称电极SOFC400的出口连通的水汽分离器1000、水箱1100以及蒸汽发生器1200;In some embodiments of the present invention, as shown in FIG. 1 , the electric vehicle
水汽分离器1000用于收集对称电极SOFC400的尾气,并将尾气中的水分输送至水箱1100,将尾气中气体输送至燃烧室300;The
水箱1100将水分输送至蒸汽发生器1200;The
蒸汽发生器1200用于将水分变换为水蒸气,并输入至混合器130。The
本发明实施例通过将尾气中除水分之外的其他输送至燃烧室300,将水分经过变化的水蒸气输入至混合器130,可提高基于对称电极SOFC的电动车混合动力系统10的整体热利用效率。The embodiment of the present invention can improve the overall heat utilization of the electric vehicle
在本发明的一些实施例中,如图1所示,基于对称电极SOFC的电动车混合动力系统10还包括设置在对称电极SOFC400与控制器700之间的DC/DC变换器1300,通过DC/DC变换器1300将对称电极SOFC400产生的电流可变为可变直流电压,以驱动电机600。In some embodiments of the present invention, as shown in FIG. 1 , the electric vehicle
另一方面,在基于对称电极SOFC的电动车混合动力系统基础之上,对应的,本发明实施例还提供了一种基于对称电极SOFC的电动车混合动力系统的控制方法,适用于上述任意一种实施例中描述的基于对称电极SOFC的电动车混合动力系统;如图3所示,基于对称电极SOFC的电动车混合动力系统的控制方法包括:On the other hand, on the basis of the electric vehicle hybrid power system based on the symmetrical electrode SOFC, correspondingly, the embodiment of the present invention also provides a control method for the electric vehicle hybrid power system based on the symmetrical electrode SOFC, which is applicable to any of the above-mentioned The electric vehicle hybrid power system based on the symmetrical electrode SOFC described in this embodiment; as shown in Figure 3, the control method based on the electric vehicle hybrid power system of the symmetrical electrode SOFC includes:
S301、实时监测蓄电池的电量,并判断蓄电池的电量是否小于预设电量;S301. Monitor the power of the storage battery in real time, and determine whether the power of the battery is less than a preset power;
S302、当蓄电池的电量大于或等于预设电量时,控制蓄电池驱动电机;S302. When the power of the battery is greater than or equal to the preset power, control the battery to drive the motor;
S303、当蓄电池的电量小于预设电量时,控制燃料供应模块以及空气供应模块向燃烧室提供燃料和空气,以使燃烧室向对称电极SOFC提供热量;S303. When the power of the battery is less than the preset power, control the fuel supply module and the air supply module to supply fuel and air to the combustion chamber, so that the combustion chamber provides heat to the symmetrical electrode SOFC;
S304、当对称电极SOFC的温度达到预设温度值,控制燃料供应模块以及空气供应模块向对称电极SOFC提供燃料和空气,以使对称电极SOFC反应;S304. When the temperature of the symmetrical electrode SOFC reaches a preset temperature value, control the fuel supply module and the air supply module to supply fuel and air to the symmetrical electrode SOFC, so that the symmetrical electrode SOFC reacts;
S305、控制对称电极SOFC向蓄电池供电,或控制对称电极SOFC和/或蓄电池驱动电机。S305. Control the symmetrical electrode SOFC to supply power to the storage battery, or control the symmetrical electrode SOFC and/or the storage battery to drive the motor.
需要说明的是:由于积碳现象存在会导致对称电极SOFC的开路电压降低,因此,在本发明的一些实施例中,基于对称电极SOFC的电动车混合动力系统的控制方法还包括:It should be noted that: due to the existence of carbon deposition, the open circuit voltage of the symmetrical electrode SOFC will decrease. Therefore, in some embodiments of the present invention, the control method of the electric vehicle hybrid system based on the symmetrical electrode SOFC further includes:
实时监控对称电极SOFC的开路电压;当对称电极SOFC的开路电压下降到所限制的水平时,控制两位四通电磁阀由第一工作状态切换至第二工作状态,并保持第二工作状态继续进行电化学反应的进行,当运行一段时间之后,再次检测到对称电极SOFC的开路电压下降到所限制的水平时,控制两位四通电磁阀由第二工作状态切换至第一工作状态,以此继续下去,保证了对称电极SOFC产生的积碳能够及时有效的去除。Real-time monitoring of the open circuit voltage of the symmetrical electrode SOFC; when the open circuit voltage of the symmetrical electrode SOFC drops to a limited level, control the two-position four-way solenoid valve to switch from the first working state to the second working state, and keep the second working state to continue Carry out the electrochemical reaction. After running for a period of time, when the open circuit voltage of the symmetrical electrode SOFC is detected again to drop to a limited level, the two-position four-way solenoid valve is controlled to switch from the second working state to the first working state, so as to This continues to ensure that the carbon deposits produced by the symmetrical electrode SOFC can be removed in time and effectively.
还需要说明的是:上述实施例中的方法中的步骤可根据基于对称电极SOFC的电动车混合动力系统中的各个模块或单元进行增加或扩展,具体详见基于对称电极SOFC的电动车混合动力系统实施例中的描述,在此不做赘述。It should also be noted that the steps in the method in the above embodiments can be increased or expanded according to the modules or units in the electric vehicle hybrid system based on symmetrical electrode SOFC, for details, see Electric Vehicle Hybrid Power System Based on Symmetrical Electrode SOFC The description in the system embodiment will not be repeated here.
以上对本发明所提供的基于对称电极SOFC的电动车混合动力系统及其控制方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The electric vehicle hybrid power system and its control method based on the symmetrical electrode SOFC provided by the present invention have been introduced in detail above. The principles and implementation methods of the present invention have been explained by using specific examples in this paper. The description of the above embodiments is only used To help understand the method of the present invention and its core idea; at the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation and scope of application. In summary, the content of this specification It should not be construed as a limitation of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211068770.0A CN115303131B (en) | 2022-08-31 | 2022-08-31 | Electric vehicle hybrid power system based on symmetrical electrode SOFC and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211068770.0A CN115303131B (en) | 2022-08-31 | 2022-08-31 | Electric vehicle hybrid power system based on symmetrical electrode SOFC and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115303131A true CN115303131A (en) | 2022-11-08 |
CN115303131B CN115303131B (en) | 2024-07-16 |
Family
ID=83865856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211068770.0A Active CN115303131B (en) | 2022-08-31 | 2022-08-31 | Electric vehicle hybrid power system based on symmetrical electrode SOFC and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115303131B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040074911A (en) * | 2003-02-18 | 2004-08-26 | 술저 마켓츠 앤드 테크놀로지 아게 | A battery with miniaturised sofc fuel cells |
CN103811789A (en) * | 2012-11-07 | 2014-05-21 | 中国科学院上海硅酸盐研究所 | Solid oxide fuel cell with symmetrical electrodes, and preparation method and application thereof |
CN105576273A (en) * | 2015-12-11 | 2016-05-11 | 西安交通大学 | Reversible recycling green energy conversion system and conversion method |
GB2589592A (en) * | 2019-12-03 | 2021-06-09 | Ceres Ip Co Ltd | Improved fuel cell systems and methods |
-
2022
- 2022-08-31 CN CN202211068770.0A patent/CN115303131B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040074911A (en) * | 2003-02-18 | 2004-08-26 | 술저 마켓츠 앤드 테크놀로지 아게 | A battery with miniaturised sofc fuel cells |
CN103811789A (en) * | 2012-11-07 | 2014-05-21 | 中国科学院上海硅酸盐研究所 | Solid oxide fuel cell with symmetrical electrodes, and preparation method and application thereof |
CN105576273A (en) * | 2015-12-11 | 2016-05-11 | 西安交通大学 | Reversible recycling green energy conversion system and conversion method |
GB2589592A (en) * | 2019-12-03 | 2021-06-09 | Ceres Ip Co Ltd | Improved fuel cell systems and methods |
Non-Patent Citations (1)
Title |
---|
陶浩良;谢建军;王绍荣;: "对称固体氧化物燃料电池电极材料", 陶瓷学报, no. 02, 18 April 2019 (2019-04-18) * |
Also Published As
Publication number | Publication date |
---|---|
CN115303131B (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102664278B (en) | Fuel cell system | |
JP5384543B2 (en) | Fuel cell system | |
CN101399355B (en) | Open-loop system and method for fuel cell stack start-up with low-voltage source | |
CN112038664B (en) | Power system of hybrid lithium battery pack and reversible solid oxide battery and application thereof | |
KR101551085B1 (en) | Controlling method of a fuel cell vehicle | |
CN113488681A (en) | Control method and system for long-life vehicle fuel cell engine | |
CN111755714A (en) | A high-power fuel cell system for commercial vehicles | |
CN114725428B (en) | Zero-carbon-emission solid oxide fuel cell and renewable energy combined power generation system taking ammonia gas as carrier | |
CN113839066A (en) | A multi-stack integrated long-life fuel cell system | |
CN113851670B (en) | Combined cooling heating and power method based on proton exchange membrane fuel cell | |
CN111261904A (en) | A portable SOFC power generation device and its energy management method | |
CN101326666B (en) | Fuel battery system and mobile object | |
CN100511790C (en) | Fuel cell generating system with self-starting function | |
WO2024152964A1 (en) | Fuel-cell power system, and output-power control method therefor | |
JP3583914B2 (en) | Auxiliary power supply for fuel cell | |
CN205248374U (en) | Portable charging station with multiunit methanol -water reformation hydrogen manufacturing power mode | |
CN111261902B (en) | Portable fuel cell system and control method thereof | |
CN115303131B (en) | Electric vehicle hybrid power system based on symmetrical electrode SOFC and control method thereof | |
CN117334949A (en) | Ship power fuel cell system, thermal management system and method | |
JP2007250216A (en) | Fuel cell system and operation method thereof | |
CN100379075C (en) | A fuel cell power generation system with self-starting device | |
KR101656993B1 (en) | Real time load following type fuel cell system and method of controlling the same | |
CN115498215A (en) | Low-voltage auxiliary starting electrical control system and starting method for vehicle fuel cell system | |
CN111180761A (en) | Method for releasing residual energy when vehicle fuel cell is shut down | |
CN115570993B (en) | Thermoelectric coupling range extender for vehicle fuel cell, vehicle and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |